

Evaluation of A Subroutine for Nelder and Mead Search

Mattsson, Sven-Erik

1978

Document Version: Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA): Mattsson, S.-E. (1978). Evaluation of A Subroutine for Nelder and Mead Search. (Technical Reports TFRT-7150). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study

- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

CODEN: LUTFD2/(TFRT-7150)/1-092/(1978)

EVALUATION OF A SUBROUTINE FOR NELDER AND MEAD SEARCH

SVEN ERIK MATTSSON

TILLHÖR REFERENSBIBLIOTEKET UTLÅNAS EJ

Department of Automatic Control Lund Institute of Technology September 1978 Dokumentutgivare Trund Institute of Technology Handläggare Dept of Automatic Control Sven Erik Mattsson Swen Erik Mattsson

Dokumentnamn Dokumentbeteckning LUTFD2/(TFRT-7150)/1-92/ REPORT Ütgivningsdatum Arendebeteckning (1978) Sept 1978

10T4

Dokumenttitel och undertitel

18T0

Evaluation of a Subroutine for Nelder and Mead Search

Referat (sammandrag)

This paper presents a Fortran IV subroutine called NELME that is a straightforward implementation of the simplex method for function minimization proposed by Nelder and Mead. NELME is written and documented according to the rules of the Scandinavian Control Library.

NELME has been tested and compared with a quasi-Newton algorithm without derivatives and with the Powell-Brent algorithm.

The result of the tests shows that it is hard to rank the algorithms.

Referat skrivet av Author

Förslag till ytterligare nyckelord

Nelder-Mead search, nonlinear programming, nonlinear optimization, parametric optimization, simplex method

ISSN

6074

62T4

Mottagarens uppgifter

ISBN

6110

Klassifikationssystem och -klass(er)

50T0

Indextermer (ange källa)

52T0

Omfång 92 pages Övriga bibliografiska uppgifter

56T2

Språk English

Sekretessuppgifter

60T0

Dokumentet kan erhållas från

Department of Automatic Control Lund Institute of Technology

PO Box 725, S-220 07 Lund 7, SWEDEN

Pris 66T0

Blankett LU 11:25 1976-07

0 DOKUMENTDATABLAD enligt SIS 62

Abstract

This paper presents a Fortran IV subroutine called NELME that is a straightforward implementation of the simplex method for function minimization proposed by Nelder and Mead. NELME is written and documented according to the rules of the Scandinavian Control Library.

NELME has been tested and compared with a quasi-Newton algorithm without derivatives and with the Powell-Brent algorithm.

The result of the tests shows that it is hard to rank the algorithms.

1. INTRODUCTION

This paper presents a Fortran IV subroutine called NELME that is a straightforward implementation of the Nelder and Mead search. NELME has been tested and compared with a quasi-Newton algorithm without derivatives and with the Powell-Brent algorithm.

Chapter 2 describes NELME and the computer codes can be found in Appendix A. Chapter 3 treats the problem of evaluating NELME and test results are presented. Appendix B contains additional test results.

2. NELME

NELME is a Fortran IV subroutine that is a straightforward implementation of a simplex method for function minimization proposed by Nelder and Mead (1964). In this implementation the reflection coefficient is chosen to 1, the contraction coefficient to 0.5 and the expansion coefficient to 2.

NELME is written and documented according to the rules of the Scandinavian Control Library and consequently the sub-routine within itself contains all adequate information how it is used. A listing of the subroutine NELME can be found in Appendix A.

3. EVALUATION

In Himmelblau (1972) chapter 5 and in Brent (1973) section 7.7 the problem of evaluate algorithms for unconstrained nonlinear programming is discussed and a number of algorithms are evaluated. The inventors have of course evaluated their method and Himmelblau (1972) discusses explicitly the method of Nelder and Mead.

