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Introduction

The purpose of this paper is to show stability properties of discrete time self
tuning direct control as it is presented beginning with Astrdm and Wittenmark!.
We use a Lyapunov theory approach.

Self-tuning control is based on least-squares identification. Such solutions are
systematically biased in the presence of colored noise and convergence towards cor-
rect values of the estimated control parameters is not self evident. It was however
stated by Astrém and Wittenmark? that their self tuning controller will converge to
a minimum variance regulator if it converges. Ljung? formulated positive real con-
ditions for stationary parameter convergence under the assumption that the trajec-
tories are stable and finite.

Nonstationary analysis of the estimation was made by Solo® who showed con-
vergence of pseudolinear regression by ‘near supermartingale’ methods of Neveu?. It
is then a necessary condition that the regressors are bounded. Landau and Silveira®,
Landau®7 used the same outlines together with hyperstability analysis®? to show pa-
rameter convergence of least squares based adaptive control in the presence of noise.
The stability does however appear also here as an assumption in the proof. Becker
et al® used a geometric argument to demonstrate convergence points of parameters

when simple gradient methods are used.

In all these papers stability appears as an assumption of the proofs in which conver-
gence is shown. Some of problems of stability and convergence have been treated by
Goodwin and Sin!! although their approach lacks more precise bounds on cost func-
tionals. The purpose of this paper is to remove the stochastic stability assumption

in the above papers and to

—  Establish stability properties for minimum variance adaptive control based on

least squares identification.
— Give explicit bounds on cost functionals
— Give an information theoretical interpretation
A stability investigation must be more than a demonstration of convergence. It

is necessary to consider different impacts of disturbances. There are many ways to

model a disturbance in a stability investigation. A white noise sequence is often used
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in stochastic control theory. An I2—bounded disturbance in a deterministic system
may be modelled by an initial condition of Lyapunov function in Lyapunov stability
theory. A stochastic Lyapunov function study of the transient trajectories from
an initial state value to an equilibrium point has the advantage to cover both the
convergence aspects and the disturbance rejection aspects of stability, see Kushner!2,

A heuristic argument for global stability of adaptation transients was formulated
by Ljung and Wittenmark'2 in the following terms. Assume that the signals increase
due to instability induced by the adaptation. As the signals increase more informa-
tion is available and the parameters converge towards their appropriate stabilizing
values. The instability behaviour is then stopped.

Such statements need to be formalized and it is then reasonable to consider two

competing convergence points namely

—  The convergence point 6, for parameters associated with the purely deterministic

noisefree problem.

— The parameter convergence point 87y for minimum variance control.

The deterministic aspects of stability and the convergence towards §, are similar
to earlier results on adaptive control which have been presented by Johansson!415,
The results are based on the same assumptions as in chapter 11.3 of Goodwin and
Sin'!. It is shown in this paper that a set around 6, is globally attractive while the
point a7y is only locally attractive. Stable solutions of large initial magnitudes thus
start their trajectories by attraction from 6,,. Eventually, these trajectories enter the

domain of attraction of 6prv and converge to the minimum variance regulator.

Scenario of convergence

The proofs of stability will demonstrate that there are two convergence points

8o, v with the following properties.

—  There is convergence in a finite time to a set §, in the neighbourhood of 6,
with a finite ||z||. The convergence point 6, is attractive in the whole state
space outside ,. The attractivity is better on some distance from 0, and the

convergence rates in a close neigbourhood of 8, may be weak.



— The convergence point fpy is attractive inside Qs when there is noise inter-
ference modeled by the C*—polynomial. The attractivity of 87y is only local
but the fact that 6, lies close to 83y inside €, is sufficient for convergence
towards fpry when the trajectories have entered Q,. The convergence to {1,
takes only a finite time. It is therefore assured that Qs is reached so that

convergence may proceed towards 8y .

Figure 1. Solution points 6 and Onrv with the deterministic attractive set 1, and
the minimum variance stability domain Qary. A typical trajectory from outside Qasv
therefore proceeds via Q, towards Oy .

The convergence towards 6, is a good model for the behaviour when there are large
disturbances or large initial values of signals. Error recovery is then modelled by a
convergence from the initial state of the Lyapunov function. The stationary stochas-

tic behaviour is characterized by the convergence towards §37y.

System Description and Notations

We make a standard system decription!®l”. Assume that the process model is

described by the discrete-time ARMAX-model

A*(g7)y() = bog 9B (g7 )u(t) + C*(g~V)w(t) (1)



from the input u and the noise w to the output y with coprime polynomials
A(@ Y =14a1g  +- + an,q ™

B*(q—l) =1 + b1q_1 + oot bnA_dq—ﬂA+d
C g )=14eg + - +eon, g™ (2)

The parameter bg is a gain factor and d is a time delay. The B*-polynomial should
not have any non-minimum phase zeros. The coprimeness of A*, B* and C* assures
that the input-output model (1) also corresponds to a state space realization of order

n4 and also the fractional form

A*(g7)é(k) = u(k) + v(k) (3)

y(k) = bog~?B*(q~*)£(k) + e(k) (4)
with noise components
W) = gt o) ) = Fa (k) )

