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Abstract. A robust design method for uncertain single-input-single-output systems
is presented. Both structured and unstructured uncertainties are considered. Optimal
performance is described as maximum achievable bandwidth. A controller for robust
optimal performance is determined through a convex optimization problem where
the constraints come from frequency domain performance criteria. The theoretical
framework is developed. Uniqueness of the solution is shown. The design method is

applied on two problems.
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1. Introduction

Structured and unstructured uncertainty are
convenient ways to describe model mismatches.
Structured uncertainty is best for low frequency
variations and unstructured uncertainty descri-
bes best high frequency uncertainty.
Performance criteria may be given as bounds on
time- and/or frequency responses. It is impor-
tant that all systems described within the un-
certainty range of the nominal model fulfills the
performance criteria. This is referred as robust
performance (Morari and Doyle 1986).

This paper describes a design method that guar-
antees robust performance in frequency domain
for systems with a combination of both types of
uncertainty. An attempt to control such systems
is made by Wei and Yedavalli (1989). They pro-
pose an algorithm for finding a stabilizing con-
troller. Nothing is however mentioned about the
performance. Boyd et al. (1988) describes a de-
sign method using optimization. That method
does not consider structured uncertainty. In this
paper it is attempted to outline these ideas to ob-
tain a design procedure that gives specified per-
formance for uncertain plants.

2. System Description

The process has three inputs and one output.
Using the control signal u, the output y should
be controlled to follow a desired reference, while.
effects from disturbances are minimized. T'wo
disturbances ! and d act on the input and the
output of the system. It is given by

y=Gr(s)(u+1)+d (1)

The process transfer function Gr is not com-
pletely known. It can be separated into two parts.

Gr(s) = G(s)Gu(s) (2)
The first part G(s) is a rational transfer function

_ B(s,p) _ B,(S)Bp(s,p)
G0 = o) = AVAe ) O

where B,, A,, B, and A, are polynomials of fi-
nite degrees in the Laplace operator s. Polynomi-
als B, and A, are accurately known. Polynomials
B, and A, are known to be of the form

By(s,p) = bos™ + bys™™! + .- 4 by,
Ap(s,p) = 8™ +ars™ 4. tay,

(4)
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Figure 1. The Closed Loop System

Their coefficients are described by the vector

p=(a1 - aaq bo ba, )T € R% (5)

DEFINITION 1
Let p be as in (5). The set

P={p:pe(pi,pt) i=1,...,d,}

defines the transfer function family G(s, p) with
structured uncertainty. (]

DEFINITION 2

Let the set P, contain the 2%¢ corners of the set
P. O

The second part of the process transfer function
is stable and nonparametric.

Guliw) = (1+A(iw)Wa(w)  (6)

The quantity A(iw)W,(w) describes multiplica-
tive unstructured uncertainty, where Wy (w) is

the maximum magnitude of the uncertainty and

|A(w)| < 1.
3. Controller and Closed Loop

A two-degree of freedom controller is assumed.

_8(). o S(s) (Byls)
= R %Y = 7G) (Au(s} ”) @)

The feedback compensator S(s)/R(s) is deter-
mined to handle disturbances [ or d. The feedfor-
ward compensator is chosen to give the desired

transfer function from r to y. Define the transfer
functions
BS

AR+ BS
AR
AR+ BS

BR
Si(sP) = 4n T ps

Neglecting unstructured uncertainties the pro-
cess output is given by

T(s,p) =

So(sa P) = (8)

() = T(e,n) 720N ) .

+ So(s, p)d(s) + Si(s, p)I(s)

Disturbances assumed to be the output from a
filter 1/A.(s), whose input is an impulse, may
be eliminated in steady state provided that A,
is a factor of R. This yields R = A,.R' and the
closed loop characteristic polynomial is

Aq(s,p) = AA.R' + BS (10)
Integral action corresponds to A,(s) = s.