Five different functions were used to test NELME. The functions, whose minimum value is zero, were:

(1) Rosenbrock's parabolic valley (Rosenbrock (1960)) $y = 100(x_2-x_1^2)^2 + (1-x_1)^2,$

starting point (-1.2,1),
minimum point (1,1)

minimum point (1,1,1,1)

- (2) Wood's function (Colville (1968)) $y = 100(x_2-x_1^2)^2 + (1-x_1)^2 + 90(x_4-x_3^2)^2 + (1-x_3)^2 + 10.1((x_2-1)^2 + (x_4-1)^2) + 19.8(x_2-1)(x_4-1),$ starting point (-3,-1,-3,-1),
- (3) Fletcher and Powell's helical valley (Fletcher and Powell (1963))

$$y = 100(x_3 - 100(x_1, x_2))^2 + (\sqrt{(x_1^2 + x_2^2)} - 1)^2 + x_3^2$$
where $2\pi\theta(x_1, x_2) = \begin{cases} \arctan(x_2/x_1), x_1 > 0 \\ \pi + \arctan(x_2/x_1), x_1 < 0 \end{cases}$

starting point (-1,0,0) minimum point (1,0,0)

- (4) Powell's quartic function (Powell (1962)) $y = (x_1 + 10x_2)^2 + 5(x_3 x_4)^2 + (x_2 2x_3)^4 + 10(x_1 x_4)^4,$ starting point (3,-1,0,1) $x_1 + x_2 + x_3 + x_4 + x$
- (5) A quadratic function with truncated linear terms $y = x_1^2 + e(|x_1|) + 5 x_2^2 + e(x_2),$ where $e(z) = sign(z) \cdot n$, n is the largest integer $\leq |z|$, starting points (±2, ±2), minimum point (0,0)

The properties of functions 1-4 are discussed in Brent (1973)

The progress of NELME on function 1-5 has been studied for different sizes of the initial simplex. The number of iterations, the number of function evaluations and the value of the test quantity (TESTQ) were noted when the function value had been reduced to 10^{-j} for $j=1,\ 3,\ 5,\ 7.$ TESTQ (to be compared in the algorithm with the desired accuracy in the minimum value) is given by

TESTQ =
$$\sqrt{\frac{1}{n+1}} \sum_{i=1}^{n+1} (f(x_i) - f(x_c))^2$$

where n is the dimension of the optimization problem, the x_i :s are the vertices and x_C the centroid of the polyhedron and $f(\cdot)$ the function to be minimized.

The results can be found in Appendix B. The maximum number of times the loss function could be evaluated was set to 2000. If a number in the column "number of evaluations required" is 2000 or greater, it means that the polyhedron has degenerated (to a point) before reaching the minimum point.

In order to get a feeling for the relative efficiency of NELME, the problems 1-5 were solved with the help of NUFLET and POWBRE. NUFLET is based on a quasi-Newton method without derivatives. The method is described in Fletcher (1971). POWBRE is an implementation of a version of Powell's algorithm, modified by Brent (1973). Powell's algorithm is a conjugate direction method without derivatives. The computer codes (in Fortran) can be found in Källström (1978). NUFLET and POWBRE have some additional parameters that have to be set. The values of these parameters have been chosen according to Källström (1978),

i.e.

in NUFLET	DFN = -0.2	(estimate of the likely reduction
		to be obtained in $f(x)$ is $0.2 f(x_0) $.
		DFN is only used on the first iteration
		so an order of magnitude estimate suffices)
	XM=[1,,1]	·
	HH=10 ⁻³	(no scaling wanted)
	HH-TO	(the step length used when calculating the gradient is 10 ⁻³)
	EPS=10 ⁻⁵	(the accuracy required in x_i is 10^{-5})
	MODE=1	(the initial estimate of the Hessian
		matrix is set to the unit matrix)
and		
in POWBRE	DIST=1	(estimated distance from initial
		approximation to minimum)
	SCALE=1	(no scaling wanted)
	TOL=10 ⁻⁶	(wanted relative accuracy in x)
	MODE=1	(the algorithm is started with the
		coordinate axes as search directions)
	ILLCO=.TRUE.	(the problem is supposed to be illcondi-
	*	tioned)
	NSTOP=1	(number of iterations without progress
		before termination)

The results for NELME with VDIST=1 (initial size of the simplex), NUFLET and POWBRE on functions 1-4 are given in Table 1-4.