The polynomials F* and G* solve the equation
A*F* + ¢79G* = C* (6)
A linear control law is decribed by
R (g7 )u(t) = —S*(q7")y(t) + T" (g7 )uc(t) (7)

where R*, S* are polynomials of degrees ng, ng, respectively. The closed-loop

system should reproduce the reference signal u.. The appropriate minimum variance

regulator is given by
R* = byB*F* S*=G* T =C" (8)
in the case of known parameters. The pole polynomial of the closed-loop system is
R*A* + §* (boq“’B*> = boP* (9)

with

P*=B'C*=1+pig + - 4 pnpq~™" (10)



L Parameter estimation -

Figure 2. Block diagram of the self-tuning regulator with a noise model according to
(3)-(5). Notice that a correctly tuned minimum variance regulator totally decouples ¢
from noise interference of w.
Another parallel notation is motivated by the problem of parameter estimation in
adaptive control theory. Assume that the parameter vector 8 contains the coefficients
of at least R* and $*. The T*—polynomial need to be included when tracking a
reference value

0= (7'11'2...3081...tot1...> (11)

and ¢ contains the u and y corresponding to components of §

(k) = (u(k - 1u(k—2)...y(k)y(k-1)... uc(k)uc(k - 1).. ) (12)

Let also y. denote the following filtered signals

Ye(t) = C™(a7" Juc(t) (13)



A reformulation of (1) to scalar product form gives a model suitable for estimation.

This estimation model is obtained from manipulations!'! of (1) with (6), (7).
y(k + d) = bou(k) + 6T (k) (14)

The correct control law (2) may be reformulated to

) =~ (676 (15)

0

The Adaptive Control Algorithm

The idea of the direct adaptive control algorithm is to find the regulator param-
eters from input-output data when the process model is unknown. The adaptive
control problem is then partitioned into a parameter estimation problem and a con-
trol problem. The parameter estimation problem is a standard linear estimation
problem and we will study the choice of recursive least squares identification.

The recursive identification algorithm is based on the linear estimation model

(14) and is associated with minimization of the least squares criterion

k
J(B(k)) = D (3(3) - bou(i — 1) — 87 (k)p(i - 1))? (16)
=1

The direct adaptive control algorithm then comprises the following steps. The re-

cursive least squares estimation algorithm is given by

O(k) = 8(k — 1) + P(k)p(k — d)e(k) (17)
_ P(k - 1)p(k — d)¢™ (k — d)P(k — 1)
PO =Pl =1) = o — PG - e = 0 (18)
P(0)=Py>0 (19)
e(k) = y(k) - fou(k — d) — BT (k — 1)p(k — d) (20)

where (g is a fixed a priori estimate of bg. The adaptive control law should be

) = =5 (FR)eh)) (21)

where the estimated parameters 8 have replaced the parameters 6 of the correct

model matching control law.



State Space Model

The control object has been described by the fraction form (3)-(5)

A(aEE) = (k) + o(1) (22)
V) = bog ™ B (g (k) + e(3) (29)

with
o) = gt dul)  e(b) = P (k) (29

with G* and F* as solutions to (6). The states of the regulator may be represented
in a similar way. The regulator makes however use of old input-output data and it
is natural to express the control object states as well as the regulator states of p in

terms of £. Introduce therefore the state vector

T
w(k)= (&k-1) €(k-2) ... &k-mn)) (25)

The order of z should be some number n > ny4 that is large enough to express p(k)

on the form

(1 a a3 ... @, 0 ... 0) (—v(k—1))
—v(k —2)
0o ... 1 ay v Qp s O
k) = 4 k
PR =0 0 b b L o[ Z®+ ]
0 ... 0 0 b ... e(k — 1)
L. ’ s \ : /
or
p(k) = Mya(k) + Mu(b) (26)

The matrix M, contains the parameters of the A*— and B*—polynomials of (22-23).
The state z may be decomposed into a desirable reference model state z,, and an

error state ¢, where

z(k) = z2m(k) + z(k)
The error state z. should be zero for an adapted closed loop system and one objective
of a stability investigation for adaptive control is to show that z, approaches the

origin. A suitable state equation for z is therefore necessary. Define via (9) and

(8),(4) the scalar signal vy

v () = P(a™(K) = u(b) + 103y (k) (21)



The signal vyry may be interpreted as the input to the compensated closed loop

system. Introduce a & pry —matrix and a T'—vector given by

-P1 P2 ... —pn pT 1
1 0 T 0 0 0
QMV = . ) . ¢—1 . I‘ = R (28)
: . : In1)o(n-1) :
- 1 0 0 0

0

The components of the vector p are the coefficients p; of the polynomial P* of (10).

