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1. INTRODUCTION

Self-tuning regulators are based on a
very simple heuristic idea. A design
problem is first solved under the
assumption that a model of the system
and its environment is known. When
the parameters are not known they are
replaced by estimates obtained from a

recursive parameter estimator.
Self-tuning regulators vwhere the
underlying design scheme is based on
linear guadratic gaussian (LQG)
control theory are discussed in this
paper. One advantage by this
formulation is that the performance
of the control system can be

characterized by a few parameters. In
the single-input single-output case
there is in fact only two parameters:
the sampling period and the weighting
factor between penalty on the control
signal and the output error. Another
advantage is that the LQG theory is
not restricted to any particular
class of systems. It can thus easily
be applied to non-minimum phase
systems as well as to systems with
variable time delays.

based on LQG

A self-tuner was first

proposed by Peterka and Bstrdm
(1973). The solution was based on an
interactive solution of the steady

state Riccati equation. This idea was
further elaborated by Astrdm (1974),

Astrdm and Wittenmark (1975),
Gustavsson (1980), Samson (1980),
Belanger (1981), and Zhao-Ying and
Astrom (1981). Closely related

approaches have bheen
Mosca and Zappa (1980),

proposed by
Menga and

control; control system

Mosca (1980), Trulsson and Ljung
(1982).

There are comparatively few
theoretical results on LAG self-
tuners. The closed loop
identifiability problems are
discussed by Kumar (1981). A
convergence proof is due to Moore
(1983). Applications of LQG self-
tuners have been described in Astrdm
(1980c) and Astrdm and Zhao-Ying

(1982).

This paper is organized as follows.
The LQG design for system with known
parameters is reviewed in Section 2.
A polynomial approach is convenient
because the treatment is limited to
single-input single-output systems.
The polynomial approach is also
useful because it is based on a model
structure which is suitable for
parameter estimation. Recursive
estimation 1s discussed in Section 3.

The results of Sections 2 and 3 are
combined in Section 4 which deals
with LQG self-tuning algorithms.

Theoretical issues are discussed 1in
Section 5. Robustness is discussed in
Section 6, wvhere new devices to
ensure robustness are proposed. An
application to concentration control
is given in Section 7. This
illustrates some of the advantages of
the LGG approach.

2. LGG DESIGN

The LQAG design for systems with known
parameters is reviewed in this



Section. This material is well-known
in text books. See e.g. Astrdm (1970)
or Astrdm and Wittenmark (1984). The
problem can be formulated either in
terms of state models or input-output
models. The input-output formulation
is convenient for our purposes. Con-
sider a single-input single-output
system described by the model

Alg)y(t) = B(glu(t) + Clgle(t) (2. 1)
wvhere q is the forward shift operator

Let the criterion be to minimize

t
o1 2 2
E %%m t kgl[y (k)Y + @ u™ (k)1 (2.2)

Notice that the sampling period h is
a hidden parameter in +this formu-
lation. A better formulation would be
to use the continucus time criterion.

t
o1 2 ' 2
E lim § g [y“(s) + e u“(s)lds

(2.2")

which is independent of the sampling
period. For a sampled system the
criterion (2.2’) can be transformed
to (2.2). The parameter e will,
however, depend on the sampling
period h. There will also be a cross
term y(k)u(k) in (2.2), See Astrém
(1970). We will however wuse the
simplified formulation (2.2).

The optimal feedback law which
minimizes (2.2) for (2.1) is given by
the following theorem

THEOREM 1

Consider the system (2.1). Let the
polynomials A(z) and C(z) have
degrees n. Assume that C(z) has all
its zeros inside the wunit disc and

assume that there is no polynomial
wvhich divides A(z), B(z) and C(z).
Let A_(z) be the greatest common
divisor of A(z) and B(z) and let

A2(z) of degree m, be the factor of
A_(z) which has all its zeros outside

tge unit disc or on the unit circle.