Controller Parametrization

If no structured uncertainty is present and if
the casual controller So/ R, stabilizes the system
B/A, then all stabilizing controllers could be
parameterized as

S _ SO +QA|~A-
R~ A.(R - QB) (1)

where Q = N/D with N a polynomial and D
a stable polynomial. Since (11) contains polyno-
mials instead of proper stable rational transfer
functions as in Vidyasagar (1985) Q must fulfill

deg D > deg A — deg R + deg N (12)

to yield a proper controller.

If on the other hand A and B may take different
values due to structured uncertainty, a slight
modification of (11) is required. Select a nominal
process model py € P yielding Bo = B(s,po)
and Ao = A(s,po). Use these as B and A in the
controller (11). The characteristic polynomial
will now be perturbed so that it is necessary
to guarantee stability by another criteria. Such
criteria are implied by the robust performance
criteria given later.

4. Design of Feedback

The amount of uncertainty in a model of a sys-
tem limits the achievable performance. Different
approaches are required depending on the nature
of the disturbances.

Input Disturbance Rejection

Consider the case of minimizing the effects from
the input disturbance /. Assume that no struc-
tured uncertainty is present. This assumption
will be relaxed later. The system response for
an input disturbance is

BG. IR

Y= 1R+ BG.S' (13)



The magnitude of the transfer function from I
to y will be limited using the weighting function

W1 (UJ).

BRG,
AR+ BSG,

3 <1 VwYal<1 (14)

Using (6) and (8) this can be written as
|S:(1 + AW,)]
|1+ AW, T|

LEMMA 1
A sufficient condition for (15) is

Wy <1 Vu,V|A|<1  (15)

W1(1 + Wz)ls.l + WzITl <1 Vw

Proof: 1t follows that W,|T| < 1. If Wa|T| < 1
then

Wi (1 + Wa)|Si|

5 W1+ WhA|lSi|
1—W|T|

11+ AW, T]|
If W2|7| =1 then |S;| = 0 and (15) holds. O3

1>

Remark. If the closed loop system based on
G(s) is stable, strict inequality in lemma 1
implies robust stability for the closed loop system
based on G(5)Gy(s). a

In the prescence of structured uncertainty (15)
must hold for all p € P. A modification is
proposed such that it is sufficient to check the
elements p € P, only. The controller is of the
form (11). Define

53(-"';1’) = B(s,p) - BO(S)

5a(s,7) = A(s,p) — dofs) O

Write the characteristic polynomial (10) as

Ac(s,p) = Aco(s) +6ac(s,2,Q)  (17)

where
Aco(s) = A(,A,Ra + BySy (18)
is independent of p and Q and

646(371’) Q) =S EAAFRS + 65,

+QA, (Aobs — Boss) V)

is an affine function in p and in Q. The inequality

8 Ac
|Ac|=|Aco+6Ac]2|A50|(1+Re A") (20)
cl

used in the condition

BR B dac
"'lcU ‘"1c0 ACO

(21)

implies (15) for the system p. Insertion of the
controller in (21) yields the constraint

g(w,p,Q) <1 Vw (22)
with the constraint function

g =W1f1(wap, Q) + f2(wapa Q)

BA,.Bo|| R, l
=Wy (1 + W) | =22 |52 -
1 2) Aw || Bo @ (23)
BA,-AG _SU 6Ac
+W2 Acﬁ ADAr Q Re AcO

Condition (22) implies that the perturbation
84c(3,p,Q) will not destabilize the characteris-
tic polynomial A.(s,p), since the real part of
64c(iw, p,Q)/Aco(iw) always is larger than —1.
Now one main result can be stated.

THEOREM 1
If (22) is fulfilled Vp € P. then it is fulfilled
Vpe P.

Proof: g(w,p,Q) is a sum of three functions.
The two first are convex in p because a function
f(z) = |P(iw,2)| where P is a polynomial is
convex for a fixed w. The third is affine in p and’
thus convex. Therefore g(w,p, Q) is convex in p.
If the inequality is satisfied for the extreme p’s
then it is satisfied for convex combinations of the
extreme p’s by the definition of convex functions.

