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Introduction

Robotic systems intended for autonomous operation need an ability of adaptation to new
and rapidly changing operating conditions. In such a situation various automatic control
methods become important. A standard regulator, however, might be insufficient for
successful solutions of control problems. It is therefore of interest to consider adaptive
control for complex multi-input multi-output regulators.

The term ‘adaptive control’ is here used in the terminology of control theory [4]. An
adaptive regulator is itself able to tuning and self-modification in continuous operation to

increase flexibility and operation autonomy.

The vast literature on adaptive control of linear systems is only partly applicable
to the control problems of robotics [4], [11]. In general, multi-input multi-output adap-
tive control is the desirable tool to solve problems of coupled motion [7]. The nonlinear
robot dynamics with rapidly changing operating conditions also make the adaptive control
problems difficult.

There is however an advantage compared to the setting of adaptive control of lin-
ear systems. The structural information is considerable and there are usually only few
unknown parameters. The adaptive control problems of robotics are thus meaningful to
consider and a special literature has appeared in this field [9], [14], [1], [10].

Vukabratovi¢ et al [15] developed a linear estimation model suitable for identification
of the payload of a partially known robot system. Craig et al [3] applied ideas of model
reference adaptive control and developed a regulator and stability proofs. Slotine and
Li [13] approached the problem in a similar way but with weaker assumptions. They
presented a regulator that is linear in the parameters and without any requirement of

acceleration measurement.

Problem statement

The following objections could be raised against the solution of Craig el [3]. First, it
requires measurement of the angular acceleration of the manipulator joints. Second, the
algorithm involves matrix inversion of the moment of inertia matrix M| (g,t) containing
estimated parameters. This is computationally difficult and time consuming. Third,

the parameter estimation problem is not solved in a quite satisfactory way because the
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algorithm needs an additional, fairly complicated reset action of parameter estimates to
avoid control problems. Finally, the reference signal is restricted to be a signal generated

by a strictly positive real linear system transfer function.

Slotine and Li [13] recognized the problem with acceleration measurement and the
matrix inversion and tried to solve this problem in a similar setting. Their technical inno-
vation makes use of the skew-symmetric system matrix properties and thereby eliminates
the problems of measurement and computation. Stability properties are however not quite
satisfactory with respect to position errors. Elimination of steady-state errors is not guar-
anteed in their fundamental algorithm. The authors attempt to modify the algorithm [13]
(sec. 2.2.2) to obtain stability but then make formal errors. They formulate a “Lyapunov
function candidate” containing a linear combination of velocity and position error state
vectors (s = §+ AJ). There is however a ‘forgotten’ subspace of the state. The suggested
Lyapunov function candidate is not a function of the complete state vector and is therefore
not formally correct. A formal requirement is that the Lyapunov function is a function
of all state vector components and not only a subset thereof. Moreover, the authors in-
correctly claim [13; p. 51] global asymptotic stability although no parameter convergence

can be guaranteed.

ExAMPLE 1

Define with the notation of [13] the transformed state vector
s=gd+A7, A=AT>0 (1)
with the associated Lyapunov function candidate
Ve, = s"H(q)s (2)
Introduce also the functions
s1=-A7+q  Vi=sTH(q)s, (3)

Slotine and Li [13] show correctly that V,(t) and s(t) converge to zero as the time ¢
increases. However, the state vector s; orthogonal to s is not represented in the function
V,. Simulations shows that V (t) develops irregularly with time also when s is very small,
see Fig 1. In some simulations of the example V| remains constant and rather large.

Sometimes it slowly tends towards zero for non-zero initial conditions.
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Figure 1. Simulation of the example from Slotine and Li ([13]; app. 1) with A = 51,43 and
non-zero initial conditions. The upper graph shows the “Lyapunov function” V,. The lower left
graph shows V. State vector components depicted to the right. All graphs vs. time [s].

The suggested Lyapunov function candidate of [13; 2.2.2.] is not formally correct. Simu-
lations verify the existence of dynamics not modelled in the stability investigation. The
arguments presented in [13] for a claim on global asymptotic stability are thus not valid.

