
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Techniques for implementing embedded domain specific languages in dynamic
languages

Lejdfors, Calle

2006

Link to publication

Citation for published version (APA):
Lejdfors, C. (2006). Techniques for implementing embedded domain specific languages in dynamic languages.
[Licentiate Thesis, Department of Computer Science]. Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/b76ec805-e4b0-4b1b-81cc-784ed2454d54

Techniques for implementing embedded domain
specific languages in dynamic languages

av

Calle Lejdfors

Akademisk avhandling

som för avläggande av teknisk licentiatexamen vid tekniska fakulteten vid Lunds Uni-
versitet kommer att försvaras offentligt i hörsal E:C, sektionen för elektroteknik och
datateknik, Lunds Tekniska Högskola, onsdagen den 8:e mars 2006, kl. 10:15.

Techniques for implementing embedded domain
specific languages in dynamic languages

Calle Lejdfors
Department of Computer Science

Lund University

ISSN 1652-4691
Licentiate Thesis 5, 2006
LU-CS-LIC:2006-2

Department of Computer Science
Lund Institute of Technology
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: calle.lejdfors@cs.lth.se
WWW: http://www.cs.lth.se/home/Calle_Lejdfors

Abstract

Computer programming should be expressing the complicated in easily understand-
able parts. General languages provide tools and abstractions that allow many different
problems to be formulated and solved. Unfortunately, these abstraction only rarely
match the problem area precisely, resulting in solutions that are obscured by the need
for support code unrelated to the problem.

This can be avoided, by constructing a language tailored to the specific problem,
solutions can be expressed more clearly, resulting in programs that are easy to read,
debug, and maintain. Designing a new language from scratch, however, is a costly
venture, which has hindered the adoption of such domain specific languages (DSLs).

In this thesis, we explore and describe methods for constructing and implementing
DSLs. By using an existing host language, DSLs can be implemented as embedded
languages, inheriting the syntax and capabilities of the host language. We argue that
the embedded language approach to implementing DSLs gives many benefits over
traditional language implementation techniques. Furthermore, by using a dynamic
programming language as host, we can take advantage of the high-level nature of such
a language; both to facilitate the implementation of the DSL and to provide high-level
programming constructs in the DSL.

This thesis describes two prototype languages; PyFX and PyGPU, both embedded in
Python, for programming and controlling different aspects of modern graphics cards.
PyFX is a language for constructing real-time graphics effects. It views effects as active
entities, allowing them to be expressed concisely and clearly, without introducing the
glue-code requirements of previous approaches.

The second language, PyGPU, is targeted at writing high-level image processing algo-
rithms that execute on the high performing graphics processing unit (GPU) present
on modern graphics cards. PyGPU uses a combination of a high-level image abstrac-
tion and a novel compilation strategy to translate high-level PyGPU code to efficient
native code running on the GPU.

ii

Preface

This thesis is for the Licentiate degree, a Swedish degree between the MSc and PhD.
It consists of an introductory part and four papers.

The research papers included in this thesis are:

i. Calle Lejdfors and Lennart Ohlsson. PyFX – An active effect framework.
SIGRAD 2004 Conference proceedings, pages 17–24, 2004.

ii. Calle Lejdfors and Lennart Ohlsson. PyFX: A framework for real-time graphics
effect. Technical report, Lund University, LU-CS-TR:2005-233.

iii. Calle Lejdfors and Lennart Ohlsson. Implementing an embedded GPU lan-
guage by combining translation and generation. To appear in SAC’06 Program-
ming Language track, 2006.

iv. Calle Lejdfors and Lennart Ohlsson. PyGPU: A high-level language for high-
speed image processing. Submitted for publication, 2006.

Acknowledgements

The work presented in this thesis has been carried out within the Computer graphics
group at the Department of Computer Science, Lund University. I wish to thank
my supervisors Professor Boris Magnusson, Assistant Professor Lennart Ohlsson, and
Assistant Professor Görel Hedin. In particular, I wish to thank Lennart Ohlsson for
introducing me to Python and functional programming, as well as many discussions
on the design and construction of software in general.

Furthermore, I wish to thank Jon Hasselgren for many rewarding discussions on
graphics programming, game engine architecture, plants and other things. Math-
ias Haage, thank you for your valuable suggestions and encouragement. Also, the rest
of the computer graphics group (Tomas, Jacob, and Petrik) have my heartfelt thanks,
together with the rest of the department.

Finally, I wish to thank my family for always encouraging me to seek my own path in
life (and for putting up with me when I do). Naturally, to all my friends, thank you
for reminding me about what is important in life.

iii

iv

Contents

Introduction 1

1 Domain specific languages . 2

1.1 Embedded domain specific languages 3

2 Dynamic languages . 4

3 Graphics programming . 5

3.1 3D graphics cards . 5

3.2 The graphics processing unit 6

3.3 Effects . 8

3.4 General purpose GPU . 8

4 Contributions . 9

4.1 PyFX . 9

4.2 PyGPU . 10

5 Conclusions . 11

Bibliography . 13

Paper I: PyFX – An active effect framework 19

1 Introduction . 21

1.1 Related work . 21

1.2 Shader programming . 22

1.3 Effects . 25

2 PyFX . 27

2.1 PyFX overview . 27

2.2 PyFX details . 29

3 Implementation . 33

3.1 Renderer management . 33

3.2 Texture and sampler state 34

v

3.3 Shaders . 34

4 Conclusions and future work . 35

Bibliography . 37

Paper II: PyFX: A framework for real-time graphics effects 39

1 Introduction . 41

2 Related work . 42

3 Current effect frameworks . 44

4 PyFX . 44

4.1 Overview . 45

5 Examples . 46

5.1 Generative effects . 47

5.2 Image processing . 47

5.3 Supporting shader interfaces 49

6 Discussion and conclusions . 50

Bibliography . 53

Paper III: Implementing an embedded GPU language by combining transla-
tion and generation 55

1 Introduction . 57

2 GPUs . 57

2.1 Existing GPU languages 58

2.2 An image processing example 58

3 Compiler implementation . 60

3.1 Related work . 60

3.2 Combining translation and generation 61

3.3 The compilation process 61

3.4 An illustrative example 63

4 Discussion . 63

Bibliography . 65

Paper IV: PyGPU: A high-level language for high-speed image processing 67

1 Introduction . 69

2 PyGPU . 70

2.1 Convolutions . 71

2.2 Iterative algorithms . 72

2.3 Reductions . 73

vi

2.4 Multi-grid operations . 74

2.5 Sparse operations . 76

2.6 Implementation of some generic operations 77

3 Performance . 78

4 Discussion . 80

4.1 Related work . 80

4.2 Future work . 81

5 Summary . 81

Bibliography . 83

vii

viii

Introduction

The solution to a complex problem is usually to express it as a combination of smaller
parts, where each part is of lower complexity. General programming languages provide
facilities such as classes and objects, functions, or even macros, for describing and
encapsulating these parts. However, expressing a given problem of some domain in a
general language involves translating the problem into the syntax and capabilities of
that language. This involves writing “support code” unrelated to the problem at hand.
Nevertheless, this code is required to express the problem. As a result, the structure
of the solution can be obscured by the need to describe it in terms understandable to
the programming language used.

This problem can be addressed by constructing a domain specific language (DSL) tar-
geted specifically at solving problems within a given domain. By construction, a DSL
can be made to fit the demands of the problem domain precisely, creating an “ultimate
abstraction” [29] for solving problems in the domain. By using a dedicated language,
programs can be expressed using the language and idioms of the problem domain
instead. The DSL compiler can perform validation and optimization at the domain
level, resulting in fast and correct programs.

Designing and implementing a new language from scratch is a difficult and costly
task. Luckily, we already have access to a number of well-designed general languages.
By using a general language and adapting it to the problem domain, we can construct
an embedded domain specific language. By reusing parts of the syntax and semantics
of the host language, the DSL-implementor is free to focus on the semantic details
of the problem domain rather than low-level tasks such as code generation and type
checking. This reduces the complexity and time-requirements of implementing a
DSL.

This thesis deals with the construction and implementation of embedded DSLs in,
so called, dynamic languages. Dynamic languages, such as Python, Ruby, LISP, and
Smalltalk, provide a rich set of high-level programming constructs, combined with
advanced features such as introspection, the ability of a program to observe its own
execution, and dynamic code execution. This makes dynamic languages well-suited
for implementing embedded DSLs, enabling high-level programming for both DSL
users and implementors. In this thesis we show how introspection and dynamic code
execution can be used to enable straightforward construction of high-level domain

1

INTRODUCTION

specific embedded languages.

We have implemented two prototypes languages embedded in Python, both targeted
at programming different aspects of programmable graphics cards. The first one is
PyFX, a language for constructing real-time graphics effects. It uses introspection to
enable viewing effects as active entities. Doing so reduces the amount of glue-code
needed, compared to previous effect frameworks, such as FX and CgFX. Also since
PyFX is a complete programming language, effects can be described more concisely
and clearly than previously possible.

The second prototype language is PyGPU, a DSL for writing high-level image pro-
cessing algorithms that execute on the high performance graphics processing unit
(GPU) of modern graphics cards. PyGPU uses a combination of generative and
translative techniques to compile high-level PyGPU code to the GPU. This combined
strategy, together with a high-level functional image abstraction, enables PyGPU to
make a large subset of Python available to the DSL programmer. The compiler of
PyGPU uses introspection and dynamic code execution, allowing it to be concisely
implemented by reusing large parts of the existing functionality in the Python inter-
preter. The GPU code generated performs very well, showing that it is possible to
combine high-level programmability with high performance.

The rest of this introduction is organized as follows: Sections 1, 2, and 3 give back-
ground information on domain specific languages, dynamic languages and graphics
programming, respectively. Section 4 summarizes the contributions made in this the-
sis and Section 5 concludes this introduction and discusses some ideas for future work.

1 Domain specific languages

The earliest uses of domain specific languages are compiler-related tools such as parser
and scanner generators (Lex [38], YACC [33], and Zephyr [58]) and in compiler con-
struction (JastAdd [26], and UUAG [2]). Other examples of DSLs are database query
languages (SQL [9], dBase [34]), symbolic algebra (Maple [10]), and parallel pro-
gramming (Orca [4]). Also, languages such as LISP [51] and FORTRAN [3] started
out as domain specific languages, targeted at artificial intelligence and numerical code,
respectively, but gradually evolved into more general languages. In relation to this, we
see that it is not obvious what constitutes a domain specific language and what does
not. Van Deursen et al. [55] propose the following definition:

A domain specific language (DSL) is a programming language or exe-
cutable specification language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to,
a particular problem domain.

The use of the term problem domain here is rather vague. For instance, a language such
as Matlab [40] can be said to be a DSL targeted at array programming. The key dis-
tinction is that DSLs are usually small, only providing a limited set of abstractions and
operations, highly targeted at the problem domain. Neither LISP, FORTRAN, nor

2

1. DOMAIN SPECIFIC LANGUAGES

Matlab are small languages; their expressive power is not restricted to their respective
initial domains. Some domain specific language are also called “little languages” [5].

Using a language specialized for the problem at hand comes with a number of benefits.
DSLs allow problems to be expressed using the idioms inherit to the problem domain.
This enables non-programmer domain experts to understand, modify, and sometimes
even develop DSL programs. A DSL can be very concise, expressing in a few lines that
which would require several hundred lines in a general language, and this increases
productivity, reliability, and maintainability. Furthermore, since the DSL compiler
has access to domain specific knowledge, it can perform optimization and validation
at the domain level.

The advantages of domain specific languages come at a rather large initial cost. De-
signing and implementing a new language from the ground up is a costly venture.
There is a high likelihood that the initial designs will not be good enough. The lan-
guage will evolve and change with user demand for more or different functionality.
Following the argument of Hudak [28], this will lead to a higher initial cost com-
pared to conventional methods. However, when viewed over the whole life-cycle of a
software project, the total implementation cost is reduced.

1.1 Embedded domain specific languages

One approach to lowering the initial cost of implementing a domain specific language
is reusing the infrastructure of an existing language. An embedded DSL, also known
as a domain specific embedded language (DSEL) [29], can be created in terms of
an existing host language. By doing so, a large part of the existing functionality of
the host language can be reused. This includes aspects such as syntax, type-checking,
evaluation model, etc. Consequently, using an embedded approach enables the imple-
mentor to focus on the domain specific idioms and abstractions, leaving more general
details to the host language. The first example of an embedded DSL is the simulation
support of SIMULA [15].

Implementation strategies for embedded languages

When implementing an embedded DSL, there is one important factor to consider:
whether the language should target the same platform as the host language, or a differ-
ent one. If the target coincides with that of the host language then the most common
strategies are using either macros or domain specific libraries. The macro facilities of
LISP and Scheme [1] have long been used to create constructs having the “look-and-
feel” of built-in primitives. Macros have been used to implement embedded languages
and language extensions such as the Common LISP Object System (CLOS) [37], for
object-oriented programming in LISP, and Verischemelog [32], an embedded lan-
guage for digital hardware design in Scheme.

When using a domain specific library approach, the operator and function overload-
ing facilities of the host language are used to construct the embedded language. Func-
tional languages, such as Haskell [35], that provide extensive overloading and oper-

3

INTRODUCTION

ator redefinition facilities are popular with this method. To name a few examples
of languages embedded in Haskell, and their respective domains: FRAN [19] and
Yampa [30] (reactive animations), Haskore [31] (music), and Lava [6] (hardware de-
scription and verification). The industry standard C++ [52] has also been used to
implement embedded languages; for example TBAG [20], for interactive animations,
and Spirit [50], a template meta-programming language [14] for constructing parsers.

When the target is not the same as that of the host language then the above approaches
cannot be used. Instead a generative approach is typically used, where programs in the
host language are executed to generate programs for the DSL target platform. This is
the approach taken by the Haskell-embedded languages Pan [18], image manipulation
and synthesis, and Vertigo [17], for programming the vertex processing functionality
of the GPU. Both these languages use the overloading facilities of Haskell to construct
tree-representations that are compiled to their respective target platforms: Photoshop
plug-ins, and GPU vertex programs, respectively. In C++, Sh by McCool et al. [41]
is a language for programming GPUs. It uses a method where functions are executed
and their execution is recorded. This recording is then used as input to a compiler
responsible for generating GPU assembler code.

The problem with using a generative approach is that much information of the pro-
gram is lost. For example, when embedding in a procedural language: since the host
level code is executed to generate the intermediate representation, host language con-
structs such as conditionals and loops will be in-lined in the recorded stream of op-
erations. Consequently, a host language conditional will be translated to conditional
compilation in the embedded language.

2 Dynamic languages

Dynamic languages, such as Python [45], Ruby [54], Dylan [13], LISP, Scheme, and
Smalltalk [22], are languages designed to increase programmer efficiency. Dynamic
languages enables faster development cycles by allowing parts of a program to be mod-
ified at run time. Functions may be introduced, removed, or changed, classes added,
class inheritance modified, and modules can be created or removed. This allows a
programmer to quickly test a new feature, or a new piece of code. Furthermore,
modern dynamic languages, such as Python and Ruby, provide syntax and high-level
programming models that are easy to learn, resulting in higher productivity.

Since every part of a program can be changed at run time, dynamic languages are gen-
erally interpreted, looking up symbols and code at run time. Consequently, dynamic
languages also tend to be dynamically typed, i.e., they perform type checking at run
time. Dynamic typing has the advantage of making code clearer and shorter, since the
syntactic clutter of explicit type information is avoided. Furthermore, since functions
are written without type information, code can be reused on many types of objects.
This is achieved without introducing a common base-class or interface, giving very
fine-grained requirements of a function; a function requires only those operations it
uses, no more, no less. This lead to an alternate name for dynamic typing: duck typ-

4

3. GRAPHICS PROGRAMMING

ing, inspired by the metaphor “if it looks like a duck and quacks like a duck, it must
be a duck” [56]. These features together with the fact that dynamic languages tend
to be higher-level than traditional static ones, lead to reduced development time and,
consequently, increased programmer productivity.

The downside of using dynamic languages is performance. Since symbol lookup and
type checking is performed at run time, there is a higher run time overhead. Fur-
thermore, since the types of a function’s arguments is not known statically, generating
efficient native CPU code for dynamic languages is a very difficult problem [47, 48].

Meta-programming facilities

The fact that type checking and variable lookup occurs at run time implies that the
machinery for doing this is, at least partially, available to the programmer. The meta-
level ability of a running program to observe itself and its own execution is usually
referred to as introspection. Introspection is an integral part of LISP and Scheme and
it is supported by most other dynamic languages. Some other languages, notably
Java, C# [27], and the C++-extension OpenC++ [12], also supports introspection.
In addition, dynamic languages tend to also support intercession, allowing parts of
a running program to be modified. Collectively, introspection and intercession are
called reflection.

The most common use of introspection is in the development of programming tools
such as browsers and debuggers. More interestingly, reflective languages facilitates
the adaption of the language to the application domain. Using reflection it is pos-
sible to meta-programmatically extend an object-oriented language with additional
functionality such as multi-method dispatch [57], and aspect-oriented programming
features [53]. Also, introspection can be used to greatly facilitate the implementa-
tion of embedded languages, by making more structural information available to the
compiler of the embedded language.

3 Graphics programming

Real-time 3D computer graphics is usually done using a dedicated graphics card,
responsible for drawing, or rasterizing, polygons to the screen. Modern graphics cards
also have a programmable graphics processing unit (GPU) which enables parts of the
rasterization process to be programmatically redefined. For a thorough introduction
to programming graphics cards see “The Cg Tutorial” by Fernando and Kilgard [46]
or the “OpenGL Programming Guide” by Shreiner et al. [49].

3.1 3D graphics cards

3D graphics cards implement a graphics pipeline (see Figure 1) consisting of multiple
stages where polygons are transformed, clipped, textured, and finally rasterized to the
screen. Typically, each stage consists of multiple parts where each part can be turned

5

INTRODUCTION

RasterizationPer−vertex processing Primitive assembly Per−fragment processing

Vertex data

Screen

Figure 1: The graphics pipeline

either on or off. Also, the different parts can be controlled to some limited degree. For
instance, the depth testing part of the fragment processing stage can be turned on or
off, and be instructed to use different functions for determining whether a fragment
is visible or not.