Table 1 Number of iterations (n_i) and number of function evaluations (n_f) to reduce Rosenbrock's function to < 10^{-j} .

j	NELME		NUF	NUFLET		BRE
	n	nf	n	nf	n _i	nf
1	59	185	23	99	37	102
2	75	231	29	140	47	127
3	82	253	31	152	52	140
4	83	256	32	158	52	140
5	86	268	33	164	52	140
6	88	276	34	170	57	152
7	89	279	35	176	57	152

j	NE	NELME		NUFLET		POWBRE	
	n	n _f	ni	nf	n	n _f	
1	30	105	68	664	253	681	
2	35	125	72	704	265	709	
3	35	125	73	714	270	719	
4	81	269	74	724	287	758	
5	94	310	75	734	287	758	
6	103	344	76	744	294	777	
7	108	358	77	754	299	787	

Table 3

Number of iterations (n_i) and number of function evaluations (n_f) to reduce Fletcher and Powell's helical valley to < 10^{-j} .

j	NELME		N	NUFLET		POWBRE	
	n _i	n _f	n	n _f	n	nf	
1	154	480	18	102	43	110	
2	172	533	24	158	57	143	
3	185	576	28	191	63	158	
4	189	590	29	199	63	158	
5	193	606	29	199	67	166	
6	196	616	30	207	67	166	
7	200	632	31	215	73	180	

Table 4 $\label{eq:Number of iterations (n_i) and number of function evaluations (n_f) to reduce Powell's quartic function to < 10^{-j}.$

POWBRE NELME NUFLET j nf ni ni nf nf The results speak for themselves and only a few comments will be given here. As seen from the results in Appendix B the size of the initial simplex has a significant effect on the speed of the convergence. Wood's function is an illustrative example. The result shown in Table 2 (the size of the initial simplex is 1) is very good, but NELME fails for some sizes of the initial simplex. POWBRE too had difficulties and stopped at (-0.988, 0.986, -0.949, 0.913) and declared that this point is a minimum. But when NSTOP was increased to 5, POWBRE found the minimum point and it is these results that are given in Table 2. Brent (1973) reports that with DIST=10 POWBRE after 191 linear searches and 452 function evaluations had reduced the function value to $6 \cdot 10^{-14}$.

This dependence, which is not a priori known, makes it difficult to rank NELME, NUFLET and POWBRE. Function 5 is discontinuous when \mathbf{x}_1 or \mathbf{x}_2 is an integer and one may suspect that NUFLET and POWBRE might fail. As seen from the results in Table 5 this is the case.

If no special information is available that can confirm the result of a "minimization algorithm" to be a close approximation to the solution, how can it then be decided whether the solution of the problem is found or not? This is a hard question. This problem is discussed in Murray (1972). He gives the following advice:

- 1) Check the rate of convergence
- 2) Restart the routine
- 3) Try other starting points, input parameters, rescale the variables
- 4) Try a different method

Table 5

Number of iterations (n_i) and number of function evaluations (n_f) to reduce function 5 to 10^{-7} for different starting points.

starting	NEL	ME	NUI	FLET	POV	√BRE
point	n	nf	n	nf	n	n _f
(2, 2)	28	94	8	44	12	34
(2,-2)	24	86	fail	Led ¹⁾	faile	ed ²⁾
(-2, 2)	31	104	8	69	12	34
(-2, -2)	26	90	12	87	faile	ed 3)

- stopped at (1.9996, -2.0098)
 stopped at (-1.53·10⁻³, -2)
 stopped at (1.01·10⁻³, -2)

