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PREFACE

This report contains documentation handed out to the participants of the 3rd
steering committee meeting of the STU Computer Aided Control Engineering
Programme (CACE) on April 15, 1986. The minutes of the meeting are also
included.

As seen from the documentation, current projects were reviewed and new ones
were proposed and discussed.

The Science and Research Council, U.K. has a programme called The SERC
Initiative in Computer and Design Techniques in Control Engineering (CDTCE).
Four of the members of the steering committee (Phil Hicks, Jim Andersson, Neil
Munro and Mike Denham) participated also in the meeting to get informed about
the CACE projects and to present their projects and discuss collaboration.
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3. CONTACTS

National

Large and small

Ideon

International



5. DECISIONS
Representation and Animation
Expert system interfaces
Implementation languages
Numerics

Dissemination
Public vs private

13



14

® S~

IEEE Control Systems Society
3rd Symposium on
Computer-Aided Control System
Design (CACSD)

September 24-26, 1986

Quality Inn, Pentagon City
Arlington, Virginia

The IEEE CSS Symposium on CACSD provides a technical forum for the open exchange of
ideas and information relating to computer-aided control system design. The emphasis of
the CACSD symposium is on high quality technical contributions of current results, pre-
sented in an informal interactive conference setting. Contributions will be featured that
display the synergism of control theory and control algorithms with computer science and
computer engineering. Wide participation is encouraged from control system designers in
all fields, such as aeronautical, mechanical, and chemical. Exhibits will be presented on
software and hardware CACSD capabilities from both commercial and noncommercial offerors.

Call for Papers

Authors of papers on recent developments relevant to CACSD are invited to submit five
copies of a summary (approximately 700 words) of their work by March 31, 1986 to:

Kathy L. Lineberry

Business and Technological Systems, Inc.

10210 Greenbelt Road, Suite 440

Seabrook, Maryland 20706

(301) 794-8800
The summaries must be headed with the paper title and the names, affiliations, and complete
mailing addresses and telephone numbers of all authors. The first-named author will be
used for all correspondence unless otherwise stated. Final manuscripts will be due at reg-
istration, September 24, 1986, for publication in the proceedings following the conference.

Call for Exhibits

Exhibitors of software and/or hardware for CACSD are invited to submit three copies of a
brief description (approximately 500 words) and any appropriate supporting materials of
their exhibit by March 31, 1986 to:

Dr. Malcolm D. Shuster

Business and Technological Systems, Inc.

10210 Greenbelt Road, Suite 440

Seabrook, Maryland 20706

(301) 794-8800
The description should be specific about what is to be displayed and should include an
estimate of space requirements. A fee of $600 for commercial exhibits and $100 for non-
commercial exhibits (i.e., for products available under $100) will be charged to help defray
expenses. Selection of exhibits will be solely on the basis of technical merit. For further
information contact Dr. Shuster.
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SEMINARS AND VISITS
OCTOBER 1985 - APRIL 1986

Sven Erik Mattsson and Karl Johan Astrém

Department of Automatic Control
Lund Institute of Technology

Lund, Sweden

This is a list of seminars and external contacts the Department of Automatic
Control, Lund Institute of Technology has had during the period October 1985 -
April 1986, which are of interest for the CACE project. The list includes visits to
the department and visits of the staff to companies and other universities, as well

as participation in conferences, symposia, workshops, courses etc.

Our visitors are normally given a presentation of our department and our
research, as well as live demonstrations of our packages for CACE (Simnon, Idpac

etc.), so this is not explicitly mentioned in the list below.
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October 2
Professor Rune Gustafsson, Department of Computer Science, Uppsala University

visited the department. His research interests include Al and expert systems.

October 2 - 4
Dr. Dean Frederick, RPI, Troy, New York visited the department. He gave a
seminar "CACE-III An expert system for the design of control system”. He also

introduced a bull session on man-machine communication.

October 10
Les Cochron, Sperry visited the department. He is responsible for Sperry's Al

Commitment.

QOctober 16 - 21

Dr. James H. Taylor, General Electric, Schenectady, visited our department and

gave two seminars "Expert system applications to control system design and
implementation” and "Nonlinear controller design based on quasilinear system

models™.

October 29 - 31
Dag Briick attended the Unix Exhibition in Alvsjs, including the full-day seminar

"Unix Internals” by Kaare Christian.

November 4

Karl-Erik Arzén attended a meeting of the Association of Mechanical, Electrical
and Electronical Industries in Sweden (Svenska Mekanférbundet) supporting
committee on Knowledge based system. The meeting was held at EPITEC,

Linképing.

November 11
For his master thesis "An Expert System Interface for Idpac” Jan Eric Larsson
received at SCA, Sundsvall the award of Bo Rydin's foundation for research for

best master thesis of relevance for the pulp and paper industry.

November 11 - 12

Carl-Wilhelm Welin, Ericsson Telecom, Computer Science Laboratory, Stockholm

visited the department. He acts as a discussion partner in the expert system
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projects. He also gave a seminar at the Department of Computer Science and

Computer Engineering on the expert system activities at LM Ericsson.

November 13
Jan Fric Larsson and Karl-Erik Arzén presented the Al related projects in the
CACE project in a seminar on current Al projects at Lund University. The

seminar was arranged by the Department of Computer Science.

November 15 - 23

Karl Johan Astrém visited the US. He installed Simnon at the Courant Institute of

Mathematics at New York University. He also discussed CACE problems with Jack

Schwartz.

Karl Johan Astrém visited the Mechanical Engineering Department at University
of Texas in Austin. The integration of dynamics simulation with conventional

mechanical drafting was also discussed.

Karl Johan Astrém participated in the ASME annual meeting to receive the
Oldenburger Medal. In connection with this he also discussed CACE problems and
use of knowledge based engineering. He also established relations with a CACE

group at Carnegie Mellon.

November 18 - January 17

Dr. Wolfgang Kreutzer, Department of Computer Science, University of
Canterbury, New Zealand visited the department as a guest researcher and

participated in the CACE project.

November 26 - 27

Karl-Erik Arzén visited the Department of Computer Science at Uppsala
University. He discussed the Expert Control project and studied PICON; a

real-time expert system for process control and the expert system shell KEE.

November 28
Mats Jerpander has made a demonstration package for the ASEA Master System
as his master thesis project. He gave a seminar and presented the ASEA Master

System and his demonstration package.
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December 9

Dr. John Cassidy, General Electric, Schenectady, USA gave a seminar
"Perspectives on Computer Aided Implementation of Advanced Control Systems".
Dr. Cassidy is responsible for research and development in automatic control at

General Electric.

December 10
Thomas Rugeland, Tektronix, presented the Tektronix Al-computer 4404 with

Smalltalk 80 at the Department of Computer Science and Computer Engineering.

December 11
At a meeting of the Al interest group at Lund University, Karl Johan Astrém and

Karl-Erik Arzén gave a seminar "Intelligent controllers” (Intelligenta regulatorer)

December 12
In the evening we presented the department and the CACE project for the

computer technology students (D-linjen).

December 13
Bjarne Dicker, Ericsson Telecom, Computer Science Laboratory, Stockholm gave a
seminar titled "Om realtidssprdk pd LM Ericsson"” (On Real-Time Programming

Languages at LM Ericsson).
December 17
Carl Olin demonstrated Exomatic which is a small system for Direct Digital

Control.

December 19 - January 9

Karl-Erik Arzén gave a one week course in Lisp for the members of the

department.

January 8
We had an informal meeting with Benima AB to discuss applications of CACE in a

small consulting company.

January 13 - 17

Karl Johan Astrém participated Chemical Process Control Ill. He presented an
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invited paper on Auto-tuning, Adaptation and Smart Control. Of interest for the

CACE project was also a full session devoted to Expert Control.

January 21 - April 30

Dag Briick attended an undergraduate course on Man-Machine Interaction.

January 21
Karl Johan Astrém visited Reasoning Systems, Palo Alto to look at their advanced

software development environment.

January 22
Karl Johan Astrém visited Charlie Herget at Lawrence Livermore National

Laboratory to review progress of the CACE project. He was also briefed on the

progress of EAGLES. Agreement on informal cooperation was established.

January 23 - 24

Karl Johan Astrém visited Naval Weapon Center in China Lake CA to discuss

advanced application of CACE.

January 28
Karl-Erik Arzén attended a meeting of The association of Mechanical, Electrical

and Electronical Industries in Sweden (swed. Svenska Mekanférbundet) supporting
committee on Knowledge based system. The meeting was held at Ericsson Radio in

Mdlndal.

January 31 - April 18

On Friday mornings between 8 and 10 videotapes from the course "Structure and
Interpretation of Computer Programs" with Professors H. Abelson and G.J.
Sussman, MIT as lecturers, has been shown at the Department of Computer

Engineering. A number of persons from the Department of Automatic Control has

attended.
February 5

IBM presented the new IBM PC RT at Lund University.

February 6
Karl-Erik Arzén gave a seminar and presented PICON which is a real-time expert
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system for process control from LMI Process Systems, Cambridge, Massachusetts.

Karl Johan Astrém gave a seminar titled "Experiences from a trip to US".

February 10
Sven Erik Mattsson presented the CACE project "New Forms of Man-Machine

Interactions" in the undergraduate course Man-Machine Interaction (Kurs DA422
Minniska-datorinteraktion, 5p) at the Department of Computer Science and

Computer Engineering. He also demonstrated the IRIS 2400.

February 13
Karl-Erik Arzén gave a seminar "Expert system applications in automatic control”

at the Department of Automatic Control, Linképing.

February 19 - 20
Bengt Skarman, SAAB, Linkdping visited the department.

March 6
Staffan Lund, ACIS, IBM, Stockholm and Bengt Herne, IBM, Malmd visited us. We
presented the CACE project and the possibilities for IBM to lend us an IBM PC RT

for half a year was discussed.

March 11
Johan Westermark, Scandia Metric AB, Mdlndal presented the MASSCOMP 5000
Family.