By controlling the different stages of the pipeline, an application can achieve a wide
range of different visual effects. For example, texturing, transparency, anti-aliasing,
and line stippling can all be controlled by setting one or more states to the appropriate
values. For controlling these pipeline stages, graphics APIs, such as OpenGL [49] and
DirectX [16], are supported by all major graphics card vendors.

3.2 The graphics processing unit

In the late 1990s and early 2000s, the increasing demands of real-time graphics ap-
plications, typically games, led to the introduction of a large number of specialized
hardware extensions. These extensions each provide a specific feature required for in-
creased visual acuity, over that provided by the fixed-function pipeline. Examples of
such extensions are per-fragment lighting, bump-mapping, and vertex weighting. As
an interesting comparison, today there are over 300 different OpenGL extensions. A
more general method for handling extensions was needed.

This led to the introduction of programmable graphics hardware, commonly called
the graphics processing unit (GPU). The GPU allows the vertex and fragment pro-
cessing steps of the graphics pipeline to be programmatically redefined. This pro-
grammability simultaneously allowed most of the extensions previously introduced to
be emulated, and expanded the boundaries of the kind of real-time visual effects that
were possible.

Programs running on the GPU are shader programs, referring to the act of coloring, or
shading, a pixel. GPU programs that operate on vertices are called vertex shaders and
programs operating on fragments, consequently, fragment shaders.1

1In DirectX this is known as pixel shaders because it is the part of the shader that is responsible for
computing the final pixel color. The OpenGL community use the term fragment instead, since it is a
complete data fragment (including, for instance, color, texture coordinates, and depth information) that
is computed in this part of the pipeline. If this fragment passes all the per-fragment tests it is written as a
color value to a pixel. The distinction is unimportant in the context of this work and the term fragment
shader will be used from here on.

6

3. GRAPHICS PROGRAMMING

TEMP R0

DP3 R0.y, R1, R1;
RSQ R0.w, R0.y;
MUL R1.xyz, R0.w, R1;

TEMP R1;

.
.
.

ADD R1.xyz, texc0, c[0];

DP3 R0.x, −texc0, −texc0;
RSQ R0.x, R0.x;

Fragment processing ALU
Constant

Texture
units

registers
Temporary
registers

Input registers

Output registers

ATTRIB texc0 =
fragment.texcoord[0];

Figure 2: Schematic overview of the fragment processing unit of the GPU

The GPU programming model

Modern GPUs are highly parallel stream processors capable of raw floating-point per-
formance in excess to that of current generations CPUs. A typical GPU uses a SIMD-
type architecture, where operations are performed in parallel on 4-tuples of floating-
point values. For an overview of the fragment processing stage of a modern GPU, see
Figure 2.

The high performance of the GPU comes from it being both highly parallel and ag-
gressively pipelined. This imposes certain restrictions on the level of programmability
of the GPU. Current generations do not provide globally writable memory. Memory
may be accessed only by reading from 1, 2, or 3-dimensional texture maps. Instead
computations are performed using a set of registers.

This lack of writable memory put severe restrictions on the programmability of the
GPU. For instance, it is not possible to use objects or even lists, since they both rely
on dynamic memory allocation. Furthermore, a fragment program may only write
information to one pixel on the screen. The position of this pixel is determined
earlier in a fixed-function part of the pipeline and cannot be changed. This lack of
scattered writes has implications on using the GPU for more general, non-graphical
computational tasks.

GPU programming languages

The first generations of GPUs were programmed using assembler languages specific
to each vendor. Now, NVIDIA’s Cg [39], Microsoft’s HLSL [24], and GLSL by
the OpenGL ARB [36], provide C-like languages for programming the GPU. These
enable shader programs to be written at a higher level than previously possible. Of
these languages, HLSL and GLSL are specific to DirectX and OpenGL, respectively.
Cg can be used with both DirectX and OpenGL.

Also, as mentioned above, Sh and Vertigo provide GPU programming languages em-
bedded in C++ and Haskell, respectively.

7

INTRODUCTION

3.3 Effects

The common use of shaders is for implementing visual effects, such as realistic lighting
models, shadows, glowing objects, furry objects, etc. In these scenarios, the shader
programs usually depend both on non-programmable pipeline states being set, as
well as on CPU-level code for setting program parameters and downloading texture
information. Furthermore, many visual effects require rendering the same geometry
multiple times, in so called passes, using different shaders or shader parameters in each
pass.

This lead to an extension of the above GPU languages called effects, or fx-files. Exam-
ples of effect frameworks are FX [24] for HLSL, and CgFX [8] for Cg. Effects enable
shader programs to be associated with their corresponding pipeline states into passes.
Multiple passes can then be combined to create techniques that encapsulates a com-
plete visual effect. An fx-file may have multiple techniques each containing alternate
effect implementations suitable for different hardware capabilities, different levels of
visual acuity, etc. Also, effects have parameters, known as tweakables, that allow the
effect to be controlled. Examples of tweakables are material reflection properties, fur
length, and glow amount and intensity.

Effect files solve the problem of associating shaders with pipeline states. However, they
only partially address the problem of encapsulating effects: CPU-based code necessary
for the effect, such as the computation of a model-relative light position, cannot be
expressed within the effect framework.

3.4 General purpose GPU

The programmability and high performance of the GPU have spawned a great inter-
est in using it for computationally intensive, non-graphical tasks. Algorithms, such
as image processing [43], fluid simulation [25], behavioral models [11], audio pro-
cessing [59], database operations [23], and numerical solvers [21], have all been im-
plemented to run on the GPU. Using the GPU for a non-graphical task, such as
simulation or numerical computations, is collectively known as general purpose GPU,
abbreviated GPGPU.

The main advantage of using the GPU is performance. By using the pipelined, highly
parallel architecture it is possible to achieve raw numerical floating-point performance
an order of magnitude greater than current CPU generations. Moreover, the speed
increase with each new GPU generation is greater than the corresponding increase in
CPU processing power. This makes the GPU a very attractive platform for computa-
tionally intensive algorithms.

However, as explained in Section 3.2, the programming model of the GPU is quite
restricted. Furthermore, since the GPU only works with graphic primitives such as
vertices, triangles, and textures, porting an algorithm to run on the GPU entails ex-
pressing it in terms of these primitives. This implies that, in order to use the GPU
as a numerical co-processor, an implementor must have in-depth knowledge of both
the target domain, e.g., numerical algorithms or audio processing, and advanced, real-

8

4. CONTRIBUTIONS

time graphics programming. These limitations have severely limited the spread and
uptake of GPGPU techniques.

Some projects have been proposed for facilitating the use of the GPU for numeri-
cal processing. BrookGPU [7] is a compiler for writing numerical GPU algorithms.
The Brook language is an extension of C that incorporates the primitives streams, rep-
resenting data, and kernels, representing operations on streams, for expressing data
parallel computations. Sh [42] provide similar template-based abstractions for imple-
menting GPGPU algorithms.

4 Contributions

This thesis considers the area of implementing embedded DSLs in dynamic languages.
The key contributions are:

– A method for compiling high-level, embedded DSLs suitable for dynamic lan-
guages.

– An image abstraction suitable for translation to the GPU.

– An introspective method for reducing glue-code requirements when using do-
main specific languages.

This work has been carried out in the context of programming modern graphics cards,
including both controlling pipeline states and high-level programming of the graphics
processing unit. The results in this thesis were obtained by designing and implement-
ing two novel prototype languages; PyFX and PyGPU, both embedded in Python.

4.1 PyFX

PyFX is a language for writing multi-pass, real-time visual effects. It makes extensive
use of introspection in order to minimize dependencies between effects and the appli-
cation that use them. Previous effect frameworks break encapsulation by introducing
cyclic dependencies between application and effect. PyFX avoids this by viewing ef-
fects as active objects that can automatically extract information from the application.
This substantially reduces the amount of glue-code required, often down to just a cou-
ple of lines. Also, since PyFX is a real programming language, rather than a simple file
format, it enables common software design methodologies, such as modularization
and abstraction, to be used in the construction of effects.

PyFX supports run time composition of shader code, enabling efficient code sharing
and reuse, as well as allowing more flexible uses of effects. For instance, using shader
composition in PyFX allows effects to be used with any combination of light sources
and material properties. In addition, PyFX introduce an additional set of effect prim-
itives, such as render-to-texture and image processing support, not found in other
effect frameworks at the time. An example effect together with its implementation is
shown in Figure 3.

9

INTRODUCTION

GlowColor = (0.9,0.5,0.1)

blurBuffer = RGBABuffer()

def Gaussian2D(buffer):
return 3*[Gaussian1D(buffer,(1,0)),

Gaussian1D(buffer,(0,1))]

technique = [
Render(),
Render(Target=blurBuffer,

Color=GlowColor),
Gaussian2D(blurBuffer),
AdditiveBlend(blurBuffer)]

Figure 3: A PyFX glow effect example. The effect renders the geometry to an off-
screen buffer. This buffer is blurred using consecutive 1-dimensional convolutions
and the result is blended onto original geometry, resulting in a glowing, halo-like
appearance.

The implementation of PyFX is described in detail in Paper 1. Paper 2 provide a num-
ber of usage examples of PyFX, focusing on the benefits of using a real programming
language for describing effects.

4.2 PyGPU

PyGPU is a high-level embedded language for writing image processing algorithms
that run on the GPU. The GPU is a very restricted platform whose lack of writable
memory makes direct translation of, for example, lists impossible.

The PyGPU language is designed around an abstraction viewing images as functions
from a 2-dimensional grid to some space of colors. This abstraction encodes the capa-
bilities and restrictions of the GPU at the domain level, efficiently disallowing those
algorithms which cannot be translated to the GPU. The abstraction is still powerful
enough to allow many interesting image processing algorithms to be implemented to
take advantage of the GPU. In fact, PyGPU enables most of Pythons features to be
used in the construction of image processing algorithms. See Figure 4 for an example
of Perona-Malik [44] anisotropic diffusion implemented in PyGPU.

The PyGPU compiler uses a combination of translative and generative techniques
to translate algorithms to efficient GPU code. This enables many of the high-level
features of Python to be used in the construction of GPU programs. PyGPU makes
heavy use of the introspection and dynamic code execution facilities of Python, al-
lowing the compiler to be expressed concisely making maximal reuse of the existing
Python interpreter and run time system.

The implementation of the PyGPU compiler is described in Paper 3. A number of
algorithm examples and performance characteristics are discussed in Paper 4.

10

5. CONCLUSIONS

@gpu
def pmAniso(edge=DImage, im=DImage, p=Position):

offsets = [(1,0), (-1,0), (0,1), (0,-1)]
return im(p) + 0.25*sum([f(edge, im, p+dp, p)

for dp in offsets])
def f(edge, im, x, p):

return g(0.5*(edge(x)+edge(p)))*(im(x)-im(p))

def g(x):
return e**(-x/(K*K))

Figure 4: Perona-Malik anisotropic diffusion in PyGPU. The diffusion step is written
concisely as the sum of the contributions from the nearby pixels. The function g and
the variable K controls the slope of the diffusion transport coefficients. The image
above was generated with K = 0.25 using 400 iterations.

5 Conclusions

Dynamic languages have shown to provide a flexible environment for experimenting
with and implementing embedded languages. Support for introspection and dynamic
code execution have been shown to greatly facilitating implementing both ordinary,
library-based embedded languages as well as those that are translated to some platform
or processor.

Using introspection to compile parts of a program for some other processor, as is
done in PyGPU, should be reusable in a variety of scenarios. For example, in the
generation of efficient numeric CPU code and construction of program for embedded
devices. Another interesting research venue would be extending PyGPU to handle
more general GPGPU algorithms.

11

INTRODUCTION

12

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Com-
puter Programs. The MIT Press, 2nd edition, 1996.

[2] Arthur Baars, Doaitse Sweirstra, and Andres Löh. UU AG System User Manual.
Department of Computer Science, Utrecht University, September 2003.

[3] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Herrick,
R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes, and
R. Nutt. The FORTRAN automatic coding system. In Proceedings of the West-
ern Joint Computer Conference, February 26–28, 1957, Los Angeles, CA, USA,
pages 188–198, pub-IRE:adr, 1957. pub-IRE. The online edition of the Ox-
ford English Dictionary cites this as the second earliest mention of the name
FORTRAN, with the extract “The programmer attended a one-day course on
FORTRAN and . . . then programmed the job in four hours using 47 FOR-
TRAN statements.”.

[4] Henri E. Bal, M. Frans Kaashoek, and Andrew S. Tanenbaum. Orca: A lan-
guage for parallel programming of distributed systems. IEEE Trans. Softw. Eng.,
18(3):190–205, 1992.

[5] Jon Bentley. Little languages. In Communications of the ACM, volume 29(8),
pages 711–721, August 1986.

[6] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware
design in haskell. In ICFP ’98: Proceedings of the third ACM SIGPLAN inter-
national conference on Functional programming, pages 174–184, New York, NY,
USA, 1998. ACM Press.

[7] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777–786, 2004.

[8] CgFX 1.2 Overview. http://developer.nvidia.com/.

[9] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A structured english
query language. In FIDET ’74: Proceedings of the 1974 ACM SIGFIDET (now

13

BIBLIOGRAPHY

SIGMOD) workshop on Data description, access and control, pages 249–264, New
York, NY, USA, 1974. ACM Press.

[10] Bruce Char, Keith Geddes, and Gaston Gonnet. The maple symbolic compu-
tation system. SIGSAM Bull., 17(3-4):31–42, 1983.

[11] Rosario De Chiara, Ugo Erra, Vittorio Scarano, and Maurizio Tatafiore. Massive
simulation using GPU of a distributed behavioral model of a flock with obstacle
avoidance. In Bernd Girod, Marcus A. Magnor, and Hans-Peter Seidel, editors,
VMV, pages 233–240. Aka GmbH, 2004.

[12] Shigeru Chiba. A metaobject protocol for c++. In OOPSLA ’95: Proceedings
of the tenth annual conference on Object-oriented programming systems, languages,
and applications, pages 285–299, New York, NY, USA, 1995. ACM Press.

[13] Iain D. Craig. Programming in Dylan. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1996.

[14] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: meth-
ods, tools, and applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[15] Ole-Johan Dahl and Kristen Nygaard. Simula: an algol-based simulation lan-
guage. Commun. ACM, 9(9):671–678, 1966.

[16] DirectX SDK Documentation. http://msdn.microsoft.com/.

[17] Conal Elliott. Programming graphics processors functionally. In Haskell ’04:
Proceedings of the ACM SIGPLAN workshop on Haskell, pages 45–56, New York,
NY, USA, 2004. ACM Press.

[18] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded lan-
guages. In SAIG ’00: Proceedings of the International Workshop on Semantics,
Applications, and Implementation of Program Generation, pages 9–27, London,
UK, 2000. Springer-Verlag.

[19] Conal Elliott and Paul Hudak. Functional reactive animation. In Proceedings of
the ACM SIGPLAN International Conference on Functional Programming (ICFP
’97), volume 32(8), pages 263–273, 1997.

[20] Conal Elliott, Greg Schechter, Ricky Yeung, and Salim Abi-Ezzi. Tbag: a high
level framework for interactive, animated 3d graphics applications. In SIG-
GRAPH ’94: Proceedings of the 21st annual conference on Computer graphics and
interactive techniques, pages 421–434, New York, NY, USA, 1994. ACM Press.

[21] Nico Galoppo, Naga K. Govindaraju, Michael Henson, and Dinesh Manocha.
LU-GPU: Efficient algorithms for solving dense linear systems on graphics hard-
ware. In To appear in Proceedings of the 2005 ACM/IEEE Super Computing Con-
ference. November 12-18,, 2005.

14

BIBLIOGRAPHY

[22] Adele Goldberg and David Robson. Smalltalk 80: The Language. Addison-
Wesley Professional, 1989.

[23] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh
Manocha. Fast computation of database operations using graphics processors.
In SIGMOD ’04: Proceedings of the 2004 ACM SIGMOD international confer-
ence on Management of data, pages 215–226, New York, NY, USA, 2004. ACM
Press.

[24] Kris Gray. DirectX 9 programmable graphics pipeline. Microsoft Press, 2003.

[25] Mark J. Harris. GPU Gems, chapter 38, pages 637–665. Addison-Wesley Pro-
fessional, March 2004.

[26] Görel Hedin and Eva Magnusson. Jastadd: an aspect-oriented compiler con-
struction system. Sci. Comput. Program., 47(1):37–58, 2003.

[27] Anders Hejlsberg. The C# programming language. Addison-Wesley Pub Co, 1
edition, 2003.

[28] P. Hudak. Modular domain specific languages and tools. In ICSR ’98: Proceed-
ings of the 5th International Conference on Software Reuse, page 134, Washington,
DC, USA, 1998. IEEE Computer Society.

[29] Paul Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4es):196, 1996.

[30] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows,
robots, and functional reactive programming. In Summer School on Advanced
Functional Programming 2002, Oxford University, volume 2638 of Lecture Notes
in Computer Science, pages 159–187. Springer-Verlag, 2003.

[31] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music
notation - an algebra of music. Journal of Functional Programming, 6(3):465–
483, 1996.

[32] James Jennings and Eric Beuscher. Verischemelog: Verilog embedded in scheme.
In PLAN ’99: Proceedings of the 2nd conference on Domain-specific languages,
pages 123–134, New York, NY, USA, 1999. ACM Press.

[33] Steven C. Johnson. Yacc: Yet another compiler compiler. In UNIX Programmer’s
Manual, volume 2, pages 353–387. Holt, Rinehart, and Winston, New York,
NY, USA, 1979.

[34] Edward Jones. The dBase language reference. Osborne/McGraw-Hill, Berkeley,
CA, USA, 1990.