)
Output Disturbance Rejection

The robust performance criterion for output
disturbance rejection is derived in a similar way.
The only difference is the function f; in (23). It
is here given by

AA,B,
Az:()

fl(wip’Q) = ‘

R,
Bo Ql (24)

Selection of Q

Let N(s,z) be the numerator of the rational
function Q. The constraint function ¢ is then
convex in z, i.e. the coefficients of N. However g,
is not convex in the coefficients of D(s). There-
fore the optimization problem is formulated to
determine the coefficient vector ¢ € R™ for an
appropriate choice of D(s).

Select a stable polynomial D(s) so that 1/D(iw)
is a filter with cut-off frequency where the system.
is supposed to operate. This choice may be
revised from the the frequency responsc Q(iw)
and the constraints g in a previous design. The
choice of D(s) is not crucial provided that'deg N
is sufficiently high. A similar approach is taken
in Boyd et al. (1988). Their discrete D(q) has all

zeros at the origin.



Performance Optimization

It is of interest to achieve optimal performance.
This it is equivalent to maximize the bandwidth
while regarding uncertainty.

DEFINITION 3

The bandwidth of the closed loop system is the
frequency wy specifying the weighting function

W) = max (2%, )

M, is the maximum peak of the frequency
function from disturbance to output and o is its
low frequency slope. a

This W, requires that BA,, in the input distur-
bance case, or AA,, in the output disturbance
case, has o zeros at the origin.
With this W;, it is convenient to split the
constraint g into two functions

g1 = (%)afl(w,p)z)'i'.ﬁ(w’psm) (25)
o = ML F1(@,5,2) + fo(wrp, )

Optimal bandwidth is found through the convex
optimization problem.
maximize wj
subject to gy (wy,w,p,z) <1
92(w, p, ) <1
VYw,Vp € P,

(26)

5. Optimization Issues

Constraint functions define a set in the parame-
ter space. The properties of this set of z depend
on the constraint functions.

DEFINITION 4

Let gi(y,z) = yf1i(z)+ f2i(z) with f;i(z) convex
and non-negative, Define for fixed y > 0 the
convex set

Q(y) = {:l: : gi(%z) < l’Vi}

O

Note that this formulation also covers g, in (25)
by letting f1; = 0. A lemma rclates the sets Q(y)
for different values of y.

LEMMA 2
If y2 > y) then Q(y;) C Q(y1) for the set Q(-) of
definition 4. a

Now it is possible to state the other main result.

THEOREM 2
If a feasible solution exists for the optimization
problem
maximize y
subject to = € Q(y) (27)
y>0

with Q(-) of definition 4 then the set X* € R™
corresponding to the maximum y = ¥* is convex
and any relative maximum is a global maximum.

Proof: Given an initial yo > 0, assume that
Q(yo) # 0, i.e. a feasible solution exists. Increas-
ing y generates ordered subsets of Q(y,) accord-
ing to lemma 2. If 3j : Q(§) = 0 the optimal
value y* = inf§. Optimum is then achieved for
the convex set X* = Q(y*). If Q(J) # 0,V§ >
%o then y* is unbounded and the extremum is
achieved on the convex set X* = {z : foi(z) <
1,Vi}. a

Implementation

The optimization problem stated in section 4
is of the type in theorem 2 when y = wy .
It is a semi-infinite problem as discussed in
Polak et al. (1984) since the constraint functions
are functions of w as well. To simplify, it is
reformulated to a finite optimization problem
using the following assumption.

ASSUMPTION

The functions fi(-), and f2(-) are assumed to
be sufficiently smooth so that if the constraints
are satisfied at a finite number of frequencies
wj, j = {1,..m}, they are satisfied for all w. 0O

In practice the chosen frequencies w; should re-
flect the assumed operating range of the system.
Each element p € P, produces 2m constraint
functions. The optimization problem thus has
m2%r<*! convex constraint functions. It is

maximize wy

subject to g {wf,wj,pr,z) < 1

g2(wj,priz) <1 (28)
j=1l.m
k =1..2%¢

Initial Feasible Solution

An initial feasible solution could be found from



a slightly modified problem.

maximize «y
subject to 0<vy<1
791(w§o, wj Pe, ) <1

29
Y92(w;, Pr, T) <1 (29)
i=11lm
k=1.2%-

Given a desired bandwidth wy a feasible solution
is achieved if optimal v* = 1. If ¥* < 1 no
feasible solution is found. Investigation of Q(iw)
and g.(+, wj, +, -) will suggest a new D(s) for which
the problem may have a feasible solution. This
iteration over D(s) also is useful in the search
for optimal bandwidth. '

This optimization problem may have any perfor-
mance function W;.