March 19

Tomas Schénthal gave a seminar titled "Simnon on IBM-PC".

March 20

Karl Johan Astrém gave a seminar titled "System representations”.

March 21
Dr. Bo Kagstrém and Anders Barrlund, Institute of Information Processing,
University of Umed, Sweden visited us. Dr. Kigstrdm gave a seminar titled "Can

linear systems given by uncertain data be controlled?"
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March 24
Sten Bergman, ASEA Relays visited the department and discussed CACE issues.

April 2 - 4

Bjarne Diacker, Ericsson Telecom, Computer Science Laboratory, Stockholm visited
the Lund Institute of Technology to discuss education in real-time system. He gave
also three seminars: "Experiments with programming languages and techniques
for telecommunications applications”, "Design of an expert system and
man-machine interface for operation and maintenance of AXE telephone
exchanges" and "Comparison between Lisp and Pascal for use in developing

programming support systems".

April 4 - 8
Professor Jan Willems, Mathematical Institute, University of Groningen, The
Netherlands visited the department. He gave three seminars titled "Modelling

Dynamical Systems: Fitting a Linear System to an Observed Time Series".
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NEW FORMS OF
MAN-MACHINE INTERACTION

The man-machine interface is a very important part
of CACE system.

The new workstations with high performance,
real-time graphics open new possibilities

for man-machine interaction.

The purpose of this project is to set up a prototype
system so that ideas can be tested and experiences
of using graphics for man-machine interaction can

be gained.
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PILOT PROJECT

Simulator for dynamical system

Graphical description of the model decomposition
Hierarchical block diagrams
Information zooming

Overview windows

Equation based submodels

Differential-algebraic systems
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WHY EQUATIONS?

Simplifies modelling

Closer to original formulations

Necessary for 'general’ model libraries

Which variables are 'inputs’?

Allows more sophisticated connection mechanisms

Safer
Easier to check that the model is entered correctly

Reduces the risk of introducing transformation errors

Better documentation

Closer to original formulations
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THE PROTOTYPE SIMULATOR

You can create and edit hierarchical block diagrams
Model
Interface
Connect
Copy

Remove

You can inspect the model
Pan
Zoom
Layout
View

You can store and retrieve models
Get

Save

You can simulate
Display
Compile

Simulate
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THE IMPLEMENTATION WORK

The simulator is written in Pascal.
The source code is 27 000 lines long.

The code is highly modular.
Related types, variables and procedures
are grouped together.

Machine dependent parts are isolated.

Preprocessor Packman
Generates a standard Pascal program
or code for separate compilation

Supports nested inclusions
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THE MODELLING AND LANGUAGE PART

LICS has routines for
Syntax analysis
Compilation of interface variables which are

connected to each other into a list

The prototype simulator also
Performs type checking
Generates equations describing the connections
Eliminates simple equations; A = B
Makes simple analysis of the equations
Generates code for a virtual stack machine
Has an interpreter in Pascal

Sets initial values

Has the ODE solver DASSL (converted to Pascal)
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GRAPHICS

Software for creating and editing

hierarchical block diagrams from LICS.

LICS uses

Segments

Software for transformation and clipping
IRIS Graphics Library

Implemented the low level graphics routines
Introduced hardware clipping
Generated fonts
Graphical fonts

Raster fonts

The graphics part is currently under redesign
Portability
Explore various hardware facilities
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EXPERIENCES

Positive reactions of visitors to the use of

graphics for describing structure.

Handling of text is time critical.

The IRIS and the Pascal system have worked well.
Many difficulties were due to missing documentation.

However, Pascal is not convenient for fast prototyping.

The turn around time is too long (10 minutes).

Use of Common Lisp may be a solution.
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A SIMULATOR FOR DYNAMICAL SYSTEMS

USING GRAPHICS AND EQUATIONS FOR MODELLING

Hilding Elmqvist
SattControl AB,

P.O. Box 9034, S-200 39 Malm$, Sweden
+46 40 226465

Sven Erik Mattsson
Department of Automatic Control
Lund Institute of Technology
P.O. Box 118, S-211 00 Lund, Sweden
+46 46 108779

Abstract submitted to the IEEE Control Systems Society Third Symposium on
Computer-Aided Control System Design.
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ABSTRACT

The man-machine interface is a very important part of a CACSD-system. The new
workstations with high performance, real-time graphics now appearing on the
market offer new possibilities. The paper describes a prototype system which
explores some of these. The system is a simulator for dynamical systems, which
can be described by sets of ordinary differential equations and algebraic

equations.

The structural properties of a model are very important particularly when
working with large systems. These structures are, however, difficult to represent
in an easily apprehendable way when a purely textual description is used. The
interconnection structure of submodels is for example much easier described
graphically. The idea is to use hierarchical block diagrams to describe the
decomposition of the model and the interconnection structure. The system allows
continuous zooming to show internal detail. The user can move the cursor with
the mouse. He can pan and zoom by pressing mouse buttons when moving the
mouse. If he starts to zoom in on a block, the block will open up and show
internal details. It will show its interfaces and the interior which is a new
diagram or a mathematical description of the submodel. The user can also create
new windows for viewing of the model. One of these windows is the interaction
window for panning and zooming. To help the user to keep track of where he is,
rectangles in the other windows outline what part of a window that is shown in
the interaction window. If the user wants to move fast he can point on an object
in another window and ask for automatic panning and zooming to this point in the

interaction window. The result of a simulation can also be displayed in windows.

New windows are created and the layout is changed by selecting commands from
a pop-up menu with the mouse. The mouse is then used to position and stretch
the windows in a Macintosh-like fashion. New blocks, interfaces and connections
are created in similar ways. The mathematical description of the submodels at the
lowest level is entered and modified with a window-oriented editor. It also
possible to copy a block and all its subblocks. The model can be saved as a text

file which can be read to recreate the model.

The simulator allows the submodels to be described in the form of equations
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instead of assignment statements. This facilitates the use of the simulator since it
is closer to the original formulations of the models as a basic set of mass- and
energy-balances and other equations. The equation form also has other
advantages compared to the assignment form. The documentation is better since
the reader will recognize the equations. It is easier to check that the model is
entered correctly and it reduces the risk of introducing errors during manual
transformation to assignment statements. Furthermore, the equation form is the
only reasonable if one want to build model libraries, because different
environments of the submodel impose different causality relations, implying that
the transformation to assignment form of a submodel depends on its environment.
A more sophisticated connection mechanism can be introduced when equations
are allowed. The simulator supports two standard types of interface variables:
across variables which are equal in the nodes (examples are voltage, pressure
and temperature) and through variables which have a direction and are summed
to zero in the cut (examples are current, flow, thrust and torque). The simulator
interprets the connections drawn by the user and generates appropriate
equations automatically. The simulator uses Linda Petzold's differential/algebraic
system solver DASSL which has a reputation of being one of the best and most

robust solvers for differential/algebraic systems.

The simulator is written in Pascal. The software is highly modular and a
preprocessor is used to produce a standard Pascal program from different
module files. The source code is 27 000 lines long. The simulator currently runs
on an IRIS 2400 from Silicon Graphics, Inc. The IRIS 2400 is a high performance
engineering workstation designed for interactive color graphics and computing
applications. The machine dependent parts have been carefully isolated to improve

portability.



36

Expert System Interface Experiments

Jan Iric Larsson
Per Persson

Goals of the project

e How does one combine an expert
system with a CAD package?

e How does one develop a help system
with expert system techniques?

e Build a knowledge base for system
identification.

e Requirements on the command
language.



The first system

DIALOG
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BUFFER
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‘Presented at ACC ’86
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VT100 graphics
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Script Matching
e The script language is very general.
e Standard techniques is not enough.

e No good methods exist.

TREND

ML

PLOT

Yo




The File Handler

Inheritance tree
Different output
Parents
Children
Graphics

“Flowchart”

39
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Building blocks

Flavors
e Object oriented programming in Lisp
e Multiple inheritance

e Originates from MIT

YAPS
e Forward chaining framework
e Uses Flavors

e Developed at Maryland University
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Design of the new system

—> PARSER & MATCHER —

b f

<4 DATA BASE >

omwnC

moOX>»nIm-1Z—

mOX>»TMIImMAZ—

e Scripts — objects
e I'iles — objects

e Graphics interfaces — modules

O>» V0O~
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Graphics
e Have used VT100 graphics.
e Only three lines available on T4025.
e Windows and pictures impossible.

e A high resolution graphics screen
is needed. |
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Knowledge base

e A knowledgebase for test purpose has
been developed.

e We want to develop a more realistic
knowledge base.
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Conclusions
e A small system has been developed.

e Have studied certain problems
of the new system.

e Programming with object oriented
methods in Lisp.

e Design and implement the new system.

e Build a realistic knowledge base.
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Knowledge Representation by Scripts in an Expert Interface

Jan Eric Larsson M.Sc. & Per Persson M.sc.

Department of Automatic Control
Lund Institute of Technology
Box 118, S-221 00 LUND, Sweden

Abstract

System identification demands skill and experience, and
the validity of the results strongly depends on the user’s
knowledge. For this reason a help facility that uses domain
specific knowledge about system identification is needed.
This paper deals with the representation of knowledge
in an expert interface for system identification, using the
interactive identification package “Idpac”. The concept of
scripts is introduced. A small system has been implemented
and a description of it is given.

1. Introduction

Knowledge based computer programs, expert systems, are
rapidly being developed and will probably be quite com-
mon in the near future. When these techniques grow more
reliable and become better known, it will be obvious for
a CAD program to use them. But in order to incorporate
expert knowledge in a program package, several problems
must first be solved.

