LUND UNIVERSITY

A Comparison Between Three Development Tools for Real-Time Expert Systems:
CHRONOS, G2 and MUSE

Arzén, Karl-Erik; Sallé, Stéphane

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

Arzén, K.-E., & Sallé, S. (1989). A Comparison Between Three Development Tools for Real-Time Expert
Systems: CHRONOS, G2 and MUSE. (Technical Reports TFRT-7436). Department of Automatic Control, Lund
Institute of Technology (LTH).

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

« You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/1a7fb630-5736-497c-881f-606264950307

CODEN: LUTFD2/ATFRT-7436)/1-10/(1989)

A Comparison Between
Three Development Tools for
Real-Time Expert Systems:

CHRONOS, G2 and MUSE

Stéphane Sallé
Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology
November 1989

Document name

Department of Automatic Control INTERNAL REPORT

Lund Institute of Technology Date of issue
P.O. Box 118 November 1989
S-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-7436)/1-10/(1989)
Author(s) Supervisor

Stéphane Sallé

Karl-Erik Arzén

Sponsoring organisation

Title and subtitle
A Comparison Between Three Development Tools for Real-Time Expert Systems:
CHRONOS, G2 and MUSE

Abstract

A comparison, based on a study of how time is treated, between three development tools for real time
expert system is exposed. After a presentation of the tools, some of their advantages and disadvantages are
pinpointed. Since these tools are only a partial answer to the problem of real time within the expert system’s
area, a standpoint concerning a good use of each tool is given.

Key words
Expert systems; Real time; Chronos; G2; Muse

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient's notes
English 10

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
§-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

To be presented at the 1989 IEEE Control Systems Society Workshop on Computer-Aided Control
System Design held in Tampa, Florida (U.S.A.) on December 10, 1989.

A Comparison Between Three Development Tools for
Real-Time Expert Systems: CHRONOS, G2 AND MUSE

Stéphane E. Sallé and Karl-Erik Arzén

Department of Automatic Control
Lund Institute of Technology
P.O. Box 118, 5-221 00 LUND, SWEDEN
Tel: (46) 46.10.87.80

Abstract - A comparison, based on a study of how
time is treated, between (hree development tools for real
time expert system is exposed. After a presentation of
the tools, some of their advantages and disadvantages
are pinpointed. Since these tools are only a partial
answer to the problem of real time within the expert
system's area, a standpoint concerning a good use of
each tool is given.

Keywords - Expert systems; Real time; Chronos;
G2; Muse.

1. INTRODUCTION

.There is presently a strong interest in knowledge-based systems
within the process industry. Many applications, mainly considering
on-line monitoring, diagnosis and alarm analysis (e.g. Kramer and
Finch, 1989), have been proposed and tested in pilot projects. The
technique is also used for closed-loop control. In fuzzy control (e.g.
Mamdani and Assilian, 1975) expert system rules are used to mimic
the human operator's manual control strategy. Expert control
(Astrom et al, 1986, f{rzén, 1987), seeks to extend the range of
conventional control algorithms by encoding general control
knowledge and heuristics regarding auto-tuning, adaptation and
control loop supervision in an expert system included in the
controller.

Knowledge-based systems in regular, day-to-day operation are
however still not common. One reason for this has been the lack of
appropriate expert system tool suited for on-line, real-time operation.
The purpose of this paper is to compare three commercial
development tools for real-time expert systems. This is based on the
authors experience as users. This is not a study of all the products
dealing with this problem.

After a brief description of the problems related to the use of
time in an expert system, the different tools are described. We
discuss how facts and rules are represented, the possibilities of the
inference engine and how tie is treated. The computer requirements
and the user interfaces are also presented. In the last section, the

systems are compared. Some advantages and drawbacks of each tool
are pointed out.

2. REAL-TIME ASPECTS OF KNOWLEDGE-BASED

SYSTEMS

Real-time, on line applications of knowledge-based systems (KBSs)

contains a set of special problems that differ substantially from the

conventional off-line consultation applications that KBSs originally
were developed for. A short overview of these problems is made in
the next section. A more detailed discussion can be found in Laffey
etal (1988) or in Chantler (1988).

Non-monotonicity:

A real-time expert system operates in a dynamic, changing
environment. Incoming sensor data, as well as inferred fucts, do not
remain static during the execution of the program. Data are either not
durable and decay in validity with time, or they cease to be valid
because events have changed the state of the system. In order to
maintain a consistent view of the environment, the reasoning system

must be able to automatically retract inferred facts.

Reasoning under time constraints:

Reasoning under time constraints covers the problem where a
reasoning system must be able to come up with a solution in time
when the solution is needed. Furthermore, the best possible solution
within a given deadline is desired. To do this, the system must be
able to estimate the time needed to build a solution. A measure of
goodness on the solution expressed in terms of completeness,

precision, and centainty is also needed.

Asynchronous events and focus of atlention:
When a significant, asynchronous event occurs, it is important
that the real time system can be interrupted by this event and focus

its resources on the currently most important issues.

Temporal reasoning:
Time is an important variable in real-time systems. A real-time
system must be able to represent time and reason about past,

present, and future events as well as the sequence in which the

events occur.

Missing and uncertain data:
Missing data is a problem that must be taken into account
since, for example. temporary sensor failures must not lead to a stop

of the expert system. Data can also lose validity or have questionable
validity because of degradation in sensor performance.