[35] Simon Peyton Jones, editor. Haskell 98 Language and Libraries. Cambridge
University Press, April 2003. ISBN: 0521826144.

15

BIBLIOGRAPHY

[36] John Kessenich, David Baldwin, and Randi Rost. The OpenGL shading
language. http://developer.3dlabs.com/documents/index.
htm. 3DLabs, Inc Ltd.

[37] Gregor Kiczales, J. Michael Ashley, Jr. Luis H. Rodriguez, Amin Vahdat, and
Daniel G. Bobrow. Metaobject protocols: why we want them and what else they
can do, pages 101–118. MIT Press, Cambridge, MA, USA, 1993.

[38] Michael E. Lesk and Eric Schmidt. lex: A lexical analyzer generator. In UNIX
Programmer’s Manual, volume 2, pages 288–400. Holt, Rinehart, and Winston,
New York, NY, USA, 1979.

[39] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:
a system for programming graphics hardware in a C-like language. ACM Trans.
Graph., 22(3):896–907, 2003.

[40] Matlab. http://www.mathworks.com/.

[41] Michael McCool, Zheng Qin, and Tiberiu Popa. Shader metaprogramming.
In Thomas Ertl, Wolfgang Heidrich, and Michael Doggett, editors, Graphics
Hardware, pages 1–12, 2002.

[42] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. ACM Trans. Graph., 23(3):787–795, 2004.

[43] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM
Trans. Graph., 22(3):313–318, 2003.

[44] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 12(7):629–639, July 1990.

[45] The Python language. http://www.python.org/.

[46] Mark J. Kilgard Randima Fernando. The Cg Tutorial: The Definitive Guide to
Programmable Real-Time Graphics. Addison-Wesley Pub Co, 2003).

[47] Armin Rigo. Representation-based just-in-time specialization and the psyco
prototype for python. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipulation, pages
15–26, New York, NY, USA, 2004. ACM Press.

[48] M. Salib. Starkiller: a static type inferencer for python. In Proceedings of the
Europython conference, 2004.

[49] Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL program-
ming guide. Addison-Wesley Proffesional, 4th edition, 2003.

[50] Spirit parser library. http://spirit.sf.net.

16

BIBLIOGRAPHY

[51] Guy Steele. Common LISP. Digital Press, 2nd edition, 1984.

[52] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley Proffe-
sional, 3 edition, 1997.

[53] Gregory T. Sullivan. Aspect-oriented programming using reflection and metaob-
ject protocols. Commun. ACM, 44(10):95–97, 2001.

[54] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby. Pragmatic
Bookshelf, 2nd edition, October 2004.

[55] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[56] Guido van Rossum. Python tutorial. http://docs.python.org/tut/.

[57] Guido van Rossum. Five-minute multimethods in python. http://www.
artima.com/weblogs/viewpost.jsp?thread=101605, May
2005.

[58] D. C. Wang, A. W. Appel, J. L. Korn, and C. S. Serra. The zephyr abstract syn-
tax description language. In J.C. Rammings, editor, Proceedings of the USENIX
Conference on Domain-Specific Languages, pages 213–228, Berkeley, CA, Octo-
ber 15–17 1997. USENIX Association.

[59] Sean Whalen. Audio and the graphics processing unit. www.node99.org/
projects/gpuaudio/gpuaudio.pdf, 2005.

17

BIBLIOGRAPHY

18

Paper I

PyFX – An active effect framework

Calle Lejdfors and Lennart Ohlsson
Dept. of Computer Science

Lund University
Lund, Sweden

{calle.lejdfors|lennart.ohlsson}@cs.lth.se

ABSTRACT

The programmability of modern graphics processing units (GPUs)
provide great flexibility for creating a wide range of advanced effects for
interactive graphics. Developing such effects requires writing not only
shader code to be executed by the GPU but also supporting code in the
application where the effect is to be used. This support code creates
dependencies between effects and the applications that use them, mak-
ing it harder to evolve applications and to reuse effects. Existing effect
frameworks, such as DirectX Effects and CgFX, can only provide partial
encapsulation because they consider effects as passive data structures. In
this paper we present an effect framework written in an ordinary script-
ing language where effects are active entities. This makes it possible to
completely encapsulate both shaders and support code thereby minimiz-
ing the dependencies to the application.

SIGRAD 2004 Conference proceedings, pages 17–24, 2004

1. INTRODUCTION

1 Introduction

The availability of programmable graphics processors has made procedural effects a
key ingredient in real-time graphics productions. Where content creation previously
was mainly the combination of a wide range of different kinds of artwork such as
geometric models, textures, and motion data, it now also has to include algorithmic
development. Writing the shader code to be executed on the graphics processors is
something which traditionally is not part of an artist’s skill set. Instead this new devel-
opment model requires a closer relationship between artists and shader programmers.
Previously programmers of interactive graphics applications were primarily concen-
trated with loading and displaying content created by the artists in an efficient and
correct manner, a task which is handled fairly independent of the actual content. But
with programmable graphics processors the roles of artists and programmers become
more intertwined. When the artist conceives of a visual effect it is the programmers
job to supply shader programs and the necessary modifications to the application for
achieving that effect. But once written, the shader program typically requires actual
textures and parameter values and it is the artists job to supply that.

For efficient collaboration it is important, to both artists and programmers, that the
graphical effect is a well-defined entity. It should include all relevant resources and
functionality, both shader code and application support, required for correct opera-
tion. This need for encapsulation is the motivation behind technologies such as the
DirectX Effects by Microsoft and CgFX by NVIDIA. In these frameworks the notion
of an effect is used as the key unit of abstraction. But although these technologies
provide a number of features which improve the handling of effects they still require
a substantial amount of application support. All but the most trivial effects have
dependencies in the application that use them.

The effect framework presented in this paper aims to provide complete encapsulation of
effects in the sense that specific support code avoided and parameter passing is made
with the most unobtrusive mechanism possible. We have implemented a prototype
which uses Python both for the implementation of the framework and to express the
effects themselves. This paper is focused on the implementation of the framework and
its application interface, whereas the benefits of writing effects in Python is described
in more detail elsewhere [11].

1.1 Related work

The focus on complete effects is different from most other approaches. Most real-
time shading language research has been focused on mapping high-level shading lan-
guages to real-time shading hardware. Research was initiated by Cook [3] with the
introduction of shade trees, which spawned a number of shading languages such as
RenderMan [8] or Perlins image synthesizer [18]. These languages were originally
used for off-line shading but with advances in hardware Peercy et al showed that it
was possible to execute RenderMan shaders on an extended OpenGL 1.2 platform by
viewing the graphics hardware as a SIMD pixel processor [17]. Olano et al presented

21

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

an alternative approach with the pfman language [16] for the Pixelflow rendering sys-
tem [15], a flexible platform based on image composition which, unfortunately, bears
little resemblance to the GPUs of today.

The computational model of separating per-vertex and per-pixel computations was in-
troduced by Proudfoot et al [19] which allowed the to efficiently map shader programs
to hardware. This separation is used explicitly the in real-time shading languages used
in the industry today: Cg by NVIDIA [12], HLSL by Microsoft [7] and OpenGL
shading language [10] introduced with OpenGL 2.0. This is also the case with the
Sh language [13, 14]; a shading language embedded in C++ which provides a number
of powerful high-level features for shader construction. Another embedded shading
language is Vertigo [5] which uses the purely functional language Haskell as a host
language to provide a clean model for writing shaders for generative geometry.

All these efforts have focused on various aspects of shader programming but the writ-
ing of effects containing multiple shaders have not received the same amount of atten-
tion. The Quake3 shader model [1] provides a rudimentary interface for controlling
the application of multiple textures. DirectX Effects [4] extend the HLSL shading lan-
guage and introduce a richer, more powerful interface for controlling the rendering
pipeline. NVIDIA provide a superset of this functionality with their CgFX framework
[2], based on Cg. This is further elaborated on in Section 1.3.

1.2 Shader programming

To demonstrate the issues involved in the implementation of shader based effects and
how an active framework like PyFX can alleviate these problems we will use a running
example throughout this paper. The description of this example will be fairly detailed
because the causes of application dependencies and need for support can often be
found in those details which would usually be omitted in a more concise description.
The example we use is the lighting model known as hemispheric lighting, where the
idea is to give a contribution of indirect light as a mixture of light from the sky and
light from the ground. A given point is colored depending on orientation of its surface
normal, the more it is oriented towards the sky the more light from the above light
source it receives, and vice versa. The effect of using this model can be seen on the
bunny in Figure 1.1. A shader program which implements this model can be written
in Cg as

void main(float4 position : POSITION,
float4 normal : NORMAL,

out float4 clipPosition : POSITION,
out float3 color : COLOR,

uniform float4x4 ModelViewProj,
uniform float4x4 ModelViewIT,
uniform float4x4 WorldView,
uniform float3 MaterialColor,
uniform float3 SkyColor,
uniform float3 GroundColor)

22

1. INTRODUCTION

Figure 1.1: Hemispheric lighting on bunny

{
clipPosition = mul(ModelViewProj, position);
float4x4 ModelWorldIT = mul(WorldView,ModelViewIT);
float3 worldNormal = mul(ModelWorldIT,normal).xyz;

worldNormal = normalize(worldNormal);
color = lerp(GroundColor, SkyColor,

(worldNormal.y + 1)/2)*MaterialColor;
}

Listing 1.1: Hemispheric lighting in Cg

This shader program is a vertex shader. It computes the vertex normal in world-
space worldNormal by using the inverse transpose of the model-world transform
ModelWorldIT. The amount of incident light of the vertex is then computed by
linear interpolation lerp of the sky and ground color where the weighting factor is
determined the y-component world-space normal. The incident light is weighted
by the material properties of the object. Finally, as required by all vertex programs
the clip-space coordinates clipPosition are computed using the projection matrix
ModelViewProj.

The parameters to the program which are marked as uniform are those which are
constant for the duration of the shader program, whereas the other parameters vary
over the vertices of the mesh. The extra field (POSITION, NORMAL, and COLOR in this
example), known as the semantic of the parameter specify how they are mapped to
application data. For example, an in parameter with semantic NORMAL is specified
using OpenGL’s glNormal* calls from the application.

Shaders require application programmers to write support code for every shader to be
used. In order to access shader program parameters an application level identifier is
needed. Accessing the parameter identifiers of our example shader from C++ would
be as follows.

cg_mvp = cgGetNamedParameter(cg_prog,"ModelViewProj");

23

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

cg_mvit = cgGetNamedParameter(cg_prog,"ModelViewIT");
cg_wv = cgGetNamedParameter(cg_prog,"WorldView");
cg_materialColor = cgGetNamedParameter(cg_prog,

"MaterialColor");
cg_groundColor = cgGetNamedParameter(cg_prog,

"GroundColor");
cg_skyColor = cgGetNamedParameter(cg_prog,"SkyColor");

Listing 1.2: Finding parameter identifiers

Each time the shader is used it must be bound after which each parameter has to be
set to its current value using the corresponding Cg parameter identifier. The target
for which the shader program has been compiled, called the profile of the program,
must also be enabled.

cgGLBindProgram(cg_prog);

cgGLSetStateMatrixParameter(cg_mvp,
CG_GL_MODELVIEW_MATRIX,CG_GL_MATRIX_IDENTITY);

cgGLSetStateMatrixParameter(cg_mvit,
CG_GL_MODELVIEW_MATRIX,
CG_GL_MATRIX_INVERSE_TRANSPOSE);

cgGLSetMatrixParameterfr(cg_wv,
camera->inverseTransform());

cgGLSetParameter3fv(cg_materialColor, MaterialColor);
cgGLSetParameter3fv(cg_groundColor, GroundColor);
cgGLSetParameter3fv(cg_skyColor, SkyColor);

cgGLEnableProfile(cg_profile);

Listing 1.3: Binding shader program and setting parameters

Changing the parameters of the effect at run-time amounts to changing the local
variables used here, for example MaterialColor, SkyColor, and GroundColor.

This code can be compiled and delivered together with the shader code as a complete
package which can be used by the artist. However, there are limitations with this
approach. All but the most trivial shaders require support code for setting parameters
and renderer pipeline states. This support code is specific to each application due to
differences in how textures are loaded and accessed, renderer pipeline state are set,
etc. This gives unwanted dependencies between shaders and applications. Encapsu-
lating these dependencies is a difficult problem since different applications have very
different notions of what is important, for instance an artist’s tool must be able to
provide GUI components for manipulating the shader whereas an engine is primarily
concerned with efficiency.

This encapsulation is made even more difficult when using shaders written by an
external party. Externally written shaders use different interfaces but must still be
accessible in the same manner as in-house developed ones in order to provide a unified
working model for both artists and developers. The amount of work needed to adapt
such shaders can often be too large.

24

1. INTRODUCTION

1.3 Effects

The problems associated with using shaders as shown above are caused by a lack of
encapsulation. Information associated with the shader and necessary for the shader
to work is mixed with application code and not packaged together with the shader
itself. This has called for a new level of abstraction and a new kind of entity to do the
encapsulation. These entities are known as effects.

Today there are two major effect frameworks in use, the DirectX Effects by Microsoft
[4] and CgFX by NVIDIA [2]. Both provide a text-based format where shader code,
parameters and pass specifications are written in one file. This file is loaded by the
application and compiled for the current run-time platform. The two formats are
very similar and can in many instances be used interchangeably. Using CgFX the
hemispheric lighting example can be implemented as:

float3 MaterialColor = { 1.0, 1.0, 1.0 };
float3 SkyColor = { 0.5, 0.5, 1.0 };
float3 GroundColor = { 0.0, 0.1, 0.0 };

float4x4 ModelViewProj : MODELVIEWPROJ;
float4x4 ModelViewIT : MODELVIEWIT;
float4x4 WorldView : WORLDVIEW;

shader code as in listing 1.1

technique Hemispheric {
pass p0 {
VertexShader = compile vs_1_1 main(ModelViewProj,

ModelViewIT,
WorldView,
SkyColor,
GroundColor);

}
}

Listing 1.4: Hemispheric lighting in CgFX

This effect declares three parameters which are intended to be set at design time,
Material Color, SkyColor, and GroundColor, and three parameters that are in-
tended to be set at run-time by the application: ModelViewProj, ModelViewIT, and
WorldView. The design-time parameters, also known as tweakables, may have associ-
ated annotations which can be used by design tools to automatically provide a suitable
user interface for setting the parameter. For example a color picker control may be
used to set the value of a color parameter. Run-time parameters on the other may
have semantic identifiers associated with them, and similar to shader semantics, their
purpose is to specify the mapping to application data without relying on parameter
name. Instead an application can define a number of semantic identifiers which may
be used in the effect.

Following the declaration of the effect parameters is the shader code. It is identical
to Listing 1.1 and is therefore omitted here. Finally the effect declares a so called
technique which describes number of rendering passes needed and the render states to

25

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

be used in each pass. In this case there is a single rendering pass and in that pass the
vertex shader main is to be compiled for the shader profile vs_1_1 and the uniform
shader parameters should have the values of the corresponding effect parameters.

Once loaded an effect can be used in the application like this
unsigned int numPasses;
effect->Begin(&numPasses, 0);
for (unsigned int p = 0; p < numPasses; p++)
{
effect->Pass(p);
renderMesh(mesh);

}
effect->End();

Listing 1.5: Effect usage with CgFX

The textures used by an effect are generally declared as tweakables where an annota-
tion is used to specify the filename.
texture colorTexture : DiffuseMap <

string File = "default_color.dds";
>;

Using a texture in a shader program is done indirectly through something called a
sampler which specifies how the texture is accessed. Declaring a simple 2-dimensional
sampler using linear minification and magnification filters for the above texture we
write
sampler2D colorSampler = sampler_state {
Texture = <colorTexture>;
MinFilter = Linear;
MagFilter = Linear;

};

This sampler is then passed to a shader program just as any other parameter.

Effects provide a number of mechanisms for separating applications from shaders.
First, the effect format give a clear, high-level, and concise specification of shader
programs, textures, and render states. This includes a unified method for handling
multipass effects as well as having multiple implementations (fixed-function fall backs
etc.) of the same visual effect. This specification is independent of the target architec-
ture on which the effect is to run.

Second, tweakables provide the artist with a method for setting parameters at design
time. This reduces support code since the engine only needs to concern itself with
providing run-time parameters such as projection matrices etc.

Third, user-defined semantics provides a method for the engine to provide such run-
time parameters. The application defines a number of semantic identifiers which it
support and this creates an rudimentary interface to effects which, together with de-
fault values for parameters, relieves the effect developers of writing per-effect support
code (cf. Listings 1.2 and 1.3).

However, as in the case with using shaders directly, there still exist a problem of en-
capsulation. The application defines an interface for the effects by using user-defined

26

2. PYFX

semantics. This interface is fixed, and this limits the number of shaders that may be
expressed and used within a single application.

2 PyFX

The limitations in encapsulation of existing effect frameworks is due to the fact that
effects are passive entities, text files, which are operated on by the application, which
is the active party. If this relationship could be reversed so that effects are active
instead, a better interface can be built where they can be responsible for retrieving
the data they need from applications rather than the other way around. To achieve
this reversed flow of control the effects must be embedded in a context which can do
actual execution on their behalf.

2.1 PyFX overview

We have used Python, an existing scripting language to develop an active effect frame-
work called PyFX. The current implementation supports applications using OpenGL
and shaders written in Cg and its feature set closely resembles that of CgFX. In PyFX
however, Python is used both to implement the framework and to write the effects
themselves.

In an object-oriented language, it is natural to represent different effects as sub-
classes to a common effect base class. The subclasses implement specific functionality
whereas functionality common to all effects are inherited from the base class. The
object-oriented model also provides a natural mapping to the collaborative work-flow
between programmers and artists. Effect programmers write new effects by making
new effect subclasses, whereas the artist provides textures, sets parameters, etc. to
make effect instances from existing classes.

