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Abstract. A robust design method for uncertain single-input-single-output systems
is presented. Both structured and unst¡uctu¡ed uncertainties are considered. Optimal
performance is described as maximum achievable bandwidth. A controller for robust
optimal performance is determined through a convex optimization problem where
the constraints come from frequency domain performance criteria. The theo¡etical
framework is developed. Uniqueness of the solution is shown. The design method is
applied on two problems.
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1. fntroduction 2. System Description

Structured and unstructured uncertainty are
convenient ways to desc¡ibe model mismatches.
St¡uctured uncertainty is best for low frequency
r¡a¡iations and unstructured uncertainty descri-
bes best high frequency uncertainty.
Performance c¡iteria may be given as bounds on
time- and/or frequency responses. It is impor-
tant that all systems described within the un-
certainty range of the nominal model fulfills the
performance criteria. This is refe¡red as robust
performance (Morari and Doyle 1986).
This paper describes a design method that guar-
antees ¡obust performance in frequency domain
for systems with a combination of both types of
uncertainty. An attempt to control such systems
is made by Wei and Yedavalli (1989). They pro-
pose an algorithm for finding a stabilizing con-
troller. Nothing is however mentioned about the
performance. Boyd et al. (1988) describes a de-
sign method using optimization. That method
does not consider structured uncertainty. In this
paper it is attempted to outline these ideas to ob-
tain a design procedure that gives specified per-
formance for uncertain plants.

The process has three inputs and one output.
Using the control signal rl, the output y should
be cont¡olled to follow a desired reference, while.
effects from disturbances are minirnized. Two
disturbauces I and d act on the input and the
output of the system. It is given by

y: Gr(s)(u+ ¿)+ d (1)

The process transfer function Gr is not com-
pletely known. It can be separated into two parts.

Gr("): G(s)G'(s) (2)

The first part G(s) is a rational transfer fuuction

"'"4: 3"!'ì?"Í"0ì (3)G(s'P): 
71",0¡,4,(s).4.o(s,p)

where Bo, Ao, Bo and Ao ate polynomials of fi-
nite degrees in the Laplace operator s. Pol¡'nomi-
als B o and ,4.o are accurately known. Polynomials
Bo and Ao are knorvn to be of the form

Boþ'p): öosd' * blsd'-r * "' * b¿,

Ao(r,p) : sd' ¡ ,,rsd'-l + "'+ o¿" (4)



Figure 1. The Closed Loop System

Their coefficients are described by the vector

P: (q o,d. bs ôr, )t e Rd" (5)
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Let p be as in (5). The set

P : {p r p¡ e (p¡ ,pl) i : 1, ...,do}
defiues the t¡ausfer function family G(s,p) with
structured uncertainty. n
DprrNrrroru 2
Let the set P. contain the 2dr" corners of the set
P.E
The second part of the process transfe¡ function
is stable and nonparametric.

G.(i.u): (1+ A(iu)W2(u)) (6)

The quantity A(ia)W2(L.r) desoibes multiplica-
tive unst¡uctured uncertaint¡ whe¡e W2(u) is
the maximum magnitude of the uncertainty and
la(lø)l S 1.

3. Controller and Closed Loop

A two-degree of f¡eedom cont¡oller is assumed.

,: ffi{,.-v) : ffi (i#, - u) (z)

The feedback compensator S(s)/rf(s) is deter-
mined to handle disturbances I or d. The feedfor-
ward compensator is chosen to give the desired
transfer function from r to y. Define the transfer
functions

T(s-o\ - 
BS\ ,., AR+ BS

' S"(",p): - 
1À- 

(8)AR+ BS

5¡(",P): t =BÃ==AR+ BS
Neglecting unstructured uncertainties the pro-
cess output is given by

y("): T(r,p'B¡¡(t) ' '/;;rg r(si 
(e)

* .S"(s, p)d(r) + .9r(s, p)/(s)

Disturbances assumed to be the output f¡om a
frItet l/A"(s), whose input is an impulse, may
be eliminated in steady state provided that ,4,
is a factor of ¡1. This yields rR : A,R' and the
closed loop characteristic polynomial is

A.(t,p) = AA,R¡+ BS (10)

Integral action corresponds to .Ar(s) = s.

