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with C++ and PHIGS

Dag M. Brück

Department of Automatic Control
Lund Institute of Technology

Box LL8, 5-22L 00 Lund, SWEDEN

E-mail: dag@control.lth.se

.A.bstract

This paper describes an interactive tool for modelling of control systems.
The focus is on practical experiences with c++ as a development tool,
and the need for multiple inheritance, parameterized types, and exception
handling, in this application. Experiences with a new graphics standard,
PHIGS, using a,n object-oriented programming style, are briefly covered.

1-. Introduction

Modelling has traditionally been one of the main topics in control engineering. Control
systems are complex and require careful design and analysis, in particular, as errors in
control system design can become expensive. There exists today a great need for computer
aided design of control systems.

Our research is centered around tools for model development and simulation. The
objective is to design the basic concepts needed for structuring models, and to design
the internal computer representation of control system models. An experimental tool for
modelling a¡rd simulation has been developed in KEE, an expert system shell.

The experimental tool will form the basis of an engineering tool for the designer of
control systems. In such a product, fl.exible, efficient and affordable system software must
be used. We have therefore evaluated C++ as the future implementation language, and
PHIGS as the main graphics system. A simplified experimental tool has been implemented
in C++. Whereas the KEE version supports all essential parts of an engineering tool, the
C** version only provides graphical interaction; the internal structure is quite similar, in
order to meet future needs.

2. Modelling of control systems

The model of a control system can be regarded as a hiera¡chy of components. One of
the fundamental ideas is to build libraries of component models, ranging from basic items
(for example, a pump) to more complex objects (for example, a distillation column). The
designer has the option of working bottom-up, putting predefined components together to
form a new component, or top-down, decomposing a complex object into manageable pieces,





or most likely a combination of bottom-up and top-down design [Nilsson, 1987]. The key
word is reuseability - of earlier designs and of standard components.

A single component can be described in many ways: graphicall¡ textually using
block diagrams (describing its structure), or mathematically (for example, in state-space
or transfer-function form). It is also necessary to use models with diferent degrees of
detail and complexit¡ for example, an efficient simulation model for normal operation, and
an extended model for analyzing error conditions. All these models a¡e needed in diferent
stages of the design, and should be available in a model development tool. It should be noted
that the colnmon "machine" view may be replaced by a ttmaterialst' view. For example, a
chemical compound may carry all knowledge in the model, while the stations in the refinery
only signal changes of state.

'With our set of basic concepts, a model has three properties: it has terminals which
provide an interface to the outside world, parameters for ad.apting its behaviour, and at
least one realization that defines its behaviour. Only data in the terminals a,re available to
other components; there are no global data, except a time reference for simulation.

'We currently support two types of realizations: primitive realizations using ordinary
differential equations, and structured realizations using block diagrams. A structured real-
ization consists of submodels and connections (between submodels, and between submod.els
and the terminals of the enclosing model). Interaction between components is defined only
by connections.

Simulation is often used to analyze control systems, and the designer should be able
to simulate his/her model using this tool. Simulation introduces a number of interesting
mathematical problems, which will not be covered further in this paper [Mattsson, 1988b].
The connection concept also raises interesting questions: for example, what is a legal
connection, and how do you define compatibility between terminals [Mattsson, 1988a].

According to current trends, it is also necessary to throw in an expert system and a
couple of knowledge bases.

3. Direct model representation

Modelling of control systems maps nicely to the ideas in object-oriented programming.
It is natural to represent a model with a class in the programming language used for
implementing the design tool. It is then possible to develop new models using inheritance
and specialization of classes.

Inherita.nce is not suitable for describing all kinds of relationships between models.
Multiple representations of a single model (textual or mathematical), and specialization (a
car is a special kind of vehicle), can be described with inheritance. Decomposition of a
model into its components is different. For example, that a car has tyres does not mean
that the car can be inflated, so inheritance is not the right mechanism; components are
represented by class members (Listing t ).

The direct way of representing models with classes is used in the experimental tool
developed in KEE. Instantiation is used, for example, to create objects that contain
simulation data. A necessary key feature of KEE (a,nd. object-oriented systems like Loops)
is the possibility to dynamically define new classes while the program is running.
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class vehicle {
char* otrner;

);

class car : public vehicle {
tyre fl, fr, 11, rr;
engine e;

Ì;
Listing 1. Direct representation of a car model, derived from vehicle.

4. Model representation in C**
If interactive model development is presumed, direct representation is not possible in C**,
simply because classes ca¡rnot be defined at runtime. Consequentl¡ components cannot
be represented directly with class members, and inheritance cannot be used to derive new
models. To be able to interactively create models, we must implement a dynamic framework
for representing models, realizations, etc. This framework is simila,r to the class systems
comrnonly based on Lisp, but the implementation task is simplified by the structure of
control systems.