6. Design of Feedforward

The feedback design above determines 7(s,p).
Command signal following may be improved by a
feedforward filter Byg(s)/As¢(s). It should have
low-pass characteristics so that the command
signal not will excite high frequency uncertainty.
The process transfer function

B2 (1+AW,)

T3 A) =

(30)

belongs to a certain interval for each frequency.
Calculate supremum 7 (w) and infimum 77 (w)
of Tr(iw,p, A) for |A| £ 1 and p € P.. Infimum
is zero if Wa(w) > 1. Robust stability implies
that the denominator of (30) is nonzero.

Now a feedforward filter may be designed giving

By (iw)
Agy(iw)

both desired shape.

and ?}_(w)&!—w (31)

) y¥

7. Examples

The examples are taken from Masten and Co-
hen (1989). Feedback design is made for input
disturbance rejection. The reference signal r = 1
for time ¢t < 8 and 7 = —1 for larger t. An input
disturbance signal { = —1 for ¢t < 6, { = 2 for
6 <t <15 and I = 1 for larger t. An output
disturbance d = 1 affects the plant from ¢ = 20.
It, however, is not designed for.
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Figure 2. Constraints for Stabilizing Controller

100 -

Magnitude

104 i
103 104 100 io! 10t

Frequency (rad/s)

Figure 3. Constraints for Optimal Controller
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Figure 4. Feedforward Filter Design

Unmodeled dynamics is present in both exam-
ples. It is assumed to be Gy(s) = e™*L /(1 + sT)
with L € (0,0.05) and T € (0,0.10). This gives

e-—iﬂ.05w

%M=Hﬁﬁ5”’

(32)

First Order System

First the system G(s,p) = b/(s + a) with b €
(0.5,3.0) and a € (-1.0,3.0) is considered. The
set P. has four elements. Characteristics for
these will be shown in the figures.

A stabilizing controller is So/Ro = (175 + 14)/s.
It yields constraint functions g(iw,p,0) in (23)
for p € P, with the performance function W in
definition 3 where M, = 2.0, 0 =1 and w, = 2.0.
These functions are shown in figure 2. The ro-
bust performance criterion is not fulfilled and
higher bandwidth is also desired. The polyno-
mial D(s) with poles {~1,-1,-3,-3,-5,-5} is
selected for the optimization problem (28). The
optimal solution is found for bandwidth w, = 3.6.
Figure 3 shows max(g,(iw,p,z),g2(iw,p,z)) in
(25) for the optimal controller.

Another denominator D(s) = (s + 10)® gave
approximately the same bandwidth, confirming
that the choice of D is not crucial. .

A feedforward filter is designed. Figure 4 shows
TF and 77 (dotted lines) and when they are
cascaded with Bys/Asy (solid lines).
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Figure 6. Constraints for Optimal Controller

The process is simulated in figure 5. The input
disturbance is well eliminated for all structured
and unstructured perturbations.

Second Order System

The parametric model is here described by
G(s,p) = b/(s®+a18+a;) where b € (1.13,2.37),
ay € (0.4,2.4) and a; € (—0.5,2.5). The set P,
has eight elements.

The same D(s), o and M, is used as for the
first order example. The optimal bandwidth is
wp = 5.7. The corresponding constraint functions
max(g (iw, p,z), g2(iw, p,x)) are found in figure
6. The simulation of the system in figure 7 shows
that the effect from the input disturbance is
small. Nice reference signal following is achieved
by the use of a feedforward filter. Interesting is
the poor output disturbance rejection, but that
was not regarded in the design.

8. Conclusions

A design method guaranteeing robust perfor-
mance for systems with both structured and un-
structured uncertainty is described. The fecd-
back controller design is formulated as a convex
optimization problem.
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Figure 7. Simulation of Second Order System
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