A state equation of (27) for z on controllable canonical form is given by
z(k + 1) = Spva(k) + Tvpry (k) (29)

z(k) = 2 (k) + z(k)

Notice that the polynomial P* and the matrix & 5sy represent all poles of the closed-
loop system - also those poles which cancel the zeros of the B*—polynomial.
The noise free system dynamics when 6, is an attraction point is better described

by the following state equation.
1
va(k) = B*(a)E(k) = u(k) + 50T p()

z(k + 1) = ®,2(k) + T'v,(k) (30)

The matrix &, is of the same form as ® 7y but contains the coefficients of B*.
Parameter stability is also needed and state vectors for the parameter estimation

error are given by
Ouv (k) = 8(k) — Oy B,(k) = 8(k) — 0, (31)

A state space representation of the matrix P(k) of (18) is needed. Introduce the

vector II
TE) = (2a(E) - pia(®) Pu(®) .. punl®) ) (32)

The full error dynamics state vector X comprising the states of the control ob ject,

controller and the parameter estimation is now
T
Xuv(k) = (2Z(k) (k) TO(R) ) (33)

~ T
Xo(k) = (=Z(k) (k) WF(k)) (34)



Assumptions

Al: The polynomials A*, B* and C* are mutually prime.
A2: The polynomial B* has a stable inverse.
A3: Gain by estimated By such that 0 < % <2

A4: The noise process {w(k)}32, has the properties:
E{w(k +1)|F} =0 E{w*(k+1)|F} = ¢* a.s.

'wz(k) <C! <
where F}, is the o—algebra of measurements up to time k.

A5: The parameter vector a(k) has a correct number of parameters.

AB: There is a constant C, such that the reference model state is bounded

0< zl(k)zn(k)<C? VE>0

Temporary assumptions

Before giving the analysis we first make some simplifying specializations. Gen-

eralizations are made later in order to solve the full problem. Assume that

AT: Reference value u. = 0 and

T
8= [1‘1 T2 ... S &8 ]

AS8: ,30 = bo
A9: Timedelayd=1

A10: The C*—polynomial has a stable invers.

A Lyapunov function

We will now investigate the growth rate of the state vector X, and a Lyapunov
function candidate is introduced to represent the components of (33-34). Lyapunov
function candidates must be continuous at the origin and grow with the magnitude

of all state vector components, see LaSalle’®. We first present the following result



LEMMA 1

Let
z(k + 1) = z(k) + Tv(k) VE>0 (35)

for a matrix & with all eigenvalues within the unit circle and a vector I'. Then for
all positive matrices @ and all positive constants 1 there is a positive definite matrix

A and a constant ¢ such that the growth rate of the function

va(x(k)) = log (1 + e (k) Az (k) (36)
is bounded as

—z7(k)Qz(k) 4 ¢>TT ATv2(k)
1+ pzT(k)Az(k) (37)

vz(2(k +1)) — va(2(k)) < p

The positive definite matrix A and the positive constant e may be chosen as the

solutions to the equations
3TAD—A=-Q-1T

¢? = maz (2,)\,,,“(<I>TA§)) (38)
where Apmaz(-) denotes the largest eigenvalue of a positive definite matrix. O
Proof: See appendix 1

A Lyapunov function candidate for z, is

Va(e(k)) = logo(1 + pzZ (k) Aoze(k)) (39)

satisfies the conditions of lemma 1 for the case with & = ®, and a solution A = A,
to (38). Another Lyapunov function candidate is proposed for the parameter error
of (31).
v9(0o(k)) = 85 (k)P (k)3o(k) (40)
In order to represent the states it is finally necessary to consider the P—matrix or
IT of (32). A scalar, positive, radially growing function to represent the states of the
P—matrix is e.g.
vp(TI(k)) = tr(P*(k)P(k)) (41)
It is shown in appendix 2 that vp decreases at each recursion. A Lyapunov function

for X of (32) may now be composed from (39), (40), and (41) and we claim:

10



Proposition 1:

There are constants 4 > 0, K > 0 and a positive definite matrix A, such that

the function
Vo(Xo(k)) = va(0.(k)) + K va(z(k)) + vp(TI(k)) =

= 6T (k)P (k)8(k) + K log.(1 + peg (k)Aoze(k)) + tr(PT(K)P(K))  (42)

decreases in each recursion at least as

zT T,
VKol + 1)) = V(X < —pre Z ) v on=ve )

The function V, is a Lyapunov function for the adaptive system (1-21) and the

system is stable in the sense of Lyapunov.

Proof: See appendix 3.

Remark:

The choice p = 1/0? gives an interesting information theoretical interpretation to
the Lyapunov function candidate v,. The function ve is a logarithmic function of
the signal to noise ratio and may be interpreted as the information of z. contained

in the output y of a discrete time channel, see Gallager'® (ch. 8.2)).

