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My boss at Scania, Björn Rickfält supported me throughout the project,
which has made it a lot easier, and I appreciate that he allowed me to focus
entirely on this work. Bengt Fura, Christer Olsson and Gunnar Strandell were
a part of the steering committee of this PhD-project. The steering commit-
tee meetings gave me instant input on the latest ideas, which was especially
important in the early stages of the project.

Mona Forsler, Aurelia Vogel, James Hakim and Joakim Lübeck have pro-
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Summary

Road profiles are studied from a vehicle fatigue point of view. A wide range of
roads have been measured: from smooth motorways to very rough gravel roads.
It is observed that the road profiles consist of irregular sections, which makes
the stationary Gaussian model unsuitable (Paper A). In Paper B, a method for
automatic identification of such irregularities is presented. It is verified that
the irregular sections cause the major part of the fatigue damage induced in
vehicles. Based on this result, a new single track model is proposed, which
includes randomly shaped and located irregularities. In Paper C, an evalu-
ation method of single track models is proposed. This evaluation method is
extended to models of parallel tracks in Paper D. A new ‘parallel tracks’ model
is proposed and evaluated accordingly. In Paper E, the coherence between the
parallel road tracks is studied. A simple one-parametric model is proposed for
the coherence. In Paper F a new theoretical method to compute the expected
vehicle fatigue damage caused by road irregularities is presented.
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1 BACKGROUND

1 Background

Travelling vehicles are exposed to dynamic loads caused by unevenness in the
road. These loads induce fatigue damage in the vehicle, which may cause
structural failures.

Manufacturers verify vehicle durability on test tracks, in test rigs, or, in-
creasingly, by computer simulations. Erroneous design targets may lead to
unnecessarily heavy or too fragile vehicles. To avoid inaccurate testing it is
necessary to collect vehicle fatigue relevant information from actual roads.

Road roughness is studied in order to answer key questions: Do the tests
represent real-life vehicle usage? How many times should a vehicle travel over
the test track to verify the durability? How should input signals to test rigs be
generated?

This thesis is focused on the description of road roughness. In particu-
lar, measurements of left and right wheel-paths are statistically analysed. In
Papers A–C and F left and right profiles are analysed separately, whereas in
Papers D–E the profiles are jointly analysed. The thesis is restricted to ‘verti-
cal’ loads; lateral and longitudinal loads are not treated.

1.1 Road measurements

In this thesis 20 measured roads are analysed. The profile of the left and right
wheel-path is measured by laser/inertial profilometers. The equipment used
to measure roads 4–20 is described in [1]. Here, laser number 3 and 15, as
numbered in [1], represent the left and right wheel-path, respectively. The to-
tal distance of the measured roads is 520 km and the sample distance is 5 cm
(10 cm for road 3). The roads are measured with a slightly changing sample
distance (varying around 5 cm). The sampled profiles are linearly interpolated
with a fixed sample distance at exactly 5 cm, in order to facilitate the statisti-
cal analysis and vehicle simulation. Vehicle simulations verify that this linear
interpolation scheme has no significant effect on the assessed fatigue damage.

The roads are of varying quality, ranging from smooth motorways to rough
gravel roads. Prior to analysis the measured profiles are high-pass filtered to
remove measurement drift and very long-wave disturbances (hills and slopes).
Figure 1 shows a measurement of three kilometres of a rough Swedish main
road.

Remark: Initially, not all measurements were available for analysis. In
Paper A roads 1–3 are analysed, in Papers B–C roads 1–14 are analysed and
in Papers D–F roads 1–20 are analysed.
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Figure 1: A rough main road in northern Sweden (left wheel-path of road 7)

1.2 The need for a stochastic model

Measured profiles display a random behaviour. For example, from a one kilo-
metre long road profile we cannot compute the shape of the following kilometre.
Thus, it is natural to model the profiles as stochastic processes. Moreover,
stochastic modelling provides a tool for data compression. The measured pro-
files (5–45 km long, sample distance 5 cm) have 105–106 sample points. A
stochastic model can characterise these large data sets, using only a few model
parameters.

The statistical parameters should, ideally, define the important road char-
acteristics, i.e. two roads with similar parameter values should induce a similar
amount of fatigue damage to a vehicle. The parameters could then be used to
compare different geographical regions or road types, and define normal/severe
conditions for operating vehicles. Also, an accurate stochastic model enables
extrapolation to events which have not been measured. Thus, from a limited
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2 METHODOLOGY

number of road measurements, it will be possible to predict the properties of
unobserved extreme irregularities.

This thesis is focused on road statistics, not vehicle modelling or fatigue
assessment. The main goal is to define a stochastic road model. A secondary
goal is to develop an evaluation tool for comparing stochastic road models
with respect to accuracy. The vehicle modelling and fatigue assessment are
used primarily for road model validation. Observe that the purpose is not to
accurately assess the fatigue damage of a specific vehicle component when the
vehicle travels over a given road stretch. Firstly, that would demand a complex
vehicle model. And, secondly, it would necessitate a more precise description
of the component’s fatigue properties, possibly taking into account mean stress
effects, the order of appearance of large load cycles, the fatigue limit, crack
closure features, etc.

The task of extracting vehicle fatigue relevant information from a measured
profile is complicated by the fact that different vehicles and their components
react differently to the same road. Moreover, the vehicles may, of course,
travel at different velocities. Hence, analysis of a road profile must extract
general information, relevant for a wide range of vehicles travelling at different
velocities.

2 Methodology

The proposed methodology to find an appropriate stochastic road-profile model,
is divided into six steps (also presented in Figure 2):

Measured road

4

Analysis

Parameters:
a, b,…

Synthetic road Stochastic model

5
Fatigue
damage,

Dreal

Dreal Dmodel

Model validation

Fatigue
damage,
Dmodel

?

Road statistics

Vehicle
simulation

Vehicle
simulation 345

6

1

2

6

Figure 2: Overview
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1. A measured road is statistically analysed.
2. A stochastic model is defined based on the analysis.
3. Synthetic (computer simulated) roads are generated according to the

model assumptions.
4. A vehicle is simulated travelling at constant speed over the measured and

synthetic roads.
5. The vehicle fatigue damage-values Dreal and Dmodel indicated by the

measured and the synthetic roads are computed.
6. The accuracy of the road model is assessed by comparison of indicated

fatigue damage-values.

The steps 1–2, where a measurement is characterised by a few parame-
ters, are given the main attention in this thesis. The steps 3–6 are performed
primarily to validate the stochastic model and its parameter values. Several
velocities are used in step 4 to avoid velocity-dependent road modelling. Simi-
larly, in step 5, a range of fatigue properties is utilised to minimise the risk of
vehicle-dependent road modelling.

3 A brief literature survey

3.1 Analysis and modelling of single profiles

Historically, analysis of road profiles has been performed in the frequency do-
main, using ‘Power Spectral Density’ (PSD) analysis. Several studies (e.g. [2]–
[8]) have shown that the shape of the analysed PSD is independent of road
type. Andrén [9] compiles 11 different parametric PSD approximations sug-
gested in the road statistics literature. One of these PSD parameterisations is
standardised in ISO 8608, ‘Mechanical vibration — Road surface profiles —
Reporting of measured data’ [10].

In mathematical statistics, the outcome of a PSD analysis of a stationary
process is treated as an estimate of a true spectrum. Further, it is convenient
(and common) to assume Gaussianity in conjunction with PSD analysis, since
a Gaussian process is uniquely defined by its spectrum.

However, in actual roads there usually exist irregular sections, with prop-
erties significantly deviating from the properties of surrounding sections. Such
deviant parts, irregularities, appear too seldom in Gaussian models. Thus, re-
cently, several papers are devoted to this deviance from Gaussianity: Bruscella
et al [11] compute the mean-square of the second derivative of the road level
along the road, in order to locate deviant parts. Steinwolf et al [12] and Öijer
and Edlund [13] utilise wavelets to locate deviant parts. Wei and Fwa [14] use a
wavelet transform to define a new roughness index. Frinkle et al [15] decompose
the road profile into constitutive positive (bumps) and negative (holes) events.
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3 A BRIEF LITERATURE SURVEY

Chaika and Gorsich [16] describe a statistical test suitable to check road profile
stationarity.

Numerous stochastic models of road profiles can be found in the literature.
Stationary Gaussian models with given frequency domain characteristics are
by far the most common (e.g. [2]–[4], [17]–[21]). Another stationary Gaus-
sian model is the ARMA-model [22]. Other propositions are a Markov chain
model [23] and a transformed Gaussian model [24].

A widely used roughness statistic is the ‘International Roughness Index’
(IRI), which quantifies the roughness of a measured profile. The computation
of the IRI is based on computer simulation of a quarter-vehicle travelling at
80 km/h on the profile. The IRI is defined as the accumulated suspension
motion of the quarter-vehicle divided by the travelled distance. Thus, this
measure is vehicle and velocity dependent. However, here, it is not suitable
to use the IRI since more specific road information is needed, e.g. severity of
irregularities, occurrence rate of irregularities, etc. For an introduction to IRI,
see [25] and [26].

3.2 Joint analysis and modelling of parallel profiles

The covariation between left and right wheel-path has not been as extensively
studied as the variation within one track. Historically, analysis of parallel road
tracks has also been performed in the frequency domain, i.e. by estimation of
spectra, coherence and phase function. However, there has been a shortage of
large data sets of simultaneously measured parallel tracks. For example, the
study in 1978 by Bormann [27] included analysis of three roads. The total
length of these measurements was 800 meters.

A series of papers [2], [17], and [18], describe the homogeneous, isotropic
Gaussian model. Homogeneity and isotropy imply that all profiles following a
straight-line on the road surface have the same statistical properties, irrespec-
tively of direction and position of the line. The accuracy of the isotropic model
is further studied in [19] and [28]–[30].

Some different Gaussian parallel tracks models are proposed in the liter-
ature: the Parkhilovskii model [31], the isotropic model [2], the anisotropic
Heath model [29] and the Ammon model [4], which were published in 1968,
1973, 1989 and 1991, respectively. For a comparison of the Parkhilovskii and
the isotropic model, see [32]. Gaussian models are still widely used, for recent
publications, see [30] and [33]–[36].
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4 A short introduction to vehicle fatigue

4.1 Vehicle models

Fatigue damage is assessed by studying a quarter-vehicle model travelling at
constant velocity on single profiles (Papers A–C & F) and a half-vehicle model
travelling at constant velocity on parallel profiles (Papers D–E). The models
are shown in Figure 3. These very simple models cannot be expected to predict
loads on a physical vehicle exactly, but they will high-light the most important
road characteristics as far as fatigue damage accumulation is concerned; they
might be viewed as ‘fatigue-load filters’. The models comprise masses, linear
springs and linear dampers; the only non-linearity is their ability to loose road
contact. The parameters are set to mimic heavy vehicle dynamics. Vehicle
fatigue is assessed by analysis of the forces acting on the sprung mass.

Sprung mass 

Road profile 

Half-vehicle
Quarter-vehicle

Unsprung mass

Figure 3: The half- and quarter-vehicle models

4.2 Vehicle fatigue

A common laboratory experiment is to subject test specimens to a sinusoidal
load with amplitude U , and count the number of cycles N to breakdown. Com-
monly, the simple parametric model N(U) = k−1U−β (Basquin’s relation, [37])
is fitted to experimental data from (almost) identical specimens. Usually, for ve-
hicle components, the fatigue exponent β takes values between 3 and 8. Hence,
increasing the amplitude rapidly decreases the number of cycles to failure. How-
ever, loads caused by road roughness fluctuate randomly. To assess the fatigue
damage, it is necessary to extract cycles from the load sequence.

The load sequence acting on the sprung mass is rainflow-counted, to extract
the load cycles Uj. The rainflow counting method was introduced by Endo in
1968 [38]. A simplified equivalent definition was given by Rychlik [39]. This

6



5 OVERVIEW OF APPENDED PAPERS

definition (stated below) enables uncomplicated cycle extraction, as illustrated
in Figure 4.

Definition (Rainflow cycle) From each local maximum Mj one shall try to
reach above the same level, in the backward (left) and forward (right) directions,
with an as small downward excursion as possible. The minima m−

j and m+
j on

each side are identified. That minimum which represents the smallest deviation
from the maximum Mj is defined as the corresponding rainflow minimum. The
j:th rainflow cycle is defined as (mRFC

j ,Mj).

M
j

m
j
− m

j
+ = m

j
RFC

Figure 4: Definition of the rainflow cycle as given by Rychlik.

Palmgren-Miner’s linear accumulation hypothesis ([40], [41]) is used to es-
timate fatigue damage. Thus, the damage caused by the j:th cycle equals
1/N(Uj), where Uj = Mj − mRFC

j . The total fatigue damage caused by the
rainflow-counted load sequence is

D = k
∑

j

Uβ
j .

Computations of fatigue damage from a given load sequence is performed using
wafo, which is a matlab toolbox developed by Mathematical statistics, Lund
University [42].

5 Overview of appended papers

The main part of this thesis is presented in the appended papers.

5.1 Paper A

This paper is a preliminary study: five simple road models are evaluated. The
purpose is to investigate if there are any straight forward simple models, which
give satisfactory results. The PRS-model coincides with the suggestion in the

7



standard ISO 8608. More precisely, the road is characterised by the two spectral
parameters Gd(0.1) and w, which are estimated according to the standard.

The empirical marginal distribution of the measured profiles deviates from
the Gaussian distribution. Therefore a transformed Gaussian model is also
studied. Unfortunately, the outcome shows that the Gaussian models and
the transformed Gaussian model are unsatisfactory. Adding squared shaped
potholes to a Gaussian process improves the results slightly, but further studies
of transient events are needed (see Paper B).

5.2 Paper B

In this paper a method is presented for automatic identification of rough road
sections, irregularities. These irregularities are shown to cause the major part of
the vehicle fatigue damage. Based on this result, a stochastic model is proposed,
which includes irregularities. The model is further evaluated in Paper C.

Irregularities are identified using a normalised spectrogram. Figure 5 shows
such a normalised spectrogram of the three kilometres of road 7 shown in
Figure 1. High values of the normalised spectrogram are indicated by the black
areas. Two identified irregularities, one long-wave (LW) and one short-wave
(SW) are shown in Figure 6.

Figure 5: A normalised spectrogram of a measured profile.
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5 OVERVIEW OF APPENDED PAPERS
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Figure 6: Automatically identified irregularities.

The damage caused by the irregularities is compared to the total damage
caused by the whole road, for different velocities and different values of β. The
results verify the importance of the irregularities. The outcome at v = 60 km/h
and β = 5 is presented in Figure 7. As seen, the irregularities cover only 4–9 %
of the total distance, but they cause the major part of the damage, 59–96 %.
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Figure 7: The irregularities’ impact on vehicle fatigue.
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Stationary
road

+ long−wave
irregularities

+ short−wave
irregularities

= synthetic
road

x [m]

Figure 8: A synthetic road profile, realized from the RS-model.

The proposed Roughness Summation (RS) model, superimposes ‘irregular-
ities’ of random shape, location and length onto a stationary Gaussian process.
The irregularities are of two types: long-wave and short-wave, which occur
independently of each other. The superimposed long-wave and short-wave ir-
regularities are modelled as non-stationary Gaussian processes. An example of
a realized road is shown in Figure 8.

5.3 Paper C

Several stochastic models of single road profiles are proposed in the literature;
some examples were given above in the literature survey (Section 3). However,
there is no generally accepted method to evaluate the vehicle fatigue relevance
of road models. Thus, an objective method to compare accuracy of these models
is needed. This paper describes such a method.

A lack-of-fit measure is defined which quantifies discrepancy between a
model and a measurement. A target region of [-4, 4] is set for the lack-of-
fit. Values outside this interval indicate unsatisfactory model performance. An
example is shown where a Gaussian model, a transformed Gaussian model and
the model proposed in Paper B (the RS-model) are compared. The result is
shown in Figure 9. The benefit of introducing irregularities in a road model is
demonstrated: The RS-model satisfies the target in 11 out of 14 roads, whereas
the two other models only satisfy the target in 1 out of 14 roads.

10



5 OVERVIEW OF APPENDED PAPERS
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Figure 9: Results from Paper C, lack of fit for three models.

5.4 Paper D

Here, the evaluation method in Paper C is extended to models of parallel tracks.
Two models are evaluated accordingly, referred to as Models A and B. Model
A is the isotropic Gaussian model [2], and Model B is a new model, an ex-
tension of the single track model in Paper C. Figure 10 shows a 300 meter
long realization from Model B. The model comprises three two-dimensional
components, a Gaussian process, long-wave irregularities and short-wave irreg-
ularities. The two black lines of each component correspond to left and right
wheel-path. Similar to Paper C, a lack-of-fit measure is defined which quantifies
discrepancy between a model and a measurement. If the absolute value of the
lack-of-fit measure |δmax| belong to the interval [0, 5], (5, 7] or [7,∞) then the
model accuracy is deemed satisfactory, doubtful or unsatisfactory, respectively.

The evaluation results unambiguously show that Model B surpasses Model
A. Model A is inaccurate: It has 0 satisfactory, 2 doubtful and 18 unsatisfactory
values of δmax. Model B performs better: It has 7 satisfactory, 9 doubtful and
4 unsatisfactory values of δmax.
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Figure 10: A realization from Model B in Paper D.

5.5 Paper E

This paper is devoted to the coherence between left and right wheel-path, when
the paths are 2 meters apart. Two basic results are presented, concerning
classification and the isotropic assumption.

It is difficult to distinguish between road types by coherence analysis of
parallel road tracks. Figure 11 presents a typical analysis result of three very
different roads, a smooth motorway, a semi-smooth main road and a very rough
gravel road. The left plot shows estimated spectra from left and right tracks
and the right plot shows estimated coherence between left and right tracks.
The spectra are clearly separated, whereas the coherence functions are very
similar. Thus, a motorway can have the same empirical coherence function as
a very rough gravel road.
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Figure 11: Spectrum and coherence functions
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5 OVERVIEW OF APPENDED PAPERS

Often (e.g. [2], [10], [18], [33], [35]) roads are assumed to be isotropic sur-
faces. However, the results in this paper clearly show that the isotropic model
is not accurate enough: it underestimates roll disturbance. Instead of the
isotropic model, a more accurate parametric coherence model is proposed.

In the paper from 1973 by Dodds and Robson a figure is shown where
the empirical coherence functions from a motorway and a minor road are very
different (Figure 6, page 181 in [2]). Also, Ammon concludes in his study from
1991 that that the isotropic model overestimates the roll disturbance (page 35
in [4]). These two results are not in line with the results in this study. A reason
may be that the modern measurement equipment used nowadays make it easier
to collect longer measurement. As mentioned earlier, in this study 520 km have
been analysed. The analysed measurement length in [2] and [4] are not given,
but are both most likely shorter than 520 km. If so, the increased measurement
length can perhaps explain the different results.

5.6 Paper F

A new method to compute the expected vehicle fatigue damage caused by
road irregularities is presented. Figure 12 shows the expected vehicle damage-
intensity due to road irregularities of same statistical properties but different
length. The stationary level, marked by the dashed line, is the damage-intensity
that an infinitely long irregularity would induce. With parameter values set as
in the example in Figure 12, the expected damage of 30 irregularities of length
20 m is similar to the expected damage of one irregularity of length 60 m. This
kind of length effects are important to consider when designing test sequences.

20 60 100 140
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0.6

0.8

1

g(
x)

 [
1/

m
]

x [m]

L
0
 = 20, 60, 100, 140 m stationary
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Figure 12: Damage-intensity for different irregularity lengths. (Normalised so
that the stationary level is one.)
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6 Conclusions

• It is quite difficult to create a synthetic road profile that causes the same
amount of vehicle fatigue damage as a measured profile.

• Stationary Gaussian models are not accurate models of road profiles.

• Stochastic models need to include irregularities.

• The normalised spectrogram (Paper B) is a suitable tool for identification
of road irregularities.

• Irregularities are conveniently modelled as non-stationary Gaussian pro-
cesses.

• A motorway can have the same empirical coherence function as a very
rough gravel road.

• The proposed simple parametric model in Paper E gives better coherence
approximations than the isotropic model.

• The lack-of-fit measures in Papers C and D facilitates objective compar-
ison of road-profile models.

• The suggested road-profile model perform significantly better than tradi-
tional road-profile models from the literature.
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Paper A

Fatigue relevant road surface
statistics

klas bogsjö and anders forsén

Summary

Road roughness is a major source of vehicle fatigue. To improve the understanding of

vehicle durability, statistical methods are applied to characterise measured road pro-

files. Different statistical road models are used to generate corresponding synthetic

road profiles. Vehicle fatigue is assessed utilising a simple quarter-vehicle model in

combination with the Palmgren-Miner damage hypothesis, Basquin’s relation and

Rainflow counting. Several road realizations (Monte-Carlo simulation) provide an

estimate of the expected fatigue damage. The results suggest that actual roads cause

more damage than synthetic Gaussian roads, possibly due to occasional road tran-

sients (bumps and holes), causing large loads on the vehicle. Thus, a road model

being the sum of Gaussian ‘noise’ and transient events is suggested.

1 Introduction

Road roughness is a major source of vehicle fatigue. Statistical analysis provides
compact description of measured roads and offers the possibility to generate
synthetic ‘statistically equivalent’ roads.

The overall target is to find a statistical, parametric road profile description,
with as few parameters as possible, which can be used to generate synthetic
road profiles for test and simulation purposes. Expected vehicle fatigue should
differ less than, say, 10 %, between actual and synthetic roads characterised by
the same parametric description (a very ambitious target).

The study consists of statistical analysis of measured road profiles, Monte-
Carlo simulation of road profiles and assessments of fatigue damage induced in
vehicles.

The measured road profile data used in this study is highpass filtered prior
to analysis, to remove long-wave disturbances (hills), which are irrelevant to
road-induced vehicle fatigue, and to remove spurious results caused by profile
measurement system ‘drift’.
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2 Road profile characterisation

Reporting of road profile measurements is standardised by ISO [1]. Wavelengths
between 0.1 and 100 m are considered relevant to road-induced vibrations.
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Figure 1: Road profile sample

Data from three road measurements are utilised. Profiles from left and right
wheel-path are designated ‘Road 1L’, ‘Road 2R’ etc. Profiles are characterised
by probability distribution and spectrum (”smoothed spectrum” according to
ISO 8608).

2.1 Distribution of road elevation

2.1.1 Upcrossing intensity

The upcrossing intensity is proportional to the probability density function if
the derivative at all locations x, is independent of the value of the process
(i.e. the profile height) at the same location x. This is the case for stationary
Gaussian processes [2].