Controller Parametrization

If no structured unce¡tainty is present and if
the casual controller So/Ro stabilizes the system
Bf A, then all stabilizing controllers could be
parameterized as

.9 So * QA"A
(1 1)R A,(RL - QB)

where Q : N/D wiih N a polynomial and D
a stable polynomial. Since (11) coutains polyno-
mials instead of proper stable rational t¡ansfer
functions as in Vidyasagar (tg85) Q must fulfill

degD à des.4 - deg.R[ *degN (12)

to yield a prope¡ controller.
If on the other hand .4 and B may take different
values due to structured uncertaint¡ a slight
modification of (11) is required. Select a nominal
process model po € P yielding Be : B(s,pq)
and á¡ : ,4(srps). Use tb.ese as B and á in the
controller (11). The characteristic polynomial
will now be perturbed so that it is necessary
to guarantee stability by another criteria. Such
criteria are implied by the robust performance
criteria given later.

4. Design of Feedback

The amount of uncertainty in a model of a sys-
tem limits the achiey¿ble performance. Different
approaches are required depending on the nature
of the disturbances.

fnput Disturbance Rejection

Consider the case of minimizing the effects from
the input disturbance I. Assume that no struc-
tured uncertainty is present. This assumption
will be relaxed later. The systcm response for
an input disturbance is

d

v

BG,,N
tt:- Io AR + BG,.g' (13)



The magnitude of the transfer function from I
to y will be limited using the weighting function
wr(r).

W1
BRGu <1 Var,VlAl <1 (14)AR + BSG-

Using (6) and (8) this can be written as

Wt lst 1+ Aü/r)l
L+AWz <1 Vø,VlAl <1 (15)

Lptuttvt¡, 1

A sufficient condition for (L5) is

wL(L + wz)lsl + wzlTl S t Vo

implies (15) for the system p. Insertion of the
controller in (21) yields the constraint

9(u,p,8) < 1 Yu

with the constraint function

g :Wt h(u, p, Q) + lr(r, p,Q)

:w,(t*wz) l#ll#
**,lffill#-'l

(23)

Condition (22) implies that the perturbation
6*(trp,Q) will not destabilize the characteris-
tic polynomial á.(s,p), since the real part of
6¡.(iw,p,Q)/A"s(iu) always is larger than -1.
Now one main ¡esult can be stated.

Tsoonpu 1

If (22) is fulfilled Yp e P" then it is fulfllled
Yp eP.
Proof: g(urp,Q) is a sum of three functions.
The two first are convex in p because a function
f (r) : lP(iu,z)l where P is a polynomial is
convex for a ûxed ø. The third is affi.ne in p and'
thus conver Therefore S(urprQ) is convex in p.
If the inequality is satisfied for the extreme p's
then it is satisfied for convex combinations of the
extreme p's by the definition of convex fu¡ctions.

Output Disturbance Rejection 
trI

The robust performance criterion for output
disturbance rejection is derived in a similar way.
The only difierence is the function fi in (23). It
is here given by

t,(w,p,a) : I Wll#-tl e4)
I

Selection of Q
Let rY(s, c) be the numerator of the rational
function Q. The constraint function g is then
convex in ø, i.e. the coefficients of N. Horver.er gr
is not convex in the coefficients of D(s). There-
fore the optimization problem is formulated to
determine the coefñcient vector æ € IR' for an
appropriate choice of D(s).
Select a stable polynomial D(s) so that tlD(iu)
is a filter rvith cut-offfrequency tvhere the system,
is supposed to operate. This choice may be
revised from the the frequency response e(fu)
and the constraints g in a previous design. The
choice of D(s) is not crucial provided that.deg N
is sufficiently high. A similar approach is taken
in Boyd et al. (1988). Thcir discrete D(q) has all
zeros at the origin.

(22)

a

R." 
ó'=
A.o

Proof:
then

It follows that W2lTl < L. If W2lTl < L

, r l4zt(1 + I4lr)lSrl _ Irrll + WrAll$rl,,_=g;¡n¿W
If W2lTl: 1 then lS,l :0 and (15) holds. tl
Rem¿¡k If the closed loop system based on
G(s) is stable, strict inequality in lemma L

implies robust stability for the closed loop system
based on G(s)G".(s). E
In the prescence of structured uncertainty (15)
must hold for all p e P. A modification is
proposed such that it is sufficient to check the
elements p € P" only. The controller is of the
form (11). Define

6B(t,p): B(s,p) - Bo(r)
ó.¿(",p) : A(s,p) -,ao(r)

(16)