4. REFERENCES

- Brent, R.P. (1978): Algorithms for minimization without derivatives, Prentice-Hall, Inc. Englewood Cliffs, N.Y. (7.7).
- Colville, A.R. (1968): A comparative study of nonlinear programming codes, IBM New-York Scientific Center, Report 320-2949.
- Elmqvist, Tyssö, Wieslander (1976): Programming and documentation rules for subroutine libraries designed for the Scandinavian Control Library, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden. CODEN:LUTFD2/(TFRT-3139)/1-041/(1976).
- Fletcher, R., and Powell, M.Y.D. (1963): A rapidly convergent descent method for minimization, The Computer Journal, Vol. 6, p. 163,
- Fletcher. R. (1971): Fortran subroutines for minimization by quasi-Newton methods, Report AERE-R7125, Harwell.
- Himmelblau, D.M. (1972): Applied nonlinear programming, Mc Gray-Hill Book Company, New York (p. 148-157, 190-217).
- Källström, C.G. (1978): LISPID-user's manual, Department of Automatic Control, Lund Institute of Technology, Lund, Sweden. CODEN: LUTFD2/(TFRT-7147)/1-147/(1978)
- Murray, W. (1972): Numerical methods for unconstrained optimization, Academic Press, London (p. 119-122).
- Nelder, Y.A. and Mead, R. (1964): A simplex method for function minimization, The Computer Journal, Vol. 7, p. 308.
- Powell, M.Y.D. (1962): An iterative method for finding stationary value of a function of several variables, The Computer Journal, Vol. 5. p. 147.
- Rosenbrock, H. (1960): An automatic method for finding the greatest or least value of a function, The Computer Journal, Vol.3, p.175.

APPENDIX A

Computer Codes

NELME	16
NEWX	24
PNELME	25

O IMAMFID MODE-AMFOR Ö ₹ N ...) J: IMCOMMECT CALL OF WELME J 8820008 +0 -I: THE SEARCH IS TO BE CONTINUED, USED ONLY IN PRINT. (O) (BOTADIONI GDARÐ --SEE NOTE 2 AND 31 - SIOSBING CHILERIOH (I) 55,419 MAXEN SNAT MAXAM (I) GETTED WHATEL OF TIMES FUNC CAN RE CALLED! (I) Ĵ REE MOLE II)] FOLYHEDRON, (I) - DISTANCE BETWEEN TWO VERTICES IN THE STARTING LSIGA Ö IT STON SBS .1 90 0 38 OT 8AH Ö HOTAHEDRON' (I) - INDICATOR TO CONTROL THE CALCULATION OF THE STARTING BOOM 0 'IKN (1) (MBJ8099 MOITAXIMIT90 BWT 90 MOISWBMIG DAUTDA --0 N Ü REE MOLE SI - REAL CONTAINING, IF SUCCESS, THE MINIMUM VALUE, (0) Ō NIWE 0 TO ONW T BLOW BES - REAL VECTOR, SIZE(N), (IND) Ĵ 10 BE WINIWISED' (I) Ö HOLLOWE OF SUBROUTINE WHICH COMPUTES THE LOSS FUNCTION JREL J MELMEL FUNC. X, FMIN, N, MODE, VDIST, MAXEN, EPS, IERR, IPRINT, PRINT, WX, WF) 0 ٥ ij, **PERMENTS:** Ö 0 BNILOCHSOS : BAKL WYMSOMA 0 0 397SA () MITHOUT CALCULATING DERIVATIVES. Ġ TO FIND THE MINIMUM OF A FUNCTION F(X) OF SEVERAL VARIABLES Ĵ 0 **** **** **** **** **** **** Э #SOJNOJ Ú Ű Э ♥CCELLED: HOISHAA Э Э TOME INSTITUTE OF TECHNOLOGY, SWEDEN INSTITUTE: DEPARTMENT OF AUTOMATIC CONTROL Ō 0 Ü IMPLEMENTOR: SUEN ERIK MATTSSON 61-90-8Z61 :3190 ٦ HOMBELDIC OBTINIZATION, NELDER-MEAD SEARCH Ü KEAMORDS: MONLINEAR PROGRAMMING, NONLINEAR OPTIMIZATION, Ö Э VI MARTROR : BRAUDNAL CABM ONA SECUEN TO HORARE MORGENTIOS ELEIXELT ENT :ELTITEUS BMTHU : HWWN MERMAN

```
2: EDMC CALLED MAXEW TIMES, SEE NOTE 21
   X CAM BE FOUND IN MELME'S WXM., M42., SEE NOTE 21
   BONC HAS BEEN CALLED WITH AN ILLEGAL X AND THIS
                                           MAXENCH+1
LI
```