The admissible control law which

minimizes (2.2) with >0 1is then

given by

Rigiu(t) = - S(gly(t) + T(glu_(t)
(2.3)

where the polynomials R and S satisfy
the Diophantine equation

A(z)R(z) + B(z)S(z) = P(z)C(z) (2.4)

with the additional constraints

(i) deg R(z) = deg S(z) = n+m

(ii) A2(z) divides R(z)

(iii) deg S ' (z) < n

The polynomial P(z) 1s given by

_ m

P(z) = =z Pl(z) A2(z) (2.95)

vhere

P. ()P, (z 1) A (z)A, (z 1) +

1 g o= = g Bl €=
(2.6)
+ B, (2)B,(z )
1 1

and

Al(z) = A(z)/Az(z)

B,(z) = B(z)/A,(z)

The polynomial T(z) is given by

T(z) = t_ z" c(z) (2.7)

wvhere

tO = Pl(l)/Bl(l) D

A proof of Theorem 1 is given 1in
Astrom and Wittenmark (1984).

Algorithms

To solve the design problem it 1is
necessary to solve the spectral
factorization problem (2.6) and to
soclve the Diophantive equation (2.4).
The spectral factorization problem
can be solved by the algorithm due to
Wilgon (1969) which has been retired
by Vostry (1975). This algorithm is
iterative and has the advantage that
the polynomial P, obtained at each
step is guaranteed to be stable. The
Diophantine equation can be solved by
the Euclidean algorithm. This
algorithm has the advantage that it
also detects common factors in the
polynomials A and B. A neat
implementation at the Euclidean
algorithm is given by Blankinship
(1963). Additional material on
algorithms for solving the spectral
factorization problem and the
Diophantine equation are given in
Kucera (1979).

Alternative approaches

An alternative solution to the design
problem is to wuse the state space
formulation. The control law is then
obtained in terms of solutions of
Riccati equations for the feed back
gain and the Kalman filer. This



approach isg described in detail in
the text books by Anderson and Moore
(1971) and Astrdm (1970).

Relations to pole placement

The solution to the LQG problem given
by Theorem 1 has close relations to
the pole placement design problems.
The solution to the spectral
factorization problem gives the
closed loop poles. The second step in
the algorithm can be interpreted as a
pole placement problem.

It is clear from the description of
the design algorithm that a pole
placement self-tuner is obtained as a
by-product, simply by specifying the
polynomial P instead of determining
it from spectral factorization.

3. PARAMETER ESTIMATION

When the parameters of the model
(2.1) are not known they can be
estimated recursively by the extended
least squares (ELS) method or by
recursive maximum likelihood (RML). A
detailed description of these methods
are given in Ljung and S&derstrdm

(1983). For simplicity we will here
describe the ELS algorithm. Introduce
= T
0 =1 ape.. @y bl"' bm Cpeve Ci]

elt) = [ -y(t-1) -y(t-n)
u(t-1) ... ult-m)
B(t-1) ... e(t-2) 1T

and

e(t+l) = y(t+l) - wT(t+1) B(t).

The extended least squares algorithm
Panuska (1969) is given by

B(t+1l) = B(L) + K(t+l)e(t+1)
Eesth B o TP(t) @(t+1)
1+ @ (t+1) P(t) @(t+1)
T
P(t+l)=% bty PUtlo(t+lig(t+1) "P(t)

A+ @(t+1) TP(t)g(t+1)
(3.1)

In =actual implementation a square
root algorithm based on the U-D
algorithm is preferable. See Bierman
(1977). The number A in (3.1) is a
forgetting factor introduced +to dis-
count past data. A better way of
discounting old data is given by
Hiagglund (1983).

4, SELF-TUNING CONTROL

A block-diagram of a general self-
tuner is shown in Fig. 1. It can be
viewed as an on-line automated
design.

Design Estimator —
(H__Regulafor Process
Fig. 1. - Block diagram of a gelf-

tuner.

In the LAG self-tuner the design ieg a
solution to the LQG design problem
and the parameter estimator is a
recursive estimator like the one
discussed in Section 3.

