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Introduction

Robotic systems intended for autonomous operation need an ability of adaptation to new

and rapidly changing operating conditions. In such a situation r¡arious automatic control

methods become important. A standard regulator, however, might be insufficient for

successful solutions of control problems. It is therefore of interest to consider adaptive

control for complex multi-input multi-output regulators.

The term 'adaptive controf is here used in the terminology of control theory [a]. An

adaptive regulator is itself able to tuning and self-modification in continuous operation to

increase flexibility and operation autonomy.

The vast literature on adaptive control of linear systems is only partly appticable

to the control problems of robotics [4], [11]. In general, multiinput multi-output adap-

tive control is the desirable tool to solve problems of coupled motion [7]. The nonlinear

robot dynamics with rapidly changing operating conditions also make the adaptive control

problems difficult.

There is however an advantage compared to the setting of adaptive control of lin-

ear systems. The structural information is considerable and there are usually only few

unknown parameters. The adaptive control problems of robotics are thus meaningful to

consider and a special literature has appeared in this field [g], [14], [1], [10].

Vukabratovié, et aI [15] developed a linear estimation model suitable for identification

of the payload of a partially known robot system. Craig et aI l3l applied ideas of model

reference adaptive control and developed a regulator and stability proofs. Slotine and

ti [13] approached the problem in a similar way but with weaker assumptions. They

presented a regulator that is linear in the parameters and without any requirement of

acceleration measurement.

Problem statement

The following objections could be raised against the solution of Craig el [3]. First, it
requires measurement of the angular acceleration of the manipulator joints. Second, the

algorithm involves matrix inversion of the moment of inertia matrix frk,ù containing

estimated parameters. This is computationally difficult and time consuming. Third,

the parameter estimation problem is not solved in a quite satisfactory way because the
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algorithm needs an additional, fairly complicated reset action of parameter estimates to

avoid control problems. Finall¡ the reference signal is restricted to be a signal generated

by a strictly positive real linear system transfer firnction.

Slotine and Li [13] recognized the problem with acceleration measurement and the

matrix inversion and tried to solve this problem in a similar setting. Their technical inno-

vation makes use of the skew-symmetric system matrix properties and thereby eliminates

the problems of measurement and computation. Stability properties are however not quite

satisfactory with respect to position errors. Elimination of steady-state errors is not guar-

anteed in their firndamental algorithm. The authors attempt to modify the algorithm [1-B]

(sec. 2.2.2) to obtain stability but then make formal errors. They formulate a "Lyapunov

function candidate" containing a linear combination of velocity and position error state

vectors (" = ä+ Âfr). There is however a 'forgotten' subspace of the state. The suggested

Lyapunov firnction candidate is not a function of the complete state vector and is therefore

not formally correct. A formal requirement is that the Lyapunov function is a firnction

of all state vector components and not only a subset thereof. Moreover, the authors in-

correctly claim [13; p. 5L] global asymptotic stability although no parameter convergence

can be guaranteed.

Exlupr,o 1

Define with the notation of [13] the transformed state vector

(1)

with the associated Lyapunov function candidate

v" : sr H(q)s (2)

úntroduce also the ftrnctions

st = -Ìtl * í; vt = sTH(q)st (3)

Slotine and Li [13] show correctly that lz"(t) and c(t) converge to zero as the time ú

increases. However, the state vector s1 orthogonal to s is not represented in the function

I¡". Simulations shows that I{(ú) develops irregula¡1y with time also when s is very small,

see Fig 1. Ûr some simulations of the example tr/1 remains constant and rather large.

Sometimes it slowly tends towards zero for non-zero initial conditions.

s = l* Itl, À = r\r > o
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Figure l. simulation of the example from slotine ¿nd Li ([r3]; app. 1) with Â : Srzx¡ ¿nd
non-zelo initial conditione. The upper graph shows the ttl,yapunov functiont' %. The lower left
graph shows 7r. St¿te vector components depicted to the right. All graphs vs. time [s].

The suggested Lyapunov function candidate of [13; 2.2.2.] is not formally correct. Simu-

lations verify the existence of dynamics not modelled in the stability investigation. The

arguments presented in [13] for a claim on global asymptotic stability are thus not valid.