2.1.2 Empirical road level distributions
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Figure 2: Distribution of measured road data compared to the Gaussian (Nor-
mal) distribution.
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2 ROAD PROFILE CHARACTERISATION

Figure 2 shows that the height distribution of Road 1L and Road 2R is
very close to Gaussian for values above the smallest 2 % and below the highest
2 %. However, the highest and lowest values differ clearly from the Gaussian
distribution, especially for Road 2 (and Road 3).

2.1.3 Non-Gaussian distribution

Gaussian distributions are convenient in statistical analysis, but real roads are
not Gaussian, as shown in Figure 2. One way to handle this problem is to
transform the actual distribution to a Gaussian, perform the statistical analysis
on the transformed data, and finally apply an inverse transformation. With
this method, it is possible to design a synthetic road with statistical properties
similar to the measured road’s.

The transformation is estimated by applying a smoothing process to the
actual (measured) road profile’s distribution, an example is shown in Figure 3.
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2.2 Spectral analysis

Four different ways to parameterise the measured road’s spectra are investi-
gated.

2.2.1 PRS: Gaussian distribution, broad-band spectrum fit

ISO 8608 [1] suggests a straight line fit in log-log scale (Figure 4) to the power
spectrum generated from the measured road profile. The resulting parametric
road spectrum (PRS) is described by:

RPRS(n) =

{
A( n

n0
)−w, 0.01 < n < 10,

0, otherwise,
(1)
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where n0 is 0.1 m−1 and A indicates degree of road unevenness. Parameter
values are determined by least-square fit over the spatial frequency range 0.011 –
2.83 m−1. For the three measured roads utilised in this study A varies around
10−5 and w around 2–3.

2.2.2 SSR: Gaussian distribution, resonance-band spectrum fit

An important range to fit correctly to the road spectrum is the frequency range
containing the lowest resonance frequency of the vehicle, i.e. 1–2 Hz. When the
vehicle travels at constant velocity v m/s, the corresponding spatial frequency
range becomes:

1/v < n ≤ 2/v. (2)

The shifted spatial frequency range (SSR) spectrum is defined by least square
fit in this range,

RSSR(n) =

{
A( n

n0
)−w, nstart < n < 10,

0, otherwise,
(3)

followed by adjustment of the lower frequency limit to preserve the measured
profile’s variance σ2, cf Figure 4.

nstart(n) = max

⎧⎨
⎩

(
101−w − 1−w

Anw
0

σ2
) 1

1−w

,

0.01
(4)

2.2.3 DSE: Gaussian distribution, direct spectrum estimate

In order to be able to produce synthetic roads with similar power spectrum as
real roads, the power spectrum of the actual road is smoothed and utilised for
generation of synthetic road profiles. This method to generate synthetic roads
with a power spectrum given by a Direct Spectrum Estimation is labelled DSE.

2.2.4 TrDSE: Transformed Gaussian distribution, direct spectrum
estimate

The procedure outlined in Section 2.1.3 is applied, an empirical transformation
function is estimated from the measured road profile and utilised to produce
a transformed road profile. This profile is then analysed and its spectral pa-
rameters are calculated with the DSE method described above. The road is
described by:

1. A transformation function (Figure 3).

2. The direct spectrum estimate of the transformed road (Figure 4).
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3 SYNTHETIC ROAD REALIZATION

2.3 Sampling and signal length

The highest spatial frequency of interest in the present study is 10 m−1. (The
tires are assumed to smooth disturbances shorter than 0.1 m, i.e. spatial fre-
quencies higher than 10 m−1.) Theoretically, the sample rate has to be at least
twice the highest frequency in the signal to avoid aliasing. Thus, with appro-
priate filtering prior to digitalisation, a sampling frequency of 20 m−1 should be
adequate, but proper description of transient’s shape may well require higher
sample rates.

Roads 1 and 2 are measured with a sample distance of 0.05 m, just about
adequate for random (non-transient) road profiles. Unfortunately the sample
distance in road 3 measurement is twice the theoretical minimum, 0.1 m.

To get a smooth and detailed response spectrum, even if the vehicle has
narrow (undamped) resonance peaks and travels at high velocity, a fine spatial
frequency resolution, maybe 4 · 10−4 m−1, is desirable. This sets the signal
length requirement to (at least) 2.5 km. This is fulfilled by the studied roads,
the measured distance on roads 1 and 2 being 5 and 5.8 km, while the mea-
surement on road 3 covers 25 km.

Longer measurements reduce statistical uncertainty and scatter; longer mea-
surements also increase the probability that several rare events (large tran-
sients) are included, thus enabling statistical analysis of the extreme events.
An old MIRA investigation [3] concludes that in order to get stable statistics
of road induced loads in vehicles, the measured distance should be at least 100
miles (160 km). However, this is not fulfilled by the three studied road samples,
which are 5–25 km long.

3 Synthetic road realization

A stationary zero-mean Gaussian process is uniquely defined by its spectrum.
Thus, when the spectrum is known, any number of statistically equivalent re-
alizations may be created. (The realization method is briefly described in the
appendix).

The six measured and analysed road profiles provide parameter values to
five different stochastic models of each road profile:

• PRS: Gaussian with parameters from a ‘broad-band’ evaluation of the
real road.

• SSR: Gaussian with parameters from a Shifted Spatial Range evaluation.

• DSE: Gaussian with a direct spectrum estimation of the real road.

• TrDSE: Non-Gaussian, being the inverse transformed realization of a
Gaussian process with a direct spectrum estimate of the transformed
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road’s spectrum.

• SSRq: Non-Gaussian road, q artificial holes per km added to the SSR
model.

The software matlab is utilised to create 80 realizations of each road and
model, in total 80 · 6 · 5 = 2400 synthetic road profiles. An actual, measured
road profile is compared to corresponding realizations of synthetic roads in
Figure 5.
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Figure 5: Measured road and synthetic roads.

Realizations of synthetic road profiles are given the same length as the
measured profiles, 5.8, 5 and 25 km, respectively. Figure 5 is limited to the
first 2.5 km to improve readability.
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3 SYNTHETIC ROAD REALIZATION

The Gaussian PRS and SSR road realizations appear different from the
measured road. The Gaussian DSE and transformed Gaussian DSE roads are
more similar to the measured profile, but still give a different impression, al-
though they have the same variance, similar spectrum and similar upcrossing
intensity as the actual road. Furthermore, the variance of the derivative of
these processes also agrees with the measured roads’.
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Figure 6: Upcrossing intensity and power spectral density.

Level crossings and PSD:s in Figure 6 result from analysis of one realiza-
tion. Thus, they may differ somewhat from the theoretical distribution and
parametrically described spectra of the corresponding road model.
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4 Vehicle fatigue assessment

Fatigue damage is assessed by studying a quarter-car model travelling at con-
stant velocity on (actual or synthetic) road profiles. This very simple vehicle
model cannot be expected to predict loads on a physical vehicle exactly, but it
will high-light the most important road characteristics as far as fatigue loading
is concerned; it might be viewed as a ‘fatigue load filter’. The utilised quarter-
car model includes one non-linearity: it may lose road contact; otherwise it’s
linear with parameter values modelling a heavy truck.

The total force acting on the sprung mass is rainflow-counted and the result-
ing load cycles evaluated with Palmgren-Miners linear damage accumulation
hypothesis. Fatigue strength is described by Basquin’s relation, i.e. sβN = con-
stant, where s is load cycle amplitude, β fatigue exponent and N number of
cycles to failure. For vehicle components, β is usually in the range 3 – 8, making
it most important to describe load cycles with large amplitude accurately.

5 Durability simulation results

Vehicle simulations are performed with three velocities, 15, 19 and 23 m/s.
Fatigue damage is calculated for each of the resulting 3 · (2400 + 6) = 7218
load sequences, using 6 fatigue exponents, β = 3, 4, . . . , 8. The ‘Monte-Carlo’
simulation result thus comprises 43308 fatigue damage values. All results are
normalised with the fatigue damage indicated for the corresponding measured
road profile.

The stochastic road modelling makes every realization of a road profile dif-
ferent, although it is based on the same model and parameter values. Naturally,
the calculated fatigue damage will also vary from one road realization to the
next. The mean result from a number of realizations provides an estimate of the
expected fatigue damage on the studied stochastic road. Averaging all results
from each input combination reduces the simulation output to 540 values and
enables evaluation of the road models’ performance as a function of physical
road, fatigue exponent and vehicle velocity.

Figure 7 shows the relative damage of Road 1R, v = 23 m/s. Figure 8
shows the relative damage of Road1R, v = 15 m/s. Figures 7 and 8 illustrate a
typical result, the PRS model underestimates the fatigue damage in all cases,
the SSR(1/6) model performs quite well at 23 m/s on road 1R, but it is less
satisfactory at 15 m/s. Detailed analysis indicates that this is due to a vehicle
resonance, which occurs at 15 m/s on the measured road profile, but is absent
at 23 m/s.

Figure 9 summarises the results of the study, the 108 mean relative dam-
age values obtained for each road model are grouped according to calculated
damage:
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• less than half the damage indicated on the measured road (unsatisfactory)

• 50 – 90 % of damage indicated on the measured road

• 90 – 110 % of damage indicated on the measured road (on target)

• 110 – 200 % of damage indicated on the measured road

• more than twice the damage indicated on the measured road (unsatisfac-
tory)

Figure 9 shows that none of the investigated road model fulfils the ambitious
target: mean relative damage 90 – 110 %, irrespective of velocity and fatigue
exponent. The purely Gaussian road models underestimate the imposed fatigue
damage in almost every case, while non-Gaussian TrDSE model frequently
overestimate the fatigue damage, often overshooting the target grossly (relative
damage 105 in several cases). Usually the result deteriorates with increasing
fatigue exponent β, as illustrated in figures 7 and 8.

6 Conclusions

• Gaussian models PRS, SSR and DSE give non-conservative fatigue esti-
mates.

• The PRS model coincides with the method suggested in ISO 8608 [1].

• The non-Gaussian TrDSE model produces very conservative fatigue esti-
mates.

• Standard stochastic analysis, (transformed) Gaussian models, is insuffi-
cient.
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Figure 9: Monte-Carlo simulation results

• A prototype model SSRq (Gaussian ‘noise’ with added transients) is
promising.

• It is quite difficult to create a synthetic road that causes the correct
amount of fatigue damage, probably due to fatigue’s sensitivity to occa-
sional large load cycles, i.e. occasional transients in the road profile.

7 Discussion and comments

Fairly good roads, on which a ‘normal’ driver keeps essentially constant velocity,
are investigated. Bad and inhomogeneous roads, where the driver adapts his
driving to the varying conditions, may require a more sophisticated approach.

Sampling distances in road profile measurements should be quite small to
catch road transients, preferably in the range 0.005 – 0.01 m, but conventional
sampling distances are 0.05 – 0.1 m. This makes it difficult to investigate shape,
size and frequency of transient events (‘holes’ and ‘bumps’) in actual roads.

Synthetic roads with manually added ‘holes’ display an interesting be-
haviour, especially when β is large, as illustrated in Figure 7. This suggests a
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way to deal with the problem of occasional road transients and corresponding
large load cycles.

The unsatisfactory performance of the transformed Gaussian DSE road
model might be due to shortcomings in the transformation function, Figure 5
indicates that the TrDSE model produces too many large peaks. Another
possible cause of the difficulties is that the transformation procedure assumes
(strictly) stationary data. If this assumption is not fulfilled, the transformation
function should be altered along the road. Longer measurements increase the
likelihood of non-stationary data, thus increasing the modelling difficulty, but
longer measurements also improve the chance of creating a realistic model, by
decreasing the statistical uncertainty and forcing the analyst to consider the
physical reality of non-stationary roads.
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Appendix: Synthetic road realization

Two kinds of distributions are used to create synthetic roads, Gaussian and
transformed Gaussian. To create a transformed Gaussian processes, a transfor-
mation function is applied to the generated Gaussian data. All calculations are
performed with matlab and the wafo toolbox [4]. The method to generate
realizations of a Gaussian road with given spectrum is described briefly below,
see [5] and [6] for a detailed explanation.

To create a Gaussian road realization with K samples, a set of K indepen-
dent Gaussian random numbers ζk = ξk + iηk is created, such that E(ξk) =
E(ηk) = 0 and E(ξ2

k) = E(η2
k) = 0.5. Next, a vector Z = [Z0, . . . , ZK−1] is

defined, where

Zk =

√
K

2h
ak ζk, k = 0, . . . ,

K

2
.

The second half of vector Z is found from the property Zk = Z∗
K−k+1 , where

∗ denotes complex conjugate. The parameter h is the sample distance in the
realization and ak is given by:

ak =
1

Kh

∫ (k+1/2)/(Kh)

(k−1/2)/(Kh)

R(n)dn,

where R(n) is the one-sided spectrum. The realization of the Gaussian process
is obtained by taking the inverse FFT of Z:

z(xj) =
1
K

K−1∑
k=0

Zje
i2πkj

K , j = 0, . . . , K − 1, xj = jh.
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Paper B
Development of analysis tools and stochastic models of
road profiles regarding their influence on heavy vehicle
fatigue

K. Bogsjö
Lund Institute of Technology, Sweden

Road profiles are analysed with focus on road characteristics essential for heavy
vehicle fatigue assessment. Road profile measurements indicate that roads con-
tain short sections with above-average irregularity. Such rough sections are
shown to cause most of the vehicle fatigue damage. An algorithm using a
spatial-frequency description is developed to automatically identify rough sec-
tions. Based on the analysis a new stochastic road model, with randomly placed
and randomly shaped irregularities, is proposed.

Keywords : Road roughness; stochastic road model; vehicle fatigue
2000 Mathematics Subject Classification: 62–07; 62M15; 62P30

1 Introduction

A vehicle in normal operation is exposed to occasional high loads. In vehicle
durability assessment it is important to have an accurate statistical description
of these high loads, which often are caused by road irregularities. A road model
including such irregularities is proposed in this paper.

Stochastic modelling can be useful in several aspects. For example, the
model parameters can be used to numerically quantify roughness severity.
Thus, a model can be used to group roads into different roughness categories,
in order to be able to comprehend large data sets. Also, the randomness de-
scribed by the stochastic model enables studies of uncertainties of, for example,
fatigue life.

The conventional statistical method for road profile evaluation models the
road profile as a Gaussian process, with spectral density estimated from mea-
sured data [1]. However, a stationary Gaussian model is insufficient as a road
model, as demonstrated in [2–6].

The proposed model is tested on records from 14 actual roads, measured
in left and right wheel-path. The measure equipment is described in [12]. The
total length of these roads is 370 km. The measured roads are of varying quality,
ranging from smooth motorways to very rough gravel roads. The profiles are
high pass-filtered prior to analysis, to remove measurement drift and hills (very
long-wave ’disturbances’).
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In Section 2 an algorithm for automatic identification of rough road sections
is presented. In Section 3 it is shown that the identified parts have a large
impact on vehicle fatigue. In Section 4 the proposed road model is described.
In Section 5 parameter estimation is discussed, and finally, in Section 6, the
new road model is evaluated.

2 The normalised spectrogram as

roughness indicator

Very rough short sections, irregularities, can be observed in the measured roads.
In the literature there are several algorithms proposed to identify road profile
irregularities, see for example [2–5]. The identification methods described in
[2–5] are rather complex: in [2] a flowchart diagram is used, in [3–4] wavelets are
used and in [5] singular value decomposition is used. Here, a simpler approach
is proposed. Straight-forward evaluation according to equations (1)–(4) locates
irregular sections.

2.1 The spectrogram, location dependent spectrum esti-
mates

The function z(x) describes the road elevation at spatial location x. Let z(kh)
denote a sampled road profile with sample distance h. The road is divided
into sections z(kh + kih), k = 0, . . . , NH − 1, where kih is the start and
xi = kih + NHh/2 the middle point of the i:th section. Each section is multi-
plied with a Hanning window, H(kh), with NH samples and length LH = hNH

meters. The number of samples NH is assumed even. (Also, as customary the
window is normalised,

∑NH

k=1 |H(kh)|2 = 1.) Let ξn = n/LH, n = 0, . . . , NH/2,
be the Fourier frequencies. The spectrogram R(xi, ξn) describes frequency con-
tent of the road around location xi,

R(xi, ξn) = 2h

∣∣∣∣∣
NH−1∑
k=0

H(kh)z(kh + kih) exp(− j2πkn

NH
)

∣∣∣∣∣
2

, i = 1, . . . , NR, (1)

where NR is the number of analysed sections. To avoid frequency leakage from
lower frequencies to higher frequencies z(x) is high-pass filtered prior to the
computation.

The choice of window length LH is crucial. A long window yields a high
resolution in the frequency domain, but a poor spatial resolution. Another
parameter that must be chosen is the midpoint distance, δ = xi+1 − xi, which
together with LH decides the amount of section overlap (e.g. δ = LH implies
no overlap). The choice of the δ and LH will be discussed in Section 2.3.
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2 THE NORMALISED SPECTROGRAM AS
ROUGHNESS INDICATOR

Obviously, if z(x) is a random stationary process (for example Gaussian) the
spectrogram R(xi, ξn) will vary randomly but have similar properties for differ-
ent xi. Road sections with increased roughness will be indicated by anomalies
in R(xi, ξn). In the following subsection a criterion for identification of irregu-
larities is suggested.

2.2 Roughness criterion

First the normalised spectrogram is defined as

Rnorm(xi, ξn) =
R(xi, ξn)

1
NR

∑NR

i=1 R(xi, ξn)
. (2)

The maximum over the different frequencies ξn in the set A,

M(xi; A) = max
ξn∈A

Rnorm(xi, ξn), (3)

will be used to identify rough sections. More precisely, a section [xi − δ/2,
xi + δ/2] is marked as deviant if

M(xi; A) > u, (4)

for a suitably chosen critical level u and spatial frequency set A.

2.3 Parameter choices for identification of
rough road sections

To use M(xi; A) for identification of rough road sections values of the following
parameters must be chosen: window length LH , midpoint distance δ, thresh-
old level u and frequency interval A. Road vehicle characteristics need to be
considered in order to choose A appropriately.

Frequency analysis of strain measurements in heavy vehicles usually displays
a peak at approximately 1 Hz and another in the 10–15 Hz range. Specific, local,
resonances add to this general pattern. In the considered velocity range, 40–
90 km h−1 (typical truck velocities on the measured roads) road irregularities
with spatial frequencies from 0.04–0.20 m−1, will excite the low-frequency (ca
1 Hz) resonance. Similarly, road irregularities at higher spatial frequencies, up
to 1.0 m−1, will excite the 10–15 Hz resonance.

Thus, road irregularities are divided in two classes: short-wave and long-
wave. The first type has high spectral density in the range 0.04–0.20 m−1. The
second type has a high spectral density in the range 0.20–1.0 m−1. The two
types are identified separately, by means of two sets A, see Table 1. Parameter
values in the table are chosen by studying typical values of peaks in the nor-
malised spectrogram. The thresholds are chosen so that only extreme peaks
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are identified. In the short-wave region, the extreme peaks are higher than in
the long-wave region, hence the threshold is higher in the short-wave region.

Irregularity type A [m−1] LH [m] δ [m] u
Long-wave [0.04, 0.20] 64 16 7.6
Short-wave [0.20, 1.0] 10 2.5 50

Table 1: Parameter values for identification of long-wave and short-wave irreg-
ularities

2.4 Examples from measured roads

The spectrogram provides information about roughness variation along the
road. It is easy to visualise the difference between a measured road and a
stationary Gaussian road. Figure 1 shows a normalised spectrogram of one km
of the second measured road, left wheel path: road 2L. High values of Rnorm

are indicated by the black areas. Three irregularities are indicated by the thick
lines in the bottom plot.
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Figure 1: Normalised spectrogram of one km of a measured profile. The sections
T3, T4 and T5 identify deviant sections.

For comparison Figure 2 shows a normalised spectrogram of a Gaussian pro-
cess with a spectral density equal to the estimated spectral density of road 2L.
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2 THE NORMALISED SPECTROGRAM AS
ROUGHNESS INDICATOR

One can see that the normalised spectrogram of the Gaussian process does not
contain any high peaks.
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Figure 2: Normalised spectrogram of a synthetic (computer simulated) Gaus-
sian road.

Figure 3 shows two examples of identified irregularities, high-lighted by the
thick lines above the horizontal axis.
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Figure 3: A short-wave irregularity (top) and a long-wave irregularity (bottom).
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3 Impact of irregularities on fatigue damage

Fatigue damage is assessed by studying a quarter-vehicle model travelling at
constant velocity on road profiles. This very simple vehicle model can not be
expected to predict loads on a physical vehicle exactly, but it will high-light the
most important road characteristics as far as fatigue damage accumulation is
concerned; it might be viewed as a ‘fatigue load filter’. In this study the model
comprises masses, linear springs and linear dampers; the only non-linearity is
the ability to loose road contact. The parameters are set so that the dynamics
of the model resembles a heavy vehicle. Velocities in the range 40–90 km/h,
the typical velocities on the measured roads, are studied.

The total force acting on the sprung mass of the quarter-vehicle model is
rainflow-counted [7]. The resulting load cycles are evaluated with Palmgren-
Miner’s linear damage accumulation hypothesis. Fatigue strength is described
by Basquin’s relation, i.e. sβNF = C, where s is load cycle amplitude, β fatigue
exponent, C is a constant and NF number of cycles to failure. Here, the value
of C is unimportant, since only relative damage values will be studied, i.e.
damage values will be given in percent. For vehicle components, β is usually
in the range 3–8 [13], making it most important to describe load cycles with
large amplitude accurately.

With the suggested criterion, roughly 5–10 % of the roads are marked as
irregular. However, this small portion causes most of the fatigue damage in the
vehicle!

For each road, rough sections are detected using the criterion M(xi; A) > u.
The identified sections are removed and replaced by smooth sections to give
a modified smoothened road. A Gaussian process with parameters estimated
from the ‘non-rough’ parts of the road is used to design a smooth replace-
ment for the removed section, conditioned on the surrounding ‘known’ obser-
vations. Computations of the conditional expected profiles are performed with
the WAFO toolbox [8]. An example of a conditional expected Gaussian process
is given in Figure 4 (solid line).
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Figure 4: An identified irregularity (dotted) in road 2L replaced by a smooth
road section (solid).
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3 IMPACT OF IRREGULARITIES ON FATIGUE DAMAGE

Vehicle damage is assessed: Dorig is the damage caused by the original road
and Dsmooth is the damage caused by the smoothed road. The effect of the
irregularities is 100(Dorig − Dsmooth)/Dorig %. If all sections caused the same
amount of damage, then one would expect smoothing 5 % of the road to reduce
damage by about 5 %. But, as Figure 5 shows, this is not the case.