Below is the hemispheric lighting example written in PyFX. It shows the Python class
Hemispheric as a subclass of the general Effect class.

class Hemispheric(Effect):
vs = Cg("""

shader code as in listing 1.1
""")

SkyColor = (0.5, 0.5, 1.0)
GroundColor = (0.0, 0.3, 0.0)

def __init__(self,
MaterialColor = (1.0, 1.0, 1.0)):

Effect.__init__(self)

self.MaterialColor = MaterialColor

self.technique = [Pass(VertexShader = vs())]

Listing 1.6: Hemispheric lighting in PyFX

27

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

The declaration has two main parts: the class variables and the constructor (the
__init__ member). The first class variable vs contains the shader program as a
string wrapped by an instance of a Python class called Cg. and the other two class
variables SkyColor and GroundColor are simply effect parameters. The class con-
structor, which creates new instances of the class, takes one additional effect parameter
MaterialColor as an argument. The ability to differentiate between class variables
and instance variables allows the effect writer to indicate that some parameters are
intended to be the same for all instances of the class whereas other parameters may be
different. The constructor body calls the superclass constructor and sets the instance
variable MaterialColor of the object. Finally, the instance variable technique is set
to specify that this is a single pass effect and that the pass should use the shader vs as
its vertex shader.

Having instantiated this effect, for example like this

effect = Hemispheric(MaterialColor = (0.0,0.0,1.0))

it can be applied to a mesh by

while effect.hasMorePasses(mesh):
renderMesh(mesh)

The Effect member function hasMorePasses does setup for each pass of the effect
and also specifies how many times the mesh needs to be rendered.

Having applied effects to meshes the next issue is the passing of information from the
application to the effect and its shader. In PyFX this data can be passed through a
number of different channels.

The most obvious way is through constructor parameters when the Hemispheric effect
is instantiated. The example above shows how MaterialColor is set to the color blue.

In the hemispherical lighting example the constructor parameters correspond exactly
to an instance variable of the effect. Another method of passing data to the shader is
to assign new values to this variable. For example

effect.MaterialColor = (0.5, 0.5, 1.0)

changes material color so that it is now light blue. Similarly class variables can also be
assigned new values

Hemispheric.GroundColor = (0, 0, 0)

The framework then make sure that these changes are made available to the shader
code.

Another type of parameters are the transformation matrices used by the effect; Model
ViewProj, ModelViewIT and ViewWorld. The matrices ModelViewProj and Model

ViewIT can be retrieved from the OpenGL rendering pipeline and in PyFX this is
handled automatically.

The third parameter ViewWorld needs special treatment. It is the inverse camera
transform, used by the effect to compute the ModelWorld transform, neither of which
can be automatically retrieved from the pipeline. It must therefore be provided by the

28

2. PYFX

application. Since this parameter is the same for different instances it makes sense to
make it a class variable. However, it is even more general than that since you could
easily think of other effects that might need it. In this case we can therefore set it as a
class variable on the Effect base class, for example:

Effect.ViewWorld = camera.inverseTransform()

Yet another method for passing data from the application is when the effect needs ad-
ditional data at each vertex, i.e. non-standard varying parameters. In our hemispheri-
cal lighting example this is not the case, but a more advanced version of hemispheric
lighting can used to illustrate this case [9]. This version use additional per-vertex
mesh data, called the occlusion factor, which determine the amount of hemispheric
light which reach the point in question. If the shader program has the following
prototype

void main(..., float OcclusionFactor : COLOR)

Then, if the mesh has an array member OcclusionFactor, PyFX will automatically
bind this to the varying parameter with the same name.

2.2 PyFX details

Techniques

The structure of PyFX effects is inspired by that of DirectX Effects and CgFX frame-
works. As in these each effect contain one or more techniques. Each technique con-
tain a number of passes which are to be run consecutively. Each render pass has as-
sociated render states specifying the necessary pipeline states required to run the pass.
Specifying that back-face culling should be disabled while alpha-blending is enabled
is written in CgFX as

pass p0 {
CullMode = NONE,
AlphaBlendEnable = True

}

In PyFX the same render pass specification would look like

Render(CullMode = None,
AlphaBlendEnable = True)

A single technique effect for CgFX is shown in listing 1.4. The corresponding effect
in PyFX is given in listing 1.6. Providing two techniques Hemispheric and Ambient

in CgFX is done by providing multiple technique blocks

technique Hemispheric {
pass p0 {
VertexShader = compile vs_1_1 main();

}
}

technique Ambient {

29

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

pass p0 {
Color = <ambientColor>;

}
}

The same would be written in PyFX as

technique = {}
technique[’Hemispheric’] = [

Render(VertexShader = vs())]
technique[’Ambient’] = [

Render(Ambient = AmbientColor)]

Textures

Texturing in PyFX is, as in CgFX, divided into textures and samplers. Declaring the
same texture and sampler as above (Section 1.3) in PyFX would be written as

colorTexture = Texture(filename="default_color.dds")
colorSampler = Sampler(colorTexture,

MinFilter = Linear,
MagFilter = Linear)

This sampler can then be used either by a shader program, using parameter resolution,
or in the fixed-function pipeline by

Render(Texture0 = colorSampler)

Multi-texturing is naturally supported and when using multiple textures in a shader
program this is automatically handled by the shader parameter resolution code. For
fixed-function effects the different texturing-units are accessible via

Render(Texture0 = colorSampler,
Texture1 = lightMapSampler)

where colorSampler and lightMapSampler are two samplers with appropriate set-
tings.

Shaders

Shaders are provided via strings wrapped with classes providing information on the
type of shader code contained in the string. Sometimes it is useful to specify the target
for which a given shader should be compiled. This can be achieved via

Render(VertexShader = vs(target=arbvp1))

Also, passing explicit parameters to shader programs can be done by adding keyword
arguments to the shader invocation. Suppose we have an outlining effect which draws
a gradually more transparent outline around an object. This effect should run mul-
tiple passes with the same shader program (called outline) but with a parameter
offset determining the size and opacity of the outline

30

2. PYFX

[Render(VertexShader = outline(offset=1.0)),
Render(VertexShader = outline(offset=0.75)),
Render(VertexShader = outline(offset=0.5)),
Render(VertexShader = outline(offset=0.25))]

Listing 1.7: Setting compile-time parameters

The same thing can be expressed in CgFX but the result is more verbose since every
shader parameter must be passed explicitly.

If a shader program source code shader contains multiple programs, say a vertex
shader shadeVertex and a pixel shader shadePixel, these programs entries can be
accessed by the corresponding methods on the shader object

Render(VertexShader = shader.shadeVertex(),
PixelShader = shader.shadePixel())

Parameter resolution in PyFX

Application level variables having the same name as the shader program parameters
are used as arguments to the shader program. These arguments are defined in one of
the following places:

• Either it is a compile-time parameter to the shader program (see listing 1.7), or

• an attribute of the effect object, or

• an attribute on the mesh currently being rendered, or, lastly,

• a member of a predefined set of state parameters giving access to current pipeline
states.

Attributes of the effect instance include both instance parameters, such as the material
color parameters above (Section 2.1), and class parameters, SkyColor and Ground

Color above. As usual the class scope includes the scope of its superclass making the
WorldView transform accessible to the shader programs. In the above examples the
OcclusionFactor is a mesh attribute and them ModelViewProj and ModelViewIT

matrices are both pipeline state parameters.

If there are multiple variables with the same name the order of precedence is that
compile-time parameters take precedence over instance attributes, which take prece-
dence over class variables. Effect class variables take precedence over mesh attributes
and state parameters are used last.

This gives a natural correspondence between parameters to the shader program and
application data. Setting effect class-specific values amounts to setting effect class-
variables whereas effect instance-specific values are set by setting the appropriate at-
tribute on the effect instance in question. Effects take a more active role since they
are allowed to extract information from the mesh currently being rendered thus min-
imizing the amount of application level dependencies.

The mapping is recursive so the following Cg shader program

31

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

struct Light {
float3 position;
float4 color;

};

void main(..., uniform Light light) { ... }

will use position and color member of the application level variable light.

Name maps

The lookup scheme above gives great flexibility in both writing and using effects.
However when dealing, for instance, with third-party effects a name-based lookup is
not always sufficient since naming conventions may differ. Suppose we wish to use an
effect which uses the name DiffuseMap where our application use DiffuseTex. An
obviously unattractive solution would be to add DiffuseMap to our code and make
sure to update it each time we change DiffuseTex.

PyFX solves this problem by having user defined name maps. The Effect class allows
us to pass a dictionary of how parameter names at the shader level should be mapped
to parameter names at the application level. Defining a dictionary containing our
mappings and passing it to the effect nicely handles this.

myNameMap = {’DiffuseMap’ : ’DiffuseTex’}

effect = SomeTexture(nameMap = myNameMap)

A request for the DiffuseMap will now be automatically translated to a requests for
DiffuseTex.

Language embedding

The fact that Python is used to write effects and not only for implementing the frame-
work is convenient but not strictly necessary. It would have been possible to write an
interpreter and for example use the CgFX format. However, the complete embedded
of effects in Python has the advantage that all the ordinary language features such as
lists, tuples, loops, functions, dictionaries, list comprehension, etc. are available to the
effect writer[11]. As a very simple example we could have used a list comprehension
to write the pass specification of the outline effect (listing 1.7) as

[Render(VertexShader=outline(factor=f))
for f in [1.0, 0.75, 0.5, 0.25]]

Module-style effects

When using concrete subclasses of Effect the application needs to know about every
such class at compile-time, something known as the library problem. This is clearly
not desirable in a graphics application and it was one of the problems effects where
created to alleviate. In traditional object-oriented design it is solved by introducing an

32

3. IMPLEMENTATION

abstract factory for handling instantiation of concrete subclasses [6]. However, using
the flexibility of Python we can provide a method which simultaneous solves this
problem while giving a cleaner and more direct syntax for declaring effects. Effects
can be implemented simply as Python modules which can be loaded by

effect = Effect(’Hemispheric’)

This loads the Hemispheric effect module which can be used just as any other effect.
Note however, that since the actual subclass is not known setting class variables such
as GroundColor (cf. Section 2.1) is not possible.

Image processing

PyFX also provides a mechanism for specifying render targets other than the frame
buffer to which rasterization should occur. Furthermore it is possible to have passes
which do not render geometry but instead do shader based image processing. These
two features, which are not available in CgFX or DirectX, allow effects such as blur-
ring, edge detection, image compositing etc. to be expressed in an application inde-
pendent manner.

3 Implementation

PyFX is implemented on top of PyOpenGL [20] and a SWIG [21] generated inter-
face to the Cg runtime library. The implementation consists of about 800 lines of
Python code. The bulk of it is concerned with basic functionality needed in any ef-
fect framework such as loading and binding textures, compiling shader programs, and
initializing OpenGL extensions. The remaining part implements the distinguishing
features of PyFX, i.e. mapping declarative state specification to function invocations
and performing parameter resolution. This part is remarkably small, only about 10%
or 80 lines of code. This compactness is possible because of Python’s dynamic object
model and introspection facilities.

3.1 Renderer management

The entry point of the PyFX framework is provided by the top-level Effect class.
It is essentially a container for other objects, i.e. techniques, passes, textures, sam-
plers, and shaders. These classes interact with the underlying graphics API through a
global RenderState singleton class which implements manipulation of the renderer
pipeline state. The majority of its methods correspond one-to-one to the available
state variables. For instance the CullMode state is implemented as

class RenderState:
...
def CullMode(self, val):

if val:
glEnable(GL_CULL_FACE)

33

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

glFrontFace(val)
else:

glDisable(GL_CULL_FACE)

When a Render is activated it instructs the RenderState object state to change the
state of the rendering pipeline. This is done by mapping every state specified in the
pass object to a method invocation. For example, a pass specified by

Render(Color = (1.0, 0.0, 0.0),
CullMode = None)

will result in the following method calls on:

state.Color((1.0, 0.0, 0.0))
state.CullMode(None)

Doing this mapping is the responsibility of the Render class and by using the dynamic
introspective features in Python, it can have a very small implementation:

class Render:
def __init__(self, **kwords):

self.kwords = kwords

def use(self, state):
for s,v in self.kwords.items():

marshalFX(state,s,v)

The marshalFX maps the state name s to the proper method name and calls this
method with argument v. It is similar to the marshaling used by RPC (remote proce-
dure calls), whereby serialized data (dictionary tuples) are converted to method invo-
cations. Implementing marshalFX is a two-liner:

def marshalFX(obj, name, *args):
method = getattr(obj,name)
return method(*args)

3.2 Texture and sampler state

The class Texture provides an encapsulation similar to RenderState but for the
available texture states such as filtering, texture coordinate wrapping, etc. The texture
state information is maintained by the corresponding Sampler and it is responsible
for marshaling this information to method invocations on the Texture object.

When a Sampler is used by either the fixed-function pipeline or by a shader the
framework allocates a free texture unit and asks the sampler to bind itself to that unit.

3.3 Shaders

Just as samplers are responsible for performing binding textures and setting texture
states, every Shader object is responsible for performing its own loading, binding,
compilation, and parameter resolution. This implementation is actually contained in

34

4. CONCLUSIONS AND FUTURE WORK

subclasses for different shader programming languages. Currently the only subclass
implemented is Cg.

When the pass specifies a vertex or fragment shader the state object instructs the
shader to bind itself. A shader binding itself includes setting the value of every pa-
rameter needed by the shader. The mapping scheme of PyFX between parameters
and application variables is implemented by a Resolver object whose responsibility
it is to search the effect and mesh name spaces as well as providing name mapping
(Section 2.2). The resolver searches a list of objects for a given attribute, optionally
transform the attribute name via the name mapping dictionary:

class Resolver:
def __init__(self,nameMap,*objs):

self.nameMap = nameMap
self.objs = objs

def __getattr__(self,attr):
if self.nameMap.has_key(attr):

attr = self.nameMap[attr]

for obj in self.objs:
if hasattr(obj, attr):

return getattr(obj, attr)

The Cg class use the resolver to locate shader parameters and set these by invoking the
corresponding CgGL functions. For simple variables the cgGLSetParameter-family
of functions are used. Aggregate parameters, such as arrays and structs, are handled
by iterating over the members and setting each element recursively.

4 Conclusions and future work

The most prominent features provided by the PyFX framework is the decoupling
of effects from the application. This “activation” of an effect, enabling it to obtain
needed data from e.g. the current mesh without the need to introduce application
level support code, greatly reduces dependencies between effects and the application.
Using this activation together with the introspection features of Python gives a nat-
ural mirroring between data at the application level and data at the level of shader
programs. This also eliminates the need for user-defined semantics since there is no
longer any need to provide ad hoc hooks for applications to provide specialized data
and operations. Instead the object-oriented extensible nature of the host program-
ming languages can be used to provide this functionality natively at the effect level.

There are some limitations however, in the current implementation of PyFX. Support
for manipulating fixed-function effect parameters is limited. Consider a simple effect
such as

class SimpleColor:
color = (1,0,0)
technique = [Render(Color=color)]

35

PAPER I: PYFX – AN ACTIVE EFFECT FRAMEWORK

Manipulating the color attribute of this effect will not have the desired effect, the
color used for drawing will remain red. The reason why the parameter resolution
algorithm (Section 2.2) can not be applied in this case is that it requires access to the
parameter names. These names are only available to shader based effects where they
are supplied by the Cg run-time library.

The overall purpose of PyFX is to be a flexible tool for investigating what kind of
features and functions are needed to make effect programming as easy and productive
as possible. Future work includes investigating how effects can be combined efficiently
at run-time allowing, for instance, stencil-buffer shadow algorithms to coexist with
other visual effects.

Acknowledgement

The authors wish to thank Benny Åkesson and Andreas Hansson for help with im-
plementing the framework as well as providing a number of interesting effects testing
various aspects of PyFX. We also extend our thank to Chuck Mason for providing the
initial Python interface to Cg.

36

Bibliography

[1] Paul Jaquays amd Brian Hook. Quake III Arena Shader Manual. Id Software
Inc., 12th edition, December 1999.

[2] CgFX 1.2 Overview. http://developer.nvidia.com/.

[3] Robert L. Cook. Shade trees. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pages 223–231. ACM Press, 1984.

[4] DirectX SDK Documentation. http://msdn.microsoft.com/.

[5] Conal Elliott. Programming graphics processors functionally. In Haskell ’04:
Proceedings of the ACM SIGPLAN workshop on Haskell, pages 45–56, New York,
NY, USA, 2004. ACM Press.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns. Addison-Wesley, 1994.

[7] Kris Gray. DirectX 9 programmable graphics pipeline. Microsoft Press, 2003.

[8] Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations.
In Proceedings of the 17th annual conference on Computer graphics and interactive
techniques, pages 289–298. ACM Press, 1990.

[9] Hemispheric lighting. Example in DirectX 9 SDK documentation. MSDN Li-
brary, http://msdn.microsoft.com.

[10] John Kessenich, David Baldwin, and Randi Rost. The OpenGL shading
language. http://developer.3dlabs.com/documents/index.
htm. 3DLabs, Inc Ltd.

[11] Calle Lejdfors and Lennart Ohlsson. A scripting tool for real-time effect pro-
gramming. In Vaclav Skala, editor, WSCG’ 2005, pages 37–38, 2005.

[12] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:
a system for programming graphics hardware in a C-like language. ACM Trans.
Graph., 22(3):896–907, 2003.

37

BIBLIOGRAPHY

[13] Michael McCool, Zheng Qin, and Tiberiu Popa. Shader metaprogramming.
In Thomas Ertl, Wolfgang Heidrich, and Michael Doggett, editors, Graphics
Hardware, pages 1–12, 2002.

[14] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. ACM Trans. Graph., 23(3):787–795, 2004.

[15] Steven Molnar, John Eyles, and John Poulton. Pixelflow: high-speed render-
ing using image composition. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 231–240. ACM Press, 1992.

[16] Marc Olano and Anselmo Lastra. A shading language on graphics hardware:
the pixelflow shading system. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 159–168. ACM Press, 1998.

[17] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive multi-
pass programmable shading. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 425–432. ACM Press/Addison-
Wesley Publishing Co., 2000.