It is the purpose of this paper to provide Lyapunov functions for analysis and design

of stable solutions to the problem of direct adaptive control of robotic manipulators when

velocity and position measurements are arrailable.

Manipulator dynamics

'We model the manipulator dynamics as a set of z rigid bodies connected [2]. Consider

the equations:

ak),i* C(q,ø)ø+ G(q¡ = r (4)

'We have used the following notations where time arguments have been omitted.

q Joint angular positions (dimq : z x 1)

q Joint angular velocities (dim{ - n x 1)

d Joint angular acceleration (dimq - n x L)

22
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Í
mk)
c(q,q)

c(q)

Joint torques

Moment of inertia M(q) = Mr(q\ > O

Coriolis, centripetal and frictional forces

Gravitational forces

(dimz: n x 1)

(dimM - nx n)

(dimC-nxn)
(dimG - nx n)

(5)

It is assumed that the positions g and velocities { but not the accelerations g are available

fo¡ measurement. It is further assumed that the control input is equal to the torque vector

r. It is assumed that the matrices MrCrG have a known structure and contain constant

but unknown parameters. The matrices MrCrG are linear in the unknown parameters.

Control objective

The desired reference trajectory for the manipulator to follow is assumed arr¿ilable as

bounded fi¡nctions of time in terms of joint accelerations g- angular velocities {r, and

angnlar positions g* In the case where accelerations and velocities are not known they

may be conveniently generated with a reference signal r as input to a reference model of

the type

ti, + Xoù, * Kpqn: Kr (dimg, : d.imr : n x 1) (6)

The dynamic system (6) with the z x z-matrices KprKp,K chosen to obtain desired

properties of stiffness, damping, and gain should be stable. This reference model need not

be strictly positive real as is often required in the adaptive control literature t4]. A stable,

nonlinear reference model is also feasible. Define the errors of accelerations, velocities,

and positions as

ßl li-:i)
The control objective is to follow a given, bounded reference trajectory {r,g" without

position errors fl, or velocity errors i-.

(7)
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Lyapunov design

The most straightforward approach to solve the control problem is via estimation of the

rrnknown coeffi.cients of M , C , G of (a) by making a separation of the unknown matrix coef-

ficients from the signals. This is possible because (4) is linear in the unknown parameters.

Reordering of (a) gives an equation where g denotes the vector of p unknown parameters

and gr<ps denote fi¡lctions of signal variables.

T=p(d,q,q)0*ço(,i,q,q); dimd= p\!, dimrp -nxpt dimrpg =nXL. (8)

where prps ate computable provided that g, qrq are available for measurement. The

acceleration g is however often not available. In the absence of acceleration measurement

it is desirable to estimate the unknown parameters d and solve the control problem without

the impossible computation of grgo.
'We use Lyapunov theory to do this because a successful solution will determine not

only the solutions of controller and estimator design but also the associated stability

properties [5], [9], [12], [6].

A state space description

Let î denote the estimate of the constant but unknorvn parameters g and let ã denote

associated the parameter errors. This gives

(e)

t(t) = ( a'fO {Ø lr@)' dimã - (2n+ p) x 1 (10)

The error dynamics of the manipulator may be obtained from (4), (6), and (?) as a state

space description where the derivative of ã is

-M-t(q)c(q,q)

0=000í

The full error state space representation is found as

i;ç,¡=tffl] fnxn
0px,.

- ù - M -' (q)(c(q) + C (q, q)q,)
0rrx'
Opxr"

Olzx¿

0nx¿

oo*n

l.I

0nxp
0nxp
0or,

t(t)+

M-r(q),
0

0(t)
(11)

6
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or ü'ith shorter notation

ä1t¡ : A(q,q)l(t) * Bo(,i,,ç,q,q) + B.(q;r,ù (12)

where B" contains the free control variables r and â available for assignment of the control

law.

A Lyapunov function candidate

Ä Lyapunov function candidate must represent all relevant states ofthe investigated sys-

tem. It must also increase with increasing magnitude of the state vector in all directions

in the state space [5]. A quadratic firnction of ã fulfils these criteria. Introduce Lyapunov

function candidates with the following composition scheme:

L: Choose the constant positive definiter¿Xrr,matrices Poo= Plo ) 0, O = Or > 0, and

the p x p-matrix Poo = Pl, > 0.