In this paper, we will describe an expert system that
runs as an interface to Idpac, a program package for system
identification. System identification is described in [1,2].
The Idpac package is built with the interaction module In-
trac, a framework that provides an interactive environment
for numerical Fortran routines. Idpac and Intrac have been
developed at the Department of Automatic Control, Lund
Institute of Technology, [3,4,5]. Intrac features a flexible,
brief and efficient command style dialog. There is also the
possibility for a user to put command sequences together
with control statements in a file and have it executed, i.e. a
macro facility. This facility is very valuable since it lets the
user develop his own methods and helps him document and
refine his knowledge. Without macros Idpac would proba-
bly not have been used as much as it actually has.

In order to design the expert interface the following
goals were set up.

o The expert system should work as an intelligent help
system. This means that we want to retain the power-
ful command dialog rather than using a Q/A style of
communication.

« The system should only come into action on the user’s
request. In this way an experienced user will not be
cramped by the system. As long as one doesn’t issue
a help command to the interface, he won't notice that
the expert system is there. We named this concept the
command spy.

o A large part of the knowledge that an expert interface
will be concerned with is sequences. On a macro scale,
the user’s actions can be viewed as sequences of events,
and on a micro scale they can be viewed as sequences of

commands. Sequences may be represented using rules,
but this is often very curnbersome. Therefore we have
introduced the concept of scripts, which is a data struc-
ture for describing sequences.

o The knowledge in the system should be split into dif-
ferent groups. Representing the procedural part of the
problem, i.e. running Idpac, with scripts and confining
the production rule system to handling knowledge spe-
cific to system identification gives a natural partitioning
of knowledge into different kinds. In this way it might
be possible to avoid having the expert knowledge be
totally dependent on a specific target system.

e The script facility should capture the main ideas of
macros. The popularity of Idpac has been strongly de-
pendent on the writing of increasingly more compli-
cated macros, but the macro facility has a few inher-
ent disadvantages, for example that there is no good
way to interact with an executing macro. The script
concept is designed for interactive communication. To
a great extent it captures the function of the macros
and is probably a good complement to the macro facil-
ity. This seems to be a better solution than trying to
squeeze more and more complicated functions into the
existing macros.

According to these design goals, a first step towards
a system layout has been taken. The different parts of
the expert interface will be the command parser with its
cormmand grammar, the command history matcher with its
script database, the production rule system with its rule
base and a file handler. A first version containing all these
elemnents except the file handler has been implemented.

2. Scripts

In our application there are three types of knowledge.

« Knowledge of command sequences, on what to do next.
This depends on which state the the user is in, i.e. what
has been done so far.

o Identification specific knowledge, i.e. how to interpret
results, find remedies to problems, etc.

« Knowledge about the data files created by Idpac.

In short the problem is to describe the semantics of
an artificial language, Idpac, and to use expert rules about
system identification. To do this a data structure that de-
scribes complicated sequences of events, for example Idpac
commands, is needed. The expert rules are easily handled in
a conventional production system. Inspired by techniques
used in natural language understanding, see {6}, we decided
to try and specify the semantics as patterns. The actual
command history is matched against such patterns in or-
der to determine what the user is doing. From this the

Paper to be presented at ACC-86, June 18-20, 1986, Seattle, Washington, USA
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system may give advice on what to do next and give expert
advice on identification, for example the interpretation of
the results. One way of doing this is to introduce scripts.
A script is a data structure which consists of events (for
example commands) that must occur in a given order. In
Lisp a script can be implemented as a list of commands and
control symbols.

It is of course possible to keep track of what the user
has done, of “what state he is in”, with a pure rulebased
system, but this requires lots of flags to be set and reset by
rules. This makes the rules messy and makes it difficult to
introduce new rules in a consistent way. Designers of expert
systems have observed this, and have included methods for
controlling rules without having to put flags in the rules,
see 7]. A better solution is to separate the mechanism for
keeping track of what the user has done and the expert
rules about identification.

It is possible to regard scripts as a language in which we
try to express our knowledge of in what order it is sensible
to give different Idpac commands. In order to make a script
language a useful tool there must be ways to structure
its content. Guided by our experience in using interactive
programs we here give some elements which we feel should
be part of a script language.

Basically a script consists of identifiers, in our case Id-
pac commmands. Other elements are then used to structure
these identifiers. Some pieces of scripts may be so useful
and occur so frequently that we want to name them and use
them in other scripts. We call such pieces script-procedures.
There are command sequences which may have to be re-
peated several times before an identification is finished. For
this we have introduced the REPEAT statement. Sometimes
the user has to give a number of commands but the order
in which he gives them is not important. This can be ex-
pressed with the ALL statement. The OR statement is used
when the user may choose one of several possibilities.

The KscaLL statement, (KscALL stands for Knowledge
Source Call), contains facts which should be added to
the database of a production system when the previous
command has been matched. This is used to fire rules in the
production systems that are associated with each script.

If scripts are regarded as a formal language these el-
ements of the script language can be expressed in EBNF
syntax. The look of the syntax mirrors the fact that we
have implemented a prototype system in Lisp. We have
used Lisp atoms and lists to express all language elements.

SCRIPT ::= (SCRIPTCLAUSE [SCRIPTCLAUSE...])

SCRIPTCLAUSE ::= COMMAND | SCRIPTPROCEDURE | KSCALL |
REPETITION | OR | ALL | EMPTY

COMMALD 1i= <identifier>

KSCALL 1:= (kscall <list> [<list>...])

SCRIPTPROCEDURE ::= (scriptprocedure <identifier>)

REPETITIOHN ::= (repeat SCRIPT)

OR ::= (or SCRIPT [SCRIPT...])

ALL ;:= (all SCRIPT [SCRIPT...])

EMPTY e

One or more scripts are matched against the commands
typed by the user. From the matches the system is able to
deduce possible goals for the user. The user does not have
to answer any questions, but describes what he is trying
to do by typing commands. If the user asks what to do
next the system searches down the scripts from the last
matched command in the command history until it finds a
command. Actually it may find several commands if an ALL
or OR statement is found.

There are, of course, several other control constructs
that may be implemented. One would be a repetition with
a countdown, i.e. specifying the maximum number of itera-

tions allowed. Another would be the SOME construct, match-
ing one or more commands. This construct is easily ex-
pressed as (REPEAT (OR ...)) though.

At present the parameters of the commands do not
influence the matching.

An Example

An example of what a script may look like, and some
command histories that it will match is given below.

(conv
PLOT
TREND
(REPEAT (

ML

(REPEAT (

(OR (RESID) (SPTRF BODE})))))

STOP)

This script describes the following sequence of commands.
First an ASCII file is read and converted to the internal
Idpac file format with the command coNv, then a PLOT
command is used to look at the data. Trends are removed
with the TREND command. The actual parameter estimation
is carried out with the ML command, and after that a
validation is attempted by looking at the residuals with the
RESID command or the transfer function of the identified
system with SPTRF and BODE. The estimate-validate part of
the session may be repeated several times, and we can
choose to validate by looking at the residuals or at the
transfer function. Finally the user terminates the session
by typing sTop.

This is not necessarily the best way to carry out the
identification, but is chosen to give an example of what
can be expressed with scripts. Many command histories
matches the given script, for example

> CONV > CONV > CONV

> PLOT > PLOT > PLOT

> TREND > TREND > TREND

> ML > ML > ML

> RESID > SPTRF > RESID

> ML > BODE > SPTRF

> SPTRF > ML > BODE

> BODE > RESID > ML

> stor > sTOoP > SPTRF
> BODE
> sTOP

Scripts are easily developed. Another version of the script
above could look like this.

((OR
(CONV)
0)
PLOT
(REPEAT (
(OR
(PLOT)
(PLMAG)
(TREND))))
(REPEAT (
ML
(ALL
(RESID)
(SPTRF BODE))))
STOP)

In this version the identification may start with a data file in
either ASCII or internal format. The process of “cleaning”
data is performed through a mixture of commands for look-
ing at the data, removing outliers and eliminating trends.



In the parameter estimation this script requires that one
looks both at the residuals and the transfer function. Here
are some command histories which match the script.

> conv > PLOT > PLOT
> PLOT > PLMAG > PLOT
> PLMAG > PLOT > TREND
> TREND > TREND > ML -
> PLOT > ML > RESID
> ML > RESID > SPTRF
> SPTRF > SPTRF > BODE
> poDE > BODE > ML
> RESID > sToP > SPTRF
> stop > BODE
> RESID
> sTOP

3. The command spy

One of the main ideas of this paper is the concept of a
command spy. The implications are twofold. First, we keep
the command dialog of Idpac. Secondly, the expert system
should not be noticed unless the user requests it. In this
way, it is possible to retain the advantages of the non-expert
communication instead of going into a more rigid Q/A style
of dialog. A user who doesn’t want any help will not feel
any hindrance from the system.

The program module Intrac with the addition of the
special Idpac features defines a language. In order to imple-
ment the command spy, a parser for the “Idpac language”
must be developed. Since the Idpac language is specified in
EBNF, this may be done using several different standard
tools. One is the language Prolog, [8], another the UNIX™
based YACC, [9]. Parsing is also easily implemented in Lisp,
and this approach was chosen in the project. The parser
reads the command, checks it for syntactical correctness,
and fills in defaults. There will also be a query mode, in
which the user gets interactive help with syntax and pa-
rameters, [10].

The central part of the interface is the command history
matcher. It uses a script database to guess what the user
is doing. If the actual command history matches one or
more scripts, the matcher is able to offer different kinds
of help, for example suggest the next command, name a
possible goal, and give information obtained from triggering
the production rule system. There are two ways for the
interface to get to know what the user is doing. First, the
user may tell the system with a special command, secondly,
the interface may guess by matching the actual command
history against its different scripts.

If the user gives a command that doesn’t match any
script, the command history matcher issues a warning, but
then lets the user continue. In this state no help is available
but presumably the user knows what he is doing when he
leaves the scripts. The system uses two guessing strategies
in order to “get back into the game”. First, it throws away
the last, non-matched command, retaining the rest of the
command history. This covers the case when the user does
a few strange things in between but then returns to the
main scheme. Secondly, the system tries to start a brand
new command history, thus taking care of the case when
the user gives up and starts with something else.