Continuous operation:
Real-time expert system must be capable of continuous
operation and, for instance, the reasoning must not be interrupted

due to garbage collection.

Several of these issues (non-monotonicity, reasoning under

time constraints, etc...) are deep theoretical, philosophical problems

which probably never will be solved. Practical, ad-hoc methods are

however emerging for several of the problems.

3. CHRONOS

Chronos is a rule-based, forward chaining system written in ADA,
developed jointly by the two French companies EURISTIC Systems
and SAGEM.

3.1 The Chronos Knowledge-Base

The knowledge base consists of facts and rules. Chronos is not
presently object-oriented and the facts are represented by triplets of
the type Attribute (Object) = Value. To handle time, four dates can
be associated with a fact: creation date (the time when the fact is
entered in the facts base), starting date (the time when the fact
becomes valid), ending date (the time beyond which the fact is
invalid) and obsolescence time (the duration beyond which an
invalid fact is removed from the facts base). These dates can be
given in absolute form (terms of day and time), or be related either to
the current time or to an arbitrary reference time TO defined by the
user. Any element of a triplet in the rules can be replaced by a
variable (included all three elements at the same time).

Rules are used to encapsulate an expert's knowledge of what
to conclude from conditions and how to respond to them. All rules
have an antecedent that lists the conditions and a consequent that tells
what to conclude and how to respond. A rule in Chronos is
expressed as: "as soon as conditions then actions" or "as long
as conditions then actions”. The first kind of rule is equivalent to
the classical structure "if conditions then actions". In the second
kind of rule, a link is created between the time stamps of the facts of
the condition part and the time stamps of the inferred facts. Any
modification of the time stamps of the facts in the condition part is
spread to the time stamps of the inferred facts. This leads to an
efficient non-monotonic reasoning. In the condition part, logic
operators (and, no, exits, for any), arithmetic and mathematics
operators can be combined without any limits. Tests on the current
time, Clock, can also be performed.

The actions are written in a structured procedural language
which allows conditional branching and loops. Within the actions,
facts can be manipulated (created, modified or deleted), rules can be
fired and external procedures written in other languages can be called
(the arguments of these procedures must be ASCII strings). All
actions can be postponed for a defined period.

Different priority levels are associated with the rules and a rule
can be declared as not interruptible. If this is not the case, the
execution of a rule can be interrupted by another rule with a higher
priority.Parts of rule actions can also be declared as not interruptible.

An example of a rule is given below. This rule is issued from a
set of rules which monitors several connected reactors (Chronos,
1988). As soon as the reactor temperature is greater or equal Lo one
hundred degrees for the last thirty seconds and none of the valves of
the reactor was opened within the five following seconds, then
infonm the operator and execute the procedure action_l.

In a Chronos rule, the variables are preceded by an
exclamation mark and the comments by two hyphens. The end of a

statement is marked by a semicolon.

rule name_|:
priority :=4,
uninterruptible;

as soon as
1x:=100;
temperature(!reactor) >= !x (!tl, 1t2]); --look for a reactor
--with a too high temperature
clock >= 1t]1 + 30;
no(exists associated_valve(!reactor) =!valve [!t3, 1t4] such
that state(!valve)=opened, 't3 =< 1t145.0, !t4 > clock);
then
put_line("Waming, problem with reactor "); put(!reactor);
call™action_l.exe” (!reactor:in, !tl:in);
-- call of the extemnal procedure action_l.exe
end rule;

3.2 The Real-Time Inference Engine

Chronos's inference engine is purely forward chaining and uses a
modification of the RETE algorithun (Forgy, 1982). It consists of

tasks with different priorities. During execution, three groups can be
distinguished. The first one deals with acquisition of external

information and data. Its priority is very high in order to realise
continuous, asynchronous and/or periodic acquisition. The second
group checks if some rules are satisfied by the new facts and if so
fires them depending on their priorities. The last one takes care of
the removal of no longer valid facts.

During a periodic acquisition, a new fact is created only if the
acquired value has changed compared to the previous value.
Chronos monitors the associated time stamps.

The rules can be fired either when a change in the database
occurs or when a test on clock becomes true. The test on the current
time is not treated as the other tests. If all the tests, except the test on
clock, of the condition part of a rule R1 are satisfied by a given set
of facts, this set of fact is removed from the test network and put in a
scheduler. As soon as the test on clock is satisfied, Chronos checks
if the set of facts previously defined still satisfies the condition part
of R1 and, if this is the case, fires the rule R1.

Three execution modes are available: real time (the expert
system uses the computer clock), virtual time (the expert system

uses time defined by the supervised process) and step by step.
3.3 The User Interface

The development interface is based on a multi-window interface with
menu and mouse interaction. This allows rule editing and display of
the rule flow charts with possibilities for zooming and scrolling.

During rule execution, four windows are used which allow
Chronos to display acquired and deduced facts, justification of
deduced facts and execution trace (messages sent to the operator
from rules). The command window allows an interactive dialogue
during the execution. The dialogue may be a display of the rule
base, a display of parts of the fact base (defined e.g. by: "show
state(*)=*"), on-line modifications of the fact base (insertion of a
new fact, deletion of a fact). The content of the windows may be
stored in files. The number of facts present in the database, the
number of rules to be fired (rules present in the agenda), the number
of rules in the scheduler are also displayed. A possible saturation of
the inference engine can thus be detected. A typical Chronos display
screen is shown in Figure 1.