2: Compose t}rie (2n + p) x (2n* p) weighting matrix

Poo (13)

0

0

Peo

0

0

q)

Po(q)= 
['Í

3 Compose the full-ranÏ (2n + p) x (2n f p) matrix tI for state-space transformations

( In*n Ptz 0r."o ì
û = I 0,n*,, f,"x,- or*o I i ptz = p;crn (14)

I oo*,n opxn rr*o )
with dimU = dirnpo - (2n+ p) x (2n+ p)

Choose the Lyapunov firnction candidate4:

v(rþD =rrz'1t¡no(q)ã(¿); po(q) = urepk)v (15)

Lyapunov design

The time derivative of the Lyap'nov firnction candidate is then

í,qt1t¡¡ = 
Lr*p¡no(qq(t) 

+ tr(t)po(q)ii(t) (16)

It is necessary to make ä such that the functionV < 0 in order to obtain a stable system.

The following lemma solves this problem.
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Lpuu¡, 1

Let Pqq,Pee,dl,D be positive definite matrices and define Ptz = P;tO. Let g denote the

vector of unknown parameters of (a). Let tþ, ,þo be defined from the relation

,þUi,, q, Q,, Q, 8,)0 * rþo(ti,, e, Q,, e, lt ) =

I: -i*(í* Przí)* mk)ki" - Pní)*c(q,ø)ø+ c1q¡t dirn{ - nx p (12)

For any choice of Pnn : Plo) 0, Pss = Ple) 0, O = Of ) 0, D = DT ) 0 there is an

adaptive control law

îG,rir'll,,Q,8r) = -PoeLrþrG+ errq (18)

r((i,,q,e,,q,e,iî¡ = t¡î + úo - (D + Pqq?-r PqrXã+ frzí) * pccl (19)

such that the function (15) is a Lyapunov function with the time derivative

i,=-({ {)a[lJ , a=[n+ffi'P* ,:rii:^,nJ,0 (20)

Proof: See appendix 1

R,ernark:

The interpretation of Poo is that of stiftress while D, O represent the damping terms. The

matrices Poo, D, O may be chosen independently for e.g. prlrposes of performa,nce tlning.

T¡rponnu l-

The robot manipulator (a) with constant but un-known parameters g together with the

adaptive control law

îki,, d, Q,, (t, (t ) = - Poo' rþr @ + err¡¡

r(d,,Q,Q,,8,e,iî¡ = ,¡tî + úo - (D + pqqe-t pqo¡i - nf;orn¡ (21)

is stabilized to its reference trajectories q, with decreasing position and velocity errors Q-,

Tfo"roychoiceof thematrices Pcq=Pl>0,Pse- pere) 0, O=O ) 0rD = DT >0

The system is uniformly globally stable in the sense of Lyapunov. the manipulator

link velocity and position errors V,¡ ur".t2-stable and.t*-stable if the reference trajec-

tories q, q, ate bounded. f]
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PrcoÍ1,

The uniform stability in the sense of Lyapunov follows from the existence of a negative

semidefinite Lyapunov function derivative as shown in lemma 1. The control law (21) can

be calculated from (14), (18), anrl (19).

Finite initial conditions and q,, q, e L* mean that Iz(ã(0)) is bounded. A finite value

of the Lyapunov function I/ necessarily means a finite magnitude of the tracking errors fl,

ä. fn" I--stability follows from the fact that the Lyapunov function can only d.ecrease

with time.

When initial conditions are bounded and Q,rQn e ¿oo it follows that I/ is bounded and

(22)

The .t2-stability follows because I/ is negative definite for non-zero tracking errors fl,

Proposition 1

The derivative of I/ is negative definite for non-zero tracking errors ¡, ¡. fne system is

therefo¡e uniformly asymptotically stable with respect to the manipulator positions and

velocities for constant parameters d.

Proof: This follows from (20) and [5] (chapter 55, def. 55.2).