These guessing strategies are not crucial. If the system
is not able to understand what the user is doing it won’t
work, but the user may still go on using Idpac as if nothing
has happened. If he wants help, there is always the possi-
bility of setting the help system right by the command that
specifies a certain script. This command can also be used
in order to reduce the number of matching scripts that may
be present early in a session.
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Unmatched command histories should be saved for later
investigation. In this way it is possible to get ideas for
new scripts, especially by checking what experts using the
system do.

At certain points in the scripts there are function calls
that put facts in a database and activate a production
rule system. This is used in order to treat problems more
specifically concerned with system identification. A typical
example is giving advice about what kind of problems
to look for after a maximum likelihood estimation. These
depend on both the previous command sequence, captured
by the scripts, as well as on earlier identification knowledge,
such as whether the data set is short or long, if outliers
have been removed, if similar data have been analysed
before, and so on. This information is captured by the
rule system. The production rule system uses an ordinary,
forward chaining strategy to take care of the knowledge
not contained in the scripts, see [11). Its output is available
through a special help command.

4. Implementation of a Small System

Some of the previous ideas have been implemented on a
subset of Idpac. The system is written entirely in Franz
Lisp and runs under VMS on a VAX 11/780. The goal was
to build a small test system that would give us a feeling
for the problems. We found that it was very convenient to
work with Lisp, and that it was quite simple to develop
large programs.

r
! PARSER AUAE SYSTEM [ | FuLE BASE
L \

]
L

]

Layout of the system.

DIALOG

The command parser is implemented as a pattern mat-
cher. It uses a command grammar to check the legality
of the commands and also sticks on defaults in the same
way that Idpac does. The command grammar is expressed
in a special language, a more Lisp-like version of EBNF
with a few additions. The query facility hasn’t yet been
implemented. It will prompt the user for missing arguments
that cannot be defaulted, and in doing so start up an advice-
giving dialog.

The parser could also have been implemented in other
ways, for example using tools like YACC. But we didn’t feel
any great need for a more powerful tool. Lisp is perfectly
able to handle our needs, and using Lisp we also avoided any
interfacing problems. (A strong point, as anyone acquainted
with such problems will recognize.)

The command history matcher was also implemented
as a pattern matcher, using a script grammar expressed
in a special “lispified” language equivalent to EBNF, in
order to match the actual command history onto the script
database.

Another alternative would be to use a production sys-
tem to implement the script matcher. Yet another would be
to develop a script-to-rules compiler, a program that would
take script definitions as input and produce a script match-
ing rule base for output. Such possibilities will be looked
into later in the project.

The production rule system used is taken from an
example in [11], with a few minor additions. As long as the
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rule base is small, this solution is feasible. Since there are
several existing frammeworks that may easily be built into a
Lisp system, an obvious development would be to use one,
for example YAPS, {12].

Special attention has to be given to the problem of
keeping track of data files. Idpac works with a great number
of data files, and almost every command creates a new one.
As for now, the user has to come up with a new name
for every file created and he also has to keep track of the
maze of files by himself. The next step in the project will
be the development of a file handler. This device will use
a file database, structured as an inheritance tree. It will
take care of generating names, hiding uninteresting files,
explain what operations have been performed on data in a
file, and so on. This also means that the scripts will have to
be modified, so that the command history matcher will be
sensitive to the filenames given in the commands. Keeping
track of the data files is a serious problem in Idpac and the
development of a file handler is a most urgent project.

The development of script and rule databases of a
realistic size is another part of the project. At present we
have just a few scripts and rules for experiments.

A small set of rules for system identification has been
developed in a backward chaining environment, see {13, 14].
Approximately 1000 rules are needed to cope with most
current Idpac applications. The use of scripts will probably
reduce the size of the knowledge bases considerably.

To be able to interact with Idpac an interface must be
developed for the expert system. One solution is to supply
a set of subroutines that can start other processes in VMS,
and then run Idpac in such a subprocess. This hasn’t yet
been done, but we feel that it is possible to do without too
many changes in Idpac.

A small set of functions for creating subprocesses, cre-
ating mailboxes for communication with the subprocesses
and giving other facilities, running under the VAX/VMS
operating system, has been developed, see [15].

During the development of the system, we have tried to
use an “object oriented” approach. A future step will be to
use tools for this, for example a Flavers package, [16]. In
this way every script may be viewed as an object with its
own goals, associated data files, production system, etc.

5. Conclusions

One conclusion of the project at this stage is that it seems
possible to use an expert system and retain the command
style dialog. Another is that not all knowledge need be
implemented by production rules. Scripts are probably a
better way to represent sequences. A third conclusion is
that the use of scripts supported by rules in a forward
chaining strategy will probably reduce the overall size of
the knowledge bases considerably.
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MOTIVATION

CACE
Auto-tuning
Expert Interfaces

Expert Control

Qualitative as well as quantitative
Multiple representations
Different properties

Range of validity
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SIMNON

Simulation of mixed continuous and

discrete time systems.

Continuous system
dz/dt = f(z,u,t)
y = g(z,u,1)

Discrete system

2(tre+1) = f(=(te), ulte), te)
y(tx) = g(z(tr), u(te), t)

Connecting system
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SYSTEM PROPERTIES

Name
Inputs
Outputs
Subsystems
Connections

Behaviour

REPRESENTATIONS

Graphical
Textual
Notice many different versions

Notice different aggregation levels
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QUANTITATIVE BEHAVIOUR

Notice several aggregation levels may be useful.
STATIC: y = F(u)

DYNAMIC:

Nonlinear State Model
State
Input map
Output map

Linear
Range of validity
Linear state A,B,C,D

Also Edz/dt = Az + Bu

Matrix fraction
Impulse response
Frequency response

(Lots of properties!)



A PROTOTYPE
Hierarchical system descriptions
Linearization

Experimentation with Lisp
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; axampla 2. System Decomposition & ..

(ShowSystem s1)

. SYSTEM: St

, Inputs : (c)

; Outputs : (y)

: States : nil

; """ Subsystems ***
B 2
/(s2 model ff)

*** Connections ***
R R R
(c S1)

"~ (S1y)

; *** Behaviour ***

y bt

,+++ no_state equations defined +++
;+++ No output equations defined +++
Nil

-~ (TableOfConnections proc)

. ((uproc)(proc y)) ' .

- {ShowConnectionTable (TableOfConnections proc))
(U proc)

{proc )

ﬁnil
(StateEqns (Behaviour proc))

(@ (= (1 /72)) + (b u)(@* (x1* (1 /2)) - (a* (x2** (1

12)))))
(OutputEqgns (Behaviour proc))

((x2))
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(ShowBehaviourList (Behaviour proc))
State-Eqns

(@™ (x1™ (1 72))) + (0" u)

(@ (x1™ (1 /2)-@"(x2™ 1 /72))
;Output-Egns

(ShowBehaviourTable (Linearize proc))
;System - Matrix

“(@a*((1 /2)*(x2*((1 /2)

___________________________

____________________

;nil '
(MeasurementMatrlx (Linearize proc))

((0 1))
(SystemMatrix (Linearize ff))

((0))

(InputDistMatrix (Linearize sensor))

(7 -1)))

(AliStates ‘'mod!

((x1 x2) nil nil it

(GetAllStates '(reg proc sensor))

((i d) nil ((x1 x2) nil ((x) nil nil)))

(AHSubsystems s1)
:(s2 model ff reg proc sensor)

(AllISubsystems s2)

;(reg proc sensor)

(GetAllSubsystems '(s1 s2))

,(s2 model ff reg proc sensor)

(GetSubsystemHlerarchy '(s1))

{(S1 (s2 model ff) s2 (reg proc sensor) reg nil proc nil sensor nil model nil
ff nil) .



60
SYSTEM REPRESENTATIONSDS
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Department of Computer Science
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Abstract

The notion of system is an essential element of control theory. The
representation of gsystems is also a key issue in computer aided control
engineering CACE. Systems can be represented in many different ways. There
are graphical representations like block diagrams and signal flow diagrams.
There are also mathematical representations llke state space models and
input-output relations which come in many different forms, matrix fractions,
impulse responses, frequency responses. When working with control systems it
is frequently useful to use several different representations of a system.

Only fairly primitive ways of representing systems are used in current CACSD
systems. Typical examples are the Matlab derivatives where systems are
described by matrices. In CTRL-C systems are described as a matrix
quadruplet. In Matrix-X they are described as a composite square system
matrix and an integer representing the system order. A slightly more
sophisticated representation is used in the simulation language Simnon. This
representation recognizes that a system has the properties, inputs, outputs
and states. Simnon also allows a system to be described as an interconnection
of subsystems. However only flat interconnections are allowed. See Astrdm
(1984).

In this paper we will present much more flexible ways of describing a system
which are based on object-oriented programming. The discussion is restricted
to systems which are composed of subsystems with unidirectional interaction.
Such systems can be represented by conventional block diagrams. There are
also more general ways to define systems by using equations or relations. This
is done in the simulation language Dymola. See Elmgvist (1978) and Elmqvist
and Mattsson (This conference).

It is shown that a general structural description of hierarchically connected
systems can be constructed from simple ingredients by making a system an
object with the properties Name, Inputs, Outputs, Subsystems and
Connections. Such a description is very flexible. It is particularly convenient
for describing large systems with a regular structure.

The primitive operations on a system include constructors, like MakeSystem,
AddSubSystems, NewSystem destructors like ClearSystem and query operators
like Inputs?, and ShowSystemHierarchy. There are however also other useful
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operations like StructureVerification which checks that all the ports of the
subsystems are connected and operators like Loops and SystemTopology that
Investigate the topological properties of the system. Other operators are
Trace3tructure.

To provide a good man-machine interface it is also necessary to have tools for
grachical display and graphical editing of different system properties.