[18] Ken Perlin. An image synthesizer. In Proceedings of the 12th annual conference on
Computer graphics and interactive techniques, pages 287–296. ACM Press, 1985.

[19] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A
real-time procedural shading system for programmable graphics hardware. In
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 159–170. ACM Press, 2001.

[20] PyOpenGL project. http://pyopengl.sf.net/.

[21] SWIG project. http://www.swig.org/.

38

Paper II

PyFX: A framework for real-time graphics effects

Calle Lejdfors and Lennart Ohlsson
Dept. of Computer Science

Lund University
Lund, Sweden

{calle.lejdfors|lennart.ohlsson}@cs.lth.se

ABSTRACT

Programming real-time effects for contemporary GPUs requires writ-
ing shader programs to run on the GPU as well as code for the render
state setup logic performed by the CPU. While the GPU parts are well
supported by high level programming languages, the effect frameworks
commonly used for the CPU parts are lacking both in functionality and
expressive power, which makes them difficult to work with.

In this paper we present an effect framework implemented as an
embedded language in Python. We show that this high-level language
for effect descriptions provide increased expressivity, without sacrificing
declarativity of other frameworks. We show how some additional func-
tional features, image-processing and off-screen render targets, cooper-
ate with the effect language giving a rich environment for experimenting
with both functional and expressive features of effect programming.

Technical report, Lund University, LU-CS-TR:2005-233

1. INTRODUCTION

1 Introduction

Special effects in cinematic graphics have long relied on procedural techniques and
in the last few years the evolution of graphics processors have made these techniques
available for use in real-time graphics as well. Programming real-time effects is today
significantly harder than programming cinematic effects. The reason is partly that the
real-time constraints makes the problem harder simply because limits on the execution
time implies restrictions on the algorithms that can be used. Another reason is that the
tools and techniques available are not yet as mature and this makes the development
process harder than it has to be.

In the world of cinematic graphics programming visual effects is known as shader
programming. The term shader programming is also used in the context of real-time
effects, but here it is commonly used to refer only to the part of the effect which is
executed as a program on the GPU. We therefore use the term effect programming
for the process of creating the complete real-time effect, including the shaders for the
GPU but also code to be run on the CPU.

Real-time shaders can today be programmed in a number of high-level languages.
NVIDIA’s Cg [16], Microsoft’s HLSL [7] and the OpenGL Shading language, GLSL,
[12] are all based on the Renderman Shading Language, the established standard for
programming cinematic effects. They have come a long way towards being a flexible
and efficient development tool for the GPU parts of an effect. Programming the
CPU part of the effects, however, has still very limited support. Loading shaders to
the GPU, binding their run-time parameters, setting pipeline states and controlling
the execution of multiple passes are commonly done in application specific code and
not integrated with the rest of the definition of the effect.

The current approach to effect programming is the use of effect frameworks. An ef-
fect framework handles pipeline state manipulation including downloading shader
programs and textures, doing parameter passing from the application to the shader
program, and for orchestrating multiple passes of an effect. It provides some facility
for loading effects and shader programs, typically based on a text file format in which
shader programs, pipeline states and pass specifications are listed.

The effect framework idea was first used in the Quake 3 engine [1] to allow user script-
ing shaders, or what we would call effects, to control visual appearance of in-game
characters and objects. The Q3 framework predates widely available programmable
shader hardware and therefore lack many of the features of current effect frameworks.
The two effect frameworks which are the most widely used are DirectX FX and CgFX
which are extensions of the shader programming languages HLSL and Cg, respec-
tively. Both these frameworks provide the ability to specify real-time effects using
multiple shader programs and passes using a special file format syntax.

Although current effect frameworks improve the encapsulation of the GPU part and
the CPU part of an effect, they still suffer at least two major drawbacks. The most
critical one is that they lack some important features such as render to texture and
image processing which are necessary for writing many of the effects used in modern

41

PAPER II: PYFX: A FRAMEWORK FOR REAL-TIME GRAPHICS EFFECTS

graphics applications. Second, the syntax of current frameworks is rather restricted,
e.g. there is no support for expressing abstraction or repetition, which many times
can make the writing of effects tedious and error prone. Limited facilities for sharing
common parts of effects result in redundancy and code duplication.

In this paper we present PyFX, an effect framework based on the Python [23] pro-
gramming language. We show how an effect framework can be embedded in a very
high level general purpose language enable easy development of new extension, in
particular off-screen rendering and image processing. Furthermore embedding allows
language constructs currently not supported by DXFX or CgFX, such as function
definitions, classes, conditionals, and loops, to be used in the construction of effects.
This enables design techniques established for other kinds of software to be applied
to effect programming as well.

This paper is organized as follows. In Section 2 we present some related work. Section
3 gives an overview of current effect frameworks. In Section 4 we present PyFX
followed by some examples (Section 5) which emphasize the advantages of PyFX.
Finally we conclude with a discussion (Section 6).

2 Related work

Shader programming was started in 1984 when Cook introduced shade trees [4].
This represented a move away from the fixed function nature of previous systems
to an interpreted model giving much greater flexibility for writing visual effects. In
1990 this gave rise to the RenderMan [8] shading language which became an industry
standard for writing off-line shaders. Several propositions on how the power and
flexibility of off-line shader programming systems can be transferred to the world of
real-time graphics have since been put forward.

One direction is taken by Olano and Lastra [20], who describe a RenderMan-like
real-time shading language for the PixelFlow system [19]. This system consists of a
SIMD array of general purpose processors for which shader programs are compiled
via C++ and executed. While this system is well-suited for writing real-time shaders it
bears little resemblance to the architecture of current GPUs.

Peercy et al. [21], present a system for compiling RenderMan programs to multipass
rendering on using an OpenGL 1.2 implementation extended with imaging support,
high-precision data types (16 bit floating point), and dependent texturing. The key
realization is that the graphics pipeline can be used as a SIMD processor where dif-
ferent OpenGL states correspond to different SIMD instructions operating in parallel
on a set of fragments. A restricted version, called ISL, of the RenderMan language,
which can run on top of any OpenGL 1.2 implementation, is also presented.

The realization of Proudfoot et al. [22] that shading computations are carried out at
different frequencies lead to a language which maps well to present day GPUs. The
computational frequencies isolated where constant, per-group, per-vertex, and per-
fragment. The compiler can use frequency information of a computation in order to
map it to a particular stage of programmable pipeline.

42

2. RELATED WORK

Today a number of shader languages have found widespread use in the industry. These
are HLSL [7] by Microsoft and Cg [16] by NVIDIA which are both very similar. The
OpenGL Shading Language [12] achieved ARB approval in 2003 and is included in
the OpenGL 2.0 specifications [24]. All these languages are based around explicit
separation of per-vertex and per-fragment computations (cf. Proudfoot et al.) and
follow the uniform and varying data classification introduced in RenderMan.

On the consumer side, games such as Quake3 by ID Software makes heavy use of
multi-pass multi-texture algorithms. The Q3 shader [1] format (here called an effect
format) provides a specialized language for controlling blending state, texture gen-
eration, fogging and texture application mode of multiple textures. The engine can
then use, if available, multiple texture units to reduce the number of texture applica-
tion passes needed. The format marks a first step in effect programming but it does
not provide enough control be useful in a more general context. In particular, since
Quake3 shaders predates consumer-level programmable graphics hardware, it does
not support vertex or pixel shader programs.

Following in the footsteps of Quake3’s shader format Microsoft introduced, coin-
cident with the first generation of programmable hardware, the DirectX Effects [5]
(abbreviated here as DXFX). DXFX provide a large superset of the interface intro-
duced by Q3 shaders allowing for vertex and pixel shader programs, stencil-, alpha-,
and depth buffer operations, multiple passes, etc. to be used in the description of a
visual effect. CgFX [3] was introduced together with the Cg language and provide an
implementation of DXFX for a larger variety of platforms.

A related approach was taken by Lalonde and Schenk [13] with the EAGL framework.
This framework provides a portable method of describing the association of render
methods (shader programs and render state setup annotated data binding semantics)
and art assets, typically triangle meshes, allowing for efficient rendering on a num-
ber of platforms (PC/XBOX, Playstation 2, and GameCube). An off-line compiler
takes combinations of render methods and art assets and generates platform specific
representations which can be efficiently rendered by the runtime system. Contrary to
current effect frameworks, EAGL does not provide support for writing cross-platform
render methods, every render method used must be reimplemented for every platform
used.

The Sh shading language [17] demonstrates that a shading language can be imple-
mented as embedded language in C++. This embedding gives the shader developer
access to high-level language features, such as classes, templates, functions, and user-
defined types, to be used in the construction of shader programs. Sh also provide
support for run-time construction and composition of shader programs [18]. How-
ever, although it is implemented in C++ it lacks facilities for abstracting and expressing
the CPU parts of effects.

The Vertigo shading language [6] approaches shader programming from a novel angle.
It is implemented as an embedded language in Haskell [10] and uses pure functions,
i.e. functions without state or side-effects, to model the stream-like nature of the
GPU. This results in a clean high-level model for programming shaders for generative

43

PAPER II: PYFX: A FRAMEWORK FOR REAL-TIME GRAPHICS EFFECTS

geometry.

3 Current effect frameworks

Current effects frameworks such as DXFX and CgFX provide a number of features
which simplify programming real-time visual effects. DXFX and CgFX extend HLSL
and Cg, respectively, with the ability to

• declare effect variables which can be either user-editable, or tweakable, for data
such as textures or colors, or engine internal, so called non-tweakables, for en-
gine specific data such as transformation matrices.

• declare different implementations of an effect suitable for different platforms.
Each of these so called techniques list a number of passes with each pass contain-
ing the render pipeline states to set before requesting the application to submit
geometry to the render pipeline.

Both frameworks rely on effect specifications which are stored in text files and loaded
at run-time. The effect file lists the variables, shader programs, techniques and passes
making out the effect. Effect variables can optionally be annotated with application
specific data such as the valid range of a parameter or the default filename of a texture
to facilitate integration with, for instance, GUI development tools. Variables may also
have an associated semantic, consisting of a string identifier, which can be used by the
application to provide data independent of variable name, providing an abstraction
when passing data to the effect.

Effects, being implemented in terms of external text files, can be changed without
requiring recompiling the application. Using a standard set of annotations and se-
mantics, introduced in DirectX 9, the format provides an application independent
mapping of application data to effect data.

However, the file format is closed and the frameworks can not easily be extended
with new functionality. Syntactic-wise the effect format allow the use of C-style pre-
processor for writing simple syntactical extensions. Together with the possibility to
group states in so called state blocks this provides a basic form of abstraction. On the
downside, the preprocessor based approach lack the most basic abstraction and data-
hiding functionality making it difficult to use effectively. Furthermore functionality
such as looping and conditionals are also missing, requiring generative effects and
effects containing hardware-specific implementations to rely on effect-specific appli-
cation level code. For a more in-depth review of the problems associated with current
effect frameworks we refer to [14].

4 PyFX

In this section we present our effect framework, PyFX, which is implemented as an
embedded language in Python. Its main purpose is to be a tool for investigating which

44

4. PYFX

features and characteristics that are useful and desirable for effect programming. The
fact that PyFX is embedded in a fully fledged programming language immediately
makes it easier to write effects since it allows the use of all the language features from
the host language. Using function definitions, loops, conditionals and modules to
express and share common parts, the description of an effect becomes shorter and
more clear.

The features in PyFX include those found in the DXFX and CgFX frameworks and
in addition it provides:

• Render-to-texture – The framework can render to off-screen area which can be
used as a texture in later stages of the effect or by another effect entirely.

• Image processing support – GPU based image processing operations can be ap-
plied to any texture or off-screen area.

• Support for shader interfaces – PyFX enables easy use of Cg’s interfaces allowing
run-time construction and composition of shader programs.

PyFX is built on top of OpenGL. It is designed to be independent of shader language
and it currently supports Cg and GLSL. The implementation and application level
interface of PyFX is described in more detail in [14].

4.1 Overview

The basic building block in an effect in PyFX is a "processing step" which is a gener-
alization of the notion of a pass in other effect frameworks. Each step may or may not
require the application to send geometry to the GPU. Currently there are two types
of processing steps:

• RenderGeometry – these are the usual pass of other effect frameworks. Sets up
the appropriate states and then instructs the application to transmit geometry.

• ProcessImage – used to perform 2D image processing between two images (which
may reside in either textures, off-screen areas or the current screen buffer). It
supports floating point target and source images/buffers allowing HDR image
processing.

In addition to these functional features, the framework also provide, through language
embedding, a complete programming language in which effects can be expressed.
This has several benefits for effect programmers since it enables the use of common
software design methodologies, such as abstraction and sharing in the construction
of an effect. This allows the effect writer to express an effect in a clear, to-the-point
manner making development and debugging easier.

Every aspect of the framework is implemented as a class allowing easy extension and
specialization. Together with using embedding in a high-level language, this enables
engine and framework writers to experiment with new features with minimal impact
on the rest of the framework.

45

PAPER II: PYFX: A FRAMEWORK FOR REAL-TIME GRAPHICS EFFECTS

5 Examples

As an example of the features common to PyFX, DXFX, and CgFX we will present an
effect for doing bump-mapping using a normal map [2]. While PyFX supports both
Cg and GLSL only Cg will be used for example code.

The bump mapping effect uses a vertex program to translate the surface normal to
tangent space. The fragment program then manipulates the normal using a normal
map and a scaling parameter. The resulting normal is then used for shading compu-
tations. The initial part of the fragment shader program is shown below:

float4 fs(float2 texcoord : TEXCOORD0,
//normal in tangential frame
float3 normalT : TEXCOORD1,
..., // parameters needed for lighting
uniform sampler2D NormalMap,
uniform float Scale) : COLOR

{
float3 dN = tex2D(NormalMap, texcoord);
normalT += Scale*(dN*2-1)
normalT = normalize(normalT);
// compute and return color ...

}

Listing 2.1: Bumpmapping in Cg

In contrast to DXFX and CgFX where shader code is mixed with parameter declara-
tions, PyFX uses wrapper functions and classes to indicate which parts of the effect are
shader programs and which are parameters etc. The wrapper for a Cg shader program
is called Cg and is used as follows.

bumpmap = Cg(""" code as in Listing 2.1 """)

The triple-quotes """ are used by Python for multi-line string literals. Next we list
the parameters of the effect together with their default values.

Scale = 0.2
NormalMap = Texture("default_normalmap.png")

Now we are ready to define the technique of this effect. In PyFX it consists of a single
render step which uses bumpmap vertex and fragment programs.

technique = [RenderGeometry(
VertexShader = bumpmap.vs(),
FragmentShader = bumpmap.fs())]

This effect does not use any of the special features of PyFX and we could just as well
have written it in CgFX or DXFX. The result of doing so would have been more code
since we have to explicitly declare every parameter, including non-tweakables, used
by the shader programs. In PyFX common variables, such as transformation matrices
etc., are passed implicitly to the shader program. This is described in detail in [14].

46

5. EXAMPLES

5.1 Generative effects

Because of the language embedding in Python we can use, for instance, repetitive
elements and function abstractions, when writing our effects. Consider an effect
for rendering furry objects. Such an effect can be achieved by rendering the object
surrounded by a number of shells where the transparency of each shell increases with
the distance to the object. This gives the impression of fur with decreasing thickness
with increasing distance from the object [15]. Assuming we have a FurShellShader

program for rendering a single fur shell shell of the object, we can describe a step for
rendering fur-shells by the following constructor function:

def RenderFurShell(s):
shell = s/FurThickness
return RenderGeometry(

AlphaBlendEnable = True,
SrcBlend = SRCALPHA,
DestBlend = ONE,
VertexShader = vs(Shell=shell),
FragmentShader = fs(Shell=shell))

Drawing the complete furry object using NumberOfShells shells amounts to render-
ing the solid object followed by rendering each fur shell, which is done using the
following code:

technique = [RenderGeometry()] + \
[RenderFurShell(i)

for i in range(1,NumberOfShells)]

The use of abstraction and high-level constructs allow us to describe the fur effect
succinctly. Key parameters such as the number of shells used or fur thickness can
easily be changed without modifying other parts of the effect.

The same fur effect expressed in CgFX or DXFX would be much longer and more
difficult to read since those formats lack a notion of repetition. With each shell render
step written explicitly it is, for example, more difficult to change the number of shells
used.

5.2 Image processing

A simple widely-used example of image processing is the glow effect [9] used to sim-
ulate the nimbus due to atmospheric scattering which appear around brightly lit sur-
faces. It works by rendering an object to the screen, rendering the glowing parts of
the object to an off-screen buffer, blurring the off-screen buffer and then additively
blending the result to the screen. To express this in PyFX we start by introducing
some helper functions for rendering the glow regions, blurring a buffer and additively
blend some buffer onto some buffer.

def RenderGlowRegions(target):
return RenderGeometry(

Target=target,
VertexShader=glowMask.vs(),

47

PAPER II: PYFX: A FRAMEWORK FOR REAL-TIME GRAPHICS EFFECTS

FragmentShader=glowMask.fs())

def GaussianBlur(source):
...

def AdditiveBlend(source, target):
return ProcessImage(Source=source,

Target=target,
SrcBlend = SRCALPHA,
DestBlend = ONE)

The technique which performs blurring can now be written simply as

technique = [RenderGeometry(),
RenderGlowRegions(blurBuffer),
GaussianBlur(blurBuffer),
AdditiveBlend(blurBuffer, Screen)]

The result is a readable specification of what the effect does and how it does it. Writing
this effect in DXFX or CgFX is currently not possible without using application-
specific workarounds.

Sharing common code

If we have two different effects which both do blurring, it makes sense to factor out
this common part and describe it only once. We can, for example, define a function
BlurPostProcess, contained in a module Blurring, by

def BlurPostProcess(source,target):
return [RenderGlowRegions(source),

GaussianBlur(source),
AdditiveBlend(source, target)]

Now our original glow effect can be implemented as

import Blurring

blurBuffer = ...

technique = [RenderGeometry()] + \
Blurring.BlurPostProcess(blurBuffer, Screen)

The other effect is obtained by the replacing technique by some other step sequence
followed by the blur post-processing operation.

technique = [...] + \
Blurring.BlurPostProcess(blurBuffer, Screen)

Using Python’s modules we can share code between multiple effects simplifying the
construction of many effects.