Solution of the Riccati equation or
the spectral factorization 1is the
major computation in an LQG
self-tuner. This calculation can be
made 1in several different ways. The
Riccati equation can be solved by the

eigenvalue method due to Potter
(1966) or by some iterative method,
ordinary time iterations or by the

method proposed by Kleinman (1968).
The iterative methods will in general

lead to shorter code. It 1s however
difficult to cope with iteratione in
an on-line algorithm. To guarantee
that the calculations can be
performed in a prescribed sampling
period it is necessary to truncate
the iterations. It 1is then a
necessity to guarantee that a
sensible iterate is obtained when the
iteration is truncated. The

particular method based on spectral
factorization using Wilson'’s
algorithm which is discussed in
Section 2 has the advantage that the
polynomial P obtained at each iter-
ation is stable.

Programming and coding

Several different versions of the LQAG
self-tuner have been coded in Pascal

for the DEC LSI 11/03. An
implementation of the algorithms
described in Sections 2 and 3 are

described by Astrdm and 2Zhao-ying
(1982). The source code is about 1400
lines of Pascal. This includes
comments and declarations. The total
size of the complled code is about 40
kbytes. In the coding flexibility and
readability has been emphasized
rather than compactness and
computational speed.

Another implementation
solution of Riccati

given in Astrdm (1974).
there was no

based on the
equation was

In this code
operator communication.



' The pure foreground code compiled to
about 8 kbytes on a DEC PDP-135.
Another program for the DEC LSI 11/03
written in Fortran by Gustavsson
(1980) has a source code of about
1400 lines. Half of them are
comments. The compiled code required
about 40 kbytes. 0f these about 8
kbytes was required for the pure
foreground.

It thus appears
based on

that implementations
Riccati equations and
polynomial manipulations require
about the same amount of code. The
minimum size of a dedicated
implementation with no operator
communication is about 8 kbytes.

5. THEORETICAL ISSUES

The key theoretical
adaptive control are stability, con-
vergence and performance. These
questions are reasonably well under-—
stood for the gimple self-tuners
based on least squares estimation and
minimum variance control, wvhere
conditions for global and local
convergence are known. Much less is
known about the algorithm discussed
in this paper. Some available results
will be discussed in this Section.

problems for

Parameter Estimation

Estimation of the parameters in the
model (2.1) is complicated even 1in
the off-line case, because it is
non-linear in +the parameters. See
Bstr&dm and Bohlin (1965). When there
are no input signals it is shown in
Astrdm and Stderstrém (1974) that the

asymptotic likelihood function ob-
tained for large data sets is
unimodal. The likelihood function

may, however, have local minima when
there are inputs even if they are
persistently exciting.

The difficulties associated with
local minima of the likelihood
function are also inherited by the

and RML. It
results on

recursive algorithms ELS
follows from the general
convergence o0f recursive algorithms
that they may have the local minima
as equilibrium points. See Solo
(1979) and Ljung and S&derstrdm
(1983). The new recursive algorilithm
proposed by &strdm and Mayne (1982)
may perhaps avoid this difficulty.

Persistent Excitation

To ensure a unique minimum it is
necessary that the input signal is
persistently exciting. See Astrdm and
Bohlin (19635). This is difficult to

ensure when the input
generated by feedback
perturbations are
parameters are updated only when
there is proper excitation. These
issues are discussed further in
Section 6 when it is mentioned that
excitation should be obtained by
signals in a certain frequency range.
Compare also the notion of dominant
excitation in Iocannou and Kokotovic
(1983).

signal is
unless extra
introduced or

Identification in closed loop

Identifiability may also be lost
because identification is made in
closed loop. See Astrtm and Eykhoff
(1971) and Ljung et al (1974). Kumar
(1981) has shown that serious
difficulties may arise at least in
the case when the parameters belong

to a finite set. For a first order
system it is shown that there is an
equilibrium set for the parameters,

for the LQG =elf-tuner, where only
one point correspond to the optimal
solution. This is different from the
minimum variance self-tuner where all
points in the equilibrium set give
the optimal feedback. It is not clear
what happens in the general case. WMy
conjecture is that the parameters may
converge to the limit set at the rate
of 1/t, and then wmove towards the
correct solution a rate of 1/(log t).
This is hard to analyse because the
phenomena can not be captured by the
ordinary differential equations given
by Ljung (1977).

Kumar has suggested a modification of
the least squares criterion, which
gives a feedback law that converges
to the true LQAG solution even when
the parameters are in a discrete set.

discrete
given by Hijab

Results for the case of
parameters are also
(1983).