Rematk The Lyapunov function deúvative (20) is negative semidefrnite with rcspect to l.
No parameter convetgence can be guatanteed,

A simulated example

'We consider the two-link example from [2] (sec. 6.2) with masses rn1, rn2 [kg], lengths 11,

fz [m], angles h, øz lradl, and torquês Í1, T2 [Nm]. The end-effector load rn2 is assumed.

to vary rather drasticly. The equations are:

t = M(q)ii* C(q,ùø+açq¡ o = rnz (23)

I,* ({ {) a [Ð " = I"* -irglt¡'¡at( v(ã(0)) < oo

q.

m2ll * 2m2l¡12c2* (-t * m2)ll
m2ll + m2l{2c2

m2I/ I rn2ll/2c2

*rlï (24)

lm2l7l2s2Q2
0

(25)

I

M(q') =

-'r*to'or= 
[ #r;:n



m
2

c(q,q) =

G(q) =

,þt

,þz

m

2

q

q
2

1I
1

2

f
1

Figure 2. A two-link manipulator with masses '¡mr and. m2.

-2m2ll2s2q2 -m2ll2s2q2
m2l{2s2q1 0

Tn2l2!c12 i (*t ! m2)hgc1 )
rn2l2!c12 )

(26)

(27)

(31)

with the short notation c2 - cos(g2), crz = cos((l + 92) etc.

,þ- I?o, + t'r(ot + u2) * lltzcz(2q + u2) * lizszqz(q + tu, - 2qt - gz') * g(lzcr"* r1c1)

(122 * ll2c2)av l tfu2 * tl2s2(q1+ løza) * *tz'ctz 
(2g)

m1l21q ! m1\gc1
'þo 

=
0

(2e)

u=q*P1zl u=,i,-Prrl; (80)

Choose Pcc = 1fzxz, O = 10/zxz, D = 2.512y2, and Ps6 = 0.25. The resulting control law

is then

8t - ítr
8z - Qzr

r¿r = L [kg], mz =? [kE],

i,Ð-,í';"-i::)
[*], lz=1[m]

T1

T2

)
( qt - qr,)
lqr-qr,)5

'i, -ii:) -'r' It

t
1

4rþr

)u*
It=

:.0=-

The simulations were made with a sudden change ftom m2 = 1 [kg] to m2 = 10 [kg] at

time ú - 1- during the transient of recovery from the initial conditions, see Fig B. Notice

1_0
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Figure 3. Simulation of the robot (23) with the adaptive control law (31). Upper graphs
show gr¡grr ¿nd eztgztt reepectively. Middle grapha show ri and 12. Lower left graph showr
the estimatc 0 of tnz. The lower right graph ghows the Lyapunov function (ff) that decre¿ses
cverywhere except ¿t timc ¿ : I [s] due to thc sudden change of the payload rnr. All grapha vs.
timc [e].

that the Lyapunov firnction decreases everywhere except at time ú = 1 due to the sudden

change of the payLoad m2.

'When the accelerations are measurable

It was shown that the Lyapunov function decreases as long as there is an error in the

velocity or position states of the manipulator compared to the reference trajectories. This

is not necessarily valid for the parameter errors. Craig et aI l3l showed a similar result

although with stronger assumptions than here. Assume therefore that the acceleration is

available for measurement as considered in [3]. We now show how to significantly improve

the parameter stability and conve¡gence properties.

It is then possible to cornbine the above adaptive control with prediction error esti-

mation based on (8). Compute the prediction error

(32)

0

I

e(d, q, q;ù = î?i, q, q) - r(d, q, q) = ç(ti, q, ùl
L1



and add a term to the parameter estimation law (18) so that

:.
îki, , i, !,,, Q,8,) : - Peet ,þr (ï + err6 - Pu' ç' (ti, q, q)e(,i, q, q;ù (BB)

Then the derivative of the Lyapunov firnction is modified to

i'=-({ {)atl) ,re(,i,q,q;î); e>o (a4)

Much better stability properties for the parameter estimation are thus accomplished. The

Lyapunov function deriv¿tive y it rro* negative semidefinite rvith respect to non-zero

parameter errors ã. Th""" is now a global asymptotic stability if the p x p-matrix gr g is

positive definite.