Chronos runs on IBM PC and compatibles, VAX and UNIX

workstations. Chronos can be used cither as a stand-alone system or

Facts editor

G AEapy - Paste - Scarch:

RUNOS - Base: QUER' £ 1.
Bules ficquisitions

-tpz@# (downstream) :=- 1525
tpz8 (central) :=- 1525 ;
tpz8:(upstream) := 1525
dtpz. (domstrean) :~ 1680
dtpz (central) :- 108 ;
dtpz (upstream) :~- 108 ;

‘dtfrtpz (downstream) := -nofi

dtfrtpz (central) :=- -35 ;
dtfrtpz (upstream) :=- -10 ;
‘po28 (downstream) := 1.8 3
:po28 (central) := 1.8

Kules saitore

— 174101

rupture_bandage %y

Fig. 1. A typical CHRONOS display screen on PC.

as an ADA package integrated with other ADA programs. On an
IBM PC, the required size is at least 1 Mb of tree hard disk memory
and a 3 Mb RAM memory extension. In January 1989, the price for
the IBM PC development licence was 60 000 FF and 120 000 FF
for the development licence for UNIX workstations and VAX/VMS.
The system was installed on fifteen different sites with application in

computer vision, system diagnosis, etc ...

4.G2

G2 from Gensym Corporation is an expert system development tool
aimed at real-time, process industry applications (Moore et al,
1988). Gensym Corp. was founded by the group from Lisp
Machines Inc. who previously had developed the PICON system.
G2 is intended to be used on top of a conventional process control
system as an operator assistant.

The main part of G2 are: the knowledge-base, a real-time
inference engine, a simulator, the development environment, the
operator interface, and optional interfaces to extemal on-line data

servers.
4.1 The G2 Knowledge-Base

The knowledge-base consists of three different forms of knowledge:
objects, rules, and dynamic models. Objects are used to represent
the different concepts of the application. Attributes describe the
properties of a certain object. The attributes values may be constants,
.variables, or other objects. The objects are organised into a class
hierarchy with single inheritance. Objects are represented by
graphical icons as shown in Figure 2. Relations between objects are
represented by connection objects. Usually, objects are used to
represent the physical components in an application with the

connections representing physical connections such as pipes or

wires. It is, however, also possible to have objects that represent
abstract concepts and connections that represent general relations
among objects. Variables are a special type of objects for
representing parameters whose value vary over time. Variables are
either quantitative, symbolical, logical, or textual and have validity
intervals indicating the length of time the value remains valid after
having been updated. It is also possible to indicate that the validity
should be computed from the validity intervals of the variables from
which the value is inferred. Other variable attributes determine from
where the variable receives its value (e.g. the simulator, the

inference engine, or a data server), and whether a history should be
kept for the variable or not. G2 contains built-in functions for

referencing past variable values and for the usual statistical
operations on time series such as mean, standard deviation, rate of
change, maximum, minimum, etc...

G2 rules are used to encapsulate an expert's heuristic
knowledge of what to conclude from conditions and how to respond
to them. Five different types of rules exist. Of them, four are
different forms of "if conditions - then actions” rules.The last type

is the "whenever" rules which allows asynchronous rule firing as

. soon as a variable receives a new value or fails to receive a within a

specified time-out interval. The rule conditions contain references to
objects and their attributes in a natural language style syntax. Objects
can also be referenced through connections with other objects. G2
supports generic rules that apply to all instances of a class. The G2
rule actions makes it possible to conclude new values for variables,
send alert messages, hide and show workspaces, move, rotate, and
change colour of icons, etc... G2 rules can be grouped together and
associated with a specific object, a class of objects, or a user-defined
category. This gives a flexible way of partitioning the rule-base. The
following is an example of a G2 rule:

SIMULATION-SCHEMATIC

L2

5-VI13

sered,_ BT

Noley

i g Wi i
B T L T

| o IJ.I |
I

e — —

i 00
U R F—

T
151
holding-tube II

User restrcilons

| al o

— Nemes | S-M2 -

S-MODE U
i Inflow | 3.0 T A %: fignsym G2
Oul fow | 2.0 YT e Tt et

Fig. 2. A typical G2 display screen on Symbolics.

for any water-tank

if the level of the water-tank < 5 feet and

the level-sensor connected to the water-tank is working
then conclude that the water-tank is empty

and inform the operator that

"[the name of the water-tank] is empty"

Dynamic models are used to simulate the values of variables.
The models are in the form of first-order difference and differential
equations. The models can be specific to a certain variable or apply
to all instances of the variable class.

.

4.3 The G2 Real-time Inference Engine

The real-time inference engine initiates activity based on the
knowledge contained in the knowledge base, simulated values, and
values received from sensors or other extemal sources. Apart from
the usual backward and forward chaining rule invocation, rules can
also be invoked explicitly in several ways. First, a rule can be
scanned regularly. Second, by a focus statement all rules associated
with a certain focal object or focal class can be invoked. Third, by an
invoke statement all rules belonging to a user defined category, like
safety or startup, can be invoked. The scanning of a few vital rules
in combination with focusing of attention is meant to represent the
way human operators monitor a plant. It is also an important way to
reduce the computational burden on the system. Regular scanning of
rules and thus updating of infonmation in combination with variables
with time-limited validity gives a partial solution to the problem of
non-monotonic, time-dependent reasoning. The inference enginé
automatically sends out request for sensor variables that have
become non-valid and waits for new values without halting the
system. Priorities can be associated with rules.