There are also other significant
differences between the case ot
finite and continuous parameter sets.

Loss of identifiability due to
feedback can also be reduced by
introducing an additional delay in
the regulator or by introducing
perturbation signals. Moore (1983)
has an algorithm which 1is claimed to
converge globally.

Direct algorithms

The algorithm given in Section 4 is
indirect because it is based on
estimation of parameters of a process
model. For simpler adaptive schemes
there direct algorithms where the



ragulator
directly.

parameters are updated
These algorithms can be
obtained from a reparameterizatian of
the process model. See e.q. Astrom
(1980a). Eeveral attempts have been
made to derive direct algorithms for
LEG self-tuners. Trulsson and Ljung
(1982) have suggested to use the

gradient approach suggested oy
Tsypkin (1971). The algorithms
obtained in this way have the same
complexity as the algorithms in

Section 4.

Another approach called MUSMAR is
suggested by Menga and Mosca (1980)
and Mosca and Zappa (1980). Their

direct algorithm reduces to two least
squares calculations. A further
simplification of +this scheme is
proposed by Bartolini et al (1982).

6. ROBUSTNESS

A control cystem should be
sitive to measurement
disturbances and modeling errors.
Although these issues are important
for all control systems they have
only lately been considered in
connection with adaptive systems. See
Rohrs et al (1982) and Ioannu and
Koktovic (1983},

insen-
errors,

A discussion of the central problems
for the adaptive LQAG regulator are
given in this Section. The robustness
of the underlying design problem, +*he
recursive estimator and the combined
problem are discussed.

Robust Coaotrol Design

Robustness properties are convenilent-
ly discussed in terms of the loop
gain. See the Bbode plot of a typical
loop gain in Fig. 2. The loop gain is
unity at the cross-over frequency o_.

A common engineering practice which
iz now well supported by theory
Horowitz (1963), Doyle and Stein
(1981) and Lehtomahi et al (1981)

boilz down to the following: Make the
loop gain high below +the cross-over
frequency and make sure that the loop

log GL

W l[]g W

Fig., 2. - Bode

gain.

diagram of the laoop

gain falls off rapidly above the
crogss-over frequency. A  high loop
gain for low Ifrequencies is obtained
by introducing integral action or

some resonant system which gives a

high gain for special frequency
bounds as isg indicated in Fig.2. The
rapid roll-off for high frequencies

is necessary to ensure that unmodeled
high frequency dynamics will not
cause difficulties. Computer
controlled systems should always be
provided with antialiasing filters to
2liminate signal transmission above
the Nyquist frequency. A well
designed digital regulator will thus
not have any signal transmission
above the Nyqgquist frequency. The high
frequency roll-off for a digital
regulator is thus significantly
influenced by the sampling period.

4 quantitative statement of the above
discussion for the LQG design can be

obtained as follows. Assume that a
LAG regulator based on the model
(2.1) is designed for a system with

the true pulse fransfer function G
The following result then holds.

THEGCREM 2

Consider a system with the pulse
transfer function G_. Let a regulator
(2.3) bhe designed based on the
spproximate model (Z.1). Assume that
3 =and G=B/A have the same number of
uAstable poles. The closed loop

system obtained is the gstable if

G T 1
- —— | = (6.1)
‘GDGI<|G I
m -
on the unit circle and at infinity
[}
The theorem is proven in Astrom

(1980d). The left-hand side is the
relative error in the pulse transfer
function. The right-hand side
contains quantities which can be

computed when the design calculation
have been performed. Notice that G is
the open loop pulse transfer function
of the plant model and that G_ is the
pulse transfer function from the
command signal to the output.

The detailed character of the
inequality (6.1) is highly problem
dependent. Some general
characteristics can, however, be
found by inspection. The right hand
side of (6.1) is small when G is less
than G i.e. when the open loop gain
is lesg than the model gain. This is
the case for frequencies around the
cross-over frequency. Theorem 2 thus
indicates that 4t is necessary to
have a model which gives an accurate
description of the process around the
cross-over frequency.