Proposítion 2

The robot manipulator (4) with the adaptive control law (21), (33) is asymptotically stable

if

ere > 0 (s5)

Rank conditions on gT g set a constraint on the maximal number of identified parameters

(dimpTg = p x p) with possible global asymptotic stability to p 1 n. tr

Exlupr,p 2

A reordering of (23) as shown in (8) gives

,^ _ ( (ll*2ll2cz+ Il)4, +(IZ +t1t2c2)ij2 - (2tl2s2q1q2lt¡l2s2q:) + (tzs"tz * trgcr) ìv - [ UZ * I1zcz)th r Il4, * U2s2q1* tzsctz )
(36)

and
( m1l2r8t f ræ1l1gc1 )oo=t^"^'o-¡-¡¿-¡J (37)

The vector g is zeto only when no torques are applied. The matrix gT p i, therefore never

singular except when only gravitation torques affect the robot arm.

r=po=n ,2 (,it+kllt)"t 
I trrl""l. o )

The identification (33) with support of prediction error estimation is thus globally asymp-

totically stable whenever there are torques applied. A simulated example in Fig. 4 with

Pqc.: 2fzxz, dl : 2f2y2, Pel = L shows improvement of performance compared to Fig 3.

L2
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Figure 4. Simul¿tion of the robot (23) with thc adaptive control law (38). Uppcr graphs
rhow g1,lr' and lzrÍz¡t respectively. Middle graphs show 4 and 12. Lower'left graph 

"hãwsthe eetim¿te 0 of m2. The lower right graph shows the Lyapunov function (15) The lower right
graph shows the Lyapunov function (15) that decreaseg everywhere except ot iitn" t = 1 [s] due
to the sudden change of thc payload rn2. Atl grapha vs. time [e].

Discussion

There are two problems of adaptive control that often need separate treatments although

the literature sometimes fails to distinguish between the two cases. Adaptive control of an

object with constant but unknown parameters is different from the case r¡vhen the system

parameters have rapid variations. To remain stable for arbitrary parameter variations it is
in general necessary to demand global asymptotic stability, i.e., also parameter estimation

stability. A factor 0 muy otherwise result in a positive term of I/ and hence a system with

limit cycles or instability. 'Slow' parameter variations may however often be sufficiently

modelled as constant, unknown parameters. The results of Craig et at l3l, Slotine and

ti [13] , and theorem L of this paper all belong to this latter category. 'Thue' adaptive

control with requirements both on stable regulation and parameter tracking for arbitrary

variation in the system parameters is only met by the adaptive control law (1g), (BB).

The algorithms of this paper provide PD-type controllers with adaptation. The P-

and D-actions can be chosen to provide damping and stiffness to assure good properties

13



during adaptation transients as well as for non-adaptive operation. First, bandwidth or

response time is determined by choice of Poo while the damping is chosen with O arrð, D.

Regular tuning trade-offs between performance and noise sensitivity are applicable.

There is an important advantage compared to standard direct adaptive control. The

choice of a closed-loop specification does not interfere with the parameter estimation. Re-

adaptation is therefore not necessary for each new choice of closed-loop properties. The

matrices PnnrP¡erD,O are significant for the choice of adaptation bandwidth but do not

interfere with the closed-loop bandwidth which is determined by (ir,g,rÇr. Very rapid.

adaptation is thus possible.

Some non-standard features of adaptive control appear in this context: Structural

knowledge is fully utilized so that only few parameters need identification. Partial knowl-

edge of the nonlinear control object can thus be helpful to track rapidly varying parameters.

Notice also that the estimation is based upon predictions of the control input, [7], and not

of the output as is common in adaptive control of linear systems.

Conclusions

We have presented an adaptive control algorithm for robotic manipulators. Lyapunov

functions and Z2-bounds are presented. Uniform global asymptotic rtability with re-

spect to the manipulator positions and velocities is guaranteed for constant, u¡-known

parameters. The algorithm is suitable for rapid adaptation to rapidly changing system

parameters. The identification nray be supported by prediction error estimation when

acceleration measurement is available. The adaptation properties improve considerably

and we can show uniform parameter stability.

The manipulator operation bandwidth and the adaptation bandwidth may be chosen

independently via the refe¡ence signal generator and the weighting matrices PoqrPssrD,dl

of the algorithm. .4. new manipulator operation bandwid.th may thus be chosen without

necessary re-adaptation or other harmful interference. The matrices Poo and D areperfor-

mance tuning parameters that are free to choose with a guarantee of closed-loop stability.