G2 has a built-in simulator which can provide simulated values
for variables. The simulator is intended to be used both during
development for testing the knowledge base, and in parallel during
‘on-line operation. In the latter case, the simulator could be used for
estimation of signals that are not measured. The current simulator

has however limitations. Each first-order differential equation is

integrated individually with individual and user-defined step-sizes.
This may cause problems. The numeric integration algorithm used is
a simple Euler method with constant step-size. Further, the simulator
interprets the simulation equations which slows down the system.
GSPAN, an interface between G2 and external simulators is

available as a separate product.
4.4 The G2 Environment

G2 has a nice graphics-based development environment with
windows (called workspaces), popup menus, and mouse
interaction. Input of rules and other textual information is performed
through a structured grammar editor. Facilities for browsing through
the knowledge-base exist. The operator interface contains variable
displays such as graphs, meters, readout tables, etc..., and operator
controls in the form of different types of buttons and stiders for
changing variables and executing rule actions.

The data servers are the interfaces to either conventional
control systems or other signal sources such as e.g. databases. The
signal sources either run in another process on the same computer as
G2 or in a separate computer system. In the latter case the
communication is done over Ethernet. Gensym sells a generic
interface, GSI, which the user can modify to implement custom
interfaces. A goal of Gensym is to provicde standard, off-the-shelf
interfaces to the major manufacturers' control systems. Interfaces to
Fisher Controls, Yohogawa, and Siemens exist and interfaces to

Honeywell and Allen Bradley are being developed.

G2 is implemented in Common Lisp and runs on Sun, HP,
Dec Vaxstation, T1 Explorer and MicroExplorer, Symbolics,
Compaq 386 and Mac II. For most machines, 16 Mb RAM memory
is required. The price ranges from $ 18.000 to $ 36.000 depending
on computer.

For portability reasons, G2 uses their own window system
and object-oriented system. To avoid garbage collection, care is
taken for G2 not to generate any garbage. Version 2.0 of G2 has
been announced for release in September 1989 and will among other

things include improved operator interface fucilitics and procedures,
Gensym has currently sold around 200 G2 licenses with

applications in such areas as process control, robotics,

manufacturing, and simulation prototyping. Gensym has also sold

around 50 on-line GSI licenses.

5. MUSE

MUSE from Cambridge Consultants in U.K. is a toolkit for
embedded, real-time Artificial Intelligence. Muse consists of an
integrated package of languages for knowledge representation which
all share the same set of database and object structures. The central
component of the package is the Pop-talk language. Pop-talk which
is implemented in C is derived from the Pop series of languages and
has been extended to support object-oriented programming. It is also
a stack-based language that combines strong list-processing elements
with a block-structured syntax. It is an imperative programming
language such as C or Pascal. On the top of the basic object
language, a frame (or schema) system is built that includes multiple
inheritance, methods, relations and demons.

A Muse application ranges from a simple expert system with
just a single database and a single rule-set, to a complete blackboard
system with many knowledge sources and databases which

co-operate to solve the problem.
5.1 The Muse Knowledge-Base

* A major part of Muse is a set of architectural support facilities that
allows a complex application to be split-up into modules. The
modules include knowledge sources and notice boards. A
knowledge-source contains one or more rule sets and a local storage
to hold the data it is reasoning with. A notice board is a special case
of knowledge-source that is only used for storing data. The
databases in a Muse application can be attached to rule-sets,
knowledge-sources or notice boards and will normally contain
objects. For real-time applications written with Muse, it is important
to consider at the design stage how the application can be divided

“into separate knowledge sources (different rule-sets and databases)
as the efficiency of the implementation is derived from ensuring that
searches for the rule matches are performed in databases which
contain only relevant objects.

The facts are objects whi'ch can have several slots, methods,
demons and relations. A creation date can be associated to a fact.
The time is measured from the beginning of the session in
milliseconds. Tests can be based on this time. Ending date,
obsolescence time, past values of a variable are not explicitly
available but can be built by the user with the use of demons and
methods.

Two different rule languages are available. In the Forward
Production System (FPS), rules are expressed as "if conditions
then actions". The Backward Chaining System (BCS) uses the
format "rule name_of_rule(arguments) provided conditions”.
Variables can be used in order to match slots in the condition part of
a rule. It is not possible to replace a schema by a variable in a rule.
The matching of the rule with the facts in a database is expressed
with the operators "if there is a” or "if there is no". Poptalk
functions and expressions (such as conditional branching , loops,

arithmetic and mathematics operators, function calls, etc...) can be

uscd in both gides of the riles. Such cade can also be included in the
schema as methods or in the knowledge sources as demons. In the
action part, manipulation of facts (creation, modificution and
deletion) is allowed.