Robust estimation

When a parameter estimator is used in
an adaptive scheme like the one shown
in Fig.1l. it 1is important to make
sure that good estimates are
obtained. Bad data should not gene-
rate poor estimates.

A special feature of the
control application is that a low
order model is fitted for a complex
plant. The model obtained in such a
case will critically depend on the

adaptive

frequency content of the input
signal. It vas e.q. shown by
Mannerfelt (1981) that with pure
sinusoidal excitation the +transfer

function will agree exactly with the
plant transfer function at the
excitation frequency. To guarantee a
stable operation it follows from
Theorem 1 that a certain precision of
the model is needed around the
cross-over frequency. To ensure this
it is therefore necessary that the
input =ignal has a sufficient energy
content in that frequency band. This
zan be monitored using the system
shown in Fig. 3. The conditions for
pergistent excitation, Astrdm and
Bohlin (1965) <an be monitured
instead o©f +the signal snergies as
shown in Fig. 3.

If the wuseful signal to noise ratio
is to low there are +two options:
Excitation signals may be introduced
or the parameter estimation may be
zwitched off. Guided by the results
cf Egardt (1979) and Marendra and
Peterson (12980) it is also reasonable

to =gtimate ouly when the absolute
level of the uszeful input energy is
above a certain level. These

zafe-guards can be regarded as an
implementation of the common sense
rule: Do not mstimate unless the data
i3 good.

There are other safe-guards of a
gimilar nature to make sure that the
data ucged for estimation is always
good by excitation or that the
parameter estimation i1is only made
when the dJdata i3 reasonable. The
difficulties noticed by Rohrs and
others (1982) will not arise if those
parameters are taken.

Band pass
filter

Rectifier

Complementary

filter Rectifier

Fig. 3. - Circuit fer wonitoring the
signal to noise ratio feor =stimating
a reduced order model

Robust adaptive control

To obtain a robust adaptive control
algorithm it is necessary to use both
robust control and robust estimation.
In the adaptive problem there are
also some new trade-offs to be made.
Consider for example the robustness
properties obtained by having a high
open loop gain at low frequencies.
This may be obtained by having
integral action in the control loop.
It can also be obtained via
adaptation. An adaptive regulator
with enough parameters will azutoma-
tically introduce a high gain at
those frequencies where there are low
frequency disturbances.

I have often found it
use a design method which gives a
high gain at low frequencies and use
adaption only to find the
characteristics around the cross-over
frequency. This has the additional
advantage that fewer parameters are
needed. It speeds up the estimation,
and the degrees of the polynomials

beneficial to

are kept low which improves the
inherent numerical problems with
polynomial representation. One

pogsibility is to estimate a model of
the type

Al Vy(t) = B(q)Vult-1) + Clglelt)
(6.2)

vhere V = g - 1 is a difference
operator. Provided +that C(l1)#%#1 +this
model implies that there are drifting
disturbances. A consequence of this
is that the regulator designed from
(6.2 will always have a high gain at
low frequencies. 3See Astrdm (1982).

7. AN APPLICATION
Some practical aspects on the
LAG-tuner will be given 1in this
section. Since the LQAG self-tuner is
more complicated than the simple
self-tuners based on least sqguares
and minimum variance control it is
legitimate to question the benefits
of the increased complexity.

Trading input and output variances

Although the output variance is often
of major interest in process control
applications it is also important to
make sure that the wvariance of the
control variable is reasonable. For
the simple self-tuner the trade-off
between input and output variances is
governed by the selection of the
zampling period h and the prediction
horizon d. It is thus necessary to



use two design parameters. It has
been demonstrated by Toivonen (1981)
that there are limitations in this
approach.

Clarke and Gawthrop (1975, 1979) have
proposed another way to deal with the
problem. They use a criterion of the
type (2.2) where the sum has one term
only. This captures part of the
problem. Because of the short time
horizon there is however no guarantee
that a stable System is obtained. See
Moden and S&derstrém (1982).

The LAQG self-tuner does not suffer
from any of the drawbacks discussed
above because it is based on an
infinite horizon solution to the LQG
problem. The LAG self-tuner is of

course also well suited for those
rare problems wvhere there is a
natural LQG formulation. See A&strdm

(1980c).