The identified rough sections cover on average 6.8 % of the total length of
the road. The irregularities contribute to a large portion of the vehicle fatigue
damage. How significant the impact of the irregularities is, depends mainly on
the fatigue exponent β but also on vehicle velocity. Figure 5 shows the result
when β = 6 and v = 60 km/h for each road, left and right track; the mean
portion is then 87 %. For other choices of β, the mean vehicle fatigue is given
by the left plot in Figure 6. Increased impact of the irregularities for increased
β is due to a property of fatigue; large β gives more weight to large load cycles.
The mean vehicle fatigue as a function of velocity is shown in the right plot. A
slight decrease in the damage proportion caused by the irregularities is observed
when the velocity increases.
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Figure 5: Fatigue relevance of identified irregularities. L = left wheel-path,
unfilled dot. R = right wheel-path, filled dot.
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Figure 6: Mean vehicle fatigue caused by irregularities as a function of β (left)
and velocity (right).

4 Synthetic road profile generation —
The Roughness summation model

In Section 3 it was shown that the measured roads contain rough parts, which
cause most of the vehicle fatigue. Therefore the method to generate synthetic
roads should include such rough parts.

The main variability in the road profile is described by the stationary Gaus-
sian process Z(x), with spectrum

R(ξ) =

{
10a

(
ξ
ξ0

)−w

, 0.01 ≤ ξ ≤ 10,

0, otherwise,
(5)

where ξ0 = 0.1 m−1. In order to add rough parts, irregularities of two types,
long-wave and short-wave, are superimposed to Z(x). The two types occur
independently of each other. To exemplify, a 2 km long road is generated
with two irregularities of each type added in the interval 100 – 400 meters,
see Figure 7. Note that, as the example shows, long-wave and short-wave
irregularities may overlap. Moreover, the i:th long-wave irregularity and the
k:th short-wave irregularity are described by the processes Zi

L(x) and Zk
S(x).

To avoid discontinuities at the start and end of a rough section, the added
irregularity starts and ends with two values equal to zero. Thus, the irregular-
ities are non-stationary and hence it is impossible to assign a spectral density
to them. However, an irregularity reaching from −∞ to +∞ is stationary. The
spectral densities of such infinite length long-wave and short-wave irregularities
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4 SYNTHETIC ROAD PROFILE GENERATION —
THE ROUGHNESS SUMMATION MODEL

are of the same form as the full road spectrum (5) but restricted in frequencies
and described by three parameters b, c and w (i.e. the spectrum ‘slope’ w is
unchanged),

Long-wave: RL(ξ) =

{
10b

(
ξ
ξ0

)−w

, 0.04 ≤ ξ ≤ 0.20,

0, otherwise,
(6)

Short-wave: RS(ξ) =

{
10c

(
ξ
ξ0

)−w

, 0.20 ≤ ξ ≤ 1.0,

0, otherwise.
(7)

For finite length irregularities see Appendix A.
Furthermore, the location and length of the sections with added roughness

is random. More precisely, the distance between the end of a long-wave irreg-
ularity and the start of the next is exponentially distributed with mean θL.
Similarly, the distance between end and start of short-wave irregularities is ex-
ponentially distributed with mean θS . The length of long-wave and the length
of short-wave irregularities are exponentially distributed with mean dL and dS ,
respectively.

In Figure 8 the function M(x; A)/u is plotted for the two choices of spatial
frequency regions A with corresponding threshold u, recall Table 1. Obviously,
when M(x; A)/u exceeds 1 an irregular section is identified. As shown in Fig-
ure 8, both types of irregularities in Figure 7 are accurately identified.

All model parameters are compiled in Table 2.

Symbol Description
a Severity level, ‘regular’ road
b Severity level, LW-irregularities
c Severity level, SW-irregularities
w Spectral parameter, spectrum ‘slope’
θL Mean distance between LW-irregularities
θS Mean distance between SW-irregularities
dL Mean length of LW-irregularities
dS Mean length of SW-irregularities

Table 2: Parameters in the road model, LW = long-wave, SW = short-wave.
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Figure 7: Superposition of irregularities to generate rough road sections.
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larity identification.
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5 PARAMETER ESTIMATION

5 Parameter estimation

5.1 Spectral parameters

The road model comprises four spectral parameters a, b, c and w. The pa-
rameters a and w are estimated from smooth non-irregular road sections. The
parameters b and c are estimated from long- and short-wave irregularities, re-
spectively.

The method, as described in Section 2, identifies road sections belonging
to the three roughness classes: smooth sections, long-wave irregularities and
short-wave irregularities.

A periodogram of each section estimates spectral density. The periodogram
of a road section starting at kih and ending at (ki + Ni − 1)h, i.e. z(kh + kih),
k = 0, . . . , Ni − 1, is an estimation of the one-sided spectral density and is
defined by

Ii(ξ) =
2h

Ni

∣∣∣∣∣
Ni−1∑
k=0

z(kh + kih) exp(−j2πkhξ)

∣∣∣∣∣
2

, (8)

where Ni is the number of samples in the i:th section and h the sample distance.
In order to improve the estimate a modified periodogram is used,

IH
i (ξ) = 2h

∣∣∣∣∣
Ni−1∑
k=0

H(kh)z(kh + kih) exp(−j2πkhξ)

∣∣∣∣∣
2

, (9)

where H is the normalised Hanning window, see Section 2.1. The modified peri-
odogram is evaluated at the Fourier frequencies, ξn = n/(Nih), n = 0, . . . , Ni/2
(assuming Ni even).

To simplify notation the subscript i in Ii and IH
i is omitted if not important.

The theoretical properties of I(ξ), (when z is Gaussian) can be found in [10].
Since the spectra, given by equations (5)–(7), are linear in logarithmic scale, the
parameters are estimated from the least square fit of values of the logarithm of
IH . Here the base-10 logarithm is used. Fitting in logarithmic scale demands
carefulness: The expectation of the logarithm I(ξ) does not equal the logarithm
of the true spectral density. Under the assumption that z is Gaussian this bias
is computed in [11]. The bias-correction is the reversed sign of the expected
value of the logarithm of a standard exponential random variable, which is
+0.25068. Here, it is assumed that the result in [11] holds approximately also
when the IH(ξ) is used instead of I(ξ).

Since there usually are many road sections belonging to the same roughness
class, several modified periodograms are computed, which estimate the same
spectral density. Therefore the least-square fit is a fit of several IH :s.

To exemplify, a 10 km long synthetic road was simulated according to the
model assumptions stated in Section 4. The identification algorithm was used to

45



B

group the road sections into the different classes. Modified periodograms were
computed for each section belonging to one of the three the roughness classes.
In Figure 9 values of IH are shown as dots. Bias-corrected least square fits of
the logarithm of the IH :s are given by the broken lines, which almost coincide
with the true spectra given by the solid lines. (As discussed in Section 4 the
irregularities are non-stationary, so their spectral densities are not defined. But
if we neglect this and assume piecewise stationarity b and c may be estimated.)
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Figure 9: Power spectral densities: true spectra (solid lines), IH -values (dots),
bias corrected LS-fit of IH -values (broken lines).

5.2 Distance parameters

The average of the empirical lengths of identified sections is used to estimate
θL, θS , dL and dS .
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6 SIMULATION RESULTS

6 Simulation results

Vehicle simulations are performed with six velocities, v = 40, 50, . . . , 90 km/h.
For each measured road profile, parameters in the Roughness summation model
are estimated. 100 synthetic roads of equal length as the corresponding mea-
sured road are realised with the estimated parameter values. The mean vehicle
fatigue damage per kilometre is assessed for β = 3, 4, . . . , 8.

Since the number of measured road profiles is 14×2 (2 wheel paths for each
actual road), the number of velocities is 6 and the number of studied values of
β is 6, there are totally 14 × 2 × 6 × 6 = 1008 assessed mean fatigue damage
values. All results are normalised with respect to the fatigue damage assessed
for the corresponding measured road profile.

The vehicle fatigue damage caused by a measured road can be approximated
by a sum of the damage of each individual kilometre. This division makes it
possible to analyse the variability of the vehicle fatigue damage. The conclusion
is that a relative damage of 50–200 % is a reasonable target. However, one may
argue that it is wiser to use different targets for different roads and different
values of β. But here, for sake of simplicity, a fixed target is used.

Figure 10 shows that the addition of irregularities gives a more accurate
damage estimate. For example, the black dot at 64 % in the ‘Damage region’
50–200 % means that, with irregularities, 64 % of the 1008 mean damages are
between 50 % and 200 % compared to the damage caused by the corresponding
measured road. Without irregularities only 12 % of the 1008 damages falls into
that damage region.
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Figure 10: Mean damage values for the Roughness summation model and the
stationary Gaussian model, on roads 1–14.
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7 Conclusions

A large portion, 90–95 %, of the measured road length can be treated as having
the same degree of unevenness. The remaining 5–10 % of the road consists of
rough sections. With the proposed identification method it is possible to detect
these rough sections. The detected sections cause the major part of the vehicle
fatigue damage.

The general roughness is modelled by a stationary Gaussian process. To
model occurrence of unusually rough parts, random irregularities are superim-
posed to the stationary process at random locations. The added irregularities
are of two types: long-wave and short-wave. A road with such added rough
parts gives a better description of measured roads than the stationary Gaussian
model.
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A Simulation of a road irregularity

Here an algorithm is presented on how to simulate a road irregularity described
by the random sequence Ỹ . Let Z(x) be a mean zero stationary Gaussian se-
quence with spectral density as Equation (6) or (7). To simplify notation,
let the sampled process Z(kh) = Z[k], k = 1, . . . , N . Furthermore, it is con-
venient to define the two column vectors Y1 = (Z[3] . . . Z[N − 2])T and
Y2 = (Z[1] Z[2] Z[N − 1] Z[N ])T , where T denotes matrix transpose. We want
to simulate Y1|Y2 = 0 (i.e. condition on zero start and zero end values). Define

Ỹ = Y1 − Σ12Σ−1
22 Y2, (A.1)

where Σ12 = cov(Y1, Y2) and Σ22 = cov(Y2, Y2). The expectation and covari-
ance of Ỹ are

E[Ỹ ] = 0,

cov(Ỹ , Ỹ ) = Σ11 − Σ12Σ−1
22 Σ21.

(A.2)

This coincides with the expectation and covariance of the conditional Gaussian
process of Y1 given Y2 = 0, thus Ỹ represents Y1|Y2 = 0. In order to compute Ỹ
we need Σ12 and Σ22. The (one-sided) spectral density R(ξ) is used to obtain
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the covariance matrices. The covariance function is

r(x) =
∫ ∞

0

R(ξ) cos(2πξx)dξ (A.3)

and the sampled covariance function r(kh) = r[k]. This gives the covariance
matrices

cov(Y2, Y2) = Σ22 =

⎛
⎜⎜⎝

r[0] r[1] r[N − 2] r[N − 1]
r[1] r[0] r[N − 3] r[N − 2]

r[N − 2] r[N − 3] r[0] r[1]
r[N − 1] r[N − 2] r[1] r[0]

⎞
⎟⎟⎠ (A.4)

and

cov(Y1, Y2) = Σ12 =

⎛
⎜⎜⎜⎝

r[2] r[1] r[N − 4] r[N − 3]
r[3] r[2] r[N − 5] r[N − 4]
...

...
...

...
r[N − 3] r[N − 4] r[1] r[2]

⎞
⎟⎟⎟⎠ . (A.5)

To realize a conditional Gaussian process: Simulate the unconditional pro-
cess Z, identify Y1 and Y2, calculate covariance matrices and compute Ỹ . Sim-
ulation of unconditional Gaussian processes is described in [9]. Conditional
multivariate Gaussian vectors are described in (e.g.) [10].
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Paper C

Accuracy of stochastic road
models

klas bogsjö

Road roughness literature suggests numerous stochastic road models. To evaluate

their accuracy, a new method is proposed. Accuracy is assessed by comparison of

a measured profile and a corresponding synthetic profile, realized from a stochas-

tic model. A model is accurate if synthetic and measured profiles induce a similar

amount of fatigue damage to a vehicle. A lack-of-fit measure is assigned to the evalu-

ated models, facilitating quick and simple comparison. The uncertainty of the vehicle

fatigue indicated for the measured profile is considered in the definition of the lack-

of-fit measure. A bootstrap technique is applied to estimate the uncertainty.

Keywords : Road profile; road roughness; stochastic models; model evaluation;
vehicle fatigue; lack of fit; bootstrap.

1 Introduction

Road surface roughness is a major source of dynamic loads in travelling vehicles.
These dynamic loads cause fatigue damage. Thus, road roughness is an essential
input for prediction of vehicle fatigue.

One-dimensional road profiles are modelled as stochastic processes. Stochas-
tic modelling can be useful in several aspects. For example, the model param-
eters can be used to numerically quantify roughness severity. Thus, a model
can be used to group roads into different roughness categories, in order to be
able to comprehend large data sets. Also, the randomness described by the
stochastic model enables studies of uncertainties of, for example, fatigue life.

Several stochastic road models are proposed in the literature, a few papers
are listed in the references. However, there is no generally accepted method
to evaluate the vehicle fatigue relevance of road models. Thus, an objective
method to compare accuracy of these models is needed. This paper describes
such a method.

Vehicle fatigue evaluations are used to assess the accuracy. More precisely,
vehicle fatigue indicated for synthetic roads realized from the model is com-
pared to vehicle fatigue indicated for the actual measured road. Obviously, the
synthetic profiles should indicate a similar amount of vehicle damage as the
measured profile. Note that it is not sufficient to estimate, say, the power spec-
tral density (PSD) or crossing intensity of the synthetic and measured roads to
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assess the induced vehicle fatigue damage.
A central idea of the evaluation method is to take into account the uncer-

tainty of the vehicle fatigue damage caused by the actual measured road. A
large uncertainty, due to (for example) a very short measured distance, allows
for larger discrepancy between model and measurement than when the uncer-
tainty is small. The uncertainty is estimated using the bootstrap algorithm.

As always, there is a trade-off between model accuracy and model simplicity.
However, this paper focuses only on accuracy. Since the evaluation method is
general — any model can be evaluated — it is difficult to penalise for model
complexity. A lack-of-fit measure is defined, which gives a quantitative measure
of inaccuracy.

The proposed evaluation method is tested on records from 14 actual roads,
with a total length of 370 km. The measured roads are of varying quality,
ranging from smooth motorways to very rough gravel roads. The profiles are
high pass-filtered prior to analysis, to remove measurement drift and hills (very
long-wave ‘disturbances’).

The outline of the paper is as follows: In Section 2 vehicle fatigue damage
is introduced. In Section 3 the studied models are presented: the Gaussian, the
transformed Gaussian and the Roughness summation (RS) model. In Section 4
the lack-of-fit measure is introduced. In Section 5 the choice of target interval
for the lack-of-fit measure is discussed. In Section 6 the lack of fit is assessed
for the three studied stochastic road models.

2 From road profile to vehicle fatigue

Fatigue damage is assessed by studying a quarter-vehicle model travelling at
constant velocity on road profiles, see Figure 1. This very simple model cannot
be expected to predict loads on a physical vehicle exactly, but it will high-light
the most important road characteristics as far as fatigue damage accumula-
tion is concerned; it might be viewed as a ‘fatigue-load filter’. In this study
the model comprises masses, linear springs and linear dampers; the only non-
linearity is the ability to loose road contact. The parameters are set to mimic
heavy vehicle dynamics, see Table 1.

The total force acting on the sprung mass of the quarter-vehicle model
is rainflow-counted (Rychlik, 1987). The resulting load cycles Uj are evalu-
ated with Palmgren-Miners linear damage accumulation hypothesis, and fatigue
strength is described by Basquin’s relation. The fatigue damage is

D = k
∑

j

Uβ
j , (1)

where k and β are treated as deterministic constants. For vehicle components,
β is usually in the range 3–8, making it most important to describe load cycles
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Figure 1: Quarter vehicle model

Description Symbol Value Unit
sprung mass ms 3400 kg
suspension spring stiffness ks 270 000 N/m
suspension damper stiffness cs 6000 Ns/m
unsprung mass mu 350 kg
tire spring stiffness kt 950000 N/m
tire damper stiffness ct 300 Ns/m

Table 1: Quarter vehicle parameters.

with large amplitude accurately.

A physical tire on a heavy vehicle has a road contact length of approximately
0.15 m. Hence, short wavelengths (of order 0.01 m) in the road profile are
attenuated by a real tire. In this study, sample distance in the measured roads
is 0.05 m, all signal content with shorter wavelength than 0.10 m is neglected.

3 Stochastic road models

There is an extensive set of proposed road models in the literature, some ex-
amples are given in the references. In this study, three models are used to
illustrate how the proposed lack-of-fit measure works: the Gaussian, the trans-
formed Gaussian and the Roughness summation model.
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3.1 The Gaussian model

A Gaussian process is uniquely described by its spectrum, R1, which is a func-
tion of spatial frequency ξ. Here, it is defined by two parameters, κ and w,

R1(ξ) =

{
κ
(

ξ
ξ0

)−w

, 0.01 ≤ ξ ≤ 10,

0, otherwise,
(2)

where ξ0 = 0.1 m−1 is the reference spatial frequency. This is the paramet-
ric form suggested in the standard ISO 8608. The parameters κ and w are
estimated from the real road measurements according to ISO 8608.

3.2 The transformed Gaussian model

Gaussian distributions are convenient in statistical analysis, but real roads are
often non-Gaussian. The transformed Gaussian model takes this into account.
The road profile Y2(x) is assumed to be a function of a stationary Gaussian
process Z2(x),

Y2(x) = G(Z2(x)). (3)

The spectral density of Z2(x) is R2(ξ). Hence, the model is uniquely described
by G and R2(ξ).

The functions G and R2(ξ) are estimated from data. More precisely, the
inverse g = G−1 is estimated by non-parametric means from the measured road,
y(x), according to Rychlik (1997). The spectral density R2(ξ) is estimated from
z2(x) = g(y(x)), also by non-parametric means.

Steinwolf and Connon (2005) propose the transformed Gaussian model to
describe test course profiles, with a parametric description of the transformation
function, G.

3.3 The Roughness summation (RS) model

The Roughness summation (RS) model was introduced by Bogsjö (2005). This
section presents a brief description of the model.

The main variability in the road profile is described by the stationary Gaus-
sian process Z(x), with spectral density

R(ξ) =

{
10a

(
ξ
ξ0

)−w

, 0.01 ≤ ξ ≤ 10,

0, otherwise,
(4)

where ξ0 = 0.1 m−1. In order to add rough parts, irregularities of two types,
long-wave and short-wave, are superimposed to Z(x). The two types occur
independently of each other. Figure 2 shows 300 meters of a realized road. Note
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that, as the example shows, long-wave (LW) and short-wave (SW) irregularities
may overlap. Moreover, the i:th long-wave irregularity and the k:th short-wave
irregularity are described by the processes Zi

L(x) and Zk
S(x).

To avoid discontinuities at the start and end of the rough sections, the added
irregularities start and end with two values equal to zero. Thus, the irregular-
ities are non-stationary and hence it is impossible to assign a spectral density
to them. However, an irregularity reaching from −∞ to +∞ is stationary. The
spectral densities of such infinite length long-wave and short-wave irregularities
are of the same form as the full road spectrum (4) but restricted in frequencies
and described by three parameters b, c and w (i.e. the spectrum slope w is
unchanged),

Long-wave: RL(ξ) =

{
10b

(
ξ
ξ0

)−w

, 0.04 ≤ ξ ≤ 0.20,

0, otherwise,
(5)

Short-wave: RS(ξ) =

{
10c

(
ξ
ξ0

)−w

, 0.20 ≤ ξ ≤ 1.0,

0, otherwise.
(6)

For finite length irregularities see Bogsjö (2005).
Locations and lengths of added rough sections are random. More precisely,

the distance between the end of a long-wave irregularity and the start of the
next is exponentially distributed with mean θL. Similarly, the distance be-
tween end and start of short-wave irregularities is exponentially distributed
with mean θS . The length of long-wave and the length of short-wave irregu-
larities are exponentially distributed with mean dL and dS , respectively. All
model parameters are compiled in Table 2.

0 50 100 150 200 250 300

Roughness summation model

Stationary
road

+ irregular
sections

= synthetic
road

x [m]

Figure 2: Generation of a synthetic road according to the RS-model.
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Symbol Description
a Severity level, ‘regular’ road
b Severity level, LW-irregularities
c Severity level, SW-irregularities
w Spectral parameter, spectrum ‘slope’
θL Mean distance between LW-irregularities
θS Mean distance between SW-irregularities
dL Mean length of LW-irregularities
dS Mean length of SW-irregularities

Table 2: Parameters in the RS-model, LW = long-wave, SW = short-wave.

4 Road model accuracy

To study the vehicle fatigue relevance of a road model, roads are realized ac-
cording to the model assumptions. Such artificial roads are called ‘synthetic’.
The vehicle fatigue indicated for a synthetic road is labelled a synthetic damage.
The damage indicated for a measured road is labelled an observed damage.

A usual statistical hypothesis test can be used to analyse if the observed
damage could come from the same distribution as the synthetic damages. How-
ever, since almost any observed damage could come from a model with ex-
tremely high variance of damage, such a test is not particularly discriminating.
Here, a slightly different approach is used, in that a function δ(v, β) is in-
troduced that measures discrepancy between the synthetic damages and the
observed damage for each velocity v and fatigue exponent β.

The hypothesis that a road model is ‘correct’ means that the measured road
cannot be distinguished (statistically) from a road realized from the model.
This assumption is denoted by H0, the null-hypothesis. Naturally, the discrep-
ancy should be low when H0 is true, but, due to randomness the discrepancy
will always deviate slightly from zero. To decide a reasonable acceptance region
it is necessary to know the distribution of δ(v, β) under H0.

The distribution of δ(v, β) under H0 is denoted by F0. It is convenient
if F0 is independent of the velocity v, the fatigue parameter β and specific
properties of the actual road (such as measured distance). It is then possible
to compare discrepancies computed in different situations. Furthermore, if a
model fails to describe the essential properties of a measured road, then ideally
the discrepancy should have a distribution clearly deviating from F0, see the
artificial example in Figure 3.
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Figure 3: Probability densities of a δ(v, β) .

4.1 Logarithmic transformation of the damage

The transformed damage Q is a function of the damage D. Subscripts s and o
denote synthetic value (from model) and observed value (from measurement),
respectively. The transformation is defined as

Q =
1
β

ln(D). (7)

The variables D and Q are treated as random variables. Outcomes of these
random variables are denoted by lower-case letters. For example, qo is the ob-
served transformed damage obtained from the measured road, an outcome of
the random variable Qo. The following two subsections show examples where
the randomness of the transformed damage is accurately described by the Gaus-
sian probability distribution.

4.1.1 Distribution of Qs

Synthetic Gaussian roads are realized with spectral parameters κ = 10−4 m3

and w = 2. Figure 4 shows the assessed damage for 100 Gaussian roads, when
the road length is 5 km (left plot) and 50 km (right plot). The damage is
normalised so that the average damage is 1. The figure displays two obvious
properties of the damage. The relative spread around the average value de-
creases with road length but increases with β. Figure 5 shows the transformed
damage Qs. The variance of the transformed variable Qs is almost constant as
a function of β. Moreover, Qs is symmetrically distributed around zero, and in
fact, the distribution is approximately Gaussian, see Figure 6.