A typical rule of the FPS is shown below. The goal of the
rule-set is to do a simple signal classification. The rule is in charge
of identifying parts of the treated signal which are said to be spikes.
Segment is a schema which has the slots type, i_start (which
contains the instant of beginning of the segment), i_end (which
contains the instant of end of the segment). Variables begin with a
capital letter and comments are marked by two vertical signs.
|| name of the rule:

!If id_spike_spike.
i

there is a segment S -type spike_unknown,
-i_start Istart, -i_end Iend where (abs(Iend - Istart) =< 10)
then
assert {segment S: -type spike}

A typical ruJe of the BCS is shown below. Its goal is to search
a way from one point A to another point B. Such a way exists either
if B is equal to A or if there is another point Y such that there is a
road which starts in A and finishes in Y and there is a way from Y to
B. In this example, road is a schema with a slot "starting point" and

a slot "ending point”.
fact way_from(A.A)

rule way_from(A,B) provided
there is a road -start A, -end Y and
way_from(Y,B) :

Files written in C can also be included as linked files. External
procedures can be called by creating a new pop-talk function and
building the interface between pop-talk, a C program of the linked
library and the external procedure. The arguments are passed in a
stack.

5.2 The Muse Real-Time Inference Engine

The control of the knowledge-sources is handled by the agenda.
This is an ordered list of things to execute, typically but not
necessarily knowledge-sources. When the agenda is empty, a
scavenger function spreads notifications of changes around to the
knowledge sources. This may then cause knowledge-sources to be
scheduled to run anew. Ten levels of priority can be associated to a
knowledge source or to schedulable events and the execution of such
events can be interrupted by another events with higher priority.

The FPS inference engine is based on a modification of the
RETE algorithin. The BCS is Prolog-type backward chaining rule
system that support depth-first backtracking, unification of logical
variables on standard Muse objects, and flow control via ‘cut’ and
'fail’ The rules for the backward chaining must explicitly be written.

Incremental garbage collection is essential for real-time
applications allowing garbage collection to be handled as a
background task while Muse is running, rather than temporarily
completely halting the application.

Muse is interfaced to the extemal world through data channels
which allow periodic acquisitions of extemnal information and
data.The physical implementation of the data channels dcpcn(ls\ on
the underlying hardware and software. For example, on a UNIX
system the data channels are UNIX sockets. The data channels

provide filter functions that only allow through the particular pieces

SUESW OU AT S[{at[s Sum-Tea Sunstxa sy ‘1oey uf pastumido si aum
JURLIND 0} Predal (M 153} JO JuaudSeurW 3y Jey) pue JusIo1jjo K194

a1t sjo01 nayy ey 3wkes £q utodmara 1019001sU0D Y3 Uo ‘pIjeon

Auo s1 sdueuropsad ydy jo wisjqord 3 ‘sjoo) 3sey uj

:dutwIoyiad Y3y pue sjuresysuod awry aapun Sujucseay

‘washs padya ay £q passpisuos ApaieIpaunuy st

uonesiFIpous Syl pue patjIpour aq Ued 108} € o) pawmof sdureis sum ay)

[[C 3$NLI2Q JU3AI PIIINDIIO UT 0} 3N PI[BAUT SLUO0DIG STY 30T B Jei}

siuasardar - ways - s §uoy sp s[nu Y, “owi passed 03 anp prjrAul

SW003q sty 19eJ e ey sjuasaudal ST, 1983 parrsjur pue pannboe

1e 03 payoene ore sdwreys swm pue sfeATan AuprpeA ‘wojqoid suj

0 1amsue 3jqissod e s1 souory)y £q pesodosd yovoisdde oy,

"UONIN[OS UMO STU PN ISTILE Y “‘Inq - *** 233 ‘Spotjjatl ‘suotap

‘l:)U_J € JO 3Jep UOoILaId Y3 ST YONS - JT SAJOSAT 0} S[00) SOS Sey Jasn

SYL "PITAI) JOU PAIIPISU0D JaYIau §T wrafqord syys ‘asnpy uf

"JUSA3 PAIMID0 UL 0] NP PIEAUT S3M0D3] J9eJ © Jery yuasaidar

Jouwred | "auri) passed o} anp prreAU] SW00aq Sey 198y € Jety Jussaidar

Ajuo ueo onbruyoar styy -siovy pasreyur 03 pue soey o3 sdwes

StuT pue S[RAIU LJIPIEA YoRNE 0) ST Z0) UT pasn yovoxdde ay,

:f)duojouo-uoN

"UONI93sS ISITY 3] UT PaqrIosap swasAs yadxs sum-rear Surrsouod

swajqoid Jua1a43tp S ajosar) sayseoirdde Juaseyzip asn s[00) A,

‘vondnuayur Suruosear ,
‘$1083 pUe sanfeA Josuds Jo ajepdn opewoine
‘erep

PUE UOTIEULIOJUL [EUI3)Xd RUT SIUIAS SnouoIysudse jo uonisinboe ,

MO[[E $[00) 3313 1) ‘paspu] “asn STY) premo) doys

1803 ® are oY) ‘Jonamol "sJ00) 353t Aq paA[osar jou are uoneorjdde

swm-feas e ur wiaisAs wadys e Suisn Aq pasjdun swajqord sy v

SSAY Jo swalqou wn-[eay 3y) yo juswafeuepy ['9

NOSTIVAINOD) “9

TN Y URpPIA- AUTEL PIOS 199G SATY S20ULD] (€ PUNOTY *aSUDI|
HOMIBU T J0J (00 ST F 01 ISUDIT AuTyorw IJUTS € 10} (00 ST F
ui01y paguer 1500 ay; ‘6861 Jeak ot Jo Burungaq a3 1y ‘uonereIsuT
[euly 30 BuNSe) 10) Bupydew 12818) PAESIPIp B 0) psprojumop
pue [pu1dy roddns swin-uns v ynym pageyoed 9q uco yoym
9poo aeIpawrann joeduios e o) papdwos e asnjAl ur padojeasp
suopwor|ddy *Kiowotu 221y Jo qIy 7T i5UOY 10 sornbar ¥ ‘sutyoews
STYI UQ "SUonmISiIom f/¢ ung uo uruuny Apusms sy asnpy