Non minimum-phase plants

The simple self-tuner can not be
applied to a plant where the sampled
model is not minimum-phase, because
the design is based on cancellation
of the process zeros. This may seem
restrictive at first. It is, however,
shown in Astrdm et al (1983) that any
stable plant which is sampled with a
sufficiently long period will result
in a sampled model which is minimum
phase. The simple self-tuner can thus
always be used for stable systems if
the sampling period is long enough.
The LQG self-tuner has no
difficulties with non-minimum phase
systems because the underlying design
method is not based on cancellation
of process zeros.

Time delays

For the simple self-tuner it is ne-
cessary to know an upper bound of the
process dead-time. This is not needed
for the LQG self-tuner. The problem
is circumvented simply by having a
large number of b-parameters in the
model. It does not matter in the
design if the leading b-parameters
are zero. The LQG self-tuner thus has
significant advantages if there are
significant variations in the
time-delay.

An Example

The properties of +the LQG self-tuner
are illustrated by an application to
concentration control.

flows
where

Tap water
chamber

through a mixing
it is mixed with a

concentrated salt solution.
rate of the salt
controlled by a pump. The water then
flows through a long tube and a
stirred tank. The concentration at
the outlet is measured with a

The flow
solution is

conductivity cell. The outlet flow
may also be recirculated to the
input. The amount of recirculation

can be adjusted. The control variable
is the speed of the pump. The
controlled variable is the
concentration at the outlet. The
dynamics varies with the flow rate
because the time-delay and the
time-constants are inversely propor-
tional to the flow rate. The process
gain is directly proportional to the

concentration of the salt solution
and inversely proportional to the
flow.

The impulse responses of
at different flow rates
Fig. 4. The figure shows clearly that
there is a substantial variation of
the dynamics with the flow rate.
Notice 1n particular the response
obtained with recirculation.

the system
are shown in

Q-8x10"6ms | 0=22x10"6m s

A

] 50 00 © 50 100

| Q=16x10"6m s | Q=6hx10 Om s

0 50 100 0 50 n0

Fig. 4. - Impulse responses of the
process for different flow rates.

The process dynamics can be
approximatively described by the
model
y(t)+ay(t—l)=bdu(t—d)+bd+1u(t—d-l)

where the sampling period is chosen
as the time unit and the integer d is
such that the time-delay is between
dh and dh+h.

Since the number d 18 not known a
priori the following model is used

y(t)+a, y(t-1)=b ul(t-1)+.,.

1 1
where r > d
estimate of
Experience

uncertainty

+b_u(t-r)
r

is determined from an
the largest time-delay.

showed that the
in the parameter esti-
mates increase with r. The actual
numbers depend critically on the
character of the input signal.

Fig. 5 =shows that
constant

a regulator with
parameters will not work



well 1if there are large flow changes
TBE flow is first set +to 14x10
m/s. The process then has a time
constant of 13 s and a time delay of
17 s. The curves labeled fixed gain
show results when the self-tuner is
run for about 30 sampling periods.
The regulator parameters are then
fixed and the flow is changed. It is
seen from the Fig. 5 that the
regulator behaves well _ghea the flow
is increased to 22x10 m /316 WBen
the flow is decreased to 10x10 m/s
the damping decreases. The control
loop becomes unstable when ;ge §low
is further decreased to 8x10 m /s.
The results are natural because the
time-delay and the time constants
increase with decreasing flow. When
the flow is sufficiently small the
time delay is so large that the
system becomes unstable.

Results from experiments with an LQG
self-tuner are shown in the curves
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Fig. 5. - Results of experiments with
varying flow. Results with a fixed
gain regulator is shown in the curves
labeled fixed gain. Results with an
LAG self-tuner is shown in the curves
labeled adaptive.

labeled adaptive in Fig. 5. The
figure shows clearly that the
self-turner can easily cope with the
parameter variations. The parameters
used in the self-tuner are g = 5 and
A = 0.98. The sampling period is 15s.

the self-tuner has
considerably better performance than
a constant gain regulator. It is of
course possible to make such a

Fig. 5 shows that

self-tuner unstable by decreasing the
flow rate further.
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