Finite Time Convergence to 0,

The stability properties imply certain convergence properties. We now show
finite time convergence to the neighbourhood of the origin. For all k¥ and some
arbitrary radius r such that lze(k)]|2 > 72 > 0 it holds in the noise free case that

2
—qminT
Vo(Xo(k + 1)) — Vo(Xo()) < MKm (44)

The constants gm, and A, denote extremal eigenvalues of the positive definite
matrices ¢ and A,, respectively. It then follows that z. converges with an expo-

nential rate from the initial value Vg to a ball with radius r in at most the finite

time

1 1 Amnz)
T(r) = — + 7 45
( ) ”’K (q"n'rﬂ'2 MQmin 0 ( )

11



It follows from the properties of a Lyapunov function that the magnitude of z., € I*®

and is limited by a function f of the Lyapunov function V

T (e8] < FV0) = Jexp( VX)) (46)

It follows from the properties of a Lyapunov function that the magnitude of z, is

limited by an upper bound f which decreases exponentially at least as

P8+ 1)) < exp( 52T g x, 1) (47

From (45) and (46) follow the propositions
Proposition 2:

The error state vector 2, € 1.

Proposition 3:

The error state vector z. converges in finite time with an exponential rate to any

spherical neighbourhood of radius r > 0 around the origin.

Proposition 4:

All 2 —bounded disturbances w with

oo na
lwl =Y w'(i) <o Je?=3
j=0 3=0

result in an augmented Lyapunov function so that

V) SVi=Vot[lef?- P <o Vb

Stochastic Stability Analysis

Both the behaviour and the analysis are more complicated when there is noise
acting on inputs and outputs. The Lyapunov functions may be replaced by stochas-
tic Lyapunov functions or by some other supermartingale analysis. The behaviour
is changed by the fact that the noise gives a systematic bias of the least squares esti-
mated parameters from the convergence point 8, to fy. Large transients converge

towards X, but the final convergence is towards X = 0 .

12
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Figure 3. Simulation of a transient of output y (upper) and state z (lower) vs. time
in an adaptive control system with 4* =1 —0.7¢™%, B* = ¢!, and C* = 1+ 0.3¢"".
Notice that z is asymptotically decoupled from the noise.

Convergence towards 6,

This convergence point is attractive in a large region of the state space. The
attractivity is better on some distance and the convergence rates in a close neig-
bourhood of 8, may be weak. Modification of Vo(X,(k)) in presence of noise gives

that the expected value of the Lyapunov function develops over time as

E{Vo(Xo(k + 1))| Fi} — Vo(Xo(k)) <

: zT T,
< B0 uth+1)) 1) - e QD gy

This shows convergence in a finite time to a neighbourhood of 8, with a finite [|zell
for limited noise w € I2. Large excursions in the state space therefore always finish

with convergence to a ball Q, around Xo=0.

Convergence within Qs towards 0y

Convergence analysis within Qs may be performed with several Lyapunov

functions. We continiue with logarithmic functions although a quadratic Lyapunov

13
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0 200 400 600 800
Figure 4. Parameter convergence of 8 vs. time with 0, = 0.7 and Opv = 1.0. Notice
that 8 first converges towards 6, and then proceeds towards v .

function would have been feasible within Q37y. The systematic bias with X o(00) # 0
concluded in (48) results in final convergence towards Xpy = 0. The Lyapunov

function with respect to the convergence point 7y develops as

E{Vmv (Xnmv (k+ 1))|Fi} — Varv (Xnev (k) <

3 f*;ﬁ();ge()’g(:()k)az + o) - px e E an
The convergence point 87y is more attractive than 0, when there is noise interfer-
ence. There is eventually no disturbance on z,. The attractivity of 6y is only local
but the fact that 6, lies close to 8y is sufficient for global attraction to the neigh-
bourhood of fpsy. We reproduce the result of Ljung? and Landau” in the setting

provided by this paper.

Proposition 5:

There is convergence towards sy of least squares estimation within the region Qprp

provided that the transfer function

1

.
G 2 o0

is strictly positive real. The point 8, is attractive outside this area.

Proof: See appendix 6.

14
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Cost Criterion Evaluation

It is of interest to evaluate cost functionals such as different I2—norms of z.. The

transient noiseless properties for large ||z|| > r according to (46)-(47) is such that

'

To(1) = 3 o (k) Avae(k) <

k=0

I‘LQmmT 1+ pAmaz‘I‘z 1
<Zezp(1 F i V) < e S ep(Vo/K) (51)

where the properties og geometric series have been used. It is seen that the cost
functional depends on Vp. The cost functional after the lapse of a full adaptation is

also limited which is claimed in the following proposition.

Proposition 6:

The noise free adaptive system is 12— stable satisfying the bound

EzT(k)Qz,(k) < ——exp( “2)Vo (52)

k=0
Proof: This result follows also from the Lyapunov function property with the in-

termediate steps obtained via (43) as

> 2T (k)Qze(k) <
k=0

g —117(1 + ﬂzf(k)Azf) (V(X(k)) ~V(X(k+ 1))) <

< #LKexpé’g)kz:jo(V(X(k)) ~V(x(k+1)) < e,

a

The cost functional after a disturbance w € {2 is similar with Vo replaced by V;
according to proposition 4. The exponential dependence on Vj is less dramatic with
respect to initial values of z due to the logarithmic Lyapunov function. It implies

however sensitivity with respect to parameter errors and disturbances.