48

5. EXAMPLES

5.3 Supporting shader interfaces

The Sh shader language provides support for combining shader programs at run-time.
Cg provide a similar method through the use of so called interfaces, similar in concept
to interfaces in the Java programming language [11].

Prior to the introduction of interfaces the programmer was required to write one
shader program for every combination of material and light-source. This results in a
combinatorial explosion of the number of shader programs needed in an application.
Interfaces provide us with a mechanism for abstracting implementation of a part of a
shader program from its usage pattern. As an example, we can use the following Cg
interface for a light source.

interface LightI {
void intensityAt(in float3 position,

out float3 lightDirection,
out float3 color);

};

An implementation of a light source must be able to, given a point, return the color
and direction of the incident light at that point. A program can use the LightI

interface as:

void main(in float3 position,
in float3 normal,
out float3 color,
uniform LightI Light)

{
float3 L, C;
light.intensityAt(position, L, C);
color = //compute color

}

Listing 2.2: Using interfaces in Cg

Using this in PyFX we wrap up the program above in a Cg wrapper as:

fs = Cg(""" code as in Listing 2.2 """);

We can implement a number of different light sources which support the above inter-
face. For instance a non-attenuated point light source can be implemented as

struct PointLight : LightI {
float3 Position;
float3 Color;

void intensityAt(in float3 position,
out float3 lightDirection,
out float3 color)

{
lightDirection = normalize(position - Position);
color = Color;

}
};

49

PAPER II: PYFX: A FRAMEWORK FOR REAL-TIME GRAPHICS EFFECTS

Following this general outline we can easily implement spotlights, lights with attenu-
ation, cube-mapped lights etc. We put all the light definitions in a Lights module.

pointLight = CgIImpl(""" code as above """);
spotLight = CgIImpl(""" ... """)
cubeMappedLight = CgIImpl(""" ... """)

Interface implementations are wrapped in PyFX CgIImpl-wrappers to indicate that
they are not complete programs, only implementations of interfaces which are not
executable in their own right.

Using the interfaces works just as variables so using the above program with a point
light located at (0, 100, 0) having red color is just

myPointLight = pointLight(Position=(0,100,0),
Color=(1,0,0))

technique = [RenderGeometry(
FragmentShader =

fs(Light = myPointLight), ...)]

Changing the light source amounts to changing a single line in the effect file. The
framework also support changing the light source at run-time, allowing flexible shader
program composition to be used as an integral part of an application.

6 Discussion and conclusions

We have presented an effect framework which improves on current frameworks in
two respects. By being an embedded language it can freely utilize the features of
its host language. In this respect PyFX is similar to Sh and Vertigo, although these
systems have slightly different focus. However, when the language embedding is done
a low level language like C or C++, the power of host language features come at the
cost of sacrificing the declarative style of DirectX FX and CgFX. Due to the high
level character of Python, PyFX is able to provide the best of both worlds. It is both
declarative and has a rich set of language features.

Furthermore, PyFX provides support for render to texture and image processing, fea-
tures which are needed to write many common effects but which are not supported by
current frameworks. With access to the source code of an existing framework, these
features would probably be fairly straightforward to implement, and it is even likely
that they will appear in some future version. Our experience is however with a frame-
work which is embedded in an flexible language such amendments can be added very
easily. It is possible to have a very short turn-around time for adding or modifying a
feature, get feedback from using it and then change it again. Since it is likely that the
wish list for effect framework features will continue to grow for some time still, we
believe that this agility makes PyFX a suitable platform for exploring and evaluating
the design space of effect frameworks.

In summary, PyFX framework represents work in progress but it already provide a
flexible environment for prototyping and experimenting with effects and effect frame-

50

6. DISCUSSION AND CONCLUSIONS

works alike. We hope to continue exploring methods for providing good program-
ming environments for the border land of CPU/GPU interaction. Hopefully we will
also be able to provide a solid ground for extending the framework to handle GPGPU
algorithms as well as providing further functional additions.

51

PAPER II: PYFX: A FRAMEWORK FOR REAL-TIME GRAPHICS EFFECTS

52

Bibliography

[1] Paul Jaquays amd Brian Hook. Quake III Arena Shader Manual. Id Software
Inc., 12th edition, December 1999.

[2] James F. Blinn. Simulation of wrinkled surfaces. In Proceedings of the 5th annual
conference on Computer graphics and interactive techniques, pages 286–292. ACM
Press, 1978.

[3] CgFX 1.2 Overview. http://developer.nvidia.com/.

[4] Robert L. Cook. Shade trees. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pages 223–231. ACM Press, 1984.

[5] DirectX SDK Documentation. http://msdn.microsoft.com/.

[6] Conal Elliott. Programming graphics processors functionally. In Haskell ’04:
Proceedings of the ACM SIGPLAN workshop on Haskell, pages 45–56, New York,
NY, USA, 2004. ACM Press.

[7] Kris Gray. DirectX 9 programmable graphics pipeline. Microsoft Press, 2003.

[8] Pat Hanrahan and Jim Lawson. A language for shading and lighting calculations.
In Proceedings of the 17th annual conference on Computer graphics and interactive
techniques, pages 289–298. ACM Press, 1990.

[9] Greg James and John O’Rorke. GPU Gems, chapter Real-Time Glow, page 816.
Addison Wesley Professional, March 2004.

[10] Simon Peyton Jones, editor. Haskell 98 Language and Libraries. Cambridge
University Press, April 2003. ISBN: 0521826144.

[11] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. JavaTMLanguage Specifi-
cation. Addison-Wesley Pub Co, 2nd edition, 2000.

[12] John Kessenich, David Baldwin, and Randi Rost. The OpenGL shading
language. http://developer.3dlabs.com/documents/index.
htm. 3DLabs, Inc Ltd.

53

BIBLIOGRAPHY

[13] Paul Lalonde and Eric Schenk. Shader-driven compilation of rendering assets.
In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques, pages 713–720. ACM Press, 2002.

[14] Calle Lejdfors and Lennart Ohlsson. Pyfx – an active effect framework. In Stefan
Seipel, editor, SIGRAD 2004. The Annual SIGRAD Conference. Special Theme –
Environmental Visualization. November 24, 2004, Gävle, Sweden, number 13 in
Linköping Electronic Conference Proceedings, 2004.

[15] Jerome Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe. Real-time
fur over arbitrary surfaces. In Proceedings of the 2001 symposium on Interactive
3D graphics, pages 227–232. ACM Press, 2001.

[16] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:
a system for programming graphics hardware in a C-like language. ACM Trans.
Graph., 22(3):896–907, 2003.

[17] Michael McCool, Zheng Qin, and Tiberiu Popa. Shader metaprogramming.
In Thomas Ertl, Wolfgang Heidrich, and Michael Doggett, editors, Graphics
Hardware, pages 1–12, 2002.

[18] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. ACM Trans. Graph., 23(3):787–795, 2004.

[19] Steven Molnar, John Eyles, and John Poulton. Pixelflow: high-speed render-
ing using image composition. In Proceedings of the 19th annual conference on
Computer graphics and interactive techniques, pages 231–240. ACM Press, 1992.

[20] Marc Olano and Anselmo Lastra. A shading language on graphics hardware:
the pixelflow shading system. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 159–168. ACM Press, 1998.

[21] Mark S. Peercy, Marc Olano, John Airey, and P. Jeffrey Ungar. Interactive multi-
pass programmable shading. In Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages 425–432. ACM Press/Addison-
Wesley Publishing Co., 2000.

[22] Kekoa Proudfoot, William R. Mark, Svetoslav Tzvetkov, and Pat Hanrahan. A
real-time procedural shading system for programmable graphics hardware. In
Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 159–170. ACM Press, 2001.

[23] The Python language. http://www.python.org/.

[24] Mark Segal and Kurt Akeley. OpenGL 2.0 specification. September 2004.

54

Paper III

Implementing an embedded GPU language by combining
translation and generation

Calle Lejdfors and Lennart Ohlsson
Dept. of Computer Science

Lund University
Lund, Sweden

{calle.lejdfors|lennart.ohlsson}@cs.lth.se

ABSTRACT

Dynamic languages typically allow programs to be written at a very
high level of abstraction. But their dynamic nature makes it very hard to
compile such languages, meaning that a price has to be paid in terms of
performance. However under certain restricted conditions compilation
is possible. In this paper we describe how a domain specific language for
image processing in Python can be compiled for execution on high speed
graphics processing units. Previous work on similar problems have used
either translative or generative compilation methods, each of which has
its limitations. We propose a strategy which combine these two methods
thereby achieving the benefits of both.

Accepted for publication, SAC06

1. INTRODUCTION

1 Introduction

In this paper we introduce PyGPU, a domain-specific language for writing image pro-
cessing algorithms embedded in the interpreted, object-oriented, dynamically typed
language Python. The PyGPU language consists of a number of classes that allow
image processing algorithms to expressed clearly and succinctly. These classes use
overloading to provide operations such as multiplying a color by a scalar, and access-
ing an image, with intuitive semantics. For instance, a function for multiplying every
pixel of an image by a scalar can be implemented as:

def scalarMul(c=Float, im=Image, p=Position):
return c*im(p)

Furthermore, this function can be compiled to native code executing at very high
speeds on the graphics processing unit (GPU). However, as will be described be-
low, the GPU is a very restricted platform, and in order to compile a function type-
annotations, as in the above example, are required. The types used are exactly the
above classes which here serve the alternate purpose of encoding the restrictions and
capabilities of the GPU.

The outline of the rest of this paper is as follows. In Section 2 we introduce the
graphics processing unit (GPU) as well as a more extensive example of using PyGPU.
In Section 3 we present the implementation of PyGPUs compiler and in Section 4 we
finish up with a discussion.

2 GPUs

Most computers come equipped with a powerful 3D graphics card capable of trans-
forming, shading, and rasterizing polygons at speeds in excess of those provided by the
CPU alone. These cards are also equipped with a programmable graphics processing
unit (GPU) that enable parts of the polygon rasterization process to be program-
matically redefined allowing, for instance, many image processing algorithms to be
implemented. And, since floating-point performance of the GPU is typically an order
of magnitude higher than that of a corresponding CPU [9] it is a very attractive target
platform.

The speed advantage of GPUs comes from their highly specific nature; they employ
a number of very long pipelines executing in parallel and in order to efficiently use
this parallelism the computational model of the GPU is very restricted. There is no
dynamic memory allocation. Memory is read-only and may only be accessed in the
form of textures containing 4-dimensional floating-point values. Furthermore, flow
control structures such as branches and subroutines are not guaranteed to exist even
on very modern cards.

57

PAPER III: IMPLEMENTING AN EMBEDDED GPU LANGUAGE BY COMBINING

TRANSLATION AND GENERATION

Figure 3.1: Sobel edge detected lena

2.1 Existing GPU languages

There are a number of specialized language available for programming the GPU.
The first generations of GPUs provided limited forms of programmability trough
assembler-like languages specific to each vendor and graphics API. With the increased
power and maturity of GPUs a number of higher level languages were introduced: Cg
by NVIDIA [11], HLSL by Microsoft [5], and GLSL by the OpenGL ARB [8]. These
languages are all syntactic variants of C with some added constructs and data-types
suitable for expressing GPU programs.

Other projects aimed at providing embedded languages for programming the GPU
are Vertigo [3] and Sh [12]. Vertigo uses Haskell [7] to program the vertex shader
functionality of GPUs. Sh is embedded in C++ and uses a generative model for
constructing GPU programs at run-time from specification written in C++. Sh also
supports, through the use of C++ templates, combining GPU program fragments into
new GPU programs [13].

2.2 An image processing example

We will now provide an extended example of PyGPU by implementing an edge de-
tection algorithm. We will construct a general edge detector which will then be used
to implementing the well known Sobel edge detector.

Edge detection in general

Edge detection is the process whereby sharp gradients in image intensity are identified.
In general, this can be implemented as the application of convolution kernels estimat-
ing the image intensity gradient in the x and y-directions, respectively. Consider the
following function definition:

def edgeDetect(kernel, im=Image, p=Position):
Gx = convolve(kernel, im, p)
Gy = convolve(transpose(kernel), im, p)
return sqrt(Gx**2 + Gy**2)

58

2. GPUS

This function applies an arbitrary kernel in the x and y-directions (by symmetry the
vertical gradient approximation kernel is the transpose of horizontal approximation
kernel) and then computes the magnitude of the image gradient.

Gradient approximation kernels

There are many examples of gradient approximation kernels. One common choice is
the Sobel operator which can be represented by the matrices



−1 0 1
−2 0 2
−1 0 1


 and



−1 −2 −1

0 0 0
1 2 1




for the x and y-directions, respectively.

Complete edge detector

Using the general edge detection function and the kernel from the previous section
we can now create a Sobel edge detector by partially specializing the general edge
detection function. To do this we call the PyGPU compiler passing the kernel as a
compile-time parameter:

sobelEdgeDetGPU = pygpu.compile(edgeDetect,
kernel=sobelKernel)

The function returned by the compiler runs entirely on the GPU and can be applied
to images just as a normal function. However, the position parameter need not be
specified, the returned function operates on whole images in parallel:

edgesLena = sobelEdgeDetGPU(lena)

The result of applying the Sobel edge detector to the standard Lena example image
can be seen in Figure 3.1.

Example discussion

Interestingly, the general edge detection function presented above can not be trans-
lated to native code on the GPU and the reason lies in the kernel argument. Because
the GPU lacks support for dynamic memory allocation translating the kernel argu-
ment to the GPU is impossible. PyGPU expresses this by the fact that the kernel
argument cannot be given a type in PyGPUs type system. And, since these types
encode the capabilities of the GPU, an argument which cannot be typed must be
supplied as a value at compile-time.

As a consequence we are allowed to use external libraries even when these libraries
cannot be translated to the GPU. For instance, the transpose function is taken di-
rectly from Python Numeric, an array programming library implemented in C and
running on the CPU[14]. Clearly, this function cannot be directly translated but,

59

PAPER III: IMPLEMENTING AN EMBEDDED GPU LANGUAGE BY COMBINING

TRANSLATION AND GENERATION

since the value of kernel must be supplied at compile-time, it may still be used to
construct PyGPU functions.

3 Compiler implementation

The PyGPU compiler is implemented in Python and it is responsible for two major
tasks: compiling PyGPU functions to programs running on the GPU, and providing
the necessary glue-code allowing these programs to be called as ordinary Python func-
tions. The implementation of the latter is straightforward and will not be covered.
The implementation of the translation from Python functions to GPU programs is
the focus of this section.

3.1 Related work

PyGPU lies at the intersection of two problem areas related to compilation: dynamic
languages and embedded languages. It shares a number of problems from both ar-
eas all of which must be overcome to allow effective compilation. Furthermore, the
restrictions of the target platform greatly affects implementation choices.

Compiling dynamic languages

Compiling dynamic languages is, in general, a very difficult problem. Most of what
we know from static languages cease being true: function implementations can be
changed at run-time, arbitrary code can be executed via eval, and classes can be
dynamically constructed or changed. One approach is to restrict the dynamism of
the language. This is used in PyPy [15] and Starkiller [17], two projects targeted at
compiling Python. Both projects perform static analysis such as type inferencing to
translate general Python code into lower-level compilable code.

Alternatively, the dynamism can be kept by performing run-time specialization to com-
pile functions at call-time. This is the approach taken by Psyco [16], a just-in-time
compiler for Python.

Compiling embedded languages

By construction, embedded languages can typically be compiled by the host language
compiler. The problem with compiling embedded language however is that they typ-
ically target a different platform than that supported by the host language. Some
examples of such platforms are co-processors [12], VHDL designs [1], and midi se-
quencers [6].

The most direct approach for implementing an embedded language compiler is to
view the host language merely as syntax for the embedded language. A traditional
compiler can then be implemented by reusing the front-end for the host language and
implementing a new back end. Such translative methods work well when the features

60

3. COMPILER IMPLEMENTATION

of the embedded language closely match the capabilities of the target platform. In
such cases translative methods can be implemented fairly directly.

An alternate approach is to use the overloading capabilities of the host language. By
implementing a suitable set of abstractions it is possible to execute a program in the
embedded language in such a way that it generates a program on the target platform.
These types of generative methods are typically straightforward to implement since
much of the existing compiler infrastructure is reused. They are however restricted
to translating only those features of the host language that can be overloaded. Con-
ditionals, loops, and function calls, for instance, cannot be overloaded in most lan-
guages and consequently cannot translated using this approach. Examples of projects
using a generative approach are Pan [4], Vertigo [3], and Sh [12]. Pan and Vertigo
are Haskell domain-specific embedded languages for writing Photoshop plugins and
vertex shaders, respectively. Both use a tree-representation constructed at run-time
to generate code for their respective platforms. Sh is a GPU programming language
embedded in C++ that uses overloading to record the operations performed by a Sh
program. This “retained” operation sequence is then analyzed and compiled to na-
tive GPU code. We will use a combined approach giving the benefits of both these
methods.

3.2 Combining translation and generation

Given that we use Python as host language for PyGPU we are faced with a difficult
decision. The restrictions of the GPU makes direct translation of features such as lists
and generators impossible, requiring either restricting the languages or implement-
ing advanced compiler transformations. Using a generative method we are required
to supply our own conditionals and loop-construct thereby sacrificing the syntactic
brevity of our host language. Ideally one would like to use a translative approach for
those features that admit direct translation and a generative approach for those that
do not.

We propose that this can be achieved by combining two features commonly found in
dynamic high-level languages: introspection and dynamic code execution. Introspection
is the ability of a program to access and, in some cases, modify its own structure at
run-time. Dynamic code executing allows a running program to invoke arbitrary code
at run-time. For instance, we can use the introspective ability of Python to access the
bytecode of a function, where elements such as loops and conditionals are directly
represented. This allows using a translative approach where possible. Using dynamic
code execution we can reuse large parts of the standard Python interpreter to thereby
giving the benefits of translative methods.