*8p0od uonestdde oy
)Ip3 UBD OS[E 198N a3 YOIYM LUOIY JONPS X3} SIBWIT SYI ST MOPUIM
ise] a3 pue a3enFur] SN Sy} O} UC SoBIISHUT [euruus-opnasd
€ ST Mopurm pIry) oy, 's102(qo asnjq Jo uomEsiIpow 2y oSye
PUE 3sequiep ay) Jo $jua)ued ay) 30 Ae]dsip SYi MO[[e S[00) sum unt
om) asay, ‘wiaisds Surd8nqap oy se yons suorouny asnp suepodun
awos asn ‘soeyror nusw e jo doy 9yl Yum ‘os[e pue soImonns
©IEp [ewaiut 3snA oy ‘uonesridde Sutuuns v uiyna ‘suiwexs ueo,
1950 3y} ‘a1 "13$MO01Q SUWN-UNT J1J) ST MOPUIM PUOIIS Y, *§190(q0
SSNIAT pauLo)-£[1051100 Jo uononpoid sy; ur s1adofaasp aping oy
SIqe §1 JOUP3 2y3 ‘oSN UT S[qe|rEA’ SAIMIONNS Jo sadf) oY) Jo areme
SII0)P3 pamionns i pue (sa[n1 ayy Bupniour) $193(qo Jo SuondA[ed
S¢ pamara aq ued suonesrjdde asnjy [Te sy apoo soinos asapy
AJIpow pue 3Ipa ‘a1ea1> 03 198N A1) SMO[[E Yorgam 10)Ips parmonns
© Ul SUIBJUOD MOPUTM ISTIJ SY], “¢ 2nJ1 ur usas aq ues Aeydsip

U39I0§ ASNIA] [edId4) W "SMOpUIm INoJ JO SISISu0D ddBISUT Y],

eI IS} Y, €S

"D Ul pAUSWAIdIUT [9AS] 1SIMO] SUI UO PUE S[TUIJop-19sN Ie

SI31[1J 353y, ‘PIpasu a1 3proap suoneoridde says ey uonruLoyw Jo

"ENNS Uo uaaros Ae[dsip ASNIA eotd4 v +¢ *Big

W o e

OYIN 1k Y [NE) PUNG) O3 juy)

"y Geg i Dugaeey
CrmapnRRgE P s) ey
TR 0% Ut Dujate)
800047403 puow Buj s} Lelaju]
LT,
R LT R T
N sresagnaThayp Buy | jduel;
*€ana 301 uow Duy | §dud?
1 uewle (ds) p Guy g jdias,
Lgr o) (1A waRAS) Faap o,

ety we

VL2 aSeALR D AP AL ang A) e
(1OMEe S g BUPUOSESY JINW BDEL) paAZS PaloItdy

Ao fue 1OV eftun}sup [ESO0N] DAY BEAW)I) ESE B IGINE
w i

Shewegnn g Ay 0 ARG GIRGAL 0 CYS0] pun ayyg
Uol anl P s enE g |GGG ahp) 1quey a-;‘qﬁ(il):. .3
L weaprama gpepahag - wwywher aliendeie] 3oy

T

punujzedi) 0qany ae yiney

WLiyzebh dest ‘ylipyzetiges ‘ugan) 1€ (bujpeas esnssenl
PUNOjzadA} Ujaie v iltney

N 6WIuzeBRIetE "AOLzAN ks ‘UpJIIE |0 (OULPRE BuniRiedeldy

TujAje AR A(ney punog a0 Heoy
QI VB LIN0S PO 01Uy
wayads bujyaege

L LU0U N, JLOL G
IpUITRE) djcead

LT g T R IR S RN R R }

12afao"wsy8he
TrtijasadTaamn
Cerry|u|TaREN
*rrispssanTeajiou
st
TTTCEN = 40y jvom)
sianufiep
o

[LENTITR
FRCPE RS T

HLIN
) Qasagnygy ~ saynaThepy

saspupnufivjuanna
B 11

ceeia
} <& - vysoubaypy

:s832m08 "8 fApa ADLY
Trrisapamangy
sriseaueysuy

CYYlewwEde
w8~ mulajuy
aunjiniagnap

} <odéyT oafuo"waysks - (ST Tt ITT Y

purojzedil 0qun) Je iiney
ROy zeltisse 'nOLzén| A ‘0Qun} VR iBujpedd AG,

sseneeg Sy
| ELIEIILE

) = =
wiiyg uhiy .
i@ 1aneunsy [pvmiou [San ik ibing

&|N4 gdd ® Jo o duexs ue &) SjyL iuswsod g

% uciiesel Dwipeed EUTUTTR s,

Dlusman {0 eyl BjuR sawu|y
N ARl eEEE|y
¥anfyo amu3z
wd ui Gujpiy

Z 8|hJ 386y {42y a0
TUHdd N wuy

R s

487 usiiudi- (0] 40} |p3

to cope with a guaranteed response time.

One approach taken in Chronos is the possibility to associate a
deadline to the expert system. If this time is overpassed, the
reasoning is stopped. We can notice that a similar approach can be
built with Muse.