O

It is the purpose of this paper to provide Lyapunov functions for analysis and design
of stable solutions to the problem of direct adaptive control of robotic manipulators when

velocity and position measurements are available.

Manipulator dynamics

We model the manipulator dynamics as a set of n rigid bodies connected [2]. Consider

the equations:
M(q)i+C(g,4)i+G(g) =7 (4)

We have used the following notations where time arguments have been omitted.

q Joint angular positions (dimg =n x 1)
g Joint angular velocities (dimg=nx1)
d Joint angular acceleration (dim§=nx1)



T Joint torques (dimT =nx 1)

M(q)  Moment of inertia M(q)=MT(g)>0 (dimM = n x n)
C(g,4) Coriolis, centripetal and frictional forces (dimC = n x n)
G(q) Gravitational forces (dimG = n x n)

(5)

It is assumed that the positions ¢ and velocities § but not the accelerations § are available
for measurement. It is further assumed that the control input is equal to the torque vector
7. It is assumed that the matrices M, C, G have a known structure and contain constant

but unknown parameters. The matrices M,C,G are linear in the unknown parameters.

Control objective

The desired reference trajectory for the manipulator to follow is assumed available as
bounded functions of time in terms of joint accelerations §,, angular velocities gr, and
angular positions g,. In the case where accelerations and velocities are not known they
may be conveniently generated with a reference signal 7 as input to a reference model of

the type

gr + Kpgr + Kpg, = Kr (dimg, = dimr = n x 1) (6)

The dynamic system (6) with the n X n-matrices Kp, Kp, K chosen to obtain desired
properties of stiffness, damping, and gain should be stable. This reference model need not
be strictly positive real as is often required in the adaptive control literature [4]. A stable,
nonlinear reference model is also feasible. Define the errors of accelerations, velocities,

and positions as

.‘q; q._q.r
g|=14-¢ (7)
a 94

The control objective is to follow a given, bounded reference trajectory §,,q, without

position errors g, or velocity errors ¢.



Lyapunov design

The most straightforward approach to solve the control problem is via estimation of the
unknown coefficients of M, C, G of (4) by making a separation of the unknown matrix coef-
ficients from the signals. This is possible because (4) is linear in the unknown parameters.
Reordering of (4) gives an equation where § denotes the vector of p unknown parameters

and ¢, po denote functions of signal variables.
T= ‘P(q’ q:q)o + ‘PO(&: q,Q)v dimé = px1, dlm‘P =nXp, dlm‘PO =nXLl (8)

where ¢, are computable provided that §,q,q are available for measurement. The
acceleration § is however often not available. In the absence of acceleration measurement
it is desirable to estimate the unknown parameters 6 and solve the control problem without
the impossible computation of ¢, ¢q.

We use Lyapunov theory to do this because a successful solution will determine not
only the solutions of controller and estimator design but also the associated stability

properties [5], [9], [12], [6].

A state space description

Let & denote the estimate of the constant but unknown parameters § and let 8 denote

associated the parameter errors. This gives
=0- 9, (7 =8 (9)
The full error state space representation is found as
~ T ~ T o~
z(t) = [ BOREONAD) ) : dimZ = (2n+ p) x 1 (10)

The error dynamics of the manipulator may be obtained from (4), (6), and (7) as a state

space description where the derivative of Z is

. E(t) —M_l(q)C(q, 4) Onxn Onxp
g(t) = [ a(?) | = Inxn Onxn  Onxp | Z(8)+
5(:) Opxn Opxn  Opxp
—& — M~Y(q)(G(q) + C(4,9)dr) M~Yq)r
+ Onxn + ] 0 (11)
Opxn a(t)



or with shorter notation

5(2) = A(9, ))3() + Bo(dr, drr 4,9) + Be(g; 7, 0) (12)

where B, contains the free control variables T and 8 available for assignment of the control

law.

A Lyapunov function candidate

A Lyapunov function candidate must represent all relevant states of the investigated sys-

tem. It must also increase with increasing magnitude of the state vector in all directions

in the state space [5]. A quadratic function of Z fulfils these criteria. Introduce Lyapunov

function candidates with the following composition scheme:

1:

Choose the constant positive definite 7 X n matrices Py = PqI('I >0,0=0T >0, and
the p X p-matrix Py = P£ > 0.