It should be noted that the engineer developing control systems will see a¡r interactive
modelling tool; Cf * is used only to implement the dynamic framework, not as a control
system description language. One can also say that the object-oriented aspects of model
representation have been separated from the object-oriented aspects of C**. Still, object-
oriented programming effectively supports the design and implementation of the framework.

fnternal data structures

Now, let's plunge straight into the internal data structures of the C** program. The code
listed below is slightty simplified; constructors and destructors are not listed, and most
general puqpose routines have been omitted. An example will be given below.

All objects axe components; they have a name, and they can be inserted into lists
(tistins 2).

class component {
char* narne;
link next;

public:
virtual void nenuactionO ;
virtual void redrawo;

Ì;
Listing 2. Deflnition of the b¿sic c.omponent claas

Method rsdraw is a schoolbook virtual function in C**: every component has a
graphical representation, so all components must implement redraw in some way. Graphics
will be described further in Section 5.

When the user points at a component and presses a mouse button, some components
(". 9., models and realizations) will respond by displaying a menu. Other components
(". g., terminals and connections) are not associated with a menu. In C++, which in its
present shape only supports single inheritance, method menuaction must be declared as a
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virtual function in the base class, component. 'When multiple inheritance becomes available
in C++, menuaction would more naturally be the property of a class associated purely
with the user interface; models and realizations would be derived from this class, but not
terminals and connections [S troustrup, 1987a].

Generally speaking, rnultiple inheritance enables us to separate the user interface and
the modelling structure more effectively. There will be one "thread" of inheritance for
the user interface (drawing block diagrams, and menu actions when applicable), and one
thread of inheritance for the modelling of control systems (components, models, etc.). The
development of class libraries, in particular, will benefi.t from multiple inheritance. For
example, functions provided by the operating system a,nd the window marì.ager, will be
easier to describe and use in an object-oriented fashion with multiple inheritance.

The model contains terminals and. realizations, in C** represented with linked lists
(tisting 3). General purpose lists of components are used, which effectively corrupts the
type security in C**. In addition, the prograrnmer must bother about explicit type
conversions. Alternativel¡ generic lists could be faked with macros. Future versions of
C++ may incorporate true generics, also called parameterized types [Stroustrup, 1987b].
The need is evident, even in this small example.

clase model : public conponent {
list teminals;
list realizations;

void new-terninalO;
void new-realization0 ;

public:
void menuactionO;
void redrawO;

);
Liating 3. Definition of the model class.

There a.re two different kinds of model realizations: primitive realizations based on
equations, and structured realizations based on hiera,rchical block diagrams (Listing b).
There is no ttone-oft' concept (for example, allowing a pointer to a set of classes) irx C++,
so anì. additional class realizatÍon is needed (Listing 4). In this case, there are no real
problems; in other cases, an awkward data structure might be forced upon the prograrnmer.
The one-of concept is av¿ilable with full type checking in KEE, and has reduced the need
for common base classes.

class realization : public conponent {
];
Listing 4. The common part of all realizations.

A submodel establishes a relation between two models, one fully enclosed in the other
(tisting 6). With a structured realization, a model is described by the behaviour of its
submodels and by its connections. The submodel also has a graphical meaning. 'When

a model is simulated, the submodel must be "instantiated" by the model representation
framework. Although many submodels may refer to a single model (". g., a pump), every
submodel requires a private data area to hold simulation variables.
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class eqn-realization : public realization {
list equations;

void new-equationO i

public:
void menuactionO;
void. redrasO;

);

class struct-realization : public realization {
list submodels;
list connections;

void new-subnodelO;
void. new-connectionQ ;

public:
void menuactionO;
void redrawO;

];
Listing 5. Primitive and structured model realizatione.

class submodel : public conponent {
point position, síze;
model* parent;
model* sub;
void* data;

public:
void noveO;
void scaleO;
void instantiateO;
voíd redrawO;

Ì;
Listing 6. Definition of the submodel class.

-A.n example

A small example will demonstrate the data structures above: a servo built from a regulator
and a motor. On the screen, the engineer will see a block diagram as in Figure 1. Input to
the servo is the reference value, also called the setpoint. Output from the servo is the actual
position of the actuator. The regulator controls the motor, but the common feedback loop
has been left out to simplify the example.