Write the characteristic polynomial (10) as

A.(t,p): .A"o(s) * 6,q."(s,p,Q) (17)

where
A"o(s) : AoA,RL * Boso (18)

is independent ofp and Q and

6t"(t,p,Q) :6tA"Rå + 6",s0

+ QA,(Ao6ø - 8o6¿,) (19)

is an affi.ne function in p and in Ç. The inequality

1.4..1 : lA"o +ó.r"1 ) la",l (r * *" *) (20)

used in the condition

rn(l + wùl#l+v2l rs(r**"*)BS
tl.o

(21 )



Performance O ptimization

It is of interest, to achieve optimal performance.
This it is equivalent to maximize the bandwidth
while regardiug uncertainty.

Dp¡'r¡{rrroN 3
The bandwidth of the closed loop system is the
frequeucy t,,lå specifying the weighting function

Me )
Mo is the maximum peak of the frequency
functiou from disturbance to output aud ø is its
low frequency slope. tr
This l7r requires tbat BA,, in the input distur-
bance case, or AA,, in the output distu¡bance
case, has ø zeros at the origin.
lVith this W1, it is convenient to split the
constraint g into two functions

n': (l)" h(u,p,t) * lz(u,p,æ)

ez : il 1t(u,p,r¡ * Íz(u,p,æ)

THnonau 2

If a feasible solution exists for the optimization
problem

maximize U

subject to c € O(s) (27)
y>0

with O(.) of definition 4 then the set X' € IR'
corresponding to the maximum y: y' is convex
and any relative maximum is a global maximum.

Proof: Given an initial go ) 0, assume that
O(go) I 0, i.e. a feasible solution exists. Increas-
ing y generates ordered subsets of A(ys) accord-
ing to le",ma 2. If lû : O(û) : 0 the optimal
walue 3r* : inf y. Optimum is then achieved for
the convex set X* : O(y.). If O(û) * ø,Vû >
ys then y* is unbounded and the extremum is
achieved on the convex set X* = {æ : fziþ) <
l,VtÌ. tr

Implementation

The optimization problem stated in section 4
is of the type in theorem 2 when y = ul .

It is a semi-infinite problem as discussed in
Polak et al. (1984) since the constraint functions
a¡e functions of ø as well. To simplif¡ it is
reformulated to a finite optimizatioa problem
using the following assumption.

AssuMprro¡r
The functio* å(.), and /2(.) are assumed to
be suffi.ciently smooth so that if the constraints
are satisfi.ed at a finite number of frequencies
ui,i : {1,..m}, they are satisfred for all ø. fl
In practice the chosen frequencies ø¡ should re-
flect the assumed operating range of the system.
Ðach element p € P" produces 2rn constraint
functions. The optimization problem thus has
fli,Zde"*t convex constraint functions. It is

W1(u,u6): max (rir, 1

(25)

Optimal bandwidth is found through the convex
optimization problem.

maximize ui
subject to 9t(u{ ,u,p,x) < L

lz(u,P,æ) < 1

Yu,Yp eP"

(26)

5. Optimization Issues

Const¡aint functions define a set in the parame-
ter space. The properties of this set of ø depend
on the constraint functions.

DnrlxttroN 4
Let s;(y,a): ylu(r)+/zr(c) with /¡¿(r) convex
and non-negative. Define for fixed y ) 0 the
convex set

O(s) : {r, gr(y,o) < 1,Vi}

D

Note that this formulation also covers 92 in (25)
by letting .fr¡ : 0. A lemma relates the sets O(y)
for diflerent values of y.

Lnnrrn 2
If y, > y1 then A(yr) c O(y1) for the set O(.) of
definition 4. tl
Norv it is possible to state the other main rcsult.

maxlrruze

subject to

(28)

Initial Feasible Solution

An initial feasible solution could be found from

ui
9{ui,u¡,px,æ) 1L
gz(u¡,P¡"'æ) < 1

' j:l"rn
k - l..2do"



a slightly modified problem.

max¡rnrze

subject to

"Y

o<zS1
^l9t(u{ç,u¡,P¡,æ) 1L
792(u¡,P¡o'x,) < 1

j:t"m
le : !..2¿o"

l0l

l0o

lo.l

loo

Frcqucrc? (Føs)
10¡

Figure 3. Coqstraints for Optimal Controller

(2e)

Given a desired bandwidth ø¿o a feasible solution
is achieved if optimal ?* = 1. If 7' < L no
feasible solution is found. Investigation of Q(iø)
ard g.(.,u¡,.,.) will suggest a new D(s) for which
the problem may have a feasible solution. This
iteration over D(s) also is useful in the sea¡ch
for optimal bandwidth.
This optimization problem may have any perfor-
mance function lI¡r.