Compose the (2n + p) X (2n + p) weighting matrix

M(g) 0 0O
Pp(q) = [ 0 Pog O ] (13)
0 0 Py

Compose the full-rank (2n + p) X (2n + p) matrix U for state-space transformations

Inxu P12 Onxp
U= Onxn  Jnxn OnXp ) Py; = Pq;]-n (14)
Oan OpXﬂ IPXP

with dimU = dim Pp = (2n+ p) x (2n + p)

Choose the Lyapunov function candidate

V@EW) = 3 OPWED;  Pole) = UTPo()U (15)

Lyapunov design

The time derivative of the Lyapunov function candidate is then

V(E0) = 587 () Po(a)B(2) + 77 (1) Po( )31 (16)

It is necessary to make Z such that the function V < 0 in order to obtain a stable system.

The following lemma solves this problem.



Lemma 1
Let Pyq, Pgg, €, D be positive definite matrices and define Py5 = Pq‘qlﬂ. Let 8 denote the
vector of unknown parameters of (4). Let 9, 1o be defined from the relation

W(Grs 4, 4r1 €, )0 + Yo(dr, 4, 4r2 90, ¢5) =

_ _ng P1ag) + M(q)(§r — Prad) + C(,d)i + G(q);  dimyp=nxp  (17)

For any choice of P,y = Pqi(; > 0, Pyg = ng, >0,0=0F >0, D= DT > 0 there is an

adaptive control law

8(drrd,4r,9,9) = —Pig'¥T (G + Pisd) (18)
T(ﬁr,d,q.ra%q'-; a\) = ¢§+ o — (D + quQ_Iqu)(a"i' P12a) T qua- (19)

such that the function (15) is a Lyapunov function with the time derivative

. & D+ PQ'P, DPIQ
—_ [T ~r q]. — aq q qq 9
v=-(& ) [”] @ [ QP,D np;npqgln] >0 (20)

O

Proof: See appendix 1.

Remark:

The interpretation of Py, is that of stiffness while D, Q represent the damping terms. The

matrices Pyq, D, (! may be chosen independently for e.g. purposes of performance tuning.

THEOREM 1

The robot manipulator (4) with constant but unknown parameters 6 together with the

adaptive control law
Oy 4,4r:0,27) = P97 (T + Prad)
7(drsd 410,41 8) = Y8 + Y0 — (D + PogQ™' Pyo)i — DP07 (21)
is stabilized to its reference trajectories ¢, with decreasing position and velocity errors ¢,
&'for any choice of the matrices P,y = Pg; >0, Pg = Pe"'; >0,0=0>0,D=DT >0

The system is uniformly globally stable in the sense of Lyapunov. The manipulator
link velocity and position errors fi', g are L?-stable and L°° —stable if the reference trajec-

tories ¢,, ¢, are bounded. O



Proof:

The uniform stability in the sense of Lyapunov follows from the existence of a negative
semidefinite Lyapunov function derivative as shown in lemma 1. The control law (21) can
be calculated from (14), (18), and (19).

Finite initial conditions and ¢, §» € L™ mean that V(Z(0)) is bounded. A finite value
of the Lyapunov function V' necessarily means a finite magnitude of the tracking errors §,
4. The L*° —stability follows from the fact that the Lyapunov function can only decrease

with time.

When initial conditions are bounded and g¢,, ¢, € L* it follows that V is bounded and

/0 (¥ ) [; ] dt < /0 —V(3(t))dt < V(5(0)) < oo (22)
The L?—stability follows because V is negative definite for non-zero tracking errors ¢,
q o
Proposition 1

The derivative of V' is negative definite for non-zero tracking errors g, a’ The system is
therefore uniformly asymptotically stable with respect to the manipulator positions and
velocities for constant parameters 6.

Proof: This follows from (20) and [5] (chapter 55, def. 55.2).

Remark The Lyapunov function derivative (20) is negative semidefinite with respect to .

No parameter convergence can be guaranteed.