The textual representation in Figure 2 reveals the most important C++ objects needed
for the servo. The servo object has two terminals and a realization (terminals and
connections will not be described in more detail). The realization is of course structured, and
contains two submodels. It also contains three connections: the reference value imported
to the regulator, the control signal from regulator to motor (shown in Figure 2), and the
exported actuator position.
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Servo

Regulator Motor

Figure 1. A servo with two submodels.

The submodel objects (for example, MotorSub) serve two purposes in this example.
FirstlS the graphical appearance of a structured realization is determined mainly by the
position and size of the submodels. This information cannot be stored in the model object;
a certain kind of motor can be used as a submodel in many different models. Secondl¡
the submodels establish a relationship between the enclosing model (the servo), and the
model objects used as components (e.g., the motor). The two pointers in the submodel
object are used, for example, when defining connections. The references between models,
realizations and submodels a,re shown graphically in Figure 3. The role of the submodel
when simulating the control system is not discussed here.

The C** objects used for representing the regulator and the motor are similar to
the servo objects. The main difference is that the regulator and the motor have primitive
realizations, probably expressed with differential equations.

Exception handling

Handling of exceptions (errors and similar uncommon events) is a problem in all software
systems. Ordinary programming techniques, using status flags and if-statements, lead either
to bad program structure and cluttered code, or to programs that take proper behaviour
for granted. A well designed exception handling mechanism (as in Ada), is an invaluable
asset in practical software development. Exceptions increase the readability of the program
and indicates the programmer's assumptions about expected and unexpected events lGiezzi
and Jazayeri, 1982, page 22].

The model development tool is quite complex, and many inconsistencies must be
checked step-by-step, at different times. Exception handling is useful for restoring the
internal data structures to a previous well-defined state. Storing as little redundant
information as possible makes this task easier, but may increase complexity in other areas.

The absence of exception handling is a serious flaw of C++. Ada style exception
handling, which is also available in C [Lee, L983], is very effective, but a more flexible
scheme may be called for in C++. Some people say that exception handling is needed for
developing good class libraries.

Finall¡ it should be noted that friend functions have been used sparingly (for example,
a connection needs free access to terminals and submodels), and proved to be extremely
useful. By bending the rules a little, a natural data structure has been maintained; ever-
expanding modules because of too strict encapsulation is often a problem with Modula-2
and Á,da.
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Model: Servo
Tetminals: [Ref, Pos]
Realizations: [ServoRealiz]

Struct-rcalization: ServoRealiz
Submodels: [RegSub, MotorSub]
Connections: [RegSub.u - 

MotorSub.u,

Submod,el: RegSub
Position: (-0.6,0)
Size: (0.5,0.5)
Parcnt: --+Servo
Sub: --+Regulator

Submodel: MotorSub
Position: (0.6,0)
Size: (0.5,0.5)
Parcnt: --+Servo
Sub; --+Motor

Model: Regulator
Terminals: [Ref, u]
Realizations: [RegRealiz]

Eqn-realization: RegRealiz
Equations: t...1

Model: Motor
Tetminals: [u, Pos]
Realizat,ions: [MotorRealiz]

Eqn-rcalization: MotorRealiz
Equations: t...]

Figure 2. Textual representation of the servo; terminals, connections and equations are not
shown. Square brackets denote a list, an arrow (---+) a pointer reference.

5. Using PHIGS

PHIGS (Programmer's Hierarchical Interactive Graphics Standard) is a neï/ 3D graphics
standard, aimed at interactive CAE/CAD applications [Brown, L985]. PHIGS should be
regarded as an extension and a complement to the Graphical Kernel Standard fHopgood
et al., L983], but not as a replacement.

The basic unit in PHIGS is the structure (cf. segment in GKS). A structure contains
elements for drawing, graphical attributes, and transformations. It is possible to build
hierarchies of structures (i. e., one structure may call another), and to edit the contents of
a structure; this is not possible in GKS. Application data may also be stored in a structure,
possibly a useful feature.
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Parent

Sub

Figure S. References between models, realizations and submodels of the servo. Terminals,
connections and equations are not shown.

In order to take maximum advantage of the hierarchical stmctures in PHIGS, one struc-
ture is associated with every object in the C** program. This one-to-one correspondence is
very convenient; changes are normally localized to a single PHIGS structure, and complete
regeneration of the graphics can be avoided. As a typical example, consider changing a
pump model the structure associated with the pump must be changed, but models using
the pump as a submodel only refer to a structure identifi.er, and need no changes. The
fine granularity of the graphics hierarchy causes an extra overhead at redraw, which is quite
tolerable in this application, though. It can be noted that the model development tool is not
a typical PHIGS application, in the sense that it uses the hierarchical features of PHIGS,
but not the 3D capabilities.