It is also necessary to add behavioural descriptions to obtain a useful tool.
This is done by creating new objects which inherit the structural properties
discussed abowve and in addition describe how the system behaves. The
behaviour can be characterized in many different ways. A state description is
one of the simpler alternatives. This can be covered by introducing the new
properties States, StateTransitionMap and OutputMap. In addition it is useful
to add the property Parameters to indicate the parameters of the system
which are accessible externally. To cover sampled and discrete time system it
is necessary to introduce the properties of Time and SamplingTime as is done
in the Simnon language. It is also wvery useful to introduce the property
ValidityRange to indicate the region of validity of the model. This can be
described as a subset of the product of the input spaces and the state spaces
With such a feature it is possible to write a simulation program which will
raise an exception if the state of the system goes outside the region of
validity during a simulation.

Several new operators are needed to deal with behavioural properties. At the
lowest level we have the basic constructors, destructors and query functions.
In addition we need operators for analysing and simulating a system. Examples
of these are StalticModel, OperatingPoint, Linearize, Stable?, Reachable?,
Observable?, TranferFunction, Poles, Zeros, SensitivityDerivative, Simulate,
elc.

The behavioural descriptions should also allow a given system to be described
by different models of different complexity. Apart from the detailed
quantitative descriptions it is also useful to be able to deal with less accurate
and even qualitative descriptions of behaviour. This includes assessment of
gain, time constants, system type, stability margins, degree of nonlinearity
etc. Associated with these properties we also need operators to obtain these
properties from the more detailed representations.

To see the value of the qualitative characterizations consider e.g. the
simulation of a large system with a loop where the dominating time constant is
of the order of seconds. It may then be justifiable to use only static
descriptions for those subsystems in the loop which have time constants
shorter than a millisecond.

The paper also describes a small prototype implementation which admits
experimentation with several of the ideas introduced. This prototype which is
written in Lisp admits hierarchical system representation and formal as well
as numerical manipulation of the systems. Experiences from experiments with
the prototype will also be described. The experiments indicate that the
approach is quite useful and that CACE systems with the properties discussed
can indeed be implemented.
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COMBINATION OF
FORMULA MANIPULATION AND NUMERICS

Motives for symbolic formula manipulation

Structure information is very important
Analytical expression may give good insights
May eliminate numerical problem
Automatic generation of code

Education
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SYMBOLIC FORMULA MANIPULATION
IN MACSYMA

Linearization

t = f(z,u) > & =Az+ Bu

Stability analysis
Routh’s criterion

Jury’s criterion

Maximum Likelihood method
E(0 — 00)2
Sampling
Transfer function — Pulse transfer function
G(s) * H(z)

State space continuous time — discrete time

(A) B) Ca T) 1(@7 FO, Fla C)
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GEOMETRY APPROACH (Time domain)

Observability

Reachability

AB-invariant subspaces

Kernel {X|AX =0}

Inverse Image {X|AX = B} ( A singular )
Gram-Schmidt (orthogonal base)

Gauss elimimation PA=LU

Normal forms (similar matrices)
Characteristic polynomial p4(A)

Minimal polynomial m4()\)

General Matrix functions f(A)
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FACTORIZATION APPROACH (Frequency domain)

Polynomials

AX+BY=C “DAB equation”

Polynomial matrices

Smith form
Smith-McMillan form

Hermite form

Matrix Fraction Decompositions, ME'D
Right MFD
Left MFD
Irreducible MFD

Column reduction (-proper)

Multivariable realizations — back to State space
Controller form
Controllability form
Observer form

Observability form
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PROGRAM EXAMPLE

SAMP(G,[y]): =Block ([sum,i,x,s,h,z],

if G=help then return((

print ("-———- SAMPLING OF A TRANSFER FUNCTION "),
print ("Author: Ulf Holmberg i
print(" "),
print("The sampling function uses the Residue formula i
print ("Sum Res (z-1)/(z-exp(sh))+G(s)/s "),
print("  Samp(G) "),
print (" ->H(z) "),
print(" Samp(G,lambda) "),
print(" ->H(lambda) "),
print(" ————- "))).

[+ Define independent variable (default s) =/,
if length(y)=1 then s:part(y.1),

/+ --- Calculate poles —--—- x/,

x:g/s,
pol: transpose(solve(x~-1,s)),

[+ ——— Put the poles in a vector ———- #/,
for i:1 thru length(pol) do pol:setelmx(part(pol,i,1,2),i,1,pol},

[+ Calculate the sum of all residues of : #/,
x: ((z-1)/ (z—exp(sxh)))=*x,

sum: 0,
for i:1 thru length(pol) do sum:residue(x,s,pol[i,1])+sum,
sum: factor (sum))$
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POLYNOMIAL MATRICES

The following example will serve as an illustration of the above
described macsyma functions. The cpu-time was about 4 minutes.

(c18) /* This is a DEMO, involving polynomial matrix manipulation such as
Matrix fraction decomposition (MFD),
Hermite form,
Greatest Common (right) Divisor,
Coprime MFD (Irreducible forms),
Column reduction,

and realizations to corresponding multivariable controller forms.

--------------------- x/
loadfile("use: [ulfh.macsyma]h.")$

(c19) /+ Consider the following transfer function matrix #/

h;
[ 1 1 3
[ —m e ]
[ 2 (s - 1) (s +3) ]
[ (s - 1) ]

(d19) [ ]
[ 6 s - 2 ]
[ - — :
[ 2 2 ]
[ (s-1) (s +3) (s + 3) ]

(c20) /* First, let us make a trivial matrix fraction decomposition x/

d: denomright (h);

(s - 1) (s + 3) 0
(d35)
2

]
]
]
]
1] (s -1) (s +3) ]

e | e | s | s | ey |

(c36) n:factor(h.d);

[ 2 ]
(d36) [ (s + 3) s +3 ]
[ ]
[ ]

-6 (s-1) (s-2) (s-1)
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(c37) [+ Make a (non-minimal) controller realization x/

ans1: controller(d,n);

(-4 2 12 -9 0 0 0] (1 0]
[ 1 00 0 O O O] [0 0]
[ 0 10 0 O o0 O] [0 0]
(d43) [a=[ 0 01 ©0o ©0 ©0 0].b=[0 0],
[ 0 00 O -5 -3 9] E01;
[ 0 o0 0 1 0 O] [0 0 ]
Eo 00 0 0 1 0] [ 0 0 ]
[01 6 9 0 1 3]
c=( 1]
[0 0 -6 6 1 -3 2]



(c44) [+ We now want to make a minimal realization. 69

Thus we remove the greatest common right divisor of D and N
to get an irreducible matrix fraction decomposition. %/

hermite (addrow(d,n));

[ 19 7s ]
[ 1 — - ]
i 48 48 ]
(d44) [ 2 i
; 0 s +2s5 -3
[ 0 0 |
[o 0 ]
(c45) r:submatrix(3,4,%);
[ 19 7s ]
F1 == ]
(d45) [ a8 48 ]
[ ]
L 2 ]
[0 s +2s5-3]
(c46) dd: factor(d.(r~~-1));
[ 2 2 (s-1) (s+3) (7s - 19)
[ (s -1) (s +3)
(aa6) [ a8
[ 0 s +3
(c47) nn: factor(n.(r-~-1));
[ 2 7s+9]
[ (5+3) e t
[ 48 ]
(d47) [ ]
[ 1]
[-6(s-1) ]
[ ]
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(c48) /* Let us now try the realization algorithm x/

controller(dd,nn);
(da8) D-matrix not column-reduced

(c49) /+ Aha, we first have to make the denominator matrix column reduced. s/

ddd: columnreduce (dd);

[ 2 3 2 ]
[ 480 s 960 s 1440 7 s 5s 59 s 19 ]
[ ————- 4 e = e - - + — ]
[ 49 49 49 48 48 48 16 ]
(d52) [ ]
[ 2 ]
[ 48s 2502 s 4752 ]
[ =« - - s +3 ]
[ 7 49 49 ]

(c53) /+ The corresponding unimodular matrix that made all the
elemental column operations was %/

u: factor ((dd~~-1).ddd);
1 o

(d53) 48 (7 s + 33)

49

| e [ e T s | ey | |

(c54) /+ We have to do the same operation on the numerator matrix s/

nnn: factor (nn.u);

(d54)

-
©
&
(-]
[T TN | NN | NN | NN | W | S | _— ]

[ { s Y e P s | s ¥ s | o [ e |
&
o«
—
-
7]
1
N
o
[



(c55) /# Construct the minimal controller form x/

ans2: controller (ddd,nnn);

54 09 7
— - T - . 0 -
[ 7 7 48
[ 1 0 0o o

(d55) [a = [ 921600 2764800 5 67
2401 2401 7 49

0] 0 1 0

[ g | o | s | e | g [

0 0 o 1

(c56) /x Let us check the result =/

factor(c.((sxident(5)-a)~~-1).b),ans2;

’ )
ik [ 0
16 ] [
0 ] [ 0
1839 ], b = [ 48
et
] [
0 ] [o
0 ] 0
[
[
[
c=[
[
[ -
[

[ 1 1
I 5 (s - 1) (s + 3)
[ (s - 1)

(d56) |
[ 6 s -2
[_.
[ 2
[ (s-1) (s +3) (s + 3)

(c58) [/* End of DEMO #/
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INTEGRATING SYMBOLIC AND NUMERICAL TOOLS
FOR LINEAR SYSTEM ANALYSIS

‘/ MACYSYMA
CTRLC SIMNON
\“/ Documentation '
TeX
POSTSCRIPT

Submitted to the SIAM Conference on Linear Algebra,
12-14 Aug. 1986.



Integrating Symbolic and Numerical Tools
for Linear System Analysis

There are presently several good programs for dealing with
numerical and symbolic mathematics. This paper demonstrates
some ideas on how to combine existing programs from dif-
ferent categories. As an illustration, these ideas are applied
to combining the differential equation program Simnon, the
matrix-manipulation program CTRL-C, the symbolic manip-
ulation program MACSYMA, the type-setting program TgX,
and the page description language PostScript.