A simulated example

We consider the two-link example from [2] (sec. 6.7) with masses m;, m, [kg], lengths I,
I [m], angles g1, ¢; [rad], and torques 7y, 7, [Nm]. The end-effector load m; is assumed

to vary rather drasticly. The equations are:

T=M(g)i+C(0,4)i+G(a); O=my (23)
M(q) = mal3 + 2malilacs + (my + ma)l2 mall + malilaey ] (24)
e mzlg + mylilyey mzlg
1., . malilasads  Lmylylysyg
——M(q,q): [1 21229? 5 21222] (25)
2 smalilas2Gs 0



| ’ i

Figure 2. A two-link manipulator with masses my and ma.

. —2malil3824s —malylasage ]
= 2
C(q’ q) mzlllzszq.1 0 ( 6)
_ [ malagerz + (my 4+ ma)lige;
G(q) e ’mzfzycn (27)

with the short notation ¢z = cos(g2), c12 = cos(g; + q2) etc.

D= [ Hoi + B(v1 + v2) + lilaca(2v1 + v3) + Lilasada(us + dua — 261 — ¢2) + g(lacra + i)
(& + hlaca)vs + Buy + lilasa(d2 + Ldows) + +lagers

(28)

2 l
o = myliv -I(-)m1 19¢1 ] (29)
u=g+P3§ v=§ — Ppug (30)

Choose Pyg = 5I3x3, @ = 10553, D = 2.5I5y3, and Pgy = 0.25. The resulting control law

is then

§=_4¢T [?1—({11-] —8¢T [Q1—Q1r]
q2 — q2» g2 — qor

(R)=(0)o(fe) -s(aoi)-s(22m) o
my=1[kg], mp="lkg], h=1[m], I,=1[m]

The simulations were made with a sudden change from my = 1 [kg] to my = 10 [kg] at

time ¢ = 1 during the transient of recovery from the initial conditions, see Fig 3. Notice

10
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Figure 3. Simulation of the robot (23) with the adaptive control law (31). Upper graphs
show ¢1,qi1r and gz, qar, respectively. Middle graphs show 7, and 7. Lower left graph shows
the estimate 8 of ma. The lower right graph shows the Lyapunov function (15) that decreases
everywhere except at time ¢ = 1 [s] due to the sudden change of the payload ma. All graphs vs.
time [s].

that the Lyapunov function decreases everywhere except at time ¢ = 1 due to the sudden

change of the payload m,.

When the accelerations are measurable

It was shown that the Lyapunov function decreases as long as there is an error in the
velocity or position states of the manipulator compared to the reference trajectories. This
is not necessarily valid for the parameter errors. Craig et al [3] showed a similar result
although with stronger assumptions than here. Assume therefore that the acceleration is
available for measurement as considered in [3]. We now show how to significantly improve
the parameter stability and convergence properties.

It is then possible to combine the above adaptive control with prediction error esti-

mation based on (8). Compute the prediction error

&(4,4,4;0) = 7(d,4,9) — 7(d. 4, 9) = p(d, d,9)0 (32)

11



and add a term to the parameter estimation law (18) so that
8ldr: 4,4r:9,97) = ~Pig W7 (T + Prad) = Pig' ¢ (4,4, 9)e(d,d,4:9) (33)

Then the derivative of the Lyapunov function is modified to
v=— & & T) — eTe(d g,0:0); 0 34
q q Q i € e(an1q, )1 Q > ( )

Much better stability properties for the parameter estimation are thus accomplished. The
Lyapunov function derivative V is now negative semidefinite with respect to non-zero
parameter errors §. There is now a global asymptotic stability if the p x p-matrix pTy is

positive definite.

Proposition 2
The robot manipulator (4) with the adaptive control law (21), (33) is asymptotically stable
if

©Te>0 (35)
Rank conditions on ¢T¢ set a constraint on the maximal number of identified parameters
(dimpTe = p x p) with possible global asymptotic stability to p < n. O

EXAMPLE 2

A reordering of (23) as shown in (8) gives

0= [ (B + 2llaes + )Gy + (12 + hilzez)ds — (2h1l283G1da + lil2s2d2) + (lagerz + ligey) ]
(13 + hilaca)ds + 132 + hilasadf + lagers
(36)

and
(37)

The vector ¢ is zero only when no torques are applied. The matrix ¢T ¢ is therefore never

_ [ mil§ + milige ]
Po = 0

singular except when only gravitation torques affect the robot arm.