A similar study is performed for the RS-model, to ensure that the result
(Figure 6) is valid also for other models than the Gaussian. Figure 7 shows
two examples of Gaussian probability plots of the transformed damage of the
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RS-model, when β = 3 and β = 8. The fit is very good for both values of β.
The number of simulated roads is 1000 and the road length is set to 5 km. The
parameters are set to a = −4.0, b = −3.5, c = −2.7, w = 3.3, θL = 220 m,
θS = 1000 m, dL = 42 m and dS = 4 m.

3 4 5 6 7 8
0

1

2

3
Gaussian road, 5 km

D

β
3 4 5 6 7 8

0

1

2

3
Gaussian road, 50 km

D

β

Figure 4: Damage (normalised), v = 60 km/h, κ = 10−4 m3 and w = 2.
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Figure 5: Logarithmic transformation of the damage, v = 60 km/h.
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Figure 6: Gaussian probability plots of Qs from Gaussian roads, v = 60 km/h,
β = 6.
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Figure 7: Probability plots of Qs from the RS-model, v = 80 km/h, length =
5 km.

4.1.2 Distribution of Qo

In the specific examples, in the previous subsection, Qs is Gaussian distributed
both when road profiles are generated from the Gaussian model and the RS-
model. However, it has been shown in several different studies that Gaussian
processes are not adequate to model road profiles (e.g. Rouillard et al, 2002;
Bogsjö and Forsén, 2003; Öijer and Edlund, 2003). The RS-model has been
shown to give more accurate results than the Gaussian model (Bogsjö, 2005).
A bootstrap study is performed to investigate the distribution of Qo. An in-
troduction to bootstrap is given by Davison and Hinkley (1997).

In the bootstrap study, the observed damage do is expressed as a sum of
partial damages. The load history from the measured road is divided into N
equally long sequences. Here, the minimum sequence length is set to 1 km,
(e.g. if the road length is 8.8 km, the load history is divided into 8 sequences of
1.1 km). All load sequences are rainflow-counted to obtain the partial damages
d̃j , j = 1, . . . , N . The partial damages are normalised to ensure that the sum
of the partial damages is equal to the total damage do,

dj =
do∑N

k=1 d̃k

d̃j . (8)

The partial damages dj , j = 1, . . . , N , are assumed to be outcomes of indepen-
dent and identically distributed random variables. Thus, interaction between
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segments is neglected. The transformed damage is

qo =
1
β

ln(
N∑

j=1

dj). (9)

Now, the non-parametric bootstrap algorithm is used: Sampling at random
with replacement from the original sample d1, . . . , dN gives a bootstrap sample
d∗1, . . . , d

∗
N . Applying the transformation to the bootstrap sample gives,

q∗ =
1
β

ln(
N∑

j=1

d∗j ). (10)

Repeating the algorithm m times generates bootstrap replications q∗b , b =
1, . . . , m. The idea of bootstrap is that the empirical distribution of q∗b − qo

approximates the distribution of Qo − E[Qo]. The empirical distribution of
q∗b − qo is compared to the Gaussian distribution in Figure 8 and 9. The plots
show that the Gaussian assumption is reasonable.
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Figure 8: Gaussian probability plots of the transformed damage, β = 6.

Note that, in the examples above, the transformed damage Q is Gaussian
distributed but the damage D is lognormally distributed. Also note that in
general

E[Q] �= 1
β

ln(E[D]). (11)

4.2 Discrepancy and lack of fit

To measure discrepancy between model and measurement, the transformed
synthetic damage Qs is compared to the transformed observed damage Qo.
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Figure 9: Histogram of bootstrap replicates compared to the Gaussian density
function.

The discrepancy is given by

δ =
E[Qs] − Qo

σo
, (12)

where σo is the standard deviation of Qo and E[ ] is the expectation of the
random variable. Note that under H0 the expectation E[Qs] = E[Qo]. So
under H0, δ is approximately a standard Gaussian variable (zero mean, unit
variance). In general, it is expected that damage assessed from shorter roads
are more uncertain than damage assessed from longer roads, recall Figure 4
and 5. Note that the uncertainty of Qs is not included in the denominator in
(12), since then models with extremely high variance would always obtain a
small discrepancy.

By Monte-Carlo simulation, i.e. generation of synthetic roads according to
the model assumptions and assessing fatigue damages as described in Section 2,
all information about Qs can be obtained. In particular the expectation, E[Qs]
is estimated by the empirical average

q̄s =
1

nmc

nmc∑
j=1

q(j)
s , (13)

where nmc is the number of Monte-Carlo simulations and q
(j)
s is the transformed

damage caused by the j:th synthetic road; i.e. the j:th observation of the
random variable Qs. By increasing nmc the estimate of E[Qs] can be made
arbitrarily accurate.

Recall that qo denotes the transformed damage caused by the measured
road. Since qo is the only observation of the random variable Qo it is difficult
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to estimate the standard deviation of Qo. However, dividing the measured road
into subsections as in Section 4.1.2 makes it possible to analyse variability of
Qo. More precisely, employment of the bootstrap algorithm enables estimation
of σo. The computations can be found in Appendix A. The estimated standard
deviation is denoted by so. The empirical discrepancy is

δ̂ =
q̄s − qo

so
. (14)

An empirical discrepancy δ̂ can be obtained for any vehicle velocity v and
fatigue exponent β. Let the vehicle velocities on the studied road belong to a
set V and fatigue exponents belong to a set B. Then the road model lack-of-fit
is defined as the largest deviation from zero,

Δ = δ̂(v0, β0), (15)

where v0 ∈ V and β0 ∈ B are such that |δ̂(v0, β0)| ≥ |δ̂(v, β)| for all v ∈ V and
β ∈ B. Hence, the lack of fit of a model is decided by its worst fit, for all studied
velocities and fatigue exponents. To clarify, if the empirical discrepancies equal
(−3, 4,−6) then Δ = −6. A negative value indicates that the model gives
non-conservative fatigue damage estimates, and vice versa for a positive value.

To ensure that the road model is suitable for a wide range of velocities and
fatigue exponents the following sets are proposed:

B = {3, 4, 5, 6, 7, 8} (16)

and
V = {40, 50, 60, 70, 80, 90}, (17)

where the velocities are expressed in km/h.

5 Lack of fit rejection level

The purpose of this section is to define a target interval for the lack-of-fit
measure Δ. The distribution of Δ is investigated in the case when H0 is
true, i.e. when the synthetic roads and the observed road originate from the
same model. More precisely, the quantile λ is searched for, which satisfies
P(−λ ≤ Δ ≤ λ) = 0.95.

The measure Δ is, with the proposed sets B and V , the maximum deviation
from zero of n = 36 (approximately) Gaussian variables, here denoted by δ̂i,
i = 1, . . . , n. If we assume that H0 is true then E[Qo] = E[Qs]. Also, if we
assume that E[Qs] and σo are accurately estimated by q̄s and so, respectively,
then δ̂i, i = 1, . . . , n is a standard Gaussian variable. Now, if the δ̂i:s are
assumed independent then the probability density of Δ is

f
(1)
Δ (z) = n (2Φ(|z|) − 1)n−1 Φ̇(z), (18)
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where Φ(z) and Φ̇(z) are the standard Gaussian distribution and density, re-
spectively. On the other hand, if the δ̂i:s are strictly dependent, then the
probability density is simply the Gaussian density,

f
(2)
Δ (z) = Φ̇(z). (19)

A 95 %-interval of Δ is [−3.2, 3.2] in the independent case and [−2.0, 2.0] in the
dependent case. This gives an idea on how to choose the interval. However, it
was assumed that the standard deviation was accurately estimated. But the
estimation of σo is not exact, which makes the variability of Δ larger than
indicated by equations (18) and (19).

Simulation studies are performed in order to aid the choice of the target
interval. Two studies are presented below. The first simulation study uses
a stationary Gaussian model to simulate both ‘observed’ and synthetic roads.
The spectral parameters are κ = 10−4 m3 and w = 2, see Equation (2). The
second study uses the RS-model to generate ‘observed’ and synthetic roads.
The parameters are set to a = −4.0, b = −3.5, c = −2.5, w = 3.0, θL = 200 m,
θS = 1000 m, dL = 40 m and dS = 4 m. Hence, in these studies, the correct
model and its parameters are known in advance.

To show how road distance influences the distribution of Δ, two different
road lengths are studied: 10 and 50 km. Also, Δ is computed for both known
and unknown σo, in order to show how estimation of σo influences the distri-
bution. For each road length, 1000 synthetic roads are realized. Then, one of
the synthetic roads is set to be the ‘observed’ road, and a lack-of-fit measure is
computed. Repeating this for every road enables 1000 lack-of-fit measures to
be computed. Figures 10 and 11 display the resulting histograms of Δ.

In the case when the true value of σo is used to compute Δ the distribution is
insensitive to a change of road length and road model, see the right-hand-side
plots in Figures 10 and 11. However, in practical situations, σo is unknown
and has to be estimated. The left-hand-side plots show, as expected, that
the estimation of σo increases the variability of Δ. Note especially that the
spread is larger for the shorter distance, since then the estimation of σo is more
uncertain.

A comparison of the left-hand-side plots of Figures 10 and 11 shows that
the spread of Δ is larger for the RS-model. This is natural since there is more
variability in the RS-model, which implies that the road must be long in order
to obtain an accurate estimate of σo.

Note also the skewness of the distributions, clearly visible in the left-hand-
side plots of Figure 11. There are several outcomes above +4 but very few below
−4. This is due to the positive correlation between the observed transformed
damage qo and the estimated standard deviation so, see (14). A large lack of fit
occurs when the ‘observed’ road causes, by chance, an unusually low damage.
Unfortunately, this unusually low damage qo is likely to give an unusually
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large underestimation of the standard deviation, so. Recall that the standard
deviation is estimated using only the observed road. Thus, (14) with a low qo

and a small so, implies that the empirical discrepancy becomes largely positive.
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Figure 10: Histograms of the lack-of-fit measure. Roads realized from the
Gaussian model, κ = 10−4 and w = 2.
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Figure 11: Histograms of lack-of-fit measure. Roads realized from the RS-
model.
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8 COMMENTS

Judging from the simulation studies the 0.025-quantile of Δ is higher than
3.2, due to estimation uncertainty of σo. The results indicate that a reason-
able level is 4. Thus, lack-of-fit measures in the interval [−4, 4] are deemed
satisfactory.

There is one matter that has not been discussed in this section. When a
road has been measured, the parameters in the road model have to be esti-
mated. The estimated parameters are uncertain. This uncertainty will lead to
an increased spread of the lack-of-fit measure, even if the road model is correct.
In this section all parameters are known in advance, and hence no parameter
estimation was needed. However, it is difficult to take this into account since
different models are associated with different parameter uncertainties. There-
fore, the effect of parameter uncertainties is not treated here.

6 Evaluation of three road models

In this section the three road models presented in Section 3 are compared to
14 measured profiles. For each measured road and road model the lack of fit
is computed. The actual roads range from newly paved smooth motorways to
very rough gravel roads. The measured distances vary in the interval 5–45 km.

For parameter estimation of the Gaussian model, see ISO 8608, for estima-
tion of the transformation function used in the transformed Gaussian model,
see Rychlik (1997), and for parameter estimation of the RS-model, see Bogsjö
(2005). The lack of fit is presented in Figure 12.

The target is reached in 1 out of 14 roads for the Gaussian and the trans-
formed Gaussian model. The Gaussian model underestimates the damage
whereas the transformed Gaussian overestimates the damage. The RS-model
reaches the target in 11 out of 14 studied roads. If we compare the absolute
values of the lack-of-fit measures, the RS-model has the smallest lack of fit for
all roads.

7 Conclusions

This paper explains how to evaluate any stochastic road model given a mea-
sured profile. The lack-of-fit measure quantifies discrepancy between model
and measurement. It facilitates quick and simple comparison of different road
models.

8 Comments

The results presented in Section 6 show that the Roughness summation model is
more accurate than the Gaussian model and the transformed Gaussian model.
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Figure 12: Lack of fit, for each measured road, for the three models.

The Gaussian model gives non-conservative fatigue estimates. The transformed
Gaussian model gives too conservative fatigue estimates. The transformed
Gaussian model should be used with caution. The Gaussian and the trans-
formed Gaussian model assumes strictly stationary roads, which is a very strong
assumption.
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[9] Öijer, F. and Edlund, S. (2003) ‘Identification of Transient Road Ob-
stacle Distributions and Their Impact on Vehicle Durability and Driver
Comfort’, Supplement to Vehicle System Dynamics, Vol. 41, pp. 744–753.

[10] Robson, J.D. and Dodds, C.J. (1973) ‘The description of road surface
roughness’, J. Sound and vibration, Vol. 31, pp. 175–183.

[11] Rouillard, V. and Sek, M.A. (2002) ‘A statistical model for longitudinal
road topography’, Road and Transport Research, ARRB, Vol. 11, No. 23,
pp. 17–23.

[12] Rychlik, I. (1987) ‘A new definition of the rainflow cycle counting
method’, Int. J. Fatigue Vol. 9, pp. 119–121.

[13] Rychlik, I., Johannesson, P. and Leadbetter M.R. (1997) ‘Modelling and
statistical analysis of Ocean-Wave Data using transformed Gaussian pro-
cesses’, Marine structures, Vol. 10, pp. 13–47.
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A Estimation of σo

To compute the empirical discrepancy an estimation of the standard deviation
σo is needed. Due to the logarithmic transformation (7) it is difficult to estimate
the standard deviation. Hence, bootstrap is employed.

As in Section 4.1.2 the observed transformed damage is expressed as a
function of partial damages,

qo =
1
β

ln(
N∑

j=1

dj), (A.1)

where the partial damages dj , j = 1, . . . , N , are assumed to be outcomes of
independent and identically distributed random variables.

The following stepwise procedure computes the estimate of σo:

1. The original sample is d1, . . . , dN .

2. Sample at random with replacement from the original sample to obtain
a bootstrap sample d∗1, . . . , d

∗
N .

3. Compute q∗ = 1
β ln(

∑N
j=1 d∗j ).

4. Repeat step 2–3 M times to generate bootstrap replications: q∗b ,
b = 1, . . . , M .

5. Compute so, the empirical standard deviation of q∗b ,

so =

√√√√ 1
M − 1

M∑
b=1

(q∗b − q∗)2, q∗ =
1
M

M∑
b=1

q∗b .
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Paper D

Evaluation of stochastic models
of parallel road tracks

klas bogsjö

abstract

In road roughness literature different stochastic models of parallel road tracks
are suggested. A new method is proposed to evaluate their accuracy, by com-
parison of measured parallel tracks and synthetic parallel tracks, realized from
a stochastic model. A model is judged accurate if synthetic and measured roads
induce a similar amount of fatigue damage to a vehicle. A lack-of-fit measure
is assigned to the evaluated models, facilitating quick and simple comparison.
The uncertainty of the vehicle fatigue indicated for the measured profile is con-
sidered in the definition of the lack-of-fit measure. A bootstrap technique is
applied to estimate the uncertainty.

Keywords: Road roughness; vehicle fatigue; stochastic processes; model evalu-
ation.

1 Introduction

Long road profile measurements reveal what operating vehicles can be exposed
to. However, such measurements give very large data quantities, which are
difficult to comprehend. A stochastic model of the road data is appropriate,
due to the random nature of such measurements. If the stochastic model is
uniquely defined by a few parameters, these parameters summarise the large
data quantities. Moreover, synthetic roads can be generated from the model,
with parameter values estimated from a measured road. If synthetic and mea-
sured roads are equivalent, in the sense that they induce the same amount of
vehicle fatigue damage, then it can be concluded that the road model and the
estimated parameters are relevant.

A four-wheeled vehicle is subjected to excitations due to road roughness in
the left and right wheel paths. Hence, to describe the excitations we need a
stochastic model of parallel road tracks. The model shall describe variation
within each track and the covariation between the tracks. In this paper, an
evaluation method is proposed, which assesses accuracy of such ‘parallel track’
models.

Several parallel track models were evaluated and the most accurate one is
described and compared to the isotropic Gaussian model. In previous work [1]
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a single-track road model was proposed. The parallel track model proposed in
this paper is an extension of that single-track model. The parallel track model
includes irregular sections with above-average roughness. These irregularities
have random shape, length and location.

This paper focusses on evaluation of stochastic road models, rather than ac-
curate estimation of vehicle fatigue damage. Hence, the vehicle model is simple
and its fatigue properties are described with low complexity. A two-wheeled
vehicle model (half-vehicle) is used to simulate vehicle response. A measure of
lack-of-fit is derived, which quantifies the discrepancy between indicated vehicle
fatigue damage on synthetic and measured roads.

In Section 2 information regarding the road measurements are given. In
Section 3, vehicle fatigue assessment is discussed. In Section 4, two road models
are defined, referred to as Models A and B. In Section 5, computation of the
lack-of-fit measure is described, and in Section 6, a rejection region of the lack-
of-fit is defined. In Section 7, Models A and B are evaluated utilising the
lack-of-fit measure.

2 Road measurements

The proposed road model and the evaluation method is tested on records from
20 Swedish roads, measured in left and right wheel path. The total length of
these roads is 520 km. The measured roads are of varying quality, ranging from
very smooth motorways to very rough gravel roads.

The profile of the left and right wheel-path is measured by laser/inertial
profilometers. The measurement equipment is described in [2]. Here, laser
number 3 and 15, as numbered in [2], represent the left and right wheel-path,
respectively.

3 Vehicle fatigue

Fatigue damage is assessed by studying a half-vehicle model travelling at con-
stant velocity on road profiles, see Figure 1. This simple model cannot be
expected to predict loads on a physical vehicle exactly, but it will high-light
the most important road characteristics as far as fatigue damage accumula-
tion is concerned; it might be viewed as a ‘fatigue-load filter’. The parameters
of the vehicle model are set to mimic heavy vehicle dynamics. In this study
the model comprises masses, linear springs and linear dampers; the only non-
linearity is the ability to loose road contact. For an analysis of a vehicle-model
with non-linear damping excited by stochastic road profiles, see [3].

The vertical accelerations of the left and the right side of the sprung mass
are denoted by üL(x; v) and üR(x; v), where x is the position of the vehicle along
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uR

uL

z

yx

zL

zR

Figure 1: The half-vehicle

the road and v is the (constant) velocity of the vehicle. Linear combination
of üL and üR forms a one-dimensional acceleration sequence, which is used to
assess fatigue damage [4], [5]. In this general setting, where we do not study a
specific critical location in a vehicle component of a particular vehicle exposed
to deterministic loads, the appropriate linear combination is unknown. Hence,
several linear combinations are studied,

ü(x; v; n) = c1(n)üL(x; v) + c2(n)üR(x; v), (1)

where
c1(n) = cos(

nπ

N + 1
), c2(n) = sin(

nπ

N + 1
), (2)

and where n = 0, 1, . . . , N . Obviously, c2
1 + c2

2 = 1 for all n.
Rainflow cycles, Uj , j = 1, . . . Nc, are identified in ü(x; v; n), where Nc

is the total number of rainflow cycles. For a simple definition of the rainflow
cycle, see [6]. The rainflow cycles Uj are evaluated with Palmgren-Miner’s
linear damage accumulation hypothesis, and fatigue strength is described by
Basquin’s relation. The fatigue damage is

D(v; n; β) = κ

Nc∑
j=1

Uβ
j , (3)

where κ and β are treated as deterministic constants. For vehicle components,
β is usually in the range 3–8, making it most important to describe load cycles
with large amplitude accurately. Here, the value of κ is unimportant, since
only relative damage values are studied. This also justifies that acceleration
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can be used as the ‘fatigue-load’, since the acceleration is proportional to the
dynamic load.

To sum up, D(v; n; β) is the fatigue indicated by a certain road at velocity
v, ‘left-right unit’ n and fatigue parameter β. A reliable stochastic road model
should be accurate for all realistic values of v, n and β.

4 Stochastic models

Two stochastic models will be evaluated in this paper. But first some general
properties of stationary stochastic processes are discussed. Let the zero mean
stationary processes ZL(x) and ZR(x) describe the road elevation at position x
along the left and right wheel path. Furthermore, it it is assumed that ZL(x)
and ZR(x) are statistically equivalent, so that the auto-covariance function
r(x) = E[ZL(x +x0)ZL(x0)] = E[ZR(x + x0)ZR(x0)]. Also, the cross-covariance
functions rRL(x) = E[ZR(x + x0)ZL(x0)] and rLR(x) = rRL(−x).

The one-sided spectrum and cross-spectrum are defined by

R(ξ) =

⎧⎨
⎩

2
∫∞
−∞ r(x)e−i2πξxdx, ξ > 0,∫ ∞

−∞ r(x)dx, ξ = 0,

0, ξ < 0,

(4)

RLR(ξ) =

⎧⎨
⎩

2
∫∞
−∞ rLR(x)e−i2πξxdx, ξ > 0,∫ ∞

−∞ rLR(x)dx, ξ = 0,

0, ξ < 0,

(5)

where ξ is spatial frequency.
Inversely, the auto-covariance function is given by the one-sided spectrum,

r(x) =
∫ ∞

0

R(ξ) cos(2πξx)dx. (6)

If the road profiles ZL and ZR are (correlated) Gaussian processes, then their
spectrum and cross-spectrum fully define the model. Simulation of correlated
Gaussian processes with given spectrum and cross-spectrum is described in [7].
Alternatively, a Gaussian model is fully defined by the spectrum, coherence
and phase function. Here, we will assume a zero phase function and focus
on the spectrum and coherence function, where the coherence is defined by
γ(ξ) = |RLR(ξ)|/R(ξ).

4.1 Model A (Isotropy)

Often (e.g. [8]–[12]) roads are assumed to be ergodic, homogeneous, isotropic
Gaussian surfaces. Homogeneity and isotropy imply that all profiles following a
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straight-line on the road surface have the same statistical properties, irrespec-
tively of direction and position of the line. Specifically, the covariance between
two values of a field at points A and B is a function only of the distance be-
tween them. Isotropy and Gaussianity imply that a spectrum of any profile
on the isotropic surface uniquely describes the surface model. However, the
spectrum cannot be chosen arbitrarily, it has to satisfy certain conditions. The
conditions are stated in [9].

Kamash and Robson [9] propose the following spectrum, which is compatible
with the isotropic assumption,

RA(ξ) =

⎧⎨
⎩

cξ−w
a , 0 ≤ ξ ≤ ξa,

cξ−w, ξa ≤ ξ ≤ ξb,
0, otherwise.