We demonstrate macros, functions and programs for solv-
ing more composite problems arising in linear system analysis,
using symbolic and numerical computation. Interface to auto-
matic documentation, TEX, and PostScript are presented.

Ulf Holmberg

Mats Lilja

Bengt Mértensson

Department of Automatic Control
Lund Institute of Technology

Box 118

S-221 00 Lund, SWEDEN

Submitted to the SIAM Conference on Linear Algebra, Boston,
Aug 12-14, 1986.
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EXPERT CONTROL
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TOWARDS INTELLIGENT CONTROL

Karf Johan Astrom

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

Abstract

In spite of significant advances in control theory and computer hardware most
of the control loops in operation today are based on the same ideas as the
pneumatic regulators of 50 years ago. Similarly many of the distributed control
systems in operation are simply implementation of old ideas in new hardware.
With modest extraplation of current trends in computer development we will
have the supercomputer power of the seventies packaged in a desctop in the
late eighties or early nineties. These drastic improvement of computer hard-
ware opens up new possibilities for control system architectures with drastically
different capabilities,

There are some indications that nonconventional control algorithros are
practically useful. A number of devices for automatic tuning of reguiators have
recently been announced by several manufacturers. Adaptive controllers have
also been introduced by some manufacturers.

Process knowledge is.a key factor in process control. Curreat systems uses

, only modest amounts of process knowledge. They do not extract and refine

process knowledge as they operate. This has far reaching consequences. it is
for example very difficult to benefit from the experience of an old system when
installing a new system;

In this paper we will speculate on new ideas about system design which
result in process control systems with drastically new capabilities. The starting
point of out discussion are the devices for autamatic tuning of simple control
loops which appeared in the early eighties. See Astrém and Higglund {1.2).
These schemes offer interesting possibilities for automatic tuning and informa-
tion gathering in simple loops. Combined with tables for gain schedufing they
also offer possibilities for acquisition and storing of simple knowledge about

the process dynamics. Adaptive control is a second element, see Astrim (3). |

It offers the potential to acquire more detailed information about the process
through on-line parameler estimation. Adaptive contral does however require
apriori information about the process to be used in a safe and convenient way.
See Isermann and Lachmann (4) and Wittenmark and Astrm (5). Sueh infor
mation can however I derived from auto-tuning experiments.

Thinkin'g in along these lines we are immediately led to systems ‘which
combine a several different algorithms. We can imagine a system which has a
collection of algorithms for monitoring, control, parameter estimation and con-
trol design. This leads to a combination of advanced control techniques with
the methods of knowledge-based systems in artificial intelligence, see Winston

(6). Barr and Feigenbaum (7) and Hayes-Roth et al. (8). We can visualize a |

system where a collection of algorithms for control, monitoring, parameler esti-
mation, control design, auto-tuning. adaptation and learning are orchestrated by
a knowledge based experl system, Such a system was described in Astrém and
Anton (9), Astrom et al, (10) and Astrém (11, 12) under the name of expert
contral. Experiments with prototype systems of this character are described in
Arzén (13, 14)

In this paper we start by describing different quantitative and qualitative
ways to describe process knowledge. For simple control loops the knowledge can
be a crude qualitative characterization of the control problem e.g. if the main
difficulty is due to linear dynamics, nonlinearities or disturbances. The linear

dynamics is often described by a few parameters like steady state gain, time |

constants and time delay. The nonlinearitics can e.g. be related to actuator sat-
urations, The disturbances can be characterized py some measure of amplitude
and frequency. The coupling between loops can in simple eases be captured by
simple measures like the relative gain array. More detailed description of dynam-

75

ics, coupling and disturbances are needed for more sophisticated control loops.
The knowledge used in different control strategies is also discussed together with
methods for acquiring the knowledge. Different methods for automatic tuning
of simple regulators and adaptive control techniques are discussed. The ideas
of expert control are then introduced. Simple experiments with it are described.
The paper is concluded by some speculations on the possibilities of the

technique. By combining Al methodology with ideas from automatic controf it
is possible to design systems with several interesting features. It is possible to
deal with qualitative as well as quantitative knowledge. The process knowledge
can be structured. It is possible to explicitly use the knowledge of operators as
well as sensors. The system will also acquire knowledge during its operation,
Since the knowledge is structured and accessible it can be extracted from the
system both during operation and at replacement time. When the system is
running we can ask questions like:

o How well is the process running?

o Are the disturbances normal?

o What control law is currently beeing used?

o Why is derivative action not needed on this loop?

o Tell me the loops where dead time compensation is neeeded?

o List all the loops where the tuning constants have been changed signifi-

cantly during the past two months,

o Tune the following loops.

o Monitor the stability margins for this loop.
Knowledge based expert systems have also many other uses in process control,
A system where an expert gystem is put on top of a conventional distributed
control system to give advice about alarm and set point control. is given in
Moore et al. (15). It has also been proposed to use knowledge based systems
to aid in control system design (16) and to reconfigure control systems duting
operation (17).
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POTENTIAL APPLICATIONS

Off-line -- on-line

Whole plant -- single loop

Operator tool -- closed loop

Process and control design

Monitoring and diagnosis of
process upsets

Alarm analysis - Three Mile Island

Expert controller
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EXPERT CONTROL

- Feedback control with an
rule-based expert system.

« Acquires knowledge through on-line
experiments and from process
operators.

« Orchestrates numerical algorithms
for control, identification and
supervision.

» Successively increases and refines
the knowledge about the plant.
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MOTIVATION

- Ordinary controller contains a large
"safety jacket” of logics to ensure
safe operation.

- The combination of different
algorithms increases the amount of
logic.

» A division between logic and
numerical algorithms is achieved.

» The interactive expert system
environment provides a convenient
workbench for experiments with new
control structures.
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LANGUAGES

Most expert systems are written in
LISP or PROLOG.

Numerical algorithms available in
languages like Pascal, ADA or
FORTRAN.

Implementation in two parts.

REALTIME PROBLEM

Expert systems -- slow.
Control =-- time constraints.

Implementation divided into parallel
tasks.
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PROTOTYPE SYSTEM

Vax 11/780 VMS & Eunice

] A/D
Mailbox

Algorithms

Expert System
Pascal

Lisp/OPS4

D/A

Man-machine comm.
Lisp
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CONCLUSIONS

- Promising prototype.

- Knowledgebase of practical control.

- Algorithm development.

» Expert control architecture under
development.
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PLANNING

Operators could be activated in three different ways.

Operator-based activation: The operators suspend
and resume eachother. No plan generator.

Pre-stored plans: A finite number of plans are stored
in the database.

Dynamic plan generation: The plans are
dynamically generated. The overall goal is compared
with the actual state and the goals and preconditions
of the operators.

The actual plan is executed by the plan executor.
Replanning is performed when goals are not achieved.

A plan notation has been developed.
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IMPLEMENTATION

YAPS

Operators

e — INS——
[ ] I ' Planner

Global Database P>

Operators: YAPS or backward chainer.
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YAPS OPERATORS

Primitives for:
Waiting a specified time.

Waiting for a specified data element to be
entered.

Creating, removing and modifying database
objects both locally and globally.

Resuming and suspending other operator.

Manipulating the goal stack.
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STATUS

The skeleton of an expert control architecture
has been developed. |

This will be the basis for experiments with
intelligent controllers.

Modifications and further developments will take
place during the experiments.
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Abstract: Different uses of expert systems in process control
are discussed. The paper concentrates on expert systems
for closed single loop control. Motivation for this is given
and a prototype experiment is described. The experiment
is evaluated and an expert control architecture is proposed.
The system can be compared with a real-time operating
system. An implementation based on YAPS and object-oriented
programming is described.

1. INTRODUCTION

Expert systems have many potential applications in process
control. The application domain stretches from the entire
plant to the single control loop. Both off-line and real-
time problems exist. In this paper the expert system
is used in real-time as a part of a single control loop.
Many applications incorporate expert operator knowledge
into the system. Our application is instead focused on
incorporating more control knowledge into the controller.
Good control requires high-quality process knowledge.
This can be achieved in two ways, either directly from
the operator or through experiments with the controlled
process. The goal of the expert system is to build up the
necessary process knowledge required for good control.

The paper is organized as follows. General expert
system applications in process control are discussed in
Section 2. Section 3 focuses on the single control loop. A
prototype experiment is described. In Section 4 an expert
control architecture is proposed and its implementation is
discussed in Section 5.

2. EXPERT SYSTEMS IN PROCESS CONTROL

Expert systems is an area of Artificial Intelligence (AI) that
has expanded rapidly during the last years, (Hayes-Roth
et al., 1983; Waterman 1986). Expert systems are used
to solve problems that normally require human expertise
and where traditional computer solutions are infeasible.
The successful applications have all been in areas where

B i
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high-quality knowledge dominates over common sense. This |

is true for many aspects of process control. The idea of

adding heuristics to process control is not new. In Crossman |

and Cooke (1962), a heuristic decision program that used
experience to enhance its performance was proposed for
manual control of systems with slow dynamics.

Examples of possible off-line applications in process
control are process design and control design. Process
design has no clean analytical solution. Expert system
assistance has a high potential value since process design
strongly affects the achievable control quality. In control
design expert systems can guide the selection of appropriate
control structures, (Umeda and Niida, 1986), at the global
level. Expert systems have also been integrated with
computer aided control design packages, (James et al., 1985,
Birdwell et al., 1985, Larsson and Astrom, 1985). It has
also been suggested to use expert systems to assist in
the parameter settings of adaptive controllers, (Sanoff and
Wellstead, 1985).

With few exceptions, existing expert systems are based
on propositional logic or first-order predicate calculus.

Sometimes they also allow multi-valued logic, e.g. expres- |
. sions with the values true, false or unknown. This is however

not enough for a real time expert system. Such a system
may have to draw conclusions based on incomplete facts.
Facts may also change after conclusions have been drawn
from them. This means that the system has to backtrack
and reconsider these conclusions. Several non-standard log-
ics exist e.g. non-monotonic logic, (McDermott and Doyle,
1980) and temporal logic, (McDermott, 1982, Allen, 1984),
that partially solve these problems but they have not yet
been applied successfully.