¢+ (9/l)er ]

0 (38)

T =0 =myl? [

The identification (33) with support of prediction error estimation is thus globally asymp-
totically stable whenever there are torques applied. A simulated example in Fig. 4 with

Pgq = 22, Q8 = 21342, Pgg = 1 shows improvement of performance compared to Fig 3.

12
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Figure 4. Simulation of the robot (23) with the adaptive control law (33). Upper graphs
show ¢1,¢1r and gqa,qz,, respectively. Middle graphs show 7, and 13. Lower left graph shows
the estimate 8 of ma. The lower right graph shows the Lyapunov function (15) The lower right
graph shows the Lyapunov function (15) that decreases everywhere except at time ¢ = 1 [s] due
to the sudden change of the payload m,. All graphs vs. time [s].

Discussion

There are two problems of adaptive control that often need separate treatments although
the literature sometimes fails to distinguish between the two cases. Adaptive control of an
object with constant but unknown parameters is different from the case when the system
parameters have rapid variations. To remain stable for arbitrary parameter variations it is
in general necessary to demand global asymptotic stability, i.e., also parameter estimation
stability. A factor 6 may otherwise result in a positive term of V and hence a system with
limit cycles or instability. ‘Slow’ parameter variations may however often be sufficiently
modelled as constant, unknown parameters. The results of Craig et al [3], Slotine and
Li [13] , and theorem 1 of this paper all belong to this latter category. ‘True’ adaptive
control with requirements both on stable regulation and parameter tracking for arbitrary
variation in the system parameters is only met by the adaptive control law (19), (33).
The algorithms of this paper provide PD-type controllers with adaptation. The P-

and D-actions can be chosen to provide damping and stiffness to assure good properties

13



during adaptation transients as well as for non-adaptive operation. First, bandwidth or
response time is determined by choice of P, while the damping is chosen with Q and D.
Regular tuning trade-offs between performance and noise sensitivity are applicable.

There is an important advantage compared to standard direct adaptive control. The
choice of a closed-loop specification does not interfere with the parameter estimation. Re-
adaptation is therefore not necessary for each new choice of closed-loop properties. The
matrices Pgq, Pyg, D, () are significant for the choice of adaptation bandwidth but do not
interfere with the closed-loop bandwidth which is determined by §,,¢,,q,. Very rapid
adaptation is thus possible.

Some non-standard features of adaptive control appear in this context: Structural
knowledge is fully utilized so that only few parameters need identification. Partial knowl-
edge of the nonlinear control object can thus be helpful to track rapidly varying parameters.
Notice also that the estimation is based upon predictions of the control input, 7}, and not

of the output as is common in adaptive control of linear systems.

Conclusions

We have presented an adaptive control algorithm for robotic manipulators. Lyapunov
functions and L2—bounds are presented. Uniform global asymptotic stability with re-
spect to the manipulator positions and velocities is guaranteed for constant, unknown
parameters. The algorithm is suitable for rapid adaptation to rapidly changing system
parameters. The identification may be supported by prediction error estimation when
acceleration measurement is available. The adaptation properties improve considerably
and we can show uniform parameter stability.

The manipulator operation bandwidth and the adaptation bandwidth may be chosen
independently via the reference signal generator and the weighting matrices Pyq, Pgg, D,
of the algorithm. A new manipulator operation bandwidth may thus be chosen without
necessary re-adaptation or other harmful interference. The matrices Pyq and D are perfor-
mance tuning parameters that are free to choose with a guarantee of closed-loop stability.
Rapid adaptation with damping as a stability safeguard is thus provided.