This problem is far from being resolved but the user can not
expect that a tool will ever be able to manage alone with the time
constraints. The great evolution of the computer performances will
allow faster and faster reasoning. A solution which can be built
temporarily by the user in order to deal with these time constraints
consists, for instance, in the building of several knowledge-sources
or special rules which have to cope with special cases as emergenicy
cases. Different hierarchical abstraction levels of knowledge can be
also defined in order to give a very fast answer when it is needed
with a high level of abstraction or a very accurate answer with a
deeper level (Krijgsman, Verbruggen, Bruijn, 1988). Another point
of view is to say that the user can deal with this problem if its on-line
expert system is closer to a decision table (one or two rules are fired
when the system is in a given situation) than to a real reasoning

system with the chaining of many rules.

Missing and uncertain data:

Missing data can be treated in G2 with the use of the built-in
simulator provided that a simulation model has been defined for the
variable. Chronos and Muse can also resolve this with a
predetermined rule which calls a simulator included in an external
procedure.

Uncertain data is a problem which is quite difficult to cope
with even in an off-line expert-system. Different methods exist for
computing the certainty of the inferred facts from the certainty of the
conditions and the rule certainty. The result of different methods
may vary substantially. Another problem with certainty-based expert
systems is how to correctly determine the initial certainties of the
measurements.

None of the tools use certainty factors.

Temporal reasoning:

The time stamps associated with facts in Chronos and G2
allow a first step in temporal reasoning.

Both Chronos and G2 allow reasoning about the past since
variable histories may be kept. The built-in history functions for
numerical values in G2 are useful.

With Chronos, the possibility to enter facts that will become
true in the future allows the user to build a reasoning about the
future. The built-in simulator of G2 allows another kind of
reasoning about the future.

Focus of attention:

Only G2 includes such a treatment. A similar thing can be built
in Chronos and Muse with the creation of specific rules and facts’
attributes or slots.

Continuous operation:

Both Chronos and Muse perfonn the garbage collection as a
background task that is evenly spread out over the execution.
However, when the computing load is close to the maximum level,
the systems do not have time to perfonm this task. After a certain

- time this leads to suspension of the reasoning.

G2 handles the memory allocation and reallocation internally

during run-time to avoid generating any garbage at all,
6.2 Summary

The flexible pattem-matching facilities of Chronos allows rules
which treat many different cases. This leads to rather small KS

which can also time efficient. The manipulation of time within this
tool is easy to use and powerful. The tool is very easy to use at the
beginning. The user becomes familiar with its possibilities quite
rapidly.

However, Chronos is a purely rule-based system restricted (o
forward chaining. The system provide no means for partitioning the
knowledge base except by explicitly associating a special context
attribute to the facts and the rule. The system is not object oriented,
although this has been foreseen to be available for the beginning of
1990.

G2 is the most widely spread system of the three. The graphical
development and end-user interfaces are very pleasant fo use and
also quite powerful. The built-in simulations possibilities are useful
both in the development phase and for dyfamic on-line simulation.
The interest among control system vendors to provide off-the-shelf
interfaces to G2 is imerestiﬁg.

The real-time inference engine and the natural language style
rule syntax which do not distinguish between forward and backward
chaining rules are powerful. The object-orientation which allows
inheritance and rules and simulation equations that apply to classes
of objects are also powerful although multiple inheritance and
methads and demons are not allowed.

G2 is, however, also a quite closed system. Due to the method
for avoiding generating any memory garbage, the user is not allowed
to add any LISP code to the system. Calls to user-written C and
Fortran code can be made but not on all machines that G2 runs on.
More advanced communication with other programs must be made
through the GSI interface. As in the case of Chronos, version | of
G2 is a rule-based system. For mote advanced applications

procedures are extiemely impontant.

The blackboard architecture of Muse is powerful especially for large
applications. The modularised facilities makes it possible to develop
the different knowledge sources independently. It also makes it
easier to modify, read, and understand the system than if a single
knowledge base was used. Muse is closer to a general programming
environment that an expert system shell with all the advantages an
disadvantages this implies. Muse is flexible and powerful.
Object-oriented programming can be combined with procedures, wnd
rules. Methods and demons are allowed and external C procedures

can be called.
The disadvantage is that it takes some time to leam the

system. Moreover, the call of extemal procedures is not so easy lo
realise: a C interface must be built and a stack is used to manipulate
the subroutine arguments. Another drawback due to the use of a
blackboard architecture is that all modifications of facts are not
compulsory immediately notified to the extemal knowledge sources
(special instructions must be used and they are much less time
efficient). These modifications will be spread in all the databases by
the scavenger which has the lowest priority of the system.

The real-time facilities in Muse are less developed than in G2

and Chronos. The two inference engines used have no special

real-time features. Instead this is taken care of by the agenda which
decides which knowledge source to run. The possibility to
download onto a smaller target machine is important for embedded

systems where compact and inexpensive hardware is important.
6.3 Table

The features of the different tools are summarised in table 1. Six
different domains are distinguished: the inference engine, the rules,
the fact representation, the functions related with time, the
development interface and the operator interface. The speed of the
different tools is difficult to compare since it depends a lot on
computer configuration.