The correspondence between the object hierarchy and the PHIGS structure hierarchy
is shown in Figure 4. The object structure on the left is the same as in Figure 3, but the
regulator objects are not shown. A PHIGS structure is associated with each object, as
indicated by dashed arrows. The PHIGS structures on the right form a parallel hierarchy,
logically connected with "execute structure" primitives. The graphical representation of a
model is determined by the realization and its associated structure. The PHIGS structures
are in reality more complex, for example, to control picking (see below).

The problem of associating a C++ object with a structure, was solved by some fancy
programming. A C++ object can easily refer to a structure by storing the structure
identifier, but a problem arises when control must go from a structure to the associated
C++ object (for example, when the object's menu action should be invoked). The solution
is to use the object's this pointer as pick identifier, after conversion to an integer. When
the PHIGS system returns a pick identifier, the identifier is converted back to a "pointer to
component." The exact nature of the object is not known, but all components implement
method menuaction (Listing 2).

PHIGS can display graphics on multiple "workstations," which in a workstation envi-
ronment corresponds to multiple windows. By using so called filters, different graphical rep-
resentations can be displayed with a single structure hierarchy. Regrettably, multiple work-
stations are not yet supported by some PHIGS implementations. Event mode input and rub-
berband lines may also be missing in current implementations. Wind.ow management is not
available in the PHIGS standard, and may therefore cause considerable practical problems.
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Servo

ServoRealiz

MotorSub

Motor

MotorRealiz

rectangle(...)

execute(S ervoRealizStruct)

text(-1.. 1, 1, "Servo")

execute(RegSubStruct)

execute(MotorSubStruct)

scale(...)

translate(...)

execute(MotorStruct)

rectangle(...)

execute(MotorRe alizS truct)

text(0,0, "Motor")

Figure 4. Parallel hierarchies of c** objects (left) and PHIGS gtructures (right)

6. Conclusions

In our experience, a dynamic environment like KEE is the best choice for research and rapid
prototyping. An engineering tool requires a less expensive and more effi.cient implementation
tool that is av¿ilable on many computers; in this case, Ca¡ is superior. W'e have not made
a detailed evaluation of KEE versus C++, but the current work shows that programs and
data structures using the object-oriented parts of KEE can be implementedln C++ with
reasonable effort.

The major difficulty is that C++ does not support dynamic creation of classes. For
this reason, models of cont¡ol systems cannot be directly expressed as classes in Cf*,
so an object-oriented framework must be implemented. The data abstraction and object-
oriented programming aspects of C** provide good support for this framework, and a
good programming environment in general. Multiple inheritance, parameterized types and
exception handling are much needed extensions to C*f .

PHIGS is a powerful new graphics standard, but current implementations need im-
provement. Window management remains a problem area.

Acknowledgements

I am grateful for many interesting discussions with Sven Erik Mattsson and. Mats Andersson,
and for comrnents on the manuscript by Mats Andersson, Ola Dahl and the reviewers. This
work was supported by the Swedish National Board for Technical Development (STU).

9





References

Bnown, M¡.xrNn D. (1985): Underctanding PHTGS, Template Graphics, San Diego, CA,
USA.

Gunzzt, C¡'nro and Mu¡rol J¡.z.lvunr (1982): Programming Langaage Concepús, John'Wiley & Sons.

HopcooD, F. R. 4., D. A. Ducn, J. R. G¡,u,op and D. c. surcr,rrrs (1gg3): rntrc-
duction to the Graphical Kernel Standatd (GKS), .A,cademic press.

Lnn, P. A. (1983): ('Exception Handling in C Programs," Softwarc - 
pnctice and.

Experience, 13, 389-405, May 1-983.

M¡.ttsso¡t, Svnt EnIx (1988a): "On Model Structuring Concepts," Pl.roc. 4th IFAC
Symposiumon Computet-Aided Design in Contrcl Sysúems, Beijing, p. R. China.

M¡.ttssott, Svnr.r EnIK (L988b): "On Modelling and Differential/Algebraic Systems,',
S imulat ion, Äccepted for publication.

NtlssoN, Bnnr.¡r (1987): "Experiences of Describing a Distillation Column in some
Modelling Languages," CODEN: LUTFD2/TFRT-7362, Department of Automatic
Control, Lund Institute of Technolog¡ Lund, Sweden.

srnousrRur, Blanro (1g87a): "The Evolution of c++: 1gg5 to 1ggz,', prcc. TJSENTx
C*+ Works.hop, Santa Fe, NM, USA.

Stnousrnue, BrnnNn (198?b): "Possible Directions for c+*,,, prcc. USENTp c**
Workshop, Santa Fe, NM, USA.

l0