Persistent excitation

An evaluation of cost criteria for non-stationary sporadically occurring disturbances

w € 1% can be made by Lyapunov analysis. More severe noise conditions may

15



be analysed by using stochastic Lyapunov functions. A common method in the
literature, see Anderson?’, is to consider the case of persistent excitation. A cost
functional for persistant noise excitation may now be evaluated. It is known from

above that there is finite time convergence to a neighbourhood of Xo,. For ||z(k)||% <
72 it follows that

¢ (k)p(k) < 2ll2(k)|I* + 2M (k)Mo (k)C? < 20 + 202 = c

-

0.05 -

0 T 1 T T 1
0 200 400 600 800 1000

Figure 5. Cost functional J.(k) = 2:;0 27 (1)Qz(i) vs. time k in persistent excitation.

Strong conclusions may be drawn for the cases when it can be shown that the

following condition of persistency of excitation holds:

i
2kl ., < P! k) < ——TI,zn E>1
0< acka <P k) > P(k) < vy Vk > (53)

2
e
The evaluation of the cost functional up to time k may be derived from (49). In
the case of a strict positive real transfer function (50) it follows that the second and

third terms are together nonpositive and

T Ty - P(1 y
E{V(7)|Fi} - V(k) < 2_; 1 f Jﬁnﬁii?fibf’ :

3

1 41 dt 0.2 1+Q(T+1)>
< < 2 < S . -
= 4 1+.1'az—a/,:_1 1+at—alog(1+a(k_1) a.s (54)

so that

E{V(k)|Fo} < Vo + élog(l + a(k + 1)) o? a.s. (55)

16



Proposition 7:

We conclude from (55) that noise asymptotically does not affect the state z. O

For low signal to noise ratios with ||z.||? < o? with Q = Q, + (2/pK) - ccT and
1 =1/a? it follows from (49) that

Proposition 8:

The cost functional

k
B{T.()|7o} = B(}_ 2" ()@u=(i)| 7o} < co+ erlog(l + alk+1))  as. (56)

=0

with

O

The cost functional for high signal to noise ratios is similar to that of (51) where V,

is augmented by the finite noise energy entering the system during the transient.

Remark:

The choice of a quadratic Lyapunov function within 0 mv is feasible and gives

similar bounds.

No stable inverse of ¢+

It was seen that a set around 6, is attractive globally. The point 87y is however no
longer attractive when (50) does not hold. Consider now the case where assumption

A10 is not valid.

17
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Figure 6. An adaptive control system with A* = 1 — 0.7¢”*, B* = ¢~*, and C* =
1+3.33¢7%.
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Figure 7. A transient of output y (upper) and state = (lower) vs. time in the adaptive

control system with A* =1-0.7¢7!, B* = ¢!, and C* =1 + 3.33¢7!. Notice that z
remains noisy.
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Figure 8. Parameter convergence of 8 vs. time with 6, = 0.7 and Oay = 1.0. Notice
that # first converges towards 6, and then proceeds towards Opsy.

The optimal solutions found by the adaptive control algorithm are modified
in the case where C* has no stable inverse. The solution is given by spectral de-

composition and reflections of zeros in the unit circle. Find a decomposition of C*

into
C*(g™") =C**(g™)C*(¢7") (57)

so that C*~ contains nothing but the non-invertible zeros. The minimum variance

adaptive control parameters converges towards the regulator
R*=bB*F, 4 S*=G., T=C-Ct* (58)
with Fr , and G}, as solutions from
ANG) Froa(a7) + 474G ou(a™?) = C(g71)CH(¢7Y) (59)
The closed loop pole polynomial will be
B*C*tc- (60)

Minimum variance control of the output is indeed no well-posed optimal control
problem in this case. The solution gives minimal variance of the output by variation
of the state z. The stability will guarantee that ||z|| does not grow beyond a certain
limit but z is excited by noise also in the well-tuned loop. It is thus not expected

that ||z|| - 0. Stability will hold but the cost functional J, will be proportional to
elapsed time k rather than to log(1 + k).
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Generalization to arbitrary delay d

The assumptions A9 was made to simplify the presentation. A generalization to
an arbitrary but known time delay d > 1 is made by modifying (17-20) to a d—step
prediction error method, see Ljung and Soderstrém?!. The recursive least squares

estimation is then modified to

6(k) = 8(k — 1) + P(k)p(k)e(k) (61)

) P(k = 1)p(k — d)™(k — d)P(k — 1)
P = Pk - 1) - =M= 2 PG — (k= )

e(k) = ys(k) — bou(k — d) — 8T (k — 1)p(k — d) (63)

P(0)=Py>0 (62)

The parameter error state (31) and vy of (40) must be modified as follows:

- . T
E(k) = [oT(k+d—1) oT(k)] (64)
k+d—1 _
v(E(k) = > 67()P 1 (3)(3) (65)
i=k

With these modifications it can be shown that

= = (07 (k)p(k))

A proof of (66) is found in Johansson!® and is based on the properties of a least

squares solution. All other arguments follow as in the previously presented proofs.