(7)

Here, the boundary constants ξa and ξb are set to 0.01 and 10 m−1, respectively.
Isotropy implies that rRL(x) = rLR(x) = rLR(−x), i.e. the cross-covariance

functions are symmetric. This symmetry implies that the cross-spectra are real,
thus RRL = RLR.

In Figure 2 three points are marked, points A and C on the right track and
point B on the left track. The covariance between the road levels in points A
and B is rLR(x) and the covariance between the road levels in points A and C is
r(
√

x2 + t2w). Since the distance between A and B equals the distance between
A and C, a consequence of isotropy is that

rLR(x) = r(
√

x2 + t2w). (8)

Left track

Right track

t
w

x

(x2+t
w
2 )1/2

(x2+t
w
2 )1/2 A

 B

 C

Figure 2: Two parallel road tracks

The cross-spectrum can be computed from RA(ξ) using (6), (8) and (5).
Thus, the coherence function γA(ξ), is also given by RA(ξ). In Figure 3, a
spectrum and corresponding coherence function is plotted for different track
widths.
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Figure 3: Spectrum and coherence of Model A, when tw=[1.6, 2.0, 2.4].

The two model parameters are gathered in the vector pA = [c, w]. The two
parameters fully define the model, since the track width tw is known a priori
and ξa and ξb are fixed constants.

4.2 Model B

The left and right wheel paths are assumed to be statistically equivalent. More-
over, the main variability in the road is described by the two-dimensional pro-
cess, Z(0)(x), which consists of two stationary Gaussian processes, correspond-
ing to the left and right wheel path,

Z(0)(x) =
[

Z(0)
L (x)

Z(0)
R (x)

]
. (9)

The spectrum and coherence of Z(0)(x) is given later on.
Irregularities of two types, long-wave (LW) and short-wave (SW), are su-

perimposed to Z(0)(x). The two irregularity types, LW and SW, occur indepen-
dently of each other. To illustrate this, a 240 m long road is generated with two
superimposed irregularities of each type, see Figure 4. As the example shows,
the left and right irregularities have different shape, but occur simultaneously.
Also, long-wave and short-wave irregularities may overlap. The j:th long-wave
irregularity and the k:th short-wave irregularity are described by the processes
Z(1)

j (x) and Z(2)

k (x). The road with superimposed irregularities is denoted by
ZB(x).

The irregularities are modelled as (non-stationary) conditional Gaussian
processes. To avoid discontinuities at the start and end of the rough sections,
the added irregularities start and end with two values equal to zero, in both
left and right track. The irregularities are simulated conditioning on the zero
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Figure 4: A realization from Model B: Z(0)(x) = two-dim. stationary Gaussian
process, Z(1)

j (x) = long-wave irregularities, Z(2)

k (x) = short-wave irregularities.
The realized road ZB(x) equals the stationary Gaussian process plus simulated
irregularities.

boundary levels, for more details see [14]. The irregularity simulation technique
is similar to the technique in [15], where the algorithm to realize single-track
irregularities is presented. Since the irregularities are non-stationary, it is in-
correct to assign a spectral density to them. However, an irregularity reaching
from −∞ to +∞ is stationary.

We need to define spectrum, coherence and phase functions for the main
process, Z(0)(x), and infinite length irregularities. As usual, it is a assumed
that all cross-spectra are real, hence, the phase functions are zero (see for ex-
ample [13]). The spectrum and coherence associated with Z(η)(x), for η = 0, 1, 2
are denoted by R

(η)
B and γ

(η)
B , correspondingly. Many different parametric func-

tions have been proposed for the description of road profile spectrum, see [16]
and [17]. Here, the shape in [8] is used for the spectrum of Z(0)(x),

R(0)
B (ξ) =

⎧⎪⎪⎨
⎪⎪⎩

10a0

(
ξ
ξ0

)−w1

, ξ ∈ [0.01, 0.20],

10a0

(
ξ
ξ0

)−w2

, ξ ∈ [0.20, 10],
0, otherwise,

(10)

and for (infinite length) LW- and SW-irregularities,

R
(η)
B (ξ) =

{
(10aη − 10a0)

(
ξ
ξ0

)−wη

, ξ ∈ Ξη,

0, otherwise,
η = 1, 2. (11)
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As suggested in [18] the coherence is exponentially decreasing,

γ
(η)
B (ξ) =

{
e−ρtwξ, ξ ∈ Ξη,
0 otherwise, η = 0, 1, 2. (12)

The intervals Ξη, η = 0, 1, 2, are given in Table 1 and the reference spatial
frequency ξ0 = 0.2 m−1. Note also that these spectra and coherence functions
are not compatible with the isotropic assumption used in the previous model.

Symbol Ξ0 Ξ1 Ξ2

Interval [m−1] [0.01, 10] [0.03, 0.2] [0.2, 2.0]

Table 1: Spatial frequency intervals

Furthermore, the location and length of the sections with added roughness
are random. More precisely, the distance between the end of a long-wave ir-
regularity and the start of the next is exponentially distributed with mean θ1.
Similarly, the distance between short-wave irregularities is exponentially dis-
tributed with mean θ2. The length of long-wave and the length of short-wave
irregularities are exponentially distributed with mean τ1 and τ2, respectively.

All model parameters are gathered in the vector

pB = [a0, a1, a2, w1, w2, ρ, θ1, θ2, τ1, τ2], (13)

where the spectral parameters a0, a1, a2, w1, w2 and ρ are dimensionless and
the distance parameters θ1, θ2, τ1 and τ2 are given in meters.

Remark: Analysis of measured single road tracks indicates that actual
roads contain short sections with above-average irregularity. Such irregularities
are shown to cause most of the vehicle fatigue damage [1]. The single track
model, proposed in [1], comprises a stationary Gaussian process and super-
imposed irregularities of random shape, length and location. An alternative
naive first choice of a parallel track model is to use two independent single
tracks, modelled as in [1]. However, this gives, as expected, very inaccurate
results. A slightly more realistic model use two correlated Gaussian processes
and superimposed irregularities, where the irregularities are still independently
superimposed in left and right track. However, this also gives very inaccurate
results. As mentioned, in the proposed Model B, correlated irregularities occur
simultaneously in left and right side. The simplifying assumption of simul-
taneousness is realistic, because when an irregularity is detected in a measured
track, the other parallel track is usually also irregular.
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5 The lack-of-fit measure

The stochastic models described in the previous section may be used to realize
synthetic roads, with parameter values estimated from a measured road. A
model is accurate if the synthetic roads and the measured road induce a simi-
lar amount of fatigue damage to the half-vehicle. In Section 5.1 the logarithm
of the fatigue damage is used to construct a lack-of-fit measure. The measure
quantifies dissimilarity between a road model and a measurement. Firstly, an
introductory example is discussed, motivating the usefulness of the transfor-
mation of the damage to a logarithmic scale.

When we use standard statistical tools to test whether the mean damage
from the measured road equals the mean damage from a model, we encounter
problems, due to the highly skewed and non-Gaussian distribution of the dam-
age values. More precisely, the measured road is divided into shorter sections,
roughly 1 km long. Then damage di caused by each section is computed, and
treated as independent and identically distributed observations of a random
variable, D, where in general D is non-Gaussian.

The standard approach to test if E[D] equals the expected damage E[Dmod]
caused by a road realised from the stochastic model, would be to construct the
statistic

ν =
d̄ − E[Dmod]

sd
,

where d̄ = 1/K
∑K

k=1 di is the observed sample mean and sd the empirical
standard deviation, and compare ν to quantiles of the standard Gaussian dis-
tribution. Naturally, this test is only valid if K is large enough so that d̄ is
approximately Gaussian, by the central limit theorem.

As a numerical example, road 11 (which is 21.5 km long) is divided into
K = 21 equally long sections. With n = 3, β = 4, v = 50 km/h, the damage
values of the K sections are approximately distributed like a log-normal variable
with E[ln D] = −12.25 and Var[lnD] = 2.13. With these parameters, 1000
simulations of the sample mean of K log-normal variables, are plotted on a
normal probability paper in Figure 5. As illustrated by the figure, the sample
mean d̄ can not be approximated by a Gaussian variable.

5.1 Transformed fatigue damage

First of all, v, n and β are fixed and D(v, n, β) = D. The vehicle fatigue D
indicated for a stochastic road is a non-negative random variable (r.v.), D ≥ 0.
Generally, the distribution is highly asymmetric, as discussed above. It is
therefore more convenient to study the transformation,

Q =
ln D

β
. (14)
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Figure 5: Normal probability plot of the sample mean, d̄ = 1/K
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k=1 di

A Monte-Carlo study is performed to empirically study the distribution of
D and Q. From Model B, 300 synthetic roads of length 5 km are realized
with pB = [−5.4,−4.3,−3.2, 3.4, 2.6, 3.3, 300, 900, 30, 4]. In this specific exam-
ple, the empirical distribution of Q closely matches the Gaussian distribution,
whereas the distribution of D is non-symmetric and non-Gaussian, see Figure 6.
This is the same result as obtained in earlier studies [1].
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Figure 6: Normal probability plots of D and Q, v = 70 km/h, n = 0 and β = 7.

The nomenclature of fatigue damage values indicated by measured and syn-
thetic roads are compiled in Table 2.

We wish to test if synthetic roads induce the same amount of damage (on
average) as the measured road. The expected damage values are denoted by
mo = E[Qo] and ms = E[Qs]. The following hypothesis is tested,{

H0 : mo = ms,
H1 : mo �= ms.

(15)

If H0 is true, then the road model and the actual road induce the same amount
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Road Damage Tr. Damage Uncertainty
(r.v) (outcome) (r.v) (outcome) (True) (Estim.)

Measured Do do Qo qo σ2
o = Var(Qo) s2

o

Synthetic Ds ds Qs qs

Table 2: Nomenclature of fatigue related values

of fatigue (on average). If Qo ∼ N(mo, σ
2
o), then the usual test-statistic is

qo − ms

σo
. (16)

In this application σo is unknown and has to be estimated. Here, we use a
similar test statistic, but with changed sign,

δ =
q̄s − qo

so
, (17)

where q̄s estimates ms, so estimates σo and qo is the outcome of the random
variable Qo. With this definition, a negative δ indicates that the model under-
estimates the damage, and vice versa for a positive δ. The fact that we only
have one outcome of Qo complicates the estimation of the standard deviation
σo. The standard deviation is estimated by means of bootstrap and described
in Section 5.2. Estimation of ms is easier: it is obtained by Monte Carlo
simulation. Synthetic roads are realized from the model and the transformed
damage is assessed for each road. The average transformed damage estimates
the expected transformed damage,

q̄s =
1

Nr

Nr∑
j=1

q(j)
s , (18)

where q
(j)
s is the transformed damage from synthetic road j and where Nr is

the total number of synthetic roads.
A discrepancy, δ, is computed for each v, n and β. Finally, the lack-of-fit is

defined as
δmax = δ(v0, n0, β0), (19)

where v0 ∈ Ψv, n0 ∈ Ψn and β0 ∈ Ψβ are such that |δ(v0, n0, β0)| ≥ |δ(v, n, β)|
for all v ∈ Ψv, n ∈ Ψn and β ∈ Ψβ . To ensure that the road model is validated
for a wide range of parameter values the following sets are proposed:

Ψn = {0, 1, 2, 3, 4, 5}, (N = 5), (20)

Ψβ = {3, 4, 5, 6, 7, 8}, (21)
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and
Ψv = {40, 50, 60, 70, 80, 90}, [km/h]. (22)

Note that
|δmax| = max

v∈Ψv ,n∈Ψn,β∈Ψβ

|δ(v; n; β)|. (23)

Note also that there are 6 elements in each of the three sets, which gives in
total 63 = 216 combinations. Thus, δmax corresponds to the worst model fit
of these 216 combinations. A negative value of δmax indicates that the model
gives non-conservative fatigue damage estimates, and vice versa for a positive
value.

5.2 Estimation of σo using bootstrap

To compute the discrepancy δ(v; n; β) the standard deviation σo has to be
estimated for each v, n and β. This section describes the estimation procedure
for fix values of v, n and β.

The load sequence ü(x), obtained by simulation of the half-vehicle response
on the measured road, is divided into K equally long subsequences. Each
subsequence is at least 1 km long, for example, if the measured road is 8.8 km,
the road is divided into 8 subsequences, 1.1 km long. The rainflow damage
of the subsequences are b̃k for k = 1, . . . , K. The partial damage values are
normalised to ensure that the sum of the partial damage values equal the total
observed damage do,

bk = b̃k
do∑K
j=1 b̃j

. (24)

Then, the transformed damage can be expressed as

qo =
1
β

ln

(
K∑

k=1

bk

)
. (25)

Note that do =
∑K

k=1 bk. The purpose of expressing qo as a function of
the partial damage values is to enable estimation of σo =

√
Var(Qo). It is

assumed that the partial damage values bk are outcomes from independent
and identically distributed random variables. This assumption is questionable,
but used here for simplicity. By employment of the Bootstrap algorithm it is
possible to obtain bootstrap observations,

q∗ =
1
β

ln

(
K∑

k=1

b∗k

)
, (26)

where b∗k is a bootstrap sample from {bj}j=1,...,K . Thus, q∗ can be treated as
an additional outcome of the random variable Qo. The bootstrap algorithm is
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5 THE LACK-OF-FIT MEASURE

repeated Nboot times, producing the bootstrap observations q∗l , l = 1, ..., Nboot.
For more details about bootstrap, see (e.g.) [19]. Finally, an estimate of the
standard deviation σo is simply the empirical standard deviation of the boot-
strap samples,

so =

√√√√ 1
Nboot − 1

Nboot∑
l=1

(q∗l − q̄∗)2 (27)

where q̄∗ = 1
Nboot

∑Nboot
l=1 q∗l .

An estimate so is obtained for each v, n and β. It measures the uncertainty
of the observed (transformed) damage Qo(v; n; β).

Naturally, the accuracy of the bootstrap estimate improves with increasing
road length. Figure 7 shows the result of a Monte-Carlo simulation of 50
synthetic roads of length 100 km. The roads are realized from Model B, with
pB = [−5.6,−4.4,−3.7, 3.4, 1.7, 3.2, 350, 1000, 30, 5]. The transformed damage
Q(x) is computed as function of travelled distance x, for each road, with n = 3,
β = 4 and v = 70 km/h. The empirical standard deviation of Q(x) (solid
line) and corresponding confidence interval of σo(x) (dotted lines) are plotted
in Figure 7. For comparison a bootstrap estimate of σo is computed for each
road, for x = 10, 20, . . . , 100 km. As illustrated by the figure, the bootstrap
estimate approaches the true standard deviation as length increases. Note also
the uncertainty of the bootstrap estimate for distances between 10 and 50 km.
This will influence the uncertainty associated with the lack-of-fit measure and
is discussed in Section 6.
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Figure 7: Convergence of bootstrap estimate, n = 3, β = 4 and v = 70 km/h.
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Remark: In Section 3 it was claimed that κ is unimportant. Now, this
is verified by observing that δ is not a function of κ. First of all, note that a
difference between two transformed damage values can be rewritten as

q1 − q2 =
ln d1

β
− ln d2

β
=

1
β

ln
(

d1

d2

)
. (28)

The parameter κ cancels in the ratio d1
d2

, which implies that q1 − q2 is not a
function of κ. Moreover, since the numerator of δ is q̄s−qo and the denominator
of δ is a function of q∗b − q̄∗, it follows that δ is not a function of κ.

6 Rejection region

If δmax belong to the rejection region, the hypothesis H0 should be rejected.
The probability to reject H0 when H0 is true (Type I error) is αI . In this
section an approximate rejection region when αI = 0.05 is searched for. The
region where H0 cannot be rejected is referred to as the acceptance region.

First of all, the lack-of-fit δmax, is treated as the outcome of the random
variable which satisfies

|Δmax| = max
v,n,β

∣∣∣∣Q̄s(v; n; β) − Qo(v; n; β)
So(v; n; β)

∣∣∣∣ , (29)

where Q̄s is the (random) average transformed damage from the model and So

is the estimator of the standard deviation. We want to study the probability
density function (PDF) of Δmax. In particular, the quantile λ is of interest,

P(−λ ≤ Δmax ≤ λ |H0 true) = 1 − 0.05. (30)

Note that Δmax is a function of the random variables Qo and So, which are
obtained from the observed road. Hence, to compute the PDF of Δmax it is
necessary to know the true model of the observed road. By ‘true model’ we
mean that roads realized from this model are statistically equivalent to the
observed (measured) road. However, this model is of course unknown, so it is
neither possible to exactly compute the PDF of Δmax nor the quantile λ.

The road models defined in Section 4, are used to empirically study the
PDF of Δmax under H0. First, J = 500 roads are realized from one of the
models. Then each of the J synthetic roads is treated as the observed road.
The ‘observed’ road is then compared to the other J − 1 synthetic roads, by
computation of δmax. Thus, lack-of-fit measures, δmax,i, i = 1, . . . J , are com-
puted, when we know that H0 is true. Two different road lengths are studied:
10 and 50 km. The left-hand-side histograms in Figures 8 and 9 estimate the

PDF of Δmax. A straight-forward estimation of λ satisfies
#{|δmax,i|>λ̂}

J = 0.05.
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Figure 8: Histogram of Δmax and Δ̃max, when L = 10, 50 km. The synthetic
roads are realized from model A, with pA = [10−5, 2] and tw = 2 m.

In this theoretical context, when we have several realizations from the true
model, the standard deviation can be accurately estimated. Hence, the follow-
ing random variable can be accurately computed,

|Δ̃max| = max
∣∣∣∣ Q̄s(v; n; β) − Qo(v; n; β)

σo(v; n; β)

∣∣∣∣ . (31)

The standard deviation, σo, is replaced by the empirical standard deviation,

s̃o =

√√√√ 1
J − 1

J∑
j=1

(
q
(j)
s − q̄s

)2

. (32)

Since J is large, s̃o is accurate and we can consider σo as known. The affect of
estimating σo is studied by comparison of Δmax and Δ̃max. In particular, it is
interesting to compare the quantiles λ and λ̃, where λ̃ satisfies

P(−λ̃ ≤ Δ̃max ≤ λ̃ |H0 true) = 1 − 0.05. (33)

The right-hand-side histograms in Figures 8 and 9 show that Δ̃max is in-
sensitive to changes of measurement length and change of true road model.
Hence if we could compute σo accurately a reasonable acceptance region would
be, say, [−3.3, 3.3]. But, in practical situations σo has to be estimated. This
implies that the acceptance region has to be wider than [-3.3,3.3], since the
estimation of σo increase the variability of the lack-of-fit measure. Note espe-
cially the higher variability of Δmax in the top left histogram in Figure 9. This
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Figure 9: Histogram of Δmax and Δ̃max, when L = 10, 50 km. The
synthetic roads are realized from model B, with tw = 2 m and pB =
[−5.3,−4.2,−2.9, 3.4, 3.4, 2.3, 320, 1000, 34, 4.5].

is due to short road length (10 km). Hence, the measurement length is crucial,
the measurement has to be long enough to enable accurate estimation of σo.
Thus, results presented in Section 7 (Figure 10) should be considered together
with the provided measurement length information. Finally, the analysis and
discussion above cannot provide unequivocal rejection and acceptance regions,
a bit of judgement is also required. In the present work, the following three
regions are selected: |δmax| > 7, 5 < |δmax| ≤ 7, 0 ≤ |δmax| ≤ 5 indicating
unsatisfactory model accuracy (rejection region), doubtful model accuracy and
satisfactory model accuracy (acceptance region), respectively.

7 Model evaluation using δmax

Model A and Model B are fitted to each of the 20 actual roads, by estimation
of pA and pB from the measurements. Estimation of pB is described in detail
in [14]. Twenty lack-of-fit values are computed for each model. The number
of synthetic roads, Nr, to compute q̄s is set to 100. Hence 20 ∗ 100 synthetic
roads are simulated from each model.

The results are presented in Figure 10. Model A is inaccurate: It has 0
satisfactory, 2 doubtful and 18 unsatisfactory values of δmax. Model B performs
better: It has 7 satisfactory, 9 doubtful and 4 unsatisfactory values of δmax.

Recall that each computed δmax corresponds to the worst fit, obtained from
216 discrepancies δ(v, n, β). Thus, Figure 10 presents these worst case fits.
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Figure 11: Histograms of δ, for Models A and B.

In Figure 11 all discrepancies from the 20 actual roads are presented in a
histogram. There are in total 20 ∗ 216 = 4320 computed discrepancies. Hence,
Figure 11 displays the general behaviour of Models A and B. Model A obtains
in most cases discrepancies from −10 to 0, (i.e. underestimated fatigue damage
values), due to the lack of inclusions of irregularities. Model B obtains in most
cases discrepancies from −5 to +5.
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8 Conclusions

The lack-of-fit measure δmax quantifies discrepancy between a stochastic model
and two measured parallel road tracks. The accuracy of different models is eas-
ily compared when presented as in Figures 10 and 11. The lack-of-fit measure
is calculated by scanning a lot of different parameter settings (i.e. different
combinations of the vehicle velocity v, the left-right unit n and the fatigue pa-
rameter β). The combination of v, n and β which gives the largest discrepancy
defines the lack-of-fit. Hence, to receive a low lack-of-fit a model has to be
general, accurate in many different settings.

9 Comments

The isotropic Gaussian model (Model A) is a convenient model to use, since
it is simple and, here, uniquely defined by only two parameters. However, the
results in Section 7 clearly show that Model A is inaccurate. Model B is a more
complex model, it includes irregularities of random length, shape and location.
Model B is a more accurate road roughness model. Other models were also
studied but Model B was the most accurate.
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[1] Bogsjö K. Stochastic modelling of road roughness, Licentiate of engineering
thesis, Lund Institute of Technology, Lund Sweden, 2005.

[2] Ahlin K, Granlund J, Lindström F. Comparing road profiles with vehicle
perceived roughness, Int. J. Vehicle Design, Vol. 36, Nos. 2/3, pp. 270–286,
2004.

[3] Wedig W.V. Vertical dynamics of riding cars under stochastic and har-
monic base excitations, IUTAM Symposium on Chaotic Dynamics and
Control of Systems in Mechanics, 371–381, 2005.
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[15] Bogsjö K, Development of analysis tools and stochastic models of road
profiles regarding their influence on heavy vehicle fatigue, Suppl. Vehicle
System Dynamics, Vol 44, pp. 780-790, 2006. (Paper B in this thesis.)

[16] Andrén P, Power spectral density approximations of longitudinal road pro-
files, Int. J. Vehicle Design, Vol 40, No 1/2/3, pp. 2–14, 2006.

[17] Wedig WV, Parameter identification of road spectra and nonlinear oscilla-
tors, In Analysis and estimation of stochastic mechanical systems (Udine,
1987), CISM Courses and Lectures, 303, Springer, Vienna, 217–242, 1988.