Rapid adaptation with damping as a stability safeguard is thus provided.

The contributions of this papff compared to earlier work are the following: Our

assumptions are the same as in Slotine and Li [13] but our algorithm provides better

stability properties with respect to both positions and velocities. Our algorithm contains

L4



thealgorithmof [13] asadegeneratecase(O-0, Pqq- 0).LrcontrasttoCraig etall}l
we avoid requirements of acceleration measurements and positive real reference models.

Finall¡ with acceleration measu¡ement arailable we have shou'n system stability in-

cluding parameter stability. Stable, 'true' adaptive control of robots with system parame-

ter variations is thus provided. A capability of accurate, rapid adaptation is demonst¡ated.

A 'criteriont for uniform asymptotic system stability is given.

L5



Appendix L

rrlt¡: ({ø {$) lrø)' (10)

Introduce the Lyapunov firnction candidate

v (t (t)) = 
Lrt, 

1t¡ rok)t (t) (15)

The time derivative of the Lyapunov function candidate is

i, 1t qt¡¡ = 
Lrtr 

çt¡ Þo(s)ã(¿) + ir þ) po(q);i U) (,41.1)

The first term is

'¡u, g p"to)ã(r) = (u ã (t))r i,D(q)(u ã (t))r (A1.2)

or explicitly

(ut(t)) (á1.3)

and contains the time derivative of the inertia matrix U(q).Further calculations give

iu(q)
0rrx 

",
0o",,

0rn"r. O¿xp

0¿xn Onxp

0pxr, Ûnro
Iu' U) Po(o)ã(t¡ = (u i(t))r

v = lut¡r (PpU A(I-t + Þe¡1ut'¡ * pou Bo * poU B.

*M-ctM(q)hz

( )

0¿xp

0nxp

ooro

(A1.4)

(,41.5)

(,41.6)

(A1.7)

where

Pp(I AU-t * Þp : Poq

Opxn

(C - M(q)Ptz)Ptz

-PooPt'
opx'

T

0PpU B. -

- M (q),i, - G(q) - C (q, q)q,

0r"xrn

()pxn

i
Peeo

PpA Bs -

Recall ,þ,rþo of (17) and define the functions

rs(t) = rþî+ rþo = -'rfrf1* r,zí) * frk)?i, - prrh * Ck,ø)t+ Gçq¡ (Á1.8)

r"(t) = -(D + pqqÙ-t pqq)@ + rrrv¡ * peql

Choose the control input as

r=rotr.

(á1.e)

(á1.10)

l_6



The torque is composed of two components r¡rTc. The first component is computed via

the estimated r¡nknown parameters while rc may be computed without these parameters.

Consider the quantity

Collecting terms ..

= -(uõ)r
D + PqqQ-L Pqq -Poq onxp

-Poo O Onxp

0¡rxa 0px,n 0oro

(ut) + (ui\r

The last term is eliminated if the adaptation law is chosen as

i
îki", d, 8,, e, 8,) = - P;; rþ' (í + rtr¡¡

so that for constant parameters d it holds that

L
Peel(,i,, g, g,, Q, q,) + 4rT (l * I:lzû = 0

v = çat¡r (lrooou-t + Þfi@t) + pouBo+ pouB") =

,þki,, d, e,, e, q)l
0

Pee0
(AL.L2)

and with ã of (7)

( D + Pqqo"-lPqq

v--trl np;orD
I oo*,

DPqqtn

an*Lor;ota
0pxn

æ=r- A Ûznxp

Opxzn 0o*o

(,41.13)

(/,1.14)

(At.r7)

0r¿xp

0nxp
0pxp

r

(á1.15)

It ¡emains to show that the matrix Q of (L7) is positive definite. Make the Cholesky

factorization O = Rr R, D = LT h with -R, -01 invertible. With

L- L1 LLP;LLQ

-R-, Poo orrx'
(,41.16)

one easily verifies that Q = LTL. Since.[ is invertible the conclusion Q ) 0 follows. The

second equality follows from the definition (14) and Prz = P*tn so that

Q=QT=

The robot (1) with the adaptation law (L8) therefore results in a negative semidefinite

Lyapunov firnction. E

D + PqqQ-LPqq DPI;A
aPqqt D ttP;q\ Dp;qta

L7
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