6. Design of Feedforward

The feedback design above determines f(s,p).
Command signal following may be improved by a
feedfo¡ward filter B¡¡ (s) / A ¡ t þ). It should have
low-pass characteristics so that the co-*and
signal not will excite high frequency uncertainty.
The process transfer function

Tv(srp,A): tå(r + 6ry,)
(30)

1+ åå(1 + 
^w2)

belongs to a certain interv¿l for each frequency.
Calculate supremum ff @) and infimum fl@)
of.Ty(iu,p,A) for lAl < 1 and p € P". Infinum
is zero if. ÍV2(u) I 1. Robust stability implies
that the denominator of (30) is nonzero.
Now a feedforward fi"lter may be designed giving

100

Frcqwrcy (ñør)

Figure 2. Constraints for Stabiliziog Controller

loo

¡0¡

l0¡

t0¡

b

!0¡

100

¡0{

tor lop tol
FEqHct (nd/Ð

Figure 4. Feedforrvard Filter Design

U'''"odeled dynamics is present in both exam-
ples. It is assumed to be G,(s) : e-'L /(L * s")
with.L € (0,0.05) and ? € (0,0.10). This gives

(32)

and (31)

both desired shape.

7. Examples

The examples are taken from lUasten and Co-
hen (1989). Feedback design is made for input
disturbance rejection. The reference signal r : 1

for time ú ( 8 and r: -1 for larger ú. An input
disturbance signal l: -1 for t ( 6, I:2 for
6 < ú < 15 and I : 1 for larger ú. An output
disturbance d = 1 affccts the plant from ú : 20.
It, horvever, is not dcsigned for.

r;@)m rf@)m

Wz(u):

First Order System

First the system G(t,,p) : b/(s * ø) with ò e
(0.5,3.0) and ø € (-1.0,3.0) is considered. The
set P" has fou¡ elements. Characteristics for
these will be shown in the figures.
A stabilizing controller is 5o/Ão : (17s + Ia)/s.
It yields constraint functions g(iu,p,A) in (23)
Íot p € p" with the performance function !Í/1 in
definition 3 where Mp - 2,0rø : 1 and ut : 2.0.
These functions are shown in figure 2. The ro-
bust performance criterion is not fulfilled and
higher bandwidth is also desired. The polyno-
mial D(s) with poles {-1,-1, -3, -3, -5, -5} is
selected for the optimization problem (28). The
optimal solution is found for b¿ndrvidth ø6 : 3.6.
Figure 3 shows max(91(iø, p,x),g2(iu,p,r)) in
(25) for the optimal controller.
Another denominator D(s) : (s + 10)6 gave
approximately the same bandrvidth, confirming
that the choice of D is not crucial.
A feedforrvard fìlter is designed. Figure 4 shows
Tf and Ç (dottcd lincs) and 'rvhen they are
cascaded villn B¡¡f Å¡¡ (solid lines).
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l0 l5 20 25

l0 t5 20 ut

Figure 5. Simulation of First Order Systen

100

Fæqwt (ndÐ

Figure 6. Constraints for Optimal Controller

The process is simulated in figure 5. The input
disturbance is well eliminated for all structured
and u¡lstructured perturbations.

Second Order System

The parametric model is here described by
G(",p) :b/(s2*ats+az) whereö € (1.13,2.37),
ør € (0.4,2.4) and øz € (-0.5,2.5). The set P"
has eight elements.
The same D(s), o and. Mo is used as for the
first order example" The optimal bandwidth is
uu : 5.7. The corresponding constraint functions
max(g1(iu,p,æ), g(iu,p,o)) are found in figure
6. The simulation of the system in figure 7 shows
that the effect from the input disturbance is
small. Nice reference signal following is achieved
by the use of a feedforward filter. Interesting is
the poor output disturbance rejection, but that
was not regarded in the design.

l0 l5 20 E

l5

Figure 7. Simul¿tion of Second Order System
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8. Conclusions

A design ¡nethod guaranteeing robust perfor-
mance for systems with both structured and un-
structured uncertainty is described. The fecd-
back controller design is formulated as a convex
optimization problem.
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