91



D
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A SIMULATION OF A ROAD IRREGULARITY

Technical details

This section covers technical details which are not part of the paper in press.
Here they are added in order to clarify how irregularities are simulated (Ap-
pendix A) and how parameters in Model B are estimated (Appendix B).

A Simulation of a road irregularity

Here an algorithm is presented on how to simulate a road irregularity in left
and right wheel path. The algorithm is based on the well-known theory of
conditional Gaussian vectors. However, since this technique has not been used
before in this application, and that the irregularities are very important for the
results, a detailed description of the simulation algorithm follows.

Let ZL(x) and ZR(x) be two correlated, identically distributed, mean zero,
stationary Gaussian sequences. Their one-sided spectrum is given by (11),
their cross-spectrum is given by the coherence function (12) and the zero phase
function. To simplify notation, let the sampled process Zν(kh) = Zν [k], for
k = 1, . . . , N, and ν = L, R. Furthermore, it is convenient to define the two
column vectors

Y1 = (ZL[3], . . . ZL[N − 2], ZR[3], . . . ZR[N − 2])T (34)

and

Y2 = (ZL[1], ZL[2], ZL[N − 1], ZL[N ], ZR[1], ZR[2], ZR[N − 1], ZR[N ])T
,

(35)
where T denotes matrix transpose. We want to simulate Y1|Y2 = 0, (i.e.
condition on zero start and end levels). Define

Ỹ = Y1 − Σ12Σ−1
22 Y2, (36)

where Σ12 = cov(Y1,Y2) = E[Y1YT
2 ] and Σ22 = cov(Y2,Y2) = E[Y2YT

2 ].
The expectation and covariance of Ỹ are

E[Ỹ] = 0,

cov(Ỹ, Ỹ) = Σ11 − Σ12Σ−1
22 Σ21.

(37)

This coincides with the expectation and covariance of the conditional Gaussian
process of Y1 given Y2 = 0, thus Ỹ represents Y1|Y2 = 0. In order to
compute Ỹ we need the covariance matrices Σ12 and Σ22. Firstly, the sampled
covariance function is denoted by rμν [k] = rμν(kh), for μ, ν = L, R. And,
secondly, to simplify notation, if A is an integer-valued matrix,

A =

⎛
⎜⎝ a11 . . . a1p

...
. . .

...
aj1 . . . ajp

⎞
⎟⎠ (38)
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then

rμν [A] =

⎛
⎜⎝ rμν [a11] . . . rμν [a1p]

...
. . .

...
rμν [aj1] . . . rμν [ajp]

⎞
⎟⎠ . (39)

Moreover, let

A1 =

⎛
⎜⎜⎝

0 −1 2 − N 1 − N
1 0 3 − N 2 − N

N − 2 N − 3 0 −1
N − 1 N − 2 1 0

⎞
⎟⎟⎠ (40)

and

A2 =

⎛
⎜⎜⎜⎝

2 1 4 − N 3 − N
3 2 5 − N 4 − N
...

...
...

...
N − 3 N − 4 −1 −2

⎞
⎟⎟⎟⎠ . (41)

Then

Σ22 =
(

rLL[A1] rLR[A1]
rRL[A1] rRR[A1]

)
(42)

and

Σ12 =
(

rLL[A2] rLR[A2]
rRL[A2] rRR[A2]

)
. (43)

To realize a synthetic irregularity: Simulate the unconditional correlated
Gaussian sequences ZL[k] and ZR[k], identify Y1 and Y2, calculate the auto-
and cross-covariance from the spectrum and the cross-spectrum, calculate Σ22

and Σ12, and finally compute the irregularity Ỹ, according to (36). Simulation
of unconditional correlated Gaussian processes is described in [7].

B Estimation of parameters in Model B

This section describes how the parameters in model B are estimated from the
measurement data.

B.1 Estimation of spectral parameters a0, a1, a2, w1 and
w2

In Paper B a method is described which identifies road sections in a road
profile belonging to three roughness classes: regular sections (class 0), long-
wave irregularities (class 1) and short-wave irregularities (class 2). Here, left
and right tracks are analysed separately, according to the method described in
Paper B.
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Prior to analysis the left and right road profiles are high-pass filtered to
avoid leakage from lower to higher frequencies. The filtering is performed in
two steps, as described in [20]: First, the original sequence is filtered in the
forward direction, then the reversed filtered sequence is run back through the
same filter. The resulting sequence has a zero phase shift compared to the
original sequence.

The utilised filter is a high-pass Butterworth filter of order 5 and with a cut-
off frequency, ξcut. The cut-off frequency defines the spatial frequency where
the attenuation is 1/

√
2 for the single filter (1/2 for the ‘forward-backward’

filter). The value of ξcut depends on roughness class and is stated in Table 3.
Figure 12 displays a part of an original profile (road 4, right track) and its
corresponding filtered profiles. In Figure 13 the same part of road 4R is plotted,
where road sections have been classified.

Roughness class η ξcut [m−1]
Regular 0 0.02

Long-wave irregularity 1 0.02
Short-wave irregularity 2 0.10

Table 3: Cut-off frequencies for different roughness classes

7800 7900 8000 8100 8200 8300 8400 8500 8600

Distance [m]

Original
profile

Filtered
profiles:

ξ
cut

=0.02 m−1

ξ
cut

=0.10 m−1

Figure 12: Original and filtered road 4R.

It is assumed that a class 0 section is a realization of the purely Gaussian
process Z(0)(x), whereas a class 1 or 2 section is composed of two indepen-
dent components: the purely Gaussian process and a superimposed irregu-
larity. Therefore the spectral density of such a section equal the sum of the
spectral densities of the two components (neglecting that irregularities are non-
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Figure 13: Classification of road sections in Road 4R.

stationary). More precisely, the spectrum of a section of class 0, 1, or 2, is

S0(ξ) = R(0)
B =

⎧⎨
⎩ 10a0

(
ξ
ξ0

)−w1

, ξ ∈ [0.03, 0.20]

10a0

(
ξ
ξ0

)−w2

, ξ ∈ [0.20, 2.00]
(44)

S1(ξ) = R(0)
B + R(1)

B = 10a1

(
ξ

ξ0

)−w1

, ξ ∈ [0.03, 0.20] (45)

S2(ξ) = R(0)
B + R(2)

B = 10a2

(
ξ

ξ0

)−w2

, ξ ∈ [0.20, 2.00] (46)

correspondingly. In logarithmic scale the equations become linear, e.g.

log10 S1 = a1 − w1 log10(ξ/ξ0). (47)

The estimates of a0, a1, a2, w1 and w2 are based on computations of several
periodograms. The periodogram of the j:th section of roughness class η, z(kh+
kjh), k = 0, . . . , Mj − 1, is defined by

Ĩj
η(ξ) =

2h

Mj

∣∣∣∣∣∣
Mj−1∑
k=0

z(kh + kjh) exp(−i2πkhξ)

∣∣∣∣∣∣
2

, (48)

where h is the sample distance and Mj is the number of samples in section
j. In order to improve the estimate the sections are detrended and windowed.
The detrended section is the section with removed linear trend, denoted by
zd(kh + kjh), k = 0, . . . , Mj − 1. Instead of the ‘raw’ periodogram (48), the
modified periodogram is used,

Ij
η(ξ) = 2h

∣∣∣∣∣∣
Mj−1∑
k=0

H(kh)zd(kh + kjh) exp(−i2πkhξ)

∣∣∣∣∣∣
2

, (49)
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where H is a Hanning window, normalised so that
∑Mj

k=1 |H(kh)|2 = 1. The
modified periodogram is evaluated at the Fourier frequencies, ξm = m/(Mjh),
m = 0, . . . , Mj/2 (assuming Mj even).

To simplify notation the superscript j and subscript η in Ĩj
η and Ij

η is omitted
if not important. The theoretical properties of Ĩ(ξ), (when z is Gaussian) are
discussed in [21]. The periodogram is scattered around the true spectrum
following a standard exponential distribution (E[Λj

m] = 1),

Ĩj(ξm) = R(ξm)Λj
m. (50)

This implies that Ĩ is unbiased: E[Ĩ(ξm)] = R(ξm). But, in logarithmic scale
this is not the case:

E[log10(Ĩ(ξm))] = log10(R(ξm)) + E[log10 Λm]
= log10(R(ξm)) − 0.25068. (51)

The variance is constant in logarithmic scale,

Var[log10(Ĩ(ξm))] = Var[log10 Λm] = 0.310. (52)

The exponential random variables Λj
m and Λj

p are independent if p �= m. Also,
Λk

m and Λj
m can be assumed to be independent if k �= j since sections k and j

usually are well separated in space. Now, it is assumed all theoretical results
hold approximately when the I(ξ) is used instead of Ĩ(ξ).

Linear regression is used to fit the spectral parameters, since log10 Sη is
linearly dependent of log10(ξ), and the estimates log10 Ij

η , j = 1, 2, . . . , are
independent with constant variance. The periodogram values obtained from
all sections of class η are denoted Iη(ξ(η)

j ), j = 1, . . . , nη. The parameters a0,

a1 and w1 is estimated from I0(ξ
(0)
j ) and I1(ξ

(1)
j ), taking only into account

spatial frequencies in the range [0.04, 0.20]. The system of equations used to
obtain the least square fitted values of a0, a1 and w1 is⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 − log10(ξ
(0)
1 /ξ0)

...
...

...
1 0 − log10(ξ

(0)
n0 /ξ0)

0 1 − log10(ξ
(1)
1 /ξ0)

...
...

...
0 1 − log10(ξ

(1)
n1 /ξ0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
=X

⎛
⎝ a0

a1

w1

⎞
⎠

︸ ︷︷ ︸
=α

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

log10(I0(ξ
(0)
1 ))

...
log10(I0(ξ

(0)
n0 ))

log10(I1(ξ
(1)
1 ))

...
log10(I1(ξ

(1)
n1 ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

︸ ︷︷ ︸
=y

(53)

The least square fit is α̂ = (XTX)−1XTy, and

E[α̂] = (XT X)−1XT E[y] =

⎛
⎝ a0 − 0.25068

a1 − 0.25068
w1

⎞
⎠ . (54)
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Hence, the LS-fits of a0 and a1 are biased and the LS-fit w1 is unbiased. The
estimates of a0 and a1 are therefore corrected by +0.25068. Moreover, Var[α̂] =
0.310(XTX)−1. The least squares estimates of a2 and w2 are obtained in a
similar way using I0(ξ) and I2(ξ), for ξ ∈ [0.20, 1.0].

B.2 Estimation of the coherence parameter, ρ

The coherence parameter is estimated from road sections which have no iden-
tified irregularity in any track. These sections are assumed to be observations
of the purely Gaussian process Z(0), which have an exponentially decreasing
coherence function, see (12).

The computation of the empirical coherence is complicated since the smooth
sections have different length. The length of each analysed segment decides the
frequency sampling rate. Hence, all smooth sections are cut into 50 m long
parts. Then Welch’s non-overlapped averaged segment method [22] is used to
estimate the (squared) non-parametric coherence function. The bias of the
estimate, stated in [23], is removed. The (squared) exponential function (12)
is fitted to the non-parametric estimate using least squares. The fit is made in
the spatial frequency range [0.04, 0.2].

B.3 Estimation of distance parameters

The average of the empirical lengths of identified sections is used to estimate θ1,
θ2, τ1 and τ2. To exemplify, if ζj is the observed length of LW-irregularity j and
the total number of identified LW-irregularities are N1, then τ̂1 = 1

N1

∑
j ζj .
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Paper E

Coherence of road roughness in
left and right wheel-path

klas bogsjö

abstract

The coherence function between road roughness in left and right wheel-path is
studied. Empirical coherence functions are computed from 20 measured roads,
with a total length of 520 km. It is found that the coherence estimates are
similar, despite the wide range of studied road types. A one-parametric model,
which describes the coherence using an exponentially decreasing function, is
compared to the common isotropic model. It is found that the parametric
model gives more accurate approximations of the empirical coherence functions
than the isotropic model. An extensive vehicle simulation study verifies that
the isotropic model is not accurate enough.
Keywords : Coherence; Road roughness; parallel tracks;

1 Introduction

Travelling vehicles are exposed to fatigue-inducing loads caused by road rough-
ness. Hence, a description of road roughness is useful for the vehicle industry.
In this work, the coherence of 20 measured roads is analysed. The total length
of these roads is 520 km. The measured roads are of varying quality, ranging
from very smooth motorways to very rough gravel roads.

Historically, analysis of road roughness has been focused on the Power Spec-
tral Density, PSD. It has been observed in several studies that the PSD have a
similar form irrespectively of road type, see for example [1] and [2].

While left and right track (usually) are statistically equivalent, the actual
profiles are not identical. The difference between left and right track produces
a roll disturbance. Information regarding this roll disturbance is not included
in the PSD of the individual wheel-paths. Hence, in addition to the PSD, it is
appropriate to study the coherence function. The coherence function measures
linear dependence between two stochastic processes as a function of spatial
frequency.

Often, the road is assumed to be isotropic. Under this assumption, the
coherence function is given by the single track power spectrum. The isotropic
model’s accuracy is assessed by comparison of coherence obtained assuming
isotropy and the coherence estimated directly from measured road profiles.
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In [4], [5], [6] and [8] similar comparisons of much smaller data sets are presented
(e.g. in [6] 20 km is analysed). Ammon [5] proposes a parametric model,
Heath [6] proposes a modified isotropic model and Sun and Su [8] propose a
non-parametric model.

Earlier work, [9] and [10], has focused on single-track analysis. It was ver-
ified that occasional irregularities cause the major part of the vehicle fatigue
damage. The irregularities are identified using spectrogram analysis, which
estimates local spectra along the road. Irregularities are defined where the
spectrogram is significantly higher than the average level. Hence, roads can
be described as stochastic processes with changing spectrum. Analogously, in
Section 5 we investigate if the coherence function also varies along the road.
More precisely, the coherence functions associated with the irregularities are
compared to those from smooth sections.

2 Stationary stochastic processes

2.1 Spectral representation and the coherence function

The zero mean stationary processes ZL(x) and ZR(x) describe the road elevation
over a constant mean level at position x along the left and right wheel path,
with autocovariance functions rLL(x) = E[ZL(x + x0)ZL(x0)], and rRR(x) =
E[ZR(x + x0) ZR(x0)]. Moreover, it is assumed that ZL(x) and ZR(x) are
statistically equivalent, so that

rLL(x) = rRR(x) ≡ r(x). (1)

The cross-covariance functions are defined by rRL(x) = E[ZR(x + x0)ZL(x0)]
and, similarly, rLR(x) = E[ZL(x + x0)ZR(x0)] = rRL(−x).

The Fourier transforms of the covariance functions, r(x) and rLR(x), give the
double-sided spectrum and the double-sided cross-spectrum. However, here we
will use the one-sided spectrum R(ξ) and the one-sided crosspectrum RLR(ξ),
which is more common in practical applications,

R(ξ) =

⎧⎨
⎩

2
∫∞
−∞ r(x)e−i2πξxdx, ξ > 0,∫ ∞

−∞ r(x)dx, ξ = 0,

0, ξ < 0,

(2)

RLR(ξ) =

⎧⎨
⎩

2
∫∞
−∞ rLR(x)e−i2πξxdx, ξ > 0,∫ ∞

−∞ rLR(x)dx, ξ = 0,

0, ξ < 0,

(3)

where ξ is spatial frequency. By definition rLR(x) = rRL(−x), which gives that
RRL = conj{RLR}, where conj{·} denotes complex conjugate. The auto- and
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cross-covariance functions can be obtained from the one-sided spectrum and
cross-spectrum,

r(x) =
∫ ∞

0

R(ξ) cos(2πξx)dx, (4)

rLR(x) =
∫ ∞

0

Re{RLR(ξ)} cos(2πξx)dx, (5)

where Re{·} denotes the real part of a complex number.
When R(ξ) is non-zero, the coherence is defined by the ratio,

γ(ξ) =
|RLR(ξ)|

R(ξ)
, (6)

where 0 ≤ γ(ξ) ≤ 1. For example, if ZL and ZR is independent then γ(ξ) = 0
or if ZL = ZR then γ(ξ) = 1.

2.2 Empirical coherence

The spectrum and coherence function are estimated using Welch’s method [13],
also known as the weighted overlapped segment averaging (WOSA) method,
described in [14]. The road is divided into L meter long overlapping segments,
which are multiplied with a Hanning window prior to (FFT) analysis. The
WOSA estimate is referred to as the empirical coherence, in order to distinguish
it from other coherence estimates to be introduced in Section 4.

The empirical coherence functions from the 20 measured roads are com-
pared. Surprisingly, the coherence functions of all roads are very similar, despite
the fact that they correspond to very different road types (smooth motorways,
main roads, paved country roads, gravel roads, etc). In Figure 1, the spectrum
and empirical coherence of three very different Swedish roads are presented.
The dotted, dashed and solid lines correspond to a gravel road, a main road
and a motorway, respectively. The spectra in the left plot are estimated from
both left and right track. The deviation between the spectra of left and right
track is typically small, which justifies the assumption of statistically equivalent
left and right tracks, recall (1).

3 The isotropic assumption

Often (e.g. [1], [3], [4], [11], [12]) roads are assumed to be ergodic, homogeneous,
isotropic surfaces. Homogeneity and isotropy imply that all profiles following a
straight-line on the road surface have the same statistical properties, irrespec-
tively of direction and position of the line. Specifically, the covariance between
two values of a field at points A and B is a function only of the distance be-
tween them. Also, the coherence function can be computed from a spectrum of
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Figure 1: Spectrum and coherence functions

any profile on the isotropic surface. However, the spectrum cannot be chosen
arbitrarily, it has to satisfy the conditions stated in [4]. Any monotonically
non-increasing function which satisfies the boundedness condition given in [4]
is admissible as a spectrum.

Isotropy implies that the cross-covariance functions are symmetric, rLR(x) =
rLR(−x). This symmetry implies that the cross-spectra are real, thus RRL =
RLR.

Moreover, three points are marked in Figure 2, points A and C on the right
track and point B on the left track. The covariance between the road levels in
points A and B is rLR(x) and the covariance between the road levels in points
A and C is r(

√
x2 + t2w), where tw is the distance between the wheel-paths, the

track width. Since the distance between A and B equals the distance between
A and C, a consequence of isotropy is that

rLR(x) = r(
√

x2 + t2w). (7)

The coherence γ(ξ) can be computed from the spectrum R(ξ) using (4), (7),
(3) and (6).

Left track

Right track

t
w

x

(x2+t
w
2 )1/2

(x2+t
w
2 )1/2 A

 B

 C

Figure 2: Two parallel road tracks
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4 COHERENCE MODELS

4 Coherence models

4.1 Isotropic models

To estimate the coherence for an isotropic road, it is only necessary to estimate
the single-track spectrum R(ξ). Furthermore, if the estimated spectrum is
monotonically non-increasing and satisfies the boundedness condition in [4],
then it is compatible with isotropy. A monotonically decreasing spectrum is a
realistic assumption judging from estimates obtained from the measured roads.

Here, three spectrum estimates are studied. The estimates are based on
a non-parametric spectrum estimate R̂(ξ), obtained using the WOSA method
(L = 500 m). The estimate R̂0(ξ) = maxf≥ξ(R̂(f)), gives a monotonically
decreasing spectrum. The max-operation may appear crude, but it has an
insignificant effect since R̂(ξ) is (with a few minor exceptions) decreasing for
all relevant spatial frequencies, for all 20 roads, recall the left plot in Figure 1.

Two other spectra, which are compatible with isotropy [3], are also studied

R1(ξ) =

⎧⎪⎨
⎪⎩

c, 0 ≤ ξ ≤ ξa,

c
(

ξ
ξa

)−w

, ξa ≤ ξ ≤ ξb,

0, otherwise,

(8)

(9)

R2(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k, 0 ≤ ξ ≤ ξa,

k
(

ξ
ξa

)−w1

, ξa ≤ ξ ≤ ξ0,

k
(

ξ0
ξa

)−w1 (
ξ
ξ0

)−w2

, ξ0 ≤ ξ ≤ ξb,

0, otherwise.

(10)

Here, the boundary constants ξa, ξ0 and ξb are set to 0.01, 0.2 and 10 m−1,
respectively. The parameters [c, w] and [k, w1, w2] are set so that R1 and R2

optimally (in least-square sense) matches R̂(ξ).
The spectra R0(ξ), R1(ξ) and R2(ξ) are fitted to the 20 measured roads. The

corresponding coherence functions, computed under isotropy, are compared to
the empirical coherence function. It is observed that the extended model R2(ξ)
and the non-parametric model R0(ξ), are not more accurate than the simple
model, R1(ξ). Thus, in Section 4.3 where coherence models are compared to
measured data, results are shown only for the simple isotropic model, R1(ξ).

Remark: Numerical computation of the coherence function from a given
spectrum is in principal simple, using (4), (7), (3) and (6). Indirect methods
are presented by Kamash and Robson [4] in 1978 and by Heath [7] in 1987.
Nowadays, a modern computer can handle larger amounts of data and compute
the coherence (more or less) instantly, taking advantage of the FFT-algorithm.
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However, to avoid numerical problems, it is necessary to define the spectrum
for ξk = 0, Δξ, 2Δξ, ..., NΔξ, when Δξ is small and N is large. Here, N = 106

and Δξ = 0.001 1/m.

4.2 A parametric model

Instead of assuming isotropy in order to derive the coherence, a parametric
description of the coherence function is searched for. Several parametric mod-
els were tested against the empirical coherence functions and the best fit was
obtained by the exponentially decreasing function,

γe(ξ) = e−ρtwξ, ρ > 0, (11)

which is defined for positive frequencies, ξ ≥ 0. The track width tw is a priorly
known constant. Here, it is 1.95 m for roads 1–3 and 2 m for roads 4–20.

To estimate ρ, the squared empirical coherence, γ̂2(ξ), is computed, with
L = 100 m. Then, the approximate bias B of the squared coherence is re-
moved [14],

B(ξ) =
1
nd

(1 − γ2(ξ))2. (12)

where nd is the number of non-overlapped segments. Note that, since the true
coherence γ(ξ) is unknown it is impossible to compute B(ξ). An estimation of
the bias, B̂(ξ), is computed by replacing γ2(ξ) by γ̂2(ξ). Finally, the estimate
of ρ is obtained by fitting (in least-square sense) γ2

e (ξ) to the approximately
unbiased, squared coherence function, γ̂2(ξ) − B̂(ξ).

4.3 Comparison of empirical and modelled coherence

Figure 3 shows the estimated coherence of six measured roads. The isotropic
model gives both accurate estimates (e.g. road 11) and inaccurate estimates
(e.g. roads 17 and 19). The exponential function gives, in general, a more
accurate match, which is natural since it is fitted directly to the empirical
coherence.