A simple croos means that this feature will be available soon.
A double cross means that this feature is not available for all the
computers.The expression "uniform rule syntax" means that the
same rules are used for the forward and the backward chaining.
"General procedures” means that a knowledge source may be
replaced by procedural code which reacts as an ordinary
knowledge-source would do. A multiple-valued fact is used in
expressions as e.g.: "associated_valve(reactor_1)". The high level
programming constructs include for instance arrays, lists, etc... The
time statistical functions include for instance the computation of the
mean of a variable, its slope, etc... The operators controls are parts
of the run-time browser such as buttons, sliders, etc...; they allow
an on-line interaction between the expert system and the operator.
The auto-explanation generation contains a chronogram of acquired
and deduced facts, a display of the rule firing, a justification of
deduced facts. "Interface to external systems" means that an interface

with other systems (as e.g. control systems) is provided.
7. CONCLUSION

Commercial expert system tools for real-time, on-line applications
are now emerging. In this paper we have tried to compare three
systems based on how the specific real-time aspects are handled.
Each of the systems have their advantages and disadvantages.
Several problems also remains to be solved.

All three tools are intended for general real-time applications
such as monitoring, diagnosis, and planning. It must, however, be
remembered that the tools in themselves do not give explicit support
for any kind of application. What they provide are different
knowledge representation and inferring facilities. They do not
provide any higher-level generic problem solving agents for, e.g.
model-based process diagnosis.

REFERENCES

Chronos: Chronos documentation set: Installation guide,
presentation guide.

Chronos 1988: Example of monitoring a process, presented at the

commercial exposition of the congress "Expert Systems and Their
Applications™ Avignon 88.

G2: G2 documentation set.

Muse: Muse documentation set: concepts, tutorial, system,
reference.

TABLIL L

MAIN FEATURES OF EACH TOOL

Chronos

Muse

mZz-aGZA

|_Reasoning intermuption

Asynchronous event ar mile invocation

*

Periodic rule testing

E 4

|_Periodic data acquisition

| _Fonward chaining

ERE NENENE]

* | ®

Backward chaining

*

|_Guaranteed response

*

_Incremental garbage collection

Guaranteed continuous operation

Focus of attention

Blackboard architecture

Gegﬁ[a[nrocecures

ol alal-

Uniform mle syntax

Natural language rule syntax

Rule priorities

Call of ext. procedure in condition part

++

*

In the action part:

Procedural rule actions

Call of extemal procedures

Fact creation and deletion

Fact modification

Rule invocation

LN E N R

B= A

Atti - variables

*

Multiple-valued facts

"Attribut t)=Valne" ntation!

QOhbiject onented

LA RN ER LA LR LA LA R

|_Message passing

Multiple inheritance

|_Demons,methods relations

High level programming constnicts

* % |||

B

Certainty factors

*

Validity intervals

|_Reasoning about future events

Variable histories

* | x|+

Time statistical functions

Current time manipulation

*

As long as operator

Delaved nule actions

*

HzZzmzvorE<Ho

Structured syntax editor

Debugger

Break points

Tracing

* |+ | % | %

Step-by-step execution

Time metering

Operator controls

Built-in simulator

Multiple windows

Menus

* % % [| %

RO=EPRETO

Detection of engine saturation

Graphical Icon-based interface

Information browser

|_Animation and ¢olor

Variable displays

Interaction during execution

E R R

Autoexplanation generation

Run time version

Interface to external systems

+ : Available soon
++ : Not for all the computers

M.J. Chantler (1988): "Real-Time Aspects of Expert Systems in
Process Control", Computing and Control division, presented at the

Colloquium in "Expert System in Process Control”,March 28, 1988.

C.L. Forgy (1982): "RETE: A fast algorithm for the many

pattern / many object pattern match problem.", Antificinl Intelligence
Vol 19, n%l, pp 17-37, 1982.

M.A. Kramer and F.E. Finch (1989): Fault Diagnosis of

W -

supervision and control, Ed.Spyns G. Tzafeslas, Plenom Press
N-Y.

Krijgsman et al (1988): A.J. Krijgsman, H.B. Verbruggen, and
P.B. Bruijn: "Knowledge-based real-time control”, presented at the
IFAC Workshop on AL in real-time control, Swansea (UX.).

Laffey et al (1988): T. Laffey, P. Cox, J. Schmidt, S. Kao, and
J. Read: "Real-Time Knowledge-Based Systems”, A.l. Magazine,
Spring 1988, pp. 27-45.

E.H. Mamdani and S. Assilian (1975): "A fuzzy logic

controller for a dynamic plant”, Int. journal of Man-Machine
Studies, vol. 7, pp. 1-13, 1975.

Miles et al (1989): J. Miles, J. Daniel, D. Mulvaney: "Real-Time
Performance Comparison of a Knowledge-Based Data Fusion
System using Muse, Art and ADA", presented at Avignon 1989.

Moore et al (1987): R.L. Moore, L.B. Hawkinson, M. Levin,
A.G. Hoffmann, B.L. Matthews and M.H. David: "Expert system
methodology for real-time process control", Proceedings of the [0th
IFAC Workshop on A.L in real-time control, Swansea, Sep. 21-23.

Arzen K.E (1987): Realisation of Expert System Based
Feedback Control, Ph.D. thesis CODEN: LUTFD2/TFRT-1029, .
Dpt of Automatic Control, Lund Institute of Technology, Sweden.

Astrom et al (1986): K-J. Astrom, J.J. Arton and K-E. Arzén,
"Expert control”, Automatica, vol. 22, n® 3, pp. 277-286, 1986.