The contributions of this paper compared to earlier work are the following: Our
assumptions are the same as in Slotine and Li [13] but our algorithm provides better

stability properties with respect to both positions and velocities. Our algorithm contains

14



the algorithm of [13] as a degenerate case (2 — 0, Pgg — 0). In contrast to Craig et al [3]
we avoid requirements of acceleration measurements and positive real reference models.
Finally, with acceleration measurement available we have shown system stability in-
cluding parameter stability. Stable, ‘true’ adaptive control of robots with system parame-
ter variations is thus provided. A capability of accurate, rapid adaptation is demonstrated.

A ‘criterion’ for uniform asymptotic system stability is given.

15



Appendix 1

(1) = [f(t) (1) ‘e'T(t)]T (10)

Introduce the Lyapunov function candidate

V(E®) = 557 () Po()E() (15)

The time derivative of the Lyapunov function candidate is
.. 1. § - " o
V(3(t)) = 52" (1) Po(9)Z(¢) + 7 () Po( )2 (2) (41.1)

The first term is
%"T(t)f’o(Q)E(t) = (UZ(t))" Po(q)(UZ(t))" (A1.2)

or explicitly

1 . %M(Q) Oan OﬂXp
5% (OPo(@)Z(t) = (UE()T | Onxn  Onxn Onxp | (UE()) (41.3)

Oan Opxn 0po

and contains the time derivative of the inertia matrix M(q). Further calculations give

V= Uz)T ((PDUAU—1 + Pp)(UZ) + PpUB, + PDUBC> (A1.4)
where
_ M~ C+ M(q)Piz (C—M(q)Pi2)Piz Onxp
PpUAU + Pp = Py — P Py, Onxp (A1.5)
0px'n Opxn Opo
T
PpUB, = 0 ) ] (A1.6)
Pgol
_M(Q)ql' - G(q) - C(q’ q)Qr
PpUBy = Onxn (A1.7)
Oan

Recall 9,10 of (17) and define the functions
~ 1= o = s S
o(t) = ¥0 + 9o = —5M(7+ Pr2d) + M(q)(§ — P127) + C(,4)d + G(g) (41.8)

7(t) = —(D + quQ—Iqu)(a'+ P1aq) + Pee@ (A1.9)

Choose the control input as

T=T9+ T, (A1.10)

16



The torque is composed of two components 75, 7. . The first component is computed via
the estimated unknown parameters while 7. may be computed without these parameters.

Consider the quantity
1. - .. : =
7o — (Y0 + ho) = 19 + EM(Q + P12q) — M(g)(¢r — P129) — C(4,4)§ — G(q) =

1"’ .~ Y2 ~ 2 ~ - h =~ . . . b
= =5 M(T+ Pad) + M(9)(§ — Prad) + C(2,4)d + G(9) = ¥(dr, 4, 4r,0,0-)8  (AL.11)

Collecting terms ....

V= (Uz)T ((PDUAU‘I + Pp)(U%) + PpUB, + PDUBC) =

D + quQ_Iqu —Pyq  Onxp ¥(dr, 4, ¢r, 9, !Zr)g
= -(Uz)T -P, Q  Onxp | (UE)+ (UZ)T 0
Opxn Opxn  Opxp nga
(A1.12)
The last term is eliminated if the adaptation law is chosen as
5({1',, d; q.r; q, Qr) = _Pe_el"pT(a"" P12q~) (A113)
so that for constant parameters 6 it holds that
PogB(drrd, 6r, 0, 90) + HT(T+ Prad) = 0 (A1.14)

and with Z of (7)
D+ P, Q7P DP_'Q Onxp
V=-3T [ OP'D QP DPLQ onx,,] =

Uan Oan Opo

T

~T Q 02n><p ] F

0px2'n. Opo
(A1.15)
It remains to show that the matrix Q of (17) is positive definite. Make the Cholesky
factorization Q = RTR, D = LTL, with R, L, invertible. With

L LiP7'Q
L [ 1 e ] (41.16)
—R™ Py Onxn

one easily verifies that @ = LTL. Since L is invertible the conclusion Q > 0 follows. The

second equality follows from the definition (14) and P = P'Q so that

(AL.17)

P [ D+ PuQ~'P,  DPZQ ]

QP 1D QP 1DP 0
The robot (1) with the adaptation law (18) therefore results in a negative semidefinite

Lyapunov function. O
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