5 Road irregularities and their coherence

In [10] a method to identify road parts with above-average roughness is pre-
sented. It is verified that these irregularities have a large impact on vehicle
fatigue damage. In this section, statistical analysis is focused on these irregu-
larities.

The detected irregularities are of two types: long-wave (LW) and short-
wave (SW). The coherence function corresponding to road sections defined as
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Empirical est. Isotropic model Exponential fit
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Figure 3: Estimated and fitted coherence functions

SW-irregularities, is difficult to estimate, since these irregularities are rare (on
average, 1 per 2 km) and short (on average 5 m). Thus, the analysis is focused
on LW-irregularities.

LW-irregularities are detected in left and right track, according to the
method in [10]. Here, a road section is treated as an LW-irregularity if any
LW-irregularity is detected in either left, right or both tracks.

Estimation of the coherence function is complicated by the fact that the
identified LW-irregularities have different length. To overcome this problem,
all identified LW-irregularities are cut into 32 m long subsections. Any section
shorter than 32 m is excluded from the analysis. The coherence estimate, γ̂irr(ξ),
is estimated from these sections, using the WOSA method (with L=32 m), but
with non-overlapping segments. This estimate is then compared to similar
estimates obtained from smooth sections.

Firstly, equally many sections of equal length as the LW-irregularities are
randomly picked from the non-irregular road parts. Then the coherence γsmt(ξ)
is estimated using the same technique as for the LW-irregularities. This is
done repeatedly, producing a probability distribution of the estimate γ̂smt(ξ).
It is found that γ̂irr(ξ) does not differ significantly from γsmt(ξ). Typical results
are shown in Figure 4, where γ̂irr(ξ) and empirical 95%-confidence intervals
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of γsmt(ξ) and are plotted for two roads. This indicates that the coherence
corresponding to irregular and non-irregular sections can be described by the
same function.
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Figure 4: Coherence estimated from rough parts (solid lines) and 95% confi-
dence intervals of the coherence estimated from non-rough road parts (dotted
lines).

6 Roll disturbance and vehicle fatigue

Using only visual inspection of coherence functions (Figure 3), it is difficult to
judge if the isotropic model is accurate enough. In this final section the result
of a vehicle simulation study is presented.

uR

uL

z

yx

zL

zR

Figure 5: The half-vehicle model

The vehicle fatigue damage d is assessed by studying a two-wheeled vehicle
model travelling at constant velocity v on road profiles, see Figure 5. This
simple model cannot be expected to predict loads on a physical vehicle exactly,
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but it will high-light the most important road characteristics as far as fatigue
damage accumulation is concerned; it might be viewed as a ‘fatigue-load filter’.
The model comprises masses, linear springs and linear dampers; the only non-
linearity is the ability to loose road contact. The parameters are set to mimic
heavy vehicle dynamics. Moreover, the difference of the vertical accelerations
of the left and the right side of the sprung mass, (proportional to) the roll load,
is used to assess fatigue damage.

Firstly, rainflow cycles are identified in the ‘roll load’. Then, the cycles are
evaluated with Palmgren-Miner’s linear damage accumulation hypothesis, and
fatigue strength is described by Basquin’s relation, i.e. sβN = constant, where
s is load cycle amplitude and β the fatigue exponent and N the number of
cycles to failure.

Two stochastic models are compared, following the evaluation scheme in [15],
which uses the transformed damage q = ln(d)/β. The values q and d can be
interpreted as observations of the random variables Q and D, respectively,
where D is the random damage and Q = ln(D)/β. In general the distribution
of D is highly skewed and non-symmetric, while the distribution of Q can be
approximated by the Gaussian distribution [9], [15].

The transformed damage indicated by measured roads and synthetic roads
(computer simulated realisations from a stochastic model) are compared. The
synthetic roads are realised with parameter values estimated from the corre-
sponding measured road. Further, the discrepancy between a model and a
measurement is defined as

δ =
q̄s − qo

so
, (13)

where q̄s is the mean transformed damage from synthetic roads, qo the observed
damage from the measured road, and so the estimated standard deviation of
the transformed damage from the measured road. A small discrepancy indicate
a good model fit (i.e. qo is the target for q̄s and so is the uncertainty of the
target). A negative discrepancy indicates that the model underestimates fatigue
damage, and vice versa for a positive damage.

A discrepancy is computed for each of the 36 combinations of the velocities
v = 40, 50, . . . , 90 km/h and values of β = 3, 4, . . . , 8. Finally, the discrepancy
with the largest absolute value (the worst fit) defines the lack-of-fit. A lack-
of-fit outside the target region [–4,4] indicates that the model is not accurate
enough [9].

The two studied road models are set up as in [15] (Model B), with one
exception, the coherence function is described either by γe(ξ) or obtained as-
suming isotropy. The model assumptions are given in Appendix A. Note that,
an isotropic Gaussian model is not a realistic road surface model [15]; road ir-
regularities have to be included. Here, the studied models include irregularities
of random shape, length and location, see [15] for details. Figure 6 shows the
lack-of-fit for the two models for each measured road. The parametric model is
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more accurate than the isotropic model: The target region is reached in 11 and
0 out of 20 roads for the parametric model and isotropic model, respectively.
As a general tendency, the isotropic model underestimates the rolling excita-
tion due to overestimated coherence. Note, Ammon ([5], page 35) concluded
the opposite: that the isotropic model overestimates rolling excitation.
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Figure 6: Lack of fit for parametric and isotropic coherence models. A negative
value of δmax indicates underestimation of roll disturbance, and vice versa for
positive values.

7 Conclusions

• It is difficult to distinguish between road types by coherence analysis of
parallel road tracks. A motorway can have the same empirical coherence
function as a very rough gravel road.

• The coherence corresponding to local irregularities and the coherence
corresponding to non-irregular road sections can be described by the same
function.

• Usage of the isotropic assumption to compute the coherence function
gives inaccurate approximations.

• The proposed parametric model (11) gives better coherence approxima-
tions.
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A ROAD MODELS

A Road models

In this section the two evaluated road models in Section 6 are described. As
mentioned, the two models are very similar and differ only in the description of
the coherence between left and right wheel-path. First, the general assumptions
are described, which are used by both models.

A.1 General assumptions

The left and right wheel paths are assumed to be statistically equivalent. More-
over, the main variability in the road is described by the two-dimensional pro-
cess, Z(0)(x), which consists of two stationary Gaussian processes, correspond-
ing to the left and right wheel path,

Z(0)(x) =
[

Z(0)
L (x)

Z(0)
R (x)

]
. (A.1)

The spectrum and coherence of Z(0)(x) is given later on.
Irregularities of two types, long-wave (LW) and short-wave (SW), are super-

imposed to Z(0)(x). The two irregularity types, LW and SW, occur indepen-
dently of each other. To illustrate this, a 400 m long road is generated with two
superimposed irregularities of each type, see Figure 7. As the example shows,
the left and right irregularities have different shape, but occur simultaneously.
The simplifying assumption of simultaneousness is realistic, since when an irreg-
ularity is detected in one measured track, the other track is usually also irreg-
ular. Additionally, long-wave and short-wave irregularities may overlap. The
j:th long-wave irregularity and the k:th short-wave irregularity are described
by the processes Z(1)

j (x) and Z(2)

k (x). The road with superimposed irregulari-
ties is denoted by ZB(x). The irregularities are modelled as (non-stationary)
conditional Gaussian processes. To avoid discontinuities at the start and end
of the rough sections, the added irregularities starts and ends with two values
equal to zero, in both left and right track. The irregularities are simulated
conditioning on the zero boundary levels, for more details see [15]. Since the
irregularities are non-stationary, it is incorrect to assign a spectral density to
them. However, an irregularity reaching from −∞ to +∞ is stationary.

We need to define spectrum, coherence and phase functions for the main
process, Z(0)(x), and infinite length irregularities. As usual, it is a assumed
that all cross-spectra are real, hence, the phase functions are zero (see for
example [16]). The spectrum and coherence associated with Z(η)(x), for η =
0, 1, 2 are denoted by R

(η)
B and γ

(η)
B , correspondingly. The coherence functions

are given in Section A.2.
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Figure 7: A simulation of two parallel road tracks: Z(0)(x) = Two-dim. station-
ary Gaussian process, Z(1)

j (x) = long-wave irregularities, Z(2)

k (x) = short-wave
irregularities. The realized road tracks ZB(x) equals the stationary Gaussian
process plus simulated irregularities.

The spectra have the following parametric shape

R(0)
B (ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

10a0

(
0.01
ξ0

)−w1

, ξ ∈ [0, 0.01],

10a0

(
ξ
ξ0

)−w1

, ξ ∈ [0.01, 0.20],

10a0

(
ξ
ξ0

)−w2

, ξ ∈ [0.20, 10],
0, otherwise,

(A.2)

R
(η)
B (ξ) =

{
(10aη − 10a0)

(
ξ
ξ0

)−wη

, ξ ∈ Ξη,

0, otherwise,
η = 1, 2. (A.3)

The intervals Ξη are given in Table 1 and the reference frequency ξ0 = 0.2 m−1.

Symbol Ξ0 Ξ1 Ξ2

Interval [m−1] [0.01, 10] [0.03, 0.2] [0.2, 2.0]

Table 1: Spatial frequency intervals

Furthermore, the location and length of the sections with added roughness
are random. More precisely, the distance between the end of a long-wave ir-
regularity and the start of the next is exponentially distributed with mean θ1.
Similarly, the distance between short-wave irregularities is exponentially dis-
tributed with mean θ2. The length of long-wave and short-wave irregularities
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are independent and exponentially distributed with mean τ1 and τ2, respec-
tively.

A.2 Coherence models

A.2.1 Parametric model

The parametric coherence model use the parametric description introduced in
Section 4.2,

γ
(η)
B (ξ) =

{
e−ρtwξ, ξ ∈ Ξη,
0, otherwise, η = 0, 1, 2. (A.4)

Hence, the coherence parameter ρ takes the same value for the stationary pro-
cess Z(0)(x) and the irregularities Z(1)

j (x) and Z(2)

k (x). Note also that when ξ

is outside interval Ξη, then the corresponding spectrum R
(η)
B is zero, and the

value of γ
(η)
B (ξ) has no meaning and is set to zero.

A.2.2 Isotropic model

For the isotropic model γ
(η)
B (ξ), η = 0, 1, 2, is computed from spectrum (A.2),

which is a spectrum compatible with the isotropic assumption.
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Paper F

Vehicle fatigue damage caused by
road irregularities

klas bogsjö and igor rychlik

abstract

Road roughness causes fatigue-inducing loads in travelling vehicles. Road sec-
tions with a high degree of roughness are of special interest, since these have
a significant impact on vehicle’s fatigue life. This study is focused on the
statistical description and analysis of vehicle damage caused by irregularities.
Standard statistical analysis tools are not straight-forwardly applicable, due
to the nonstationary property of the irregularities. However, it is found that
the road irregularities influence on vehicles can be accurately described using
a ‘local’ narrow-band approximation of the fatigue damage intensity.

Keywords: Vehicle fatigue, rainflow damage, damage intensity, road irregu-
larities.

1 Introduction

This paper is devoted to qualitative studies of fatigue damage accumulation
in vehicle components. Clearly, road roughness is a major source of fatigue-
inducing vehicle loads. Properties of roads’ surfaces, in scale of kilometres, are
often modelled as stationary processes, often Gaussian, with a standardised
type of spectrum, which may change with geographical region, age, or type of
road. However, as was shown in [1], [2] and [3] most of the fatigue damage
accumulated in a vehicle are consequence of short-duration oscillations caused
by a local, higher degree, of road roughness. Those irregularities are some-
times called potholes and in [3] a road model was proposed that include such
irregularities.

The variable stresses which may cause fatigue failure of a component are
functions of road surface variability. As a first approximation, the vehicle
responses (stresses) are modelled by means of linear filters having road surface
profiles as input. Responses of linear filters are easy to analyse statistically if
the input signal is a Gaussian process. Then the output is a Gaussian process
too. Consequently, in this paper, we shall model the fatigue accumulation
process for Gaussian loads with superimposed transients due to a sudden short
change of surface variability. Although the true stresses acting on a component
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in a vehicle will differ from the one computed using linear filters (due to the
complicated and nonlinear interaction of tires and the road surface) the results
of this approximate analysis can be used qualitatively to compare different
design concepts at an early stage.

In addition, the problem of studying damage processes for Gaussian loads
with superimposed transients is quite often met in applications. For example,
responses of a sailing vessel can be modelled as a Gaussian process (responses
to sea surface variability – waves) with added transients due to ‘slams’ which
occur when a ship proceeds at certain speeds in rough seas and the front part
of the hull bottom sustains large forces as the result of impact with the sea
surface. Consequently, we shall first study the fatigue damage for stresses that
can be described as a Gaussian process with transients, defined as follows.

Suppose that the external load X(t) can be considered as a sum of a sta-
tionary Gaussian process X0(t) having mean zero and spectral density S0(f)
and nonstationary Gaussian loads Xi(t) such that Xi(t) = 0 for all t outside
the interval [ti, ti + Δi], the derivatives Ẋi(ti) = Ẋi(ti + Δi) = 0 and such that
E[Xi(t)] = 0. If the positions and length of irregularities (ti, Δi) are known
then the load

X(t) = X0(t) +
∑
i>0

Xi(t).

In this paper we shall consider random locations and durations of irregularities
(ti, Δi), being independent of the process X0(t). Further, suppose that the
stress Y (t) acting on a component, caused by the load X(t), can be adequately
modelled by means of a linear filter then

Y (t) =
∫ t

−∞
h(t − s)X(s)ds = Y0(t) +

∑
i>0

Yi(t), (1)

where h(t) is the impulse response. Obviously Yi(t) =
∫ t

−∞ h(t− s)Xi(s)ds are
all Gaussian processes, where only Y0(t) is stationary.

In this paper we shall present a general method to estimate the expected
fatigue damage for the stress Y defined in (1). The paper is organised as follows:
In Section 2, the rainflow counting method is reviewed and accumulated damage
defined. In Section 3, a method to bound the expected damage is presented
while in Section 4 the vehicle fatigue damage due to road roughness is studied.
In Section 5 a minor parameter study is presented and, finally, in Section 6 the
conclusions are stated.

2 Definition of rainflow damage

The rainflow method was introduced by Endo: The first paper in English can
be found in [5]. Here we shall use the alternative definition given in [9], which
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2 DEFINITION OF RAINFLOW DAMAGE

is more suitable for statistical analysis.
Assume Y (t), t ∈ [0, T ] is a variable load having finite number of local

maxima. Assume that local maximum vi = Y (ti) in Y (t) is paired with one
particular local minimum uk, determined as follows:

• From the ith local maximum (value vi) one determine the lowest values
in forward and backward directions between ti and the nearest points at
which Y (t) exceeds vi.

• The larger of those two values, denoted by urfc
i , is the rainflow minimum

paired with vi, i.e. urfc
i is the least drop before reaching the value vi again

on either side.

• Thus, the ith rainflow pair is (urfc
i , vi), see Figure 1. The cycle amplitude

is S = vi − urfc
i .

vi
�

urfc
i

�

�

�

S

Figure 1: A rainflow pair

Note that for some local maxima vi, the corresponding rainflow minimum
urfc

i could lie outside the interval [0, T ]. In such situations, the incomplete rain-
flow cycle constitutes the so called residual and has to be handled separately.
In this approach, we assume that, in the residual, the maxima form cycles with
the preceding minima.

The total damage D(T ), defined using the rainflow method and applying
the linear Palmgren-Miner ([6], [7]) damage accumulation rule, leads to

D(T ) =
∑

f(urfc
i , vi) + Dres, (2)

where, f(urfc
i , vi) is the fatigue damage due to the rainflow pair (urfc

i , vi) and
Dres is the damage caused by cycles found in the residual. In this study, we
assume that f(urfc

i , vi) is typically of the form f(urfc
i , vi) = α(vi −urfc

i )β , where
α > 0 and β > 1 are experimentally defined fatigue parameters.
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In this paper we study the damage accumulation for non-stationary loads
Y (t), defined by (1), and are particularly interested in the fatigue damage
increase due to transients Yi(t), i > 0. Clearly, we expect that the damage
will grow faster when transient stresses occur. One way of quantifying the
effects of transients for the fatigue damage accumulation is to study the damage
rate Ḋ(t) and the damage intensity d(t) which is the expected damage rate,
d(t) = E[Ḋ(t)]. Hence we give an alternative formula for the rainflow damage
(2) employing the damage accumulation rate Ḋ(t). More precisely, as was
shown in [10], one can rewrite (2) as follows

D(T ) =
∫ T

0

α β(Y (t) − Y −(t))β−1Ẏ (t) dt ≡
∫ T

0

Ḋ(t) dt (3)

where Y −(t) is the lowest values in the backward direction between t and the
nearest exceedence of Y (t), see Figure 2. The function Ḋ(t) is interpreted as
the observed damage intensity.

Y−(t)

Y(t)

Figure 2: Definition of Y −(t)

Obviously, use of the damage rate Ḋ(t) to compute the rainflow damage
is practically not convenient, since the integral in (3) has to be computed
numerically using a quite dense grid. The original formula (2) can be seen as
a way to compute the integral by taking larger steps from local maximum to
the next one. However, still Ḋ(t) can find applications for illustration purposes
and for some analytical computations. On the contrary, the damage intensity
d(t) is a useful tool to describe the damage process for non-stationary loads, for
example to describe the fatigue accumulation process for longer missions when
different type of operation conditions are mixed. Clearly, when the damage
intensity d(t) is known the expected damage is given by

E[D(T )] =
∫ T

0

d(t) dt (4)

and can be efficiently computed, see the formulas in Section 3 where approxi-
mations of the intensity are given.
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3 THE NARROW-BAND APPROXIMATION FOR THE STATIONARY
DAMAGE INTENSITY D

Note that even for stationary loads the damage intensity d(t) is not constant
and is not equal to E[D(t)]/t, although the difference is negligible for larger
t values. This is due to nonlinearity of the rainflow counting method, viz.
the damage D(T ) accumulated in the interval [0, T ] depends also on the time
T0 when the load started to act on structure. If T0 ≤ 0 then the damage
intensity d(t) for t ∈ [0, T ], will depend on how long time it passed since
the structure has been loaded for the first time (however, we suppress this
dependency: d(t, T0) = d(t)). Consequently, we introduce the ‘stationary’
damage intensity, when the influence on the initial value T0 is not present any
more, by means of the limiting value

d = lim
t→∞ d(t). (5)

Suppose that T0 = −∞, which physically is not possible since the compo-
nent would break before we started the experiment, then d(t) = d and hence
E[D(T )] = T · d.

Computations of the damage intensity d(t) is a very complicated problem
and exact results are known when β = 1 (practically uninteresting case). When
β > 1 exact results are known for some simple periodic loads and for loads
having Markov structure. For the important class of stationary Gaussian loads
accurate approximations exist. In the following section we present the so called
narrow-band approximation.

3 The narrow-band approximation for the sta-
tionary damage intensity d

In the early 1960s, the narrow-band approximation was presented by Bendat
[4] at a time when a definition for rainflow cycle counting was not yet available.
For a stationary random stress Y (t), Bendat proposed that the cycle amplitude
has the following probability distribution

P (S ≤ u) = 1 − μ(u)
μ(0)

, (6)

where μ(u) is the intensity the stress Y (t) crosses the level u in upward direc-
tion. He also proposed to approximate the intensity of cycles by means of the
zero upcrossing intensity μ(0). For stationary loads the upcrossing intensity
μ(u) is given by Rice formula [8]

μ(u) =
∫ ∞

0

zfẎ (0),Y (0)(z, u)dz. (7)

Now, for a stationary load Y , if μ is unimodal and symmetrical around zero,
i.e. μ(−u) = μ(u), and μ(|u|) > μ(|v|) whenever |u| < |v|, then the stationary
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damage intensity d can be approximated by the narrow-band intensity dnb

defined as follows

dnb = μ(0)E[α(2 · S)β ] = α2β β

∫ ∞

0

uβ−1μ(u) du. (8)

Actually, as it was proven in [10], (8) is the bound for the damage intensity,
i.e. one has that

d(t) ≤ dnb,

which means that use of the narrow-band approximation gives conservative
results since E[D(T )] ≤ T · dnb.

Finally, if in addition Y (t) is a Gaussian load, then dnb can be computed
explicitly, viz.

dnb = ασẎ σβ−1
Y 23β/2−1Γ(1 + β/2)/π, (9)

where σ2
Y , σ2

Ẏ
are variances of the stress Y (t) and its derivative Ẏ (t), respec-

tively, while Γ(x) is the gamma function.

3.1 Narrow-band approximation for non-stationary loads

For the nonstationary stress Y (t) the intensity of upcrossings of level u will
depend on time. Hence, by means of a generalisation of Rice formula the
upcrossing intensity is given by

μt(u) =
∫ ∞

0

zfẎ (t),Y (t)(z, u)dz. (10)

The expected number of times the stress Y passes u in upward direction in the
interval [0, T ], NT (u), say, is given by

E[NT (u)] =
∫ T

0

μt(u) du. (11)

If μt(u) is unimodal and symmetrical around zero (i.e ∀t, μt(u) = μt(−u)
and μt(|u|) > μt(|v|) whenever |u| < |v|) then, following Bendat’s approach,
for any t one can define a local amplitude St having the distribution

P (St ≤ u) = 1 − μt(u)
μt(0)

, (12)

and then introduce the local narrow-band damage intensity dnb(t) as follows

dnb(t) = μt(0)E[α(2 · St)β ] = α2β β

∫ ∞

0

uβ−1μt(u) du. (13)
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3 THE NARROW-BAND APPROXIMATION FOR THE STATIONARY
DAMAGE INTENSITY D

In a similar way, as it was done in [10] one can also prove, the simple proof is
omitted, that if μt is unimodal and symmetrical around zero then the narrow-
band approximation is conservative, viz.

E[D(T )] =
∫ T

0

d(t) dt ≤
∫ T

0

dnb(t) dt. (14)

However, it does not imply that for all t, d(t) ≤ dnb(t).
We turn now to the case of the nonstationary Gaussian load Y (t) defined

in (1).

Theorem 1. Let Y (t) be a zero mean Gaussian load, with derivative Ẏ (t). If
Y (t) and Ẏ (t) are uncorrelated, then (14) holds with

dnb(t) = αΓ(β/2 + 1)23/2β−1π−1σẎ (t)(σẎ (t))β−1. (15)

where σ2
Y (t) and σ2

Ẏ
(t) denote the variance of Y (t) and Ẏ (t), respectively.

From (43) it follows that μt(u) is unimodal and symmetrical around zero,
which implies that (14) holds. Expression (15) is derived in the same way
as (9), by insertion of (43) into (13).