3.3 The compilation process

As explained above (see Section 2.2) PyGPU requires that types of all free variables are
known at compile-time. Parameter which cannot be given a type must be supplied by
value. Hence, for every parameter of a function we know either its type or its value.

61

PAPER III: IMPLEMENTING AN EMBEDDED GPU LANGUAGE BY COMBINING

TRANSLATION AND GENERATION

The compilation strategy thus becomes: if the value is known we evaluate generatively,
if only the type is known we perform translation.

The compiler is implemented in the usual three stages: front end, intermediate code
generation, and back end. The intermediate code generation and back end stages are
implemented using well-known compiler techniques. We use static single-assignment
(SSA) [2] for representing the intermediate code. This enables many standard com-
piler optimization, such as dead-code elimination and copy propagation, to be im-
plemented effectively. The optimized SSA code is then passed to a back end native
code generator. At the moment we use Cg [11] as a primary code generation target
allowing optimizations of that compiler to be reused.

The front end however, differs from the standard method of implementing a compiler.
Instead of using text source code it operates directly on a bytecode representation
and it is the front end that implements the above compilation strategy. How this
is implemented using the dynamic code execution features of Python will now be
described in detail.

Bytecode translation

The front end parses the stack-based bytecode of Python and translates it to a flow-
graph which is passed to the intermediate code generator. Throughout this process
the types of all variables are tracked allowing the compiler to check for illegal uses as
well as performing dispatch of overloaded operations.

Simple opcodes, such as binary operations, are translated directly. More complicated
examples such as function calls, that would not be translatable using a generative
approach, are handled using the above strategy:

elif opcode == CALL_FUNCTION:
args = stack.popN(oparg)
func = stack.pop()
if isValue(args):

stack.push(func(*args))
else:

compiledF = compileFunc(func, args)
result = currentBlock.CALL(compiledF, args)
stack.push(result)

That is, if all the arguments are values then the function is evaluated directly in the
standard interpreter. This is done by using the dynamic code execution abilities of the
standard interpreter to call the function via func(*args). This allows the PyGPU
compiler to reuse functionality present in external libraries (even compiled ones) gen-
eratively. Note that, in general this kind of constant-folding of function calls is not
permitted. The function being called may depend on global values whose value may
change between invocations. But, since the GPU lacks globals variables PyGPU does
not allow global values to be changed after a function has been compiled and conse-
quently this transformation is valid.

If the value of at least one argument is not known then the callee is compiled and a
corresponding CALL-opcode is added to the current block of the flow-graph.

62

4. DISCUSSION

This strategy is not restricted to the case of function calls, it can be used to handle
loops as well. Consider the fragment

for i in range(n):
acc += g(i)

If n is known at compile-time then we may evaluate range(n). Consequently the
sequence being iterated over is known and the loop can be trivially unrolled. If n is
not known the fragment is translated to an equivalent loop in the GPU. The code
for handling loops is similar to that of handling function calls albeit slightly more
complicated.

3.4 An illustrative example

The compilation strategy presented above is very straightforward and it is not obvious
how this strategy enables us to translate more complicated examples. Consider the
implementation of the convolve function used in Section 2.2:

def convolve(kernel, im=Image, p=Position):
return sum([w*im(p+d)

for w,d in zip(ravel(kernel),
offsets(kernel))])

The implementation reads: to compute the convolution we first compute the column-
first linearization of the kernel using the function ravel. The offset to each kernel
element is computed and each offset is associated with its corresponding kernel ele-
ment. The image is accessed at the corresponding locations and the intensities are
weighted by the kernel element. Finally the resulting list of intensities is summed and
the result returned.

Note that here we use a number of features which cannot be directly translated to
the GPU: the compiled Numeric [14]function ravel, list-comprehensions, and the
built-in Python functions zip and sum both which operates on lists. However, us-
ing the above strategy compilation proceeds as follows: The value of kernel must
be known at compile-time and, consequently, the values of ravel(kernel) and
offsets(kernel) can be computed. Hence the arguments to zip are known which
implies that it may, in turn, be evaluated at compile-time. The resulting list is used to
unroll the list-comprehension resulting in a known number of image accesses which
can be directly translated to the GPU. The code for summing these accesses and
returning is generated similarly thereby concluding the translation of the above func-
tion.

4 Discussion

We have shown how a compiler for an embedded language can be implemented to
combine the advantages of previous methods. By taking advantage of introspection
and dynamic code execution features of the host language Python we could implement

63

PAPER III: IMPLEMENTING AN EMBEDDED GPU LANGUAGE BY COMBINING

TRANSLATION AND GENERATION

this compiler very compactly. As an example, The compiler and run-time consists of
around 1500 lines of code with the bytecode to flow-graph translator occupying 400
of those lines. By compiling for the GPU, performance in excess to that of optimized
CPU code can be obtained. Furthermore, the relative increase in speed for new GPU
generations is greater than the corresponding increase for CPUs making the GPU a
very attractive platform.

A recent area of research is using the GPU for general purpose computations. Exam-
ples of algorithms which have been implemented on the GPU are fluid simulations
[10], linear algebra [9], and signal processing [18]. Future work includes extending
the PyGPU compiler to allow programming all aspects of the GPU including general
purpose numerical algorithms. Also, the presented method ought to be suitable for
compiling embedded languages to other platforms such as ordinary CPUs.

Another interesting area for future research is studying how the approach used here
integrates with that of PyPy [15]. Of particular interest is reusing parts of the PyPy
framework to be able to handle more general examples, including the above general
purpose uses of the GPU as well as targeting other platforms.

64

Bibliography

[1] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: hardware
design in haskell. In ICFP ’98: Proceedings of the third ACM SIGPLAN inter-
national conference on Functional programming, pages 174–184, New York, NY,
USA, 1998. ACM Press.

[2] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken-
neth Zadeck. Efficiently computing static single assignment form and the con-
trol dependence graph. ACM Transactions on Programming Languages and Sys-
tems, 13(4):451–490, October 1991.

[3] Conal Elliott. Programming graphics processors functionally. In Haskell ’04:
Proceedings of the ACM SIGPLAN workshop on Haskell, pages 45–56, New York,
NY, USA, 2004. ACM Press.

[4] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded lan-
guages. In SAIG ’00: Proceedings of the International Workshop on Semantics,
Applications, and Implementation of Program Generation, pages 9–27, London,
UK, 2000. Springer-Verlag.

[5] Kris Gray. DirectX 9 programmable graphics pipeline. Microsoft Press, 2003.

[6] Paul Hudak, Tom Makucevich, Syam Gadde, and Bo Whong. Haskore music
notation - an algebra of music. Journal of Functional Programming, 6(3):465–
483, 1996.

[7] Simon Peyton Jones, editor. Haskell 98 Language and Libraries. Cambridge
University Press, April 2003. ISBN: 0521826144.

[8] John Kessenich, David Baldwin, and Randi Rost. The OpenGL shading
language. http://developer.3dlabs.com/documents/index.
htm. 3DLabs, Inc Ltd.

[9] Jens Krüger and Rüdiger Westermann. Linear algebra operators for GPU im-
plementation of numerical algorithms. ACM Trans. Graph., 22(3):908–916,
2003.

65

BIBLIOGRAPHY

[10] Youquan Liu, Xuehui Liu, and Enhua Wu. Real-time 3d fluid simulation on
GPU with complex obstacles. In Proceedings of Pacific Graphics 2004, pages
247–256, October 2004.

[11] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:
a system for programming graphics hardware in a C-like language. ACM Trans.
Graph., 22(3):896–907, 2003.

[12] Michael McCool, Zheng Qin, and Tiberiu Popa. Shader metaprogramming.
In Thomas Ertl, Wolfgang Heidrich, and Michael Doggett, editors, Graphics
Hardware, pages 1–12, 2002.

[13] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. ACM Trans. Graph., 23(3):787–795, 2004.

[14] Numerical python. http://numpy.org.

[15] Pypy - an implementation of python in python. http://codespeak.
net/pypy/.

[16] Armin Rigo. Representation-based just-in-time specialization and the psyco
prototype for python. In PEPM ’04: Proceedings of the 2004 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manipulation, pages
15–26, New York, NY, USA, 2004. ACM Press.

[17] M. Salib. Starkiller: a static type inferencer for python. In Proceedings of the
Europython conference, 2004.

[18] Sean Whalen. Audio and the graphics processing unit. www.node99.org/
projects/gpuaudio/gpuaudio.pdf, 2005.

66

Paper IV

PyGPU: A high-level language for high-speed image
processing

Calle Lejdfors and Lennart Ohlsson
Dept. of Computer Science

Lund University
Lund, Sweden

{calle.lejdfors|lennart.ohlsson}@cs.lth.se

ABSTRACT

Image processing is an area with many computationally demanding
algorithms. When implementing an algorithm the programmer has to
make the choice of either using a high-level language, thereby gaining
rapid development at the expense of run-time performance. Or, using
a lower-level language having higher run-time performance, but also a
higher implementation cost. In this paper we present PyGPU, an em-
bedded language that enables image processing algorithms to be written
in the high-level, object-oriented language Python. PyGPU functions
are compiled to execute on the graphics processing unit (GPU) present
on modern graphics cards, a streaming processor capable of speeds more
than a magnitude higher than those of current generation CPUs. We
demonstrate a number of common image processing algorithms, show-
ing how these can be implemented succinctly and clearly using high-level
abstractions, while at the same time achieving high performance.

Submitted for publication

1. INTRODUCTION

1 Introduction

Using a high-level language for writing software comes with many benefits. The code
is typically easier to read and understand, making spotting bugs easier. The time
spent programming is reduced since the programmer need not worry about low level
details such as memory management and data storage formats. In the field of image
processing, MATLAB [16] is a popular choice of high-level language. MATLAB is
based around an array programming model in which algorithms are expressed on
whole images instead of their individual pixels. For example, adding two equal sized
images A and B is written simply A + B.

The downside of high-level languages is poor performance. Even though the individ-
ual operations have efficient implementations, the overall performance is generally not
enough for computationally intensive applications such as real-time motion-tracking
or high-resolution video post-processing. To overcome this lack of performance it is
often necessary to implement the algorithm in a lower-level language, such as C/C++
or FORTRAN, instead. However, this comes at a substantial increase in implemen-
tation cost, mainly in terms of programmer effort. Using a third-party image pro-
cessing library such as Intel’s Integrated Performance Primitives (IPP) [9], OpenCV
[18], or Mimas [1], that provide optimized versions of standard algorithms, it is pos-
sible to reduce this cost somewhat. However, the total implementation cost of using
a high-performance, lower-level language is typically much greater than when using a
higher-level language.

Recently, there has been increased interest in using the graphics processing unit (GPU)
present on modern graphics cards as a computational co-processor. The GPU is a
highly specialized processor that provides very good performance. On some problems
it is capable of outperforming current-generation CPUs by more than a factor of ten
[13]. Programming the GPU is done using specialized languages such as NVIDIA’s
Cg [15], Microsoft’s HLSL [6], or GLSL by the OpenGL ARB [12].

Unfortunately, taking advantage of the performance of the GPU requires expressing
an algorithm in terms of graphics primitives such as polygons and textures. Doing
this requires intimate knowledge of modern real-time graphics programming. Conse-
quently, implementing image processing algorithms to take advantage of GPU comes
at a significant implementation cost, even compared to using lower-level languages.

In this paper we present PyGPU, a language for programming image processing al-
gorithms that run on the GPU. It is implemented as an embedded language [8] in the
high-level, object-oriented language Python [21]. PyGPU using a point-wise image
abstraction that, together with the high-level features of Python, allows image pro-
cessing algorithms to be expressed at a high level of abstraction. By using the GPU
for execution, PyGPU is able to achieve performance in the order of 2–16 GFLOPS
without optimizations even on mid-range hardware. This is more than enough to
perform real-time edge-detection, for instance, on high-definition video streams.

The rest of this paper is organized as follows: In Section 2 we introduce PyGPU
and show a number of example image processing-related algorithms. In Section 3 we

69

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

discuss performance considerations. Section 4 contains an overview and discussion of
PyGPU and how the restrictions and capabilities of the GPU affect how algorithms
are implemented. In Section 5 we summarize the contributions made in this paper.

2 PyGPU

PyGPU is a domain-specific language for image processing with a compiler that can
generate code which executes on the GPU. It is implemented as an embedded lan-
guage in Python. An embedded language is constructed by inheriting the function-
ality and syntax of an existing host language. This enables PyGPU to get a lot of
high-level language features for free. Python, with its dynamic typing and flexible
syntax, allows the embedding to be made very natural manner. Furthermore, using
the extensive reflection support of Python, the PyGPU compiler can be implemented
very concisely as described in [14].

The fundamental abstraction in PyGPU is its image model. An image is modeled
as a function from points on a 2-dimensional discrete grid to some space of colors
(RGB, YUV, gray scale, CMYK, etc). As will be shown, this functional model admits
expressing image processing algorithms concisely using the high-level language con-
structs of Python. Also it has the advantage of mapping naturally to the capabilities
and restrictions of the GPU.

Below is a small PyGPU function implementing a simple skin detector. It uses the
fact that the color of human skin typically lies within a bounded region in the chromi-
nance color plane:

@gpu
def isSkin(im=DImage, p=Position):

y,u,v = toYUV(im(p))
return inRange(u, uBounds) and \

inRange(v, vBounds)

Looking at the function we see that it has a decorator named @gpu. This is a directive
to PyGPU’s compiler to generate code for the GPU for this function. The default
values, DImage and Position, are type-annotations that are required to compile the
function for the GPU.

Apart from these details the function looks like ordinary Python code. The function
body shows that to determine if the pixel p contains skin we first transform the color
value of the pixel p in the image im to the YUV color space. Then we check if the red
and blue chrominance values u and v both lie within the specified bounds.

Applying the skin detector to an image is done by calling it as an ordinary Python
function:

skin = isSkin(hand)

Note that the position argument is omitted, the skin detector is applied to the whole
image. The result is shown in Figure 4.1.

70

2. PYGPU

Figure 4.1: Skin detection

The functions toYUV and inRange are examples of functions from the standard library
of PyGPU. This library also provides standard mathematical operations such as basic
arithmetic operators, trigonometric functions, and logarithms. These operations work
on both scalars and, element-wise, on vectors. PyGPU provides vectors of dimension
two, three, or four. Vector operations such as scalar products, and multiplication by
scalars are provided through operator overloading, giving an obvious semantics to an
expression such as

v + a

where v is some vector and a either a vector or a scalar.

2.1 Convolutions

The skin detector is an example of the most basic kind of image operations where
each pixel in the result image only depends on the pixel at the same position in the
sources image(s). Many algorithms, however, require access to multiple source image
pixels to compute a single pixel in the result image. Convolution operations, such as
differentiations and filters, are typical examples of such algorithms. One example of
a convolution is the Sobel edge detector seen below. The edge strength of a pixel is
determined as the length of an approximation of the image gradient.

@gpu
def sobelEdgeStrength(im=DImage, p=Position):

Sx = outerproduct([1,2,1], [-1,0,1])
Sy = transpose(Kx)
return sqrt(convolve(Sx, im, p)**2 + \

convolve(Sy, im, p)**2)

The gradient is estimated by the convolution of the so called Sobel kernels, one for
the horizontal and one for the vertical direction. One can conveniently be expressed
as the outer product of two vectors and by symmetry the other is the transpose of the
first one.

71

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

This example shows a particularly powerful aspect of PyGPU. The functions
transpose and outerproduct are not PyGPU functions but come from Numar-
ray, an established high performance Python array programming library implemented
in C [7]. And yet these functions can be used in code that is compiled for the GPU.
The reason this works is that the compiler uses generative techniques [3] to partially
evaluate the code at compilation time [14].

In addition to allowing the use of third-party extension libraries, this generative fea-
ture makes it possible to use high-level language constructs such as lists and list com-
prehensions or built-in standard Python functions even though these features cannot
be directly translated to the GPU. For example, the convolve function used above
can be succinctly expressed as:

def convolve(kernel, im, p):
return sum([w*im(p+o)

for w,o in zip(ravel(kernel),
offsets(kernel))])

The Numarray function ravel is used to compute the column-first linearization of
the kernel. Using the built-in Python function zip to combine each kernel element
with its corresponding offset (computed by the offsets helper function), the list of
weighted image values can be expressed as a list comprehension. The final result is
then computed by the standard Python function sum.

2.2 Iterative algorithms

The operations presented thus far have been algorithms where the result is computed
in a single pass. Many operation use an iterative strategy where successive applica-
tions gradually improve the quality of the result. One example of such an algorithm
is anisotropic diffusion filtering [20] that allows efficient removal of noise without
simultaneously blurring edges in an image. One step of Perona-Malik anisotropic
diffusion can be expressed as

@gpu
def pmAniso(edge=DImage, im=DImage, p=Position):

offsets = [(1,0), (-1,0), (0,1), (0,-1)]
return im(p) + 0.25*sum([f(edge, im, p+dp, p)

for dp in offsets])
def f(edge, im, x, p):

return g(0.5*(edge(x)+edge(p)))*(im(x)-im(p))

def g(x):
return e**(-x/(K*K))

The function pmAniso is the main function that is compiled for the GPU and the
functions f and g are helper functions which are generatively evaluated during the
compilation process. The function g controls the conduction coefficients of the dif-
fusion process with K determining the slope. The choice here is one of the functions
used in the original paper.

72

2. PYGPU

Figure 4.2: Perona-Malik anisotropic diffusion.

Iteratively applying the diffusion operator to an image can either be done by the
standard PyGPU function iterate or by direct loop as shown below:

edges = edgeStrength(im)
for i in range(n):

im = pmAniso(edges, im)

This results in successively more smoothed versions of the original image. Figure 4.2
shows an example image and the result of applying 400 iterations of the anisotropic
diffusion operator using K = 0.25.