In spite of these problems real-time expert systems

exist. These systems tend to circumvent the fundamental |

problem in different ways. The method used in PICON,
(Moore et al., 1984, 1985), is to attach a duration time to all
database elements and to test the rules periodically. When
the duration of an element ends all concluded elements
are withdrawn. It is also possible to assume that database
elements are valid only in a certain context. The usual way,

2nc however, is to use the engineering, ad hoc method and take
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care of these issues explicitly in the rules.

relations, is used to locate a fault which caused a process
upset or an alarm and to give advice on corrective action.
Work is being done e.g. on nuclear power plants, (Nelson,

1982), and chemical plants, (Palowitch and Kramer, 1985). |.
A monitoring expert system could also give advice on '

control optimization.
In these applications the expert system is used as a tool
for the operator. The expert system loop can also operate

in closed loop, i.e. affect the controlled plant directly. On |-

a global level the expert system could e.g. be used for set-
point control to optimize the system. Process start-up and
production changes. is another possible area. In the aircraft
industry expert systems are suggested that reconfigure the
flight control system in case of damage, see e.g. Trankle and
Markosian (1985). The topic of the rest of this paper is the
use of expert systems in closed single loops. The ideas were
first outlined in Astrém and Anton (1984).

3. CLOSED LOOP EXPERT CONTROL

The present project aims at incorporating a rule based
expert system in a feedback control loop. The goal of the
expert system is to enhance the performance of the single
loop controller and to learn as much as possible about the
controlled process. This is achieved by orchestrating the
application of different numerical algorithms to the process
in an “intelligent” way. The numerical algorithms can be of
different types: control algorithms, identification algorithms
and monitoring algorithms. The control algorithms may be
of varying complexity, from simple PI or relay controllers
to more complicated optimal or pole-placement algorithms.
The identification algorithms may range from simple
algorithms for estimation of static gain to more complex
algorithms such as the Least-Squares algorithm, (Astrém
and Wittenmark 1973). Supervisory algorithms should
detect e.g. static errors, alarm level crossings and ringing
in the controller output. The expert system should decide
in which order the algorithms are applied and calculate
their parameter settings. The application of one algorithm
increases the knowledge about the physical plant and affects
the application of further algorithms.

Existing single loop controllers consists of a combina-
tion of a control algorithm and a “safety jacket” of logical
conditions. Safety jackets are often logical networks which | |
dominate program code. They can be difficult to modify
and often make the code less readable. The goal is to im-
plement as much as possible of this as rules in the expert
system. This gives a clean separation between the numeri-
cal algorithms and the branching logic that simplifies devel-
opment and maintenance. It is often desirable to combine
different algorithms. Some examples are different identifica-

tion algorithms in self-tuning controllers, one controller for
steady state operation and one robust controller for startup !

|
|
|
|
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’ quirements on the correctness of the logics and inforces the *
Monitoring and diagnosis are the most common real
time applications. Plant-specific knowledge e.g. cause-effect |

need for a structured implementation.
High quality control requires good process knowledge. '

3% Adaptive controllers extract some of this knowledge from
— the process but they still need much a priori information

such as system order, number of time delays etc., to perform |
well, (Isermann, 1982, Astrom, 1983, Clark, 1984). One
idea behind the expert system approach is to include as

much process knowledge as possible in the controller. This

knowledge can be collected in two ways: by asking the

process operator or by performing experiments on the

process. An experienced process operator has knowledge

about the physical process. This knowledge is often

qualitative. Examples may be estimates of dominant time

constants and static gain, the nature of non-linearities

etc. Simple identification experiments exist, (Astrém and

Higglund, 1984) that can be used to extract knowledge

from the process. The information obtained in these ways

are diverse and sometimes uncertain or contradictory. The

expert system approach gives a possibility to exploit and
refine this knowledge.

In most of the examples given in the previous section,
the expert system was used to incorporate the knowledge of
the process operator. In this paper the emphasis is more on
the expert knowledge of the control engineer. A controller
of this kind has two possible uses. As an actual industrial
controller or, perhaps more interestingly, as a testbench {or
rapid prototyping of new control structures.

From an Al point of view the on-line control applica-
tion includes both planning and monitoring. The system
should plan how the numerical algorithms should be ap-
plied to the process and monitor both the execution of the
plan and the actual control. The expert system and the al-
gorithms must be implemented as parallel processes having
different priorities. The reason for this is that the different
processes operate in different timescales. The response time
of the algorithms must match the physical process while the
rule interpretation in an expert system is a comparatively
slow process. |

An environment for experiments with expert control |
has been developed on a VAX 11/780 running VMS.
This is described in more detail in Arzén (1986a). It
consists of three parts: the expert system, the numerical
algorithms and the man-machine interface. These parts
are implemented as subprocesses that communicate by;
sending messages through mailboxes. The process structure !
is described in Fig 1. The numerical algorithms are
implemented in Pascal and could be viewed as a library | |
of algorithms. This process is connected to A/D and D/A
converters. The algorithms works as filters that extract
symbolic, qualitative information from the numerical 51gna1
flow. The expert system is not involved unless something |
significant has been detected by the algorithms. The expert i
system and the man-machine interface are 1mplemented
in Lisp. A simulation program, Simnon (Elmqv1st 1975),
has been interfaced to the system as an alternative’

etc. The combination of algorithms imposes additional re—‘:en to controlling a physical process. Simnon can simulate |

|
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Fig. 1: Process structure. The ellipses represent processes
and the rectangles represent mailboxes.

nonlinear differential or difference equations. The program
has been modified so that it operates in real time.

This environment has been used in a prototype
system where the expert system was implemented with
the conventional expert system shell OPS4 (Forgy, 1979).
The prototype system is described in more detail in Arzén
(1986b). OPS4 is a pure forward chaining system. The
database consists of arbitrarily nested list expressions. The

condition parts of the rules are patterns that are matched |

against the contents of the database. There is no possibility
of grouping rules according to context. This system was
interfaced to the real-time environment by a rule that read
new messages from the mailbox and entered them into the
database. This rule was executed when no other rules were
matched. In this way the rule execution was restarted.
The prototype system was used for experiments with
a “smart” PID controller with auto-tuning and gain
scheduling. The tuning was based on the Ziegler-Nichols
auto-tuner (Astrém, 1983). Relay oscillations are used to
determine the PID parameters. When the loop is closed
with the relay the controlled signals starts to oscillate.
This oscillation corresponds to the point where the Nyquist
curve of the process crosses the negative real axis. This
point gives the ultimate period and the ultimate gain
which are then used to compute the PID parameters. The
algorithms needed to implement the system were a PID
algorithm, a relay algorithm, an oscillation analyzer and

a noise estimator. The controller worked in three different |
modes: manual, tuning and PID. When in PID mode a|

table was used to schedule the PID parameters for different
operating conditions. The operator could change modes and
enter new control parameters. It was possible to change the
contents of the database and edit the rules on-line. The
rules in the system could be divided in the following groups:
noise-estimation rules, relay oscillation rules, parameter
computation rules, PID supervision rules and command
decoding rules. The system contained about 70 rules.

" to apply the rules.

tem
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Fig. 2: An expert control architecture.

4. AN EXPERT CONTROL ARCHITECTURE

The experiments performed with the prototype system !
have been promising. The expert system approach gave a |
clean implementation that clearly showed the benefits of
separating the of logic from the algorithms. As an example,
the addition of gain-scheduling required only the addition
of about 10 new rules to the system. This approach is thus
very promising as a testbench for rapid prototyping.

The experiments also showed that a conventional
expert system shell is poorly suited for real-time operation.
Expert control contains a large element of planning that is
not well supported by conventional expert system shells.
An example is the tuning phase of the controller that
contains a large sequential element. First a noise estimator
algorithm is used to collect noise information which is then
used to set the relay parameters. A detector is applied
to determine that a steady state oscillation is obtained.
The PID parameters are determined from the oscillation
wave form and PID control is initiated. It is natural to
group the rules according to the different stages in this
plan. Production systems are generally weak at sequencing
problems. The sequencing has to be explicitly expressed in
the rules. This often gives the effect that the actual domain
knowledge is obscured by the control knowledge i.e. when

Another disadvantage with the prototype system was
the uniform inference strategy. The problem is basically of
the data-driven, forward chaining type with data in the
form of significant events being sent from the algorithms to
the expert system. The monitoring phase can, however, be
stated as a diagnosis problem where backward chaining is
more appropriate. The same is valid in the phase where
the system tries to extract process knowledge from the:
operator. The lack of structure of the database was a third
drawback. A database that allows objects with attributes
would be preferable to the nested list structures of OPS4. |

A better expert control architecture might be built
around a blackboard architecture (Erman et al., 1981) and !
a planning module, see Fig.2. The blackboard corresponds
to a global database that is available to the different
operators. The blackboard should allow information to!
be represented as objects with associated attributes. The|

I
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Fig. 3: Plan example.

operators contain the domain knowledge for a ' certain
task. It should be possible to have different problem-
solving strategies for different tasks. The operators could be
procedural or rule based with different inference strategies
depending on their task. This means that the operators
could be tailored to their task. They should also be
allowed to have their own local databases. The computation
of PID parameters from oscillation measurements is an
example of an operator task. An operator is often associated
with one or more algorithms. An example might be the
operator for the relay experiment that contains the domain
knowledge for the relay algorithm and the oscillation
analyzer algorithm.

The order in which the operators should be used is
determined by the planning module. To reach a certain
goal state e.g. safe steady-state control, requires in general
that a sequence or plan of different operators is used. This
plan often contains parallel parts. An example of this is
the last part of the plan that contains one operator that
takes care of the steady-state control algorithm and one
or more operators that handle the monitoring algorithms.
An example of a plan is shown in Fig. 3. A plan could be
generated in three different ways;

o Operator-based activation: The operators start
and stop other operators themselves. No separate plan

generator is needed in this case.