Generalization to cases with unknown bo

The assumption A8 on a known gain by is often relaxed in the literature to a
requirement on a fixed gain estimate By such that 0 < %g— < 2, see Goodwin and
11

Sin**. It is for example common to base adaptive control algorithms on simple

estimation algorithms where (17)-(20) is replaced by gradient algorithms of the type

-~ o~

(k) = Bk — 1)+ y(k — 1) (k — 1)e(k) (67)
1
L W gy ey (68)
e(k) = ys(k) — Bou(k — 1) — 87 (k — 1)p(k — 1)
(k) = =" (k)p(k) (69)
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(The reference value has been excluded for simplicity.) The parameter error Lya-

punov function candidate is

w(@(8) = T (R(k) (k) = Os) - £ (10)
and
vg(0(k +1)) - vg(o(k)) < - ( ’6: 1) -i:—&gf(—% (71)

The function vy is non-increasing for 0 < %‘(’)— < 2 and all other proof details for global
Lyapunov stability follow the same outline as for least squares estimation. Another
similar case is treated in Johansson?2.

An analysis of the recursive least squares estimation counterpart of (67)-(69)
does not promise global results of Lyapunov stability and {2 —stability. Instead it is
possible to show local results if the initial value Vy of the Lyapunov function V, in
(43) is such that

b
Vo<1 —eglog|l— =2 (72)
Bo

Mfor some positive constants ¢; and c;. This is a local result but the stability region
is very large when £, approximates by well.

Another common modification is to estimate bg or its inverse along with the
other parameters 6 of (11). The Lyapunov analysis gives only local stability and
convergence results for this case, see Johansson!® for details of analysis. Stability
and convergence properties are promised to be good only as long as By is a good
estimate of bg or as long as the input u is bounded. The Lyapunov analysis gives a

warning that this modification is not globally stable.

Generalization to non-zero reference value

Let now assumption A7 be removed. The state vector z may be decomposed
into one component z,, which corresponds to the desirable reference model state

and a state z. of the model matching error dynamics.
2(k) = em(k) + 2.(k) (73)
Similar decompositions of ¢,v, ¢ are defined via the expressions

§=bmtle V=vmtve ¢=0pm+op. (74)
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with (27) reformulated to the

Vm(k) = P*(g™1) (k) = %yc(k) (75)

valk) = P(a7)6(R) = u(k) + 67 p(k) = 1-u.(k (76)

The state vector components are given by
T
Zm(k) = (bm(k—1) Em(k=2) ... Em(k—n) ) (77)

T
zo(k)= (&(k-1) &(k-2) ... &k —n)) (18)

and (29) holds for both =,,, and z, with obvious changes in subscripts. The model
state z,, is associated with the reference trajectory and is bounded in magnitude
for stable reference models and bounded reference inputs u.. The boundedness may

be formalized by assumption A6.

Connections to information theory

There are properties of the Lyapunov function that provide some connections

to information theory.

V(X(k)) = 6T (k)P (k)B(k) + Klog(l e pzeT(k)Aze(k)) + tr(PT(k)P(k)) (79)

with
1 1

SR =T 0))

(80)

The first term of V is a least-squares based criterion with a matrix P~1(k) which
grows with time. It is quite standard to argue that P~! contains the accumulated
(Fisher-) information collected since initial time k — 0, see Goodwin and Payne?3.

The covariance of a(k) is often estimated via the Cramer-Rao bound
E{T()T7(k)} > o P(k) (81)

The development of V is however also determined by its second term

log<1 + M) (82)

o2
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which involves the state z. and the noise variance o®. The expression is a logarithm

of a signal to noise ratio (§/N) of ||z.||? and ¢? on the form
S
log(S + N) —log N = log(1 + ]Tf) (83)

This is a measure of the information of the signal S contained in the perturbed signal
(S+N). The information theoretical interpretation is that of delivered (Shannon-)

information or the channel capacity when S is limited in magnitude, see Gallager!®

or Shannon?4,

The uncertainty or entropy represented by V may be increased by noise and
decreased by a non-zero ||z.|l. The stability may be interpreted as follows: Any
information in the signal z. results in a decrease in the parameter uncertainty vg so
that the adaptive system entropy represented by V decreases in the noise free case.

This information theoretical interpretation of the Lyapunov function also ex-
plains the poor final convergence towards the minimum variance solution 0 Mmv. The
signal to noise ratio is approaching zero when getting close to 637y so that no infor-

mation is obtained at the solution point.

Conclusions

The stability properties of minimum variance adaptive control has been investigated
for cases with large disturbances and stationary noise.

The time variant non-ergodic behaviour has motivated the use of stochastic
Lyapunov functions or supermartingale methods. It was shown that there are two
convergence points 6, and fpry. A set Q, around 4, is globally attractive for large
transient trajectories but fpsy is locally attractive. Recovery from a large distur-
bance starts with initial convergence towards the deterministic solution point. The
final convergence is towards 637y when the trajectory has reached the minimum
variance solution domain of attraction.

This work confirms earlier results of Ljung? and Landau” on convergence and
contributes new results by removing the stability condition. The cost functionals
and the stability in the case of [2—disturbances has been investigated. Another
contribution is the explicit expressions on cost functions with at most a logarithmic

growth in the case of persistent excitation and an invertible C*.