2.3 Reductions

One common pattern in the above examples is that the result of the operation is always
another image. In image analysis, however, it is often the case that the result of an
operation is instead some overall property of the image, for example the maximum or
average image color. These kinds of operations are called reductions, operations which
reduce the size of an image down to a single value or set of values. For example, a
function which computes the pixel-wise sum of an image can be implemented as:

def sumIm(im):
return reduceIm(add, im)

Here, the function add is passed as an argument to a general reduceIm operation.
This function is provided by PyGPU and works analogously to Python’s built-in
reduce but on 2-dimensional images instead of on lists. It is implemented as an
iterative algorithm similar to the example in the previous section. Its implementation
will be shown in Section 2.6.

A useful example of a reduction is the calculation of the center of mass of a region in
a binary image. It can be used, for instance, to approximate the center of a hand or
face detected by the skin detector above. The center of mass is the average position of
all pixels in the region and can be computed as:

73

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

Figure 4.3: Center of mass

def centerofmass(im):
return sumIm(pos(im))/sumIm(im)

@gpu
def pos(im=DImage, p=Position):

return p*im(p)

The result of applying the center of mass detection algorithm to the result of the skin
detector above can be seen in Figure 4.3.

2.4 Multi-grid operations

One of the advantages of programming in high-level languages is that the abstrac-
tion mechanisms available makes it possible to package complex operations as basic
building blocks that can be used to construct even more complex operations. As an
example we will show the implementation of an operation from the notion of Poisson
editing introduced by Pérez, Gangnet, and Blake in [19]. The example is called seam-
less cloning and it is a technique for pasting parts of one image into another in such
a way that there is no visible seam between the two images. The idea is to solve the
Laplace equation for both images and only replace the differences from these solutions
in the pasting operation.

The Laplace equation states that the sum of the second derivates should be equal to
zero. In the case of discrete images this is equivalent to saying that a pixel should be
equal to the average of its four nearest neighbors. This average is computed by the
following PyGPU function.

@gpu
def crossAverage(im=DImage, p=Position):

offsets = [(1,0), (-1,0), (0,1), (0,-1)]
return sum([im(p+o) for o in offsets])/4

Using the standard higher-order PyGPU function masked, that applies a function
within a given mask and leave the values outside unchanged, we can express one part
of the Laplace equation solver as:

74

2. PYGPU

source target

source0 target0

mask result

Figure 4.4: Seamless cloning

x = masked(crossAverage, m)(x)

The statement is of the same form as in the anisotropic diffusion example above. It can
be used as the basic step in an iterative solver where each iteration yields a successively
better solution. The complete implementation of seamless cloning can be expressed
succinctly as:

def solveLaplace(x, mask):
return iterate(n, masked(crossAverage, mask), x)

def seamlessCloning(source, target, mask):
source0 = solveLaplace(source, mask)
target0 = solveLaplace(target, mask)
return = (source-source0) + target0

An example of seamless cloning can be seen in Figure 4.4.

The Laplace solver above will eventually reach a solution, but it converges very slowly.
For the example in Figure 4.4 it requires on the order of 10 000 iterations to compute
source0 and target0, respectively. A standard technique to improve convergence
is to use a multi-grid approach where solutions are first found at a lower resolution.
This approximate solution is then used as input to solving the problem at the higher
resolution level, giving a better initial value for the solution and thereby achieving
faster convergence. By changing the definition of solveLaplace to

75

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

def solveLaplace(x, mask):
return maskedMultigrid(n, crossAverage, mask, x)

The example instead converges in around 200 iterations. The maskedMultiGrid

solver is available in the standard library of PyGPU. Its implementation will be shown
in Section 2.6.

2.5 Sparse operations

The kind of image operations where the parallelism of the GPU is most efficiently
used are dense operations, where the computations involve all pixels in the image. All
operations we have shown so far are all examples of this kind. Sparse operations on the
other hand operate only on a well chosen subset of points in the images, for example
feature points such as detected corners. The irregular access pattern used by sparse
methods make them less suitable for implementation on the GPU.

Some kinds of operations use a combination of dense and sparse methods. One class
of such operations are active contours or snakes [11] where a polygon is used to define
an image area that is interesting in some sense. The contour can automatically search
for its area by iteratively moving the polygon until a local minimum is found on a
suitably defined energy function. This function typically consists of a weighted average
of two separate components: the internal energy and the external energy. The external
energy is a measure of the image being analyzed, whereas the internal energy is a
measure of the shape of the contour itself, for example its smoothness.

The idea is to sample the neighborhood of each vertex of the snake and if any position
in this neighborhood gives the vertex a lower energy it is moved to this position. This
step is then repeated as many times as needed. A simple implementation of active
contours is:

def externalEnergy(im, vs, o, v):
return im(vs(v)+o)[0]

def internalEnergy(vs, o, v):
p,x,n = [vs((v+i)%nVerts)[0:2]

for i in [-1,0,1]]
x += offset
m = (p+n)/2
return norm(x-m)/norm(p-m)

def totalEnergy(wInt, wExt, im, vs, o, v):
return wInt*internalEnergy(vs, o, v) + \

wExt*externalEnergy(im, vs, o, v)

@gpu
def energyOptimize(wInt=Float, wExt=Float,

im=DImage, vs=DImage, v=Int):
offsets = array([[0,0],

[1,0], [-1,0],
[0,1], [0,-1]])

energies = [totalEnergy(wInt,wExt,im,vs,v,o)
for o in offsets]

76

2. PYGPU

Figure 4.5: Contour detection using the snake algorithm

return vs(v) + min(zip(energies, offsets))[1]

Here, the parameters im and vs contain the image we are optimizing over and the
vertices of the polygon, respectively. The weights wExt and wInt contain the relative
weights of the external and internal energy. The use of min relies on the fact that
comparison between tuples in Python is defined lexicographically. This means that
we will find the energy minimum since this is the first member in each tuple. The
corresponding offset of that energy minimum is given as the second tuple entry.

The input image used for the external energy is typically not the image being analyzed
but rather some preprocessed version, for example a segmented version with edge
enhancements. The internal energy shown here is simply a measure of how far a
position is from the midpoint of the two neighboring vertices. This choice will give
a “rubber band”-like snake contour where a enclosed region is always convex. Many
other variants are possible. The result of applying the snake algorithm is shown in
Figure 4.5.

2.6 Implementation of some generic operations

In the previous sections we have used some generic high-level operations such as
reduceIm and maskedMultigrid. Although these are very general and powerful,
their implementation in PyGPU is still fairly simple.

The reduction operator is implemented by successively applying the base operation
to blocks of the image, resulting in smaller and smaller intermediary results. When
the size of the image is 1 × 1 it will contain the sought quantity as illustrated in
Figure 4.6. For a square image having sides that are a power of two, the operation can
be implemented in PyGPU as:

block = array([(0,0),(0,1),(1,0),(1,1)]

def reduceIm(f, im):
@gpu
def _reduce(im=DImage, p=Position):

return f([im(2*p+o) for o in block])

77

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

Figure 4.6: Block-wise reductions

while im.size[0] >= 1 and im.size[1] >= 1:
im = _reduce(im, _targetSize=im.size/2)

return im

This inner function, which is the one executed on the GPU, successively applies the
function f to 2× 2 blocks of the image im until it is reduced to a single 1× 1 image.
The actual reduction in image size is achieved by the parameter _targetSize which
is implicitly made available on all PyGPU compiled functions with a default value of
the size of the input image.

A multi-grid solver first finds an iterative solution on a coarse resolution of the image
which is then used as the initial value on successively finer resolutions. This masked
multi-grid solver in PyGPU can be expressed as:

def maskedMultigrid(n, f, mask, x, minSize):
y = None
for x, m in reversed(zip(averageR(im, minSize),

averageR(mask, minSize)):
if not y: y = x
else: y = masked(inflate(y), m)(x)
y = iterate(n, masked(f, m), y)
return y

The averageR helper function generates a sequence of successively coarser represen-
tations of an image down to size minSize. The function inflate does the opposite,
i.e., it computes the input to the next higher resolution level.

3 Performance

Although the compiler of PyGPU does not yet implement a number of important
optimizations it typically achieve between 0.5 and 4 GPixel operations per second
(roughly equal to 2 to 16 GFLOPS) on the examples shown in this paper. This means
that a 9-tap convolution filter can be applied to a 500 × 500 RGBA color image in

78

3. PERFORMANCE

No. texture Texture reads
No. pixel ops. accesses Gpixel ops./s (GB/s)

Convolve (3× 3) 27 9 0.56 3.0
Convolve (7× 7) 151 49 0.65 3.4
Skin detection 57 1 3.9 1.1
Anisotropic diffusion 43 10 0.58 2.1
Laplace solver 18 4 0.60 2.8

Table 4.1: Performance figures for some of the examples

about 13 ms. The examples were run on a NVIDIA GeForce 6600 graphics card, a
lower mid-range card at the time of writing.

Table 4.1 gives a summary of the performance figures for the most representative
examples in this paper. The execution times are essentially proportional to the number
of pixels times the number of instructions in the compiled shader program to execute
for each pixel. They also include a constant overhead for each pass for setting up
the graphics cards, passing parameters to the GPU program, and constructing the
result texture. This overhead corresponds roughly to the computation of a couple of
thousand pixels, meaning that it is negligible for larger images.

The theoretical peak performance of the NVIDIA 6600 card of our test setup is ap-
proximately 4.8 GPixel operations per second (300 MHz core clock, 8 pixel pipelines
using instruction co-issuing) with an peak memory bandwidth of 4 GB/s (500 MHz
bus clock, 128 bit bus bandwidth, 64 bits per memory access). As we see from the
performance figures, programs that perform more computations relative to the num-
ber of texture accesses per pixel perform very well. For example, the skin detection
algorithm is able to reach 80% of the computational peak performance.

However, programs that perform many texture accesses per computed pixel quickly
become bounded by the available memory bandwidth. This is particularly true for the
convolution filters that achieve 75% and 85% bandwidth utilization, but with only
11% and 13% computational efficiency, for the 3× 3 and 7× 7 case, respectively.

This figures indicate that the key limiting factor in many GPU programs is memory
bandwidth. At present, PyGPU is not optimized for minimizing bandwidth con-
sumption. For example, all computations are carried out on 32-bit floating point
4-tuples, which means that both gray scale and binary images are treated as full four
channel RGBA images. By using more compact storage formats, as well as reducing
the precision to 16-bits where possible, the bandwidth requirements will be reduced
and performance increased further. These improvements, as well as trying to locate
other bottlenecks in the processing pipeline, are things which will be incorporated in
future versions of PyGPU.

79

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

4 Discussion

As we have seen the PyGPU language combines high-level programmability with high
performance. Being embedded in Python allows functions running on the GPU to be
called transparently from Python, greatly facilitating integration of GPU algorithms
in larger applications. Furthermore, since PyGPU functions are, at the same time,
valid Python functions GPU programs can be tested on the CPU before being run
on the GPU. This allows standard debugging and testing tools to be used for GPU
programs also, reducing the need for more specialized GPU debugging tools [4].

The performance of the GPU comes from it having a pipelined, highly parallel ar-
chitecture. This introduces a number of restrictions on what kinds of operations are
possible to implement on the GPU. It lacks writable memory. Memory is read only
and may only be accessed only in the form of textures containing up to 4-tuples of
floating point values. This means that Python features such as lists and objects cannot
be used directly on the GPU. But, as we have seen, they may be used to construct
programs. For information on how this is achieved, see [14].

Also, GPU programs can only write output to a predetermined image location. This
means that GPU algorithms must be, using the terminology of parallel computation,
written using a gather, rather than scatter, approach. This restriction is encoded in
PyGPU’s image model, where algorithms are expressed in a point-wise manner using
only gather operations. This is also the reason why the general reduce operator,
used to do summation for example, is implemented as a iteration over a sequence of
progressively smaller images, rather than using a straightforward accumulation loop.

This lack of scatter support sometimes creates difficulties. One such problematic
example is computing histograms. This operation is traditionally implemented as a
loop over all pixels, having time-complexity linear in the number of pixels. Since
the GPU does not support for scattered writes it must instead be implemented as a
reduction

histogram = reduce(countBins, toBins(im))(0,0)

where toBins sorts pixels to their respective bins and countBins count the number
of occurrences in each bin. GPUs only support outputting a limited number of values
per pixel, currently 16 floating point values. With a larger number of bins than this
the algorithm must be run multiple times resulting in a time-complexity on the order
of the number of pixels times the number of bins. This illustrates that not all kinds
of image processing algorithms are suitable for the GPU.

4.1 Related work

PyGPU was inspired by Pan written by Elliott et al. [5], which is an domain-specific
language for image synthesis embedded in the function language Haskell [10]. In
particular, the functional image model of PyGPU is very similar to that of Pan, but
where Pan uses a smooth model, PyGPU focuses on a discrete formulation that allows
easier pixel-wise addressing for operations such as convolutions etc.

80

5. SUMMARY

Other domain-specific languages for using the GPU as a computational co-processor
have been proposed. For example, BrookGPU by Buck et al. [2] is a compiler for
writing numerical GPU algorithms in the Brook streaming language, an extension
of ANSI C that incorporates streams and kernels, representing data and operations
on data, respectively. The stream and kernel primitives can be mapped to efficient
programs running on the GPU. Also, Sh by McCool et al. [17], for instance, uses
C++ templates to provide stream processing abstractions similar to those of Brook.
These two projects are based on C and C++, respectively. By using Python, PyGPU is
able provide higher-level facilities for writing GPU image processing algorithms than
currently possible with these approaches.

4.2 Future work

The current syntax of PyGPU requires the programmer to clearly make the distinction
between the parts of the code that should execute on the GPU and the parts that
should executon the CPU. A nice feature would be to have the compiler be able to do
this allocation by itself. Apart from relieving the responsibilities of the programmer,
it would also allow the compiler to perform more optimizations, both on for storage
requirements and also load-balancing.

Also, in order to translate a Python function to the GPU, PyGPU’s compiler must
know the types of the function parameters. Currently, this information must be
provided by the programmer. An interesting improvement would be to remove this
requirement and instead have the compiler automatically infer the necessary type in-
formation.

5 Summary

We have presented PyGPU, a language for image processing on the GPU embedded
in Python. The functional programming model used by PyGPU allows algorithms to
be translated to efficient code running on the GPU, while still retaining the high-level
language features allowing them to be implemented concisely and clearly. The perfor-
mance of PyGPU is good, allowing many algorithms to be run on real-time streaming
video sequences without need for special optimization. This enables the implementor
to receive rapid feed-back during algorithm development and debugging.

Also, by using language embedding the high-level benefits of Python are transferred
onto PyGPU, allowing features such as list comprehensions and higher-order func-
tions to be used in the construction of image processing algorithms. By writing at a
higher level of abstraction the code is easier to read and understand. Furthermore,
constructing more complex algorithms from simpler building blocks facilitates error
detection, making algorithm development and implementation faster and easier.

81

PAPER IV: PYGPU: A HIGH-LEVEL LANGUAGE FOR HIGH-SPEED IMAGE

PROCESSING

82

Bibliography

[1] Bala Amavasai. Mimas toolkit. http://www.shu.ac.uk/mmvl/
research/mimas/.

[2] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike
Houston, and Pat Hanrahan. Brook for GPUs: stream computing on graphics
hardware. ACM Trans. Graph., 23(3):777–786, 2004.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: meth-
ods, tools, and applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[4] Nathaniel Duca, Krzysztof Niski, Jonathan Bilodeau, Matthew Bolitho, Yuan
Chen, and Jonathan Cohen. A relational debugging engine for the graphics
pipeline. ACM Trans. Graph., 24(3):453–463, 2005.

[5] Conal Elliott, Sigbjorn Finne, and Oege de Moor. Compiling embedded lan-
guages. In SAIG ’00: Proceedings of the International Workshop on Semantics,
Applications, and Implementation of Program Generation, pages 9–27, London,
UK, 2000. Springer-Verlag.

[6] Kris Gray. DirectX 9 programmable graphics pipeline. Microsoft Press, 2003.

[7] Perry Greenfield, Jay Todd Miller, Jin chung Hsu, and Richard L. White. nu-
marray: A new scientific array package for python. PyCon DC 2003, March
2003.

[8] Paul Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4es):196, 1996.

[9] Intel integrated performance primitives. http://www.intel.com/cd/
software/products/asmo-na/eng/perflib/ipp/.

[10] Simon Peyton Jones, editor. Haskell 98 Language and Libraries. Cambridge
University Press, April 2003. ISBN: 0521826144.

[11] Michael Kass, Andrew Witkin, and Demetri Terzopolous. Snakes: Active coun-
tour models. International Journal of Computer Vision, pages 321–331, 1988.

83

BIBLIOGRAPHY

[12] John Kessenich, David Baldwin, and Randi Rost. The OpenGL shading
language. http://developer.3dlabs.com/documents/index.
htm. 3DLabs, Inc Ltd.

[13] Jens Krüger and Rüdiger Westermann. Linear algebra operators for GPU im-
plementation of numerical algorithms. ACM Trans. Graph., 22(3):908–916,
2003.

[14] Calle Lejdfors and Lennart Ohlsson. Implementing an embedded GPU lan-
guage by combining translation and generation. To appear in SAC’06 Program-
ming Language track, 2006.

[15] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J. Kilgard. Cg:
a system for programming graphics hardware in a C-like language. ACM Trans.
Graph., 22(3):896–907, 2003.

[16] Matlab. http://www.mathworks.com/.

[17] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan, and Kevin
Moule. Shader algebra. ACM Trans. Graph., 23(3):787–795, 2004.

[18] Open source compter vision library. http://www.intel.com/
technology/computing/opencv/.

[19] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. ACM
Trans. Graph., 22(3):313–318, 2003.

[20] Pietro Perona and Jitendra Malik. Scale-space and edge detection using
anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 12(7):629–639, July 1990.

[21] The Python language. http://www.python.org/.

84