Stored plans: A finite number of plans for different
initial and final goals are stored in the database.

Dynamic plan generation: The plans are dynam-
ically generated by a plan generator. Each operator
has an associated set of preconditions that must be
fulfilled for the operator to be applicable and a set of
goals that will be met by the operator. A plan is gen-
erated by comparing the final goal and the initial state
with the goals and the preconditions of the operators.
This approach can be combined with operator-based
activation.

The actual plan is executed by the plan executor. After
each stage in the plan the outcome is compared with the
expected outcome. Replanning is performed in case of in-
consistencies. The dynamic and stochastic nature of control
makes this close interaction necessary. The uncertainty in
the outcomes of an operator application violates the as-
sumptions of existing domain-independent planning sys-
tems (Cohen and Feigenbaum, 1982, Wilkins, 1983). The
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goal for the separation between the operators and the plan- |
ning module is to separate the domain knowledge about
different tasks from the control information.

The expert control architecture described can in many
respects be compared with an ordinary real-time operating
system, (e.g. Brinch Hansen, 1973). The operators are the
equivalents of concurrent processes and the plan executor
is the equivalent of a scheduler. This is especially true in
the parallel phases of a plan. In an operating system the
processes can wait for a certain time or for a certain event.

assigning a state with the values running, ready or waiting
to each operator. When an operator calls the function
“waittime” in a rule it will be marked waiting by the plan
executor. The operator is activated when the time is over.
An operator can also wait for a specified element to be
inserted in the database, e.g. a certain message from the
algorithm part.

The operators could be implemented in two ways. The
first is to implement them as concurrent Lisp processes
that share a global database. This would probably require a
Lisp machine. The second way is to implement the system
in a single Lisp process. This has the drawback that the
operators can not be interrupted.

5. IMPLEMENTATION

The implementation of a system along the lines of Section
4 will now be described. The system is based on the
environment described in Section 3 with a new expert
system part. This part is built around the forward chaining
production system shell YAPS, (Allen, 1983) and the
object-oriented Flavors system (Cannon, 1982).
Object-oriented programming provides a convenient
way to implement highly modular systems, see e.g. Stefik
and Bobrow (1986). Objects consist of a local state and a
behavior. Objects are asked to perform operations by send-
ing appropriate messages to them. The objects have asso-
ciated methods that handles the messages. Generic algo-
rithms can be implemented using object-oriented program-
ming. A protocol i.e. a set of messages is defined, which
specifies the external behavior of the object. This proto- |
col does not define the internal implementation. Objects
or instances are created by instantiating their descriptions. |
There are several different object-oriented add-ons to Lisp
such as for example Flavors. ;
YAPS is a forward chaining shell implemented in
Flavors. The database contains arbitrarily nested lists of
atoms, integers and flavor objects. The condition part of
the rules contains patterns that are matched against the |
contents of the database. Pattern matching variables are
allowed. The condition part may also contain predicates
acting on the database that must evaluate to true for the
rule to be applicable. The action part of the rules contains
ordinary Lisp functions. The inference strategy is event-|
driven forward chaining. The key feature of YAPS for our

WILL BE DELZTED !
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database and the fact that YAPS is itself a flavor object.’

This means that YAPS systems can be used as parts of the

database of other YAPS systems. These “internal” systems
can be controlled from the rules, In this way expert systemspGE
can be used “inside” other expert systems. The internal|
expert systems could also be of other types e.g. backward
chaining systems, as long as they are implemented as flavor

S THC

objects. Operators are implemented in this way. |
The flavor objects that YAPS allows in the database:
can only be matched as object units. It is not possible to| |
24

access the attributes of an object in the pattern matching.
To allow for objects that can be accessed from the rules
according to attributes, YAPS has been extended with
static objects. A description of each object type has to be
given. This includes the attributes with possible default
values and an inheritance order. YAPS has also been
extended with a limited explanation facility. A description
of how the fact was derived is connected to each fact in the
database and to each attribute of the facts that are objects.
This gives the possibility to ask HOW questions.

The global database and the planning module are
implemented in a YAPS system. The planning module
is implemented as rules. The operators are implemented
as objects in the database. Only YAPS forward chaining
operators are presently allowed. The most important
attributes of the operator objects are the following;

PR

Status: Take the values active or inactive. The value
is active if the operator is used in the current phase of
the plan.

State: Takes the values running, ready or waiting. It is
used by the plan executor when the operators is active.

Instance: The flavor instance for this operator.
Goal: The goals which the operator should achieve.

Preconditions: The preconditions that are required
for the operator to be applied.

The goal and the preconditions are collections of patterns
in disjunctive normal form. The possible uncertainty of
an operator shows up in the goal expression. Other key
elements of the planning module are the actual plan and
the goal stack. The actual plan contains the current plan|
and the goal stack is a stack of goal entries. A goal entryi
is a conjunction of patterns to be fulfilled. A goal entry |
may also consist of a collection of conjunction patterns|
with associated priorities. The plan generator takes the
top goal element and attempts to generate a plan for it.
If no plan is found then a new attempt is made with a
goal of lower priority. This mechanism could be used to
implement backup control. When a plan has been generated
its execution starts. There is no guarantee that the plan is
unique nor that it is the shortest possible plan. After each
stage in the plan execution the goals achieved are compared |
to the planned goals. When a goal entry has been satisfied
the next element of the goal stack is selected. A rule in the
plan executor could look as follows.

tant

' the global database are used for domain information. The
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(rule schedulel
(object operator
status active
state ready
instance -x)
(not (object operator
state running))
-=>
(modify 1 state running)
(<- -x ’run))

In natural language this rule says: if there is an operator
which is active and ready and no operator is running then
this operator is changed to running and a run message is
sent to the actual flavor instance.

The plans are represented as nested list structures of
operator names. They can be expressed in the following
EBNF syntax where p and s denote parallel and sequential,
respectively.

PLAN = (OPERATOR ARGUMENT [ARGUMENT..])
OPERATOR ::= <p> | <s>
ARGUMENT ::= <operator-name> | PLAN

The example in Fig. 3 looks like (s A (p (s B C) D) E
(p F G)) in this notation. The rest of the elements in

knowledge about the actual control loop is well suited to
be represented as objects with different attributes.

The operators built on YAPS have predefined functions
for activation and deactivation of other operators. They
have also functions for waiting a certain time or for a certain
element to be inserted in the global database. Each waiting
function has two different versions. One that requests a
wakeup and suspends the rule execution and one that only
requests a wakeup. Furthermore, there are functions for
adding and deleting facts locally as well as globally and
for pushing and popping elements on the goal stack.

The waittime requests are handled by a separate timer
process. When a waittime is requested a message is sent '
to an associated mailbox. The requests are queued by the
process and a message is returned to the expert system |
when the requested time is over. The structure of the |
implementation is shown in Fig. 4.

ALL MATERIAL IN THIS SPACE WILL BE DELETED
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The next step in the implementation will be to add’
other operators than YAPS. Work on this is currently under
progress and will be described in further papers.

~

-
(G

»

6. CONCLUSIONS

—

The expert system approach simplifies the implementation!T=¢
of controllers based on process knowledge. The knowledge. --—
required can be acquired from the process operator or
from the process. Extracting knowledge from the process
requires experiments. This means that different algorithms
are applied to the plant. An expert system is well suited for )
implementation of the logic needed in this process.

A prototype environment has been built up. Experi-
ment with conventional expert system shells have shown
that they are not well suited for expert control. An archi-
tecture that is better suited is described. This architecture
is under implementation using YAPS and object-oriented
programming.
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NEW PROJECTS 86/87

Representation and visualization 659 kSEK
of systems and their behaviour

Expert system interfaces 175 kSEK

Implementation languages 161 kSEK

Numerical solution of D/A systems 155 kSEK

Total 1 150 kSEK

Approved projects 86/87

High level problem solving languages 106 kSEK
Formula manipulation and numerics 53 kSEK
Expert control 295 kSEK

Total 454 kSEK
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REPRESENTATION AND VISUALIZATION
OF SYSTEMS AND THEIR BEHAVIOUR

The notion of system is very important.
Structural properties are important.

Graphics is useful to describe structure

and behaviour of systems.



96

STRUCTURE

Decomposition
Hierarchical block diagrams
Information zooming

Overview windows

Other complementary structuring concepts

Model types Model classes
Model complexity Perspectives
Different process designs Class hierarchies, inheritance

Organization of libraries = Categories

How should these relations be visualized?
Can get inspiration from existing systems for

object-oriented programming.
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THE MATHEMATICAL DESCRIPTION

Equations - Assignment statements
Higher order derivatives - Transfer functions
Connection mechanisms

Difference equations

Typography
Tex

Function diagrams

Error messages
Colors and highlighting

Error comments below expressions

Handling of parameters
Ranges for parameters
Creation procedures
Default values
Automatically updating of children’s parameters
Storing and retrieval

Bookkeeping and documentation
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VISUALIZATION OF BEHAVIOUR

Visualization of simulation results
Must be flexible
Trend curves etc.
support editing of axes and curves
Simulate instrumentation - Gauges

Animation of the process simulated

Bookkeeping and documentation
History files
Storage of the model
Text files
Compiled versions
Storage of parameters and values

Storage of simulation results
All variables

User defined

Those calculated by the numeric ODE solver
and the model
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PROJECT DESCRIPTION

Investigate how the man-machine interface should
represent and visualize systems and their properties.

Particularly focus on how graphics can be used.

Flexibility is a keyword.
User needs
Hardware
Command styles

Separate input/output code from calculations

A flexible and interactive environment is needed
Common Lisp

Eagles
Communication with users of CACE programs

OUTCOME

Ideas and experiences
Useful program modules

Circulation of knowledge
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EXPERIMENT WITH
EXPERT SYSTEM INTERFACES

The results