23



The slow final convergence to the minimum variance solution is explained with

an information theoretical argument.
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Appendix 1 — Proof of Lemma 1
For any choice of A > 0 it found that
2l (k + 1)Aze(k + 1) — 27 (k) Az (k) =

= (®z.(k) + I‘u,(k))TA(Q:u,(k) + Twe(k)) — z’f(k)Aze(k) =
= 27 (k)(2TA® — A)z,(k) + 2TT A&z, (k)ve(k) + TTAT2(k) (A1.1)

Let now A be the positive definite solution to the Lyapunov equation (38) where

Q is an arbitrary positive definite matrix and I is the identity matrix. Make the

factorization
A=LTL (A1.2)

and define the constant

¢? = maz ( 2, Amn(QTA&) ] (A1.3)

where Anqz(-) means the largest eigenvalue of a positive definite matrix. Introduce
In= %L’i G=kIT kK2=c2-1 (A1.4)
The cross term of (A1.1) may be reformulated as
2TTASz.ve = 2GT Faeve = —(Fzo — Gv.)? + 2T FT Fz, + GTGy? (A1.5)
Substitution of this expression into (Al.1) gives
2 (k + 1)Aze(k + 1) — 2T (k) Az (k) = (A1.6)

z; (k)(8TA® — A+ FTF)z,(k) - (Fzo(k) - Gre(k))?+(GTG +TTAT)V2 (k) (A1.7)
From (A1.3-4) it is found that
FTr<T (A1.8)

and it follows that a term of (A1.6) may be simplified to
z7(3TA® - A+ FTF)z, < —27Qx. (A1.9)
The function v, of the lemma formulation develops as

'Un:(ze(k + 1)) - ‘U;,,(i!!e(k)) =
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= log (1 L pRekt )Aze(k +1) - z’;’(k)m:,(k)) <

T+ pa? (B)Az.(0)
z pzz'(k +1)Az (k + 1) — 2T(k)Az.(k)

< T+ T () Aa(8) (A1.10)
Substitution of (A1.6) and (A1.8) into (A1.9) finally proves the lemma.
el 1)) - a(oo(t) < =22 9D £ T ol (i
O
Appendix 2
Introduce the short notation
A =1+ (k)P(R)p(k); = P(k)p(k) (42.1)
The updating algorithm for P of (18) turns out as
P(k+1) = P(k) — %WT (A2.2)
The function vp of (41) develops in one recursion as
vp(I(k + 1)) — vp(T(k)) = tr (PT(k +1)P(k+1) - PT(k)P(k)) =
= gtr(~PT9T — P + gy -
= —2-¢T(—2P(k) + %gbz/)T)iﬁ (42.3)

Substitution with (A2.2) and the observation that P(k) > 0 for all k finally gives
that

vp(I(k + 1)) — vp(II(k)) = ——2—1/)1' (P(k) + P(k + 1))¢ <0 (A2.4)

]
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Appendix 3

The positive function V' of (42) is radially growing with || X || and continuous at
X = 0. It remains to show that this Lyapunov function candidate never increases

in a recursion. It is found from (42) that
AV(k) = V(X(k +1)) = V(X(k)) = vs(B(k + 1)) — ve(9(k))+

+Ko(0(k + 1)) + Ko(8(k)) + tr(PT(k + 1)P(k + 1) — PT(k)P(k)) (43.1)

Manipulations of (40) with (17-20) shows that the function vy decreases as

o(Bok + 1)) = wp(@u(k)) = 1 ;;‘US“ ;(;))@(k) (43.2)
From (37), (A3.2), and appendix 2 it is found that
AV(k) = —e?(k +1) N #K—zf(k)Qae(k) + A TT ATV (k) (43.3)

1+ T (k)P(k)p(k) 1+ pag(k)Aze(k)

Start by investigating the terms of the denominators of (A3.3). It is found from
(17-19) that

@ (R)P(k)p (k) < @ (E)P(0)p(k) < 7 (k) Posp(k) (43.4)

It follows from (18) and (21) that
(,aTPogo E= zTM‘Z‘PoM,P:B = (2 + zm)TMg'PoM“,(z, +zm) <

< 227 M, PoMYze + 22 MY PoM 2, (43.5)

Define a constant u; such that
mA > MIPM, (A3.6)
The bound C, on z,, of (26) gives
" (k)P(R)p(k) < 22 (k)Aze(k) + 21 AmaaC? (43.7)

where Mg, is the largest eigenvalue of A, see (38).