Using the last theorem we have that

E[D(T )] ≤ αΓ(1 + β/2)23β/2−1π−1

∫ T

0

σẎ (t)σY (t)β−1 dt ≡ Dnb, (16)

say.
Now, if ρ(t) �= 0 then μt(u) �= μt(−u) and Dnb in (16) may not be a

conservative bound for the expected damage. In order to check if the local
narrow-band approximation, i.e. assuming that ρ(t) = 0 even if it is not,
may give non-conservative estimates of Dnb, we shall compare Dnb with the
conservative bound proposed in [10] which, for completeness of the presentation,
will be given next.

Let nT (u) =
∫ T

0 μt(u) be the expected number of u upcrossings by Y (t) in
[0, T ] and let introduce n+

T (u, v) = min(nT (u), nT (v)) then

E[D(T )] ≤ α β(β − 1)
∫ +∞

−∞

∫ v

−∞
(v − u)β−2n+

T (u, v) du dv, (17)

where, in general, the integral has to be computed numerically. For stationary
Gaussian loads the integral gives the same result as the narrow-band approx-
imation (9). The same is valid for the nonstationary Gaussian loads when
ρ(t) = 0, then (16) and (17) give the same bound.

In the following we will present an application of the narrow-band approxi-
mation for the fatigue damage in a vehicle travelling on a road with randomly
located and randomly shaped irregularities.
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4 Fatigue accumulation in a vehicle

Commonly, stochastic models are used to describe the randomness of measured
road profiles. Vehicle models travelling on road profiles modelled as stationary
Gaussian processes have been extensively studied (see for example [12] and [13]
for some recent studies). However, measured profiles are not accurately de-
scribed by a stationary Gaussian model [2]. Hence, it is more interesting to
study a more realistic road model. The road model used in this paper includes
random non-stationary irregularities. In particular, the vehicle fatigue damage
caused by such irregularities is analysed.

Fatigue damage is assessed by studying a quarter-vehicle model travelling
at constant velocity on road profiles, see Figure 3. This very simple model
cannot be expected to predict loads on a physical vehicle exactly, but it will
high-light the most important road characteristics as far as fatigue damage
accumulation is concerned; it might be viewed as a ‘fatigue-load filter’. In this
study the model comprises masses, linear springs and linear dampers; the only
non-linearity is the ability to loose road contact. The parameters are set to
mimic heavy vehicle dynamics, see Table 1. In order to assess vehicle fatigue
damage, the total force, Y (t), for t ∈ [0, T ], acting on the sprung mass is
rainflow-counted and the damage is given by (2).

Figure 3: Quarter vehicle model

A physical tire on a heavy vehicle has a road contact length of approximately
0.15 m. Hence, short wavelengths (of order 0.01 m) in the road profile are
attenuated by a real tire. In this study, sample distance in the measured roads
is 0.05 m, all signal content with shorter wavelength than 0.10 m is neglected.

A vehicle travelling at the velocity v m/s will experience the road as a
function of time, t = x/v. Thus, the vehicle load Y (t) is induced by the road
profile Z(x), viz. X(t) = Z(vt). If the ‘tire’ is in contact with the road, then
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4 FATIGUE ACCUMULATION IN A VEHICLE

Description Symbol Value Unit
sprung mass ms 3400 kg
suspension spring stiffness ks 270 000 N/m
suspension damper stiffness cs 6000 Ns/m
unsprung mass mu 350 kg
tire spring stiffness kt 950000 N/m
tire damper stiffness ct 300 Ns/m

Table 1: Quarter vehicle parameters.

the relationship between Y (t) and Z(vt) is linear, and the load is given by

Y (t) =
∫ t

−∞
h(t − s)Z(vs)ds, (18)

where h(t) is the vehicle’s impulse response.
Analysis of measured road tracks indicates that actual roads contain short

sections with above-average irregularity. Such irregularities are shown to cause
most of the vehicle fatigue damage [2]. The stochastic road model presented in
this section is a modified version of the model in [2].

The main variability in the road is described by the stationary Gaussian
process Z0(t), with spectrum R0(ξ), say. Irregularities of random shape, length
and location are superimposed to Z0(x). The jth irregularity is denoted by
Zj(x), j > 0, and the road with superimposed irregularities is denoted by
Z(x). To exemplify, a 400 m long road is simulated and plotted in Figure 4.

0 50 100 150 200 250 300 350 400

x [m]

Z
0
(x)

+ Z
1
1(x) + Z

1
2(x) + Z

1
3(x)

= Z(x)

Figure 4: A synthetic (computer simulated) road profile (a0 = −5.2, a1 = −4.1,
w1 = −3.1, w2 = −2.2).

The irregularities are modelled as (non-stationary) conditional Gaussian
processes. To avoid discontinuities at the start and end of the rough sections,
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the added irregularities starts and ends with zero slope and zero level. The
irregularities are simulated conditioning on the zero boundary values, see Ap-
pendix A. Since the irregularities are non-stationary, it is incorrect to assign a
spectral density to them. However, an irregularity reaching from −∞ to +∞
is a stationary Gaussian process with spectrum Rj(ξ), say. The spectra are
parametrised as follows,

R0(ξ) =

⎧⎪⎪⎨
⎪⎪⎩

10a0

(
ξ
ξ0

)−w1

, ξ ∈ [0.01, 0.20],

10a0

(
ξ
ξ0

)−w2

, ξ ∈ [0.20, 10],
0, otherwise,

(19)

Rj(ξ) =

{
(10aj − 10a0)

(
ξ
ξ0

)−w1

, ξ ∈ [0.03, 0.2],
0, otherwise,

(20)

where the reference spatial frequency ξ0 = 0.2 m−1. In this paper we assume
that aj = a1 for all j > 0, however using variable aj allows for modelling of
change in degree of roughness.

Furthermore, the location and length of the sections with added roughness
are random. More precisely, the distance between the end of an irregularity and
the start of the next is exponentially distributed with mean θ. The irregularity
length is also exponentially distributed, but with mean τ .

4.1 Expected damage caused by an irregularity

In this section, we study the vehicle fatigue damage caused by an irregular
section. The irregularity starts at t = 0 and ends at t = t0. Its effect on the
vehicle in the following t1 seconds is also studied.

The computations of the variances σ2
Y (t) and σ2

Ẏ
(t) and the correlation

between Y (t) and Ẏ (t), ρ(t), are rather technical and are given in Appendix B.
In addition, it is easy to see that E[Y (t)] = 0.

In our example the correlation ρ(t) is small and can be set to be zero, which
is verified by Figure 5, where the approximations (16) and (17) are plotted. As
illustrated, the two functions (almost) overlap and hence we use the simpler of
the two: the narrow-band approximation of the damage intensity (16).

In Figure 6, the observed and theoretical damage intensities are compared.
The damage intensity is expressed as a function of distance using the change
of variable x = vt, ∫

dnb(t)dt =
∫

dnb(x/v)1/v︸ ︷︷ ︸
=g(x)

dx. (21)

In the example, the velocity is 20 m/s and the irregularity length is 40 m. In the
above plot, in Figure 6, the observed damage intensity and the local narrow-
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4 FATIGUE ACCUMULATION IN A VEHICLE
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Figure 5: Accumulated damage, a0 = −5, a1 = −4, w1 = 3, w2 = 2, v = 72
km/h, t0 = 2 s. (Normalised so that E[D(4)] = 1 for the exact bound)

band approximation are compared. As illustrated, the observed damage due to
a particular irregularity may differ significantly from the narrow-band approx-
imation. However, in the lower plot, 1000 observed intensities are averaged,
and the result resembles the narrow-band approximation.
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m
] theoretical intensity

observed intensity
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m
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mean of 1000 obs.

Figure 6: Damage intensity, a0 = −5, a1 = −4, w1 = 3, w2 = 2, v = 72 km/h,
t0 = t1 = 2 s, β = 4. (Normalised so that max g(x) = 1)

The theoretical expected damage E[D] =
∫ 80

0
g(x)dx = 25, where g(x) is

defined in (21). This result coincides with the average observed damage from
simulations. From simulations, we also obtain Var(D) = 302. Thus, the coeffi-
cient of variation is large,

√
Var(D)/E[D] = 1.2. Hence, if we study the damage

indicated by M irregularities, the expected damage is E[
∑M

i=1 Di] = ME[D]

127



F

and Var(
∑M

i=1 Di) = MVar(D), giving the coefficient of variation 1.2/
√

M .
Hence, to get a small coefficient of variation, say below 0.1, M must exceed
144. This has practical consequences, to enable accurate damage predictions
one need to study around 200 irregularities, which commonly have an average
separation of 400 m, resulting in a measurement length of 80 km.

4.2 Expected damage caused by a long road with several
irregularities

Now, we consider a road of length L, which consists of N +1 stationary sections
separated by N irregular nonstationary sections. The total damage is,

Dtot =
N+1∑
j=1

Dstat
j +

N∑
j=1

Dirr
j , (22)

where Dstat
j and Dirr

j are the damage due to stationary section j and irregularity
j. Now, we wish to compute the expected damage, E[Dtot].

We make a simplifying assumption, that each irregularity is well separated,
so that, at the beginning of an irregularity, the effect of the previous irregularity
can be neglected. More precisely, we assume that consecutive irregularities are
more than t1 = 2 seconds apart, and similarly, that the vehicle load is affected
by an irregularity up to t1 seconds after passing it. Then, the expected fatigue
damage is

E[Dtot] = E[
N+1∑
j=1

Dstat
j ] + E[

N∑
j=1

Dirr
j ]

≈ T
θ − t1v

θ + τ
dstat +

L

θ + τ
E[Dirr

j ], (23)

where the total time T = L/v, (θ − t1v)/(θ + τ) is the proportion in time
when the load is unaffected by any irregularities, L

θ+τ is the expected number
of irregularities, and dstat is the damage intensity due to stationary parts,
bounded using (9). We also need to compute the expected damage due to
an irregularity of random length L0. The effect of such irregularity, located
at [0, l], is assumed to be significant during the time interval [0, t + t1] where
t = l/v,

E[D(t + t1)] =
∫ ∞

0

E[D(l/v + t1)|irregularity length = l]f(t)dt. (24)

The probability density function of T0 = L0/v

f(t) =
v

τ
e−tv/τ . (25)
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The conditional expected damage, E[D(l/v + t1)|l] is bounded by (16), inte-
grating from 0 to t0 + t1. The integral (24) is numerically computed using
importance sampling,

1
n

n∑
j=1

E[D(tj + t1)|lj ] f(tj)
w(tj)

where tj is simulated from a gamma distribution and w(tj) is the corresponding
probability density function, w(t) = te−vt/τ (v/τ)2.

In Figure 7 we compare E[Dtot] with the average result D̄mc obtained from
Monte-Carlo simulations. More precisely, N = 100 synthetic road profiles of
length L = 100 km are generated according to model assumptions in Section 4.
The observed fatigue damage induced in the quarter vehicle is computed as
described in Section 4 and the average observed damage is D̄mc. The road
parameters are set to a0 = −5.4, a1 = −4.3, w1 = 3.4, w2 = 2.2, θ = 400 m,
τ = 32 m, and the vehicle velocity v = 60 km/h. In this example (23) gives an
accurate conservative estimate of the expected vehicle fatigue damage.

3 4 5 6 7 8
70

80

90

100

β [−]

D
mc

/E[D
tot

]

 [%]

−

Figure 7: Verification of (23).

5 Examples

5.1 Parameter study

In this study, we assume that all irregularities in a specific road have the same
properties (e.g. aj = a1), this simplification is realistic if the distance is short.
However, as noted in Section 4.1, road measurements should be long ( 80 km) to
enable accurate damage predictions. To handle these contradictory demands,
one could model aj as a random variable. In this section we will study how a
change in roughness level a1 influence the damage intensity over an irregularity.
And similarly, we will also study the effect of varying the vehicle velocity and
the irregularity length l.
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In Figure 8 the damage intensity is plotted both when a1 and v is changed.
The irregularity length is fixed to 60 m. The total damage is given by Dnb, in
the upper right part of each figure. We can see that, in this specific example, a
change of a1 from −4.2 to −3.8 increases the total damage more than 5 times.
Similarly, in the second example, a change of velocity from 60 to 80 km/h
doubles the expected damage.
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Figure 8: Damage intensity when the irregularity length is 60 m (a0 = −5,
w1 = 3, w2 = 2, β = 4). (Normalised so that maximum intensity is 1)

In the next example, a1 and v are fixed, and irregularity length L0 is varied.
Figure 9 illustrates the effect of increasing irregularity length. The stationary
level, marked by the dashed line, is the damage intensity that an infinite long
irregularity would induce.

Synthetic (computer simulated) test tracks are condensed version of long
road measurements. Typically, these test tracks are comprised of rough road
sections connected by smooth sections. Now, Figure 9 shows the importance of
irregularity length: if an irregularity is long enough, it induces vehicle vibrations
that reach ‘local stationarity’. More explicitly, with parameter values set as in
the example in Figure 9, the expected damage of 30 irregularities of length
20 m is similar to the expected damage of one irregularity of length 60 m. This
kind of length effects are important to consider when designing test sequences.

5.2 Comparison to measured data

Now we will compare the damage predicted by (23) to the observed damage
induced by 520 kilometres of measured roads.
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Figure 9: Damage intensity for different irregularity lengths (a0 = −5, a1 = −4,
w1 = 3, w2 = 2, β = 8, v = 72 km/h= 20 m/s). (Normalised so that stationary
level is one)

The 520 kilometres are based on 20 different road measurements. The roads
are of varying quality, ranging from rough gravel roads to smooth motorways.
A vehicle driver, travelling on these roads will adapt the speed to the road
conditions. In this example, we group the roads into four classes and associate
each road class with a constant velocity. More precisely, the velocity is set to
30, 50, 70 and 90 km/h for minor country roads, country roads, main roads
and motorways, respectively. Also, for each road, we estimate the road model
parameters (a0, a1, w1, w2, θ, τ). Then the expected damage E[D(i)

tot] due to the
ith road is computed using (23). Moreover, the observed damage caused by
the ith road, D

(i)
obs, is computed, obtained by simulation of the quarter vehicle.

In Figure 10, the predicted expected total damage
∑20

i=1 E[D(i)
tot] is divided by

the total observed damage
∑20

i=1 D
(i)
obs. The result is plotted for β = 3, 4, ..., 8.

The expected damage gives a result varying between 76 % and 128 % of the
observed damage.
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Figure 10: Comparison of theoretical expected damage and observed damage
due to measured roads
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As a comparison, we also use a stationary Gaussian model to predict dam-
age. Two spectral parameters are estimated for each road, according to ISO
8608 [14], and the expected damage is computed using the narrow-band ap-
proximation (8). However, this prediction degenerates as β increases.

6 Conclusions

A method for vehicle fatigue damage prediction caused by a road with random
irregularities is described. Use of the local narrow-band approximation provides
insight in the accumulated vehicle fatigue damage due to road irregularities.
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A Simulation of an irregularity

The purpose of this section is to describe realization of an irregularity of length
L = nh, described by the random sequence Zr, where n is the number of values
in Zr and h is the sample step (e.g. 5 cm).

Let W (x) be a zero mean stationary Gaussian sequence with spectral density
given by (20), and Ẇ (x) its derivative. To simplify notation, a sampled process
is denoted using brackets, e.g. W (kh) = W [k], k = 0, . . . , n + 1, where h is the
step length. Furthermore, it is convenient to define the two column vectors

W1 = (W [1] . . . W [n])T and W2 =
(
W [0] Ẇ [0] W [n + 1] Ẇ [n + 1]

)T

, where
T denotes matrix transpose. We want to simulate W1|W2 = 0 (i.e. the process
start and end with zero level and zero slope). Define

Zr = W1 − Σ12Σ−1
22 W2, (26)

where Σ12 = cov(W1, W2) and Σ22 = cov(W2, W2). The expectation and co-
variance of Zr are

E[Zr] = 0, (27)
cov(Zr, Zr) = Σ11 − Σ12Σ−1

22 Σ21. (28)

This coincides with the expectation and covariance of the conditional Gaussian
process of W1 given W2 = 0, thus Zr represents W1|W2 = 0. In order to
compute Zr we need Σ12 and Σ22. The (one-sided) spectral density R(ξ) is
used to obtain the covariance matrices. The covariance function is

r(x) =
∫ ∞

0

R1(ξ) cos(2πξx)dξ (29)
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and the sampled covariance function r(kh) = r[k]. This gives the covariance
matrices

cov(W2, W2) = Σ22 =

⎛
⎜⎜⎝

r[0] 0 r[n + 1] ṙ[n + 1]
0 −r̈[0] −ṙ[n + 1] −r̈[n + 1]

r[n + 1] −ṙ[n + 1] r[0] 0
ṙ[n + 1] −r̈[n + 1] 0 −r̈[0]

⎞
⎟⎟⎠ (30)

and

cov(W1, W2) = Σ12 =

⎛
⎜⎜⎜⎝

r[1] −ṙ[1] r[n] ṙ[n]
r[2] −ṙ[2] r[n − 1] ṙ[n − 1]
...

...
...

...
r[n] −ṙ[n] r[1] ṙ[1]

⎞
⎟⎟⎟⎠ . (31)

To realize an irregularity: Simulate the unconditional sampled process W [k],
for k = 0, . . . , n + 2 identify W1 = (W [1], . . . , W [n])T and approximate

W2 ≈
(

W (0),
W (1) − W (0)

h
, W (n + 1),

W (n + 2) − W (n + 1)
h

)T

,

calculate covariance matrices and compute Zr.

B Computation of dnb(t)

Simulation of the quarter vehicle is performed in time domain solving ordinary
differential equations (ODEs) using a constant time step. In addition, the sim-
ulation method also allows for vehicle jumps. This non-linear effect makes the
response non-Gaussian. Thus, if jumps occur frequently, this requires another
approach, see for example [15]. Here, jumps occur very seldom and are ne-
glected in the statistical analysis below. In the analysis we write the vehicle
response using impulse response functions. (However, note that vehicle simu-
lation using impulse response functions would imply very long computational
time.) The response Y (t) is given by (18) and the derivative of the response is

Ẏ (t) =
∫ t

−∞
h̃(t − s)Z(vs)ds. (32)

The impulse response functions h(t) and h̃(t) can be computed in several ways.
Here, these are computed from simulation (using the ODE-solver) of a vehicle
travelling over a small step: Z(t) = 0 if t < 0 and Z(t) = δ otherwise. The
derivative of the step response, divided by δ, is h(t) and the double derivative
of the step response, divided by δ, is h̃(t).

We need the joint density of Y (t) and Ẏ (t) to compute μt(u). However,
since Y (t) and Ẏ (t) are multivariate Gaussian it is sufficient to compute their
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mean, variance and covariance as a function of time. Their mean values are
zero: E[Y (t)] =

∫ t

−∞ h(t − s)E[Z(vs)]ds = 0 and E[Ẏ (t)] = 0. The variances
and covariance are written as

Var(Y (t)) = Var(Ys(t)) + Var(Yr(t))
≡ σ2

Ys + σ2
Yr(t) ≡ σ2

Y (t), (33)
Var(Ẏ (t)) = Var(Ẏs(t)) + Var(Ẏr(t))

≡ σ2
Ẏs

+ σ2
Ẏr

(t) ≡ σ2
Ẏ

(t), (34)

Cov(Ẏ (t), Y (t)) = Cov(Ẏs(t) + Ẏr(t), Ys(t) + Yr(t))
= E[Ẏr(t)Yr(t)] = c(t). (35)

The time varying parameters σ2
Yr(t), σ

2
Ẏr

(t) and c(t) parameters are computed
by

σ2
Yr(t) = E[Y 2

r (t)]

=
∫ t

−∞

∫ t

−∞
h(t − u)h(t − s)E[Zr(vs)Zr(vu)]dsdu (36)

σ2
Ẏr

(t) = E[Ẏ 2
r (t)]

=
∫ t

−∞

∫ t

−∞
h̃(t − u)h̃(t − s)E[Zr(vs)Zr(vu)]dsdu (37)

c(t) = E[Ẏr(t)Yr(t)]

=
∫ t

−∞

∫ t

−∞
h̃(t − u)h(t − s)E[Zr(vs)Zr(vu)]dsdu (38)

The constant parameters σ2
Ys and σ2

Ẏs
are given by the frequency response

function,

σ2
Ys =

∫ ∞

0

|H(ω)|2R̃v(ω)dω (39)

σ2
Ẏs

=
∫ ∞

0

ω2|H(ω)|2R̃v(ω)dω (40)

where H(ω) =
∫∞
−∞ h(t)eiωtdt, R̃v(ω) = R( ω

2πv ) 1
2πv and R is given by (19).

Now, the two dimensional density is

fẎ (t),Y (t)(z, u) = fẎ (t)|Y (t)=u(z)fY (t)(u)

=
1

σ(t)
√

2π
e

„
−(z−m(t)u)2

2σ2(t)

«
1

σY (t)
√

2π
e

„
−u2

2σ2
Y

(t)

«
(41)

where
ρ(t) = c(t)/(σY (t)σẎ (t)), m(t) = ρ(t)σẎ (t)/σY (t)
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and
σ(t) = σẎ (t)

√
1 − ρ2(t).

The upcrossing intensity is

μt(u) =
∫ ∞

0

zfẎ (t)|Y (t)=u(z)fY (t)(u)dz

=
e

−u2

2σ2
Y

(t)

σY (t)
√

2π

(
m(t)u(1 − Ψ(−m(t)u

σ(t)
)) +

σ(t)√
2π

e−u2m2(t)/2σ2(t)

)
(42)

where Ψ(z) =
∫ z

−∞
e−u2/2√

2π
du. Now, if ρ(t) = 0 then m(t) = 0 and σ(t) = σẎ (t),

and hence

μt(u) =
1
2π

σẎ (t)
σY (t)

exp
(
− u2

2σ2
Y (t)

)
, (43)

which is unimodal and symmetrical around zero. Inserting (43) into (13) gives
the local narrow-band approximation (15).

In Figure 11, ρ(t) is plotted: The correlation between Y (t) and Ẏ (t) is
varying between 0 and 0.15 in the interval [0, t0] and between -0.1 and 0 in the
interval [t0, t0+t1]. However, the correlation is too weak to have any significant
effect on μt(u), as illustrated by Figure 12. In the figure

∫ t0+t1
0 μt(u)dt (i.e the

expected number of upcrossings for t ∈ [0, 4]) is compared for the exact (42)
and approximate (43) case. In addition, the average number of upcrossings of
1000 simulations of the quarter car is also plotted.
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Figure 11: Correlation between Y (t) and Ẏ (t), a0 = −5, a1 = −4, w1 = 3,
w2 = 2, v = 72 km/h, t0 = t1 = 2 s.
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Figure 12: Exact, approximated and average (from 1000 simulations) number
of upcrossings, a0 = −5, a1 = −4, w1 = 3, w2 = 2, v = 72 km/h, t0 = t1 = 2 s.
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