-1 -1
< A3.
1+ @T(k)P(k)p(k) = 14 212m02C2 + 2puzT(k)Az.(k) (43.8)
Let the constants of V' be chosen as
21 b3
= K= ——_ .
H 14+ 241 AmaxC? 21 c2TTAT (43.9)

27



It is found from (20) and (27) that
v2(k) = " ()p()’ (43.10)
From (20) and (21) follows that
e2(k + 1) = (67 p(k))? (A3.11)

Substitution of (A3.6-9) into (A3.3) gives

—zT T,
AV(k) < pK pz(f()g Ai:"()k) (A3.12)

which means that V' decreases in each recursion for ||z.|| # 0. Stability in the sense

of Lyapunov may be concluded. - m|

Appendix 4 - The state space model

Proposition:

The partial state ¢ is related to 63y and @ via the equation
. 1
vmv (k) = P*(¢7*)é(k) = u(k) + geﬂv‘)ﬂ(k) (27)

Proof:

Via (6), (7) is found that the partial state is

f(k) _ A*(q_l)R*(q—l) + boq_lB*(q‘l)S*(q-l)

boB*(¢-1)C*(g) £(k) (44.1)

k) = 1 R* -1 A* -1 k S* -1 b _1B* -1 k
€M) = jorrrmere (A ) + 570 o B0 )
(44.2)

Via (3)-(5) is found how ¢ depends on input-output data

€(6) = oy ()R + 570wt ) ¢

B iy = SO o) (443)

The second term disappears when substituting above for minimum variance control

polynomials R*, $*. The noise dependent term is thus zero for minimum variance
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polynomials and the state is decoupled from noise influence. The partial state de-

pends only on outputs y and inputs u. Noise affects only the output via measurement

noise e in an adequately controlled system so that

1 *f —1 *( —1
8 = ey (PO S ) 4k

Reformulation gives the proposition

vty () = P*(a (k) = u(k) + 36Ty (k) (44.5)
O
Appendix 5 - Convergence of parameter estimates
The modified algorithm is
6(k + 1) = 8(k) + P(k + 1)p(k)e(k + 1)
_ P(k)p(k)pT (k) P(k)
Pk +1) = PO~ T or e Py eh)
e(k +1) = y(k + 1) — Bu(k) — 67 (k)p(k) (45.1)
A positive, radially growing function vy
(A5.2)

vo(O(k)) = 67 (k) P~ (k)8(k)

The development of vy one step ahead is determined by

Avg = vy(8(k + 1)) — vs(B(k)) = 8T (k + 1) P2 (k)3(k + 1) — 6T (k)P (k)6(k) =

2 T
= (T k) + 27 Rypk)er) + -2 Pk +1) =

e*(k+1) (45.3)

2
1
= (0T (k)p(k) + e(k +1 ) =
(Fa@e-+ i+ 1)) - TP BPE)e(R)
The convergence around 8,7y is determined by

(b +1) = st Ty (e (K)] + uk +1) (45.4

so that

@) + o+ )] = [(1- o7y T e + uk 4 1) =
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- [(%)(W (k)p(k)) + w(k + 1)] g

:([q e € ) [zgl]+w(k+1))2 (A5.5)

The expectation with respect to F} is

E{Avg(k + 1)|F} = (Tz(k))? + o2 a.s. (A5.6)

Appendix 6 - The positive real condition
Let the state equation be
z(k+ 1) = ®z(k) + Tv(k) (A6.1)
The prediction error is a sum of a systematic error € and the noise w
e(k+1)=¢k+1)+wk+1)= ( )(v(k)) + w(k + 1) (A6.2)

The expected prediction error one step ahead is

E{e*(k + 1)|Fi} = (mo—=v(F))? + E{w?(k + 1)|F}  a.s. (46.3)

C*( —1)

The growth of z is determined by

2T(k + 1)Az(k + 1) - 27 (k)Az(k) =

T T v
("(k) "’T(k)] [gTﬁ: @Tﬁxé&fzx] [mE’I:;] (46.4)
CaER) = w(k)  E(E) = (k) - Ta(k) (46.5)
€)= 0w - = (v ) (1 7] (M0] e

The decrement of vg is determined by ¢ and balances the possible increment of v,.

The condition for stability with a weighting coefficient o is

—08% + ;,;T(k + 1)Az(k+1) - zT(k)Az(k) <0 Ve, v

T 1 =T ITAT TITA® ) v
- < .
[" z] ("[—c ccT]+[<§TAr @TAQ—A] [z]—o (46.7)
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This condition is equivalent to positive definiteness of the matrix

o—TTAT ~pcT —TTAS
>0 A6.8
[ —gc~ ®TAT pec” — (8TA® - A) ) = ( )

According to positive real lemma, see Hitz and Anderson?®, there are matrices K

and L and a positive definite matrix Q such that

[ o—I'TAT —o0cT —TTAS =[KT] [K LT]+[0 o]
L

—gc— 3TAT pecT - (2TA® — A) 0 Q@
(A6.9)
Termwise identification gives
KTK = p—TTAT
LK = —pc — 3TAT
LLT = pecT (A6.10)
The matrices K and L are given by solutions to the equations
T e @ T
K==+ =-T%'AT
K 2 + 2
TTA® + KTLT = —pcT
3TAS — A= —Q — gccT (46.11)
if and only if
—ocT[2I — 3)7'T + g s.p.T. (A6.12)
g(—cT[zI —-3]7'r' + -;—) 8.p.T. (A6.13)
1 1
———< — = S&.p.7. A6.14
e 2 P (4614
irrespective of the value of
o0=KTK +TTAT >0 (A6.15)
O
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