- MAME OF SUBROUTINE WHICH PERFORMS THE PPINTING, (I) ININd ALL PRINTING CAN BE SUPPRESSED BY SETTING IPRINT=0. MAXUWKINIBBI SMILLES MEL INTERMEDIATE PRINTING CAN BE SUPPRESSED BY WMD ON EXIL' PRINTING OCCURS ON ENTRY, EVERY ABSCIPMINT, ITERATIONS IPRINT - PRINT INDICATOR. (I)

 $\times M$ MOEK WEEK' SINE(W'W+d) IF TPRINT=0, PRINT IS NOT CALLED.

- MORK GREW SIZE(N+d) REE MOLE II

HILON

.:: [7]

WODE=1: THE INITIAL POLYHEDROW IS GIVEN IN THE N+1 FIRST FIRST N+1 COLUMNS OF WX, THIS IS THE MORMAL MODE EQUAL TO VDIST AND STORES THESE VERTICES IN THE CENTROLD AND WITH THE DISTANCE BETWEEN TWO VERTICES MODE-B: NETWE CALCULATES AN INITIAL POLYMERRAN WITH X AS THE 1) THE INITIAL VALUES CAN BE GIVEN IN TWO DIFFERENT WATS:

2) AFTER THE EXIT FROM NELME AND IF IERR IS NOT EGUAL TO 1, 10 BE MESTARTED, UDIST IS NOT USED IN THIS MODE. COLUMS OF WX. THIS MODE CAN BE USED IF THE ROUTINE IS

3) THE STOPPING CRITERION USED FOR MALTING THE ROUTINE IS WIME CWA X WI ERAM MARARE HHT EN RIBER

CORPORED WINDWIND THE FINAL MINIMUM IS REACHED. THE SO THE CHROWING THE OF WOITE OF WE FAME OUT ANTHONY THE SUCCESS OF THE CRITERION DEFENDS ON THE POLYHEDRON NOT POLYHEDRON AND F(,) THE PUNCTION TO BE MINIMIZED, MHERE THE XCID SARE THE VERTICES AND XC THE CRATROID OF THE ZØYLCENW(CECX(I))-E(XC))xxxS)\CM+I)) ← EBS

REEK ENBETIED ENBEGALIMEE:

SUBMOUTINE FUNC(X,F,FX,FXX,N,ICONT,IERAL,IFXX)

DEFINES THE FUNCTION F(X) TO BE MINIMIZED IN NEUME.

- RETURNED FUNCTION VALUE, (0) - WECOMEMI) SIZE(N)(I)

- GRADIENT VECTOR, SIZE(N).(O) X = I

MOL DEED IN METWE

MOT USED IN NELME - AESSIWM WWIKIX' SINE(M'M) DIWEMSIOMED(IEX'') (O)

- DIWERSION OF X' (I)

B: COMBOLE E (I) (BISAISAV LORINGO --ICCML

3) COMBALE E' EX' EXX I: COMENIE E EX

- ERROR INDICATOR OF FUNC. (0) THEE INDA IS SET TO ZERO AT CALLING FROM MELNE

\$8800N8 +0

SHITTOGERALD IT

BUT THE THE COMPUTATION OF FX OR FXX IS NOT -1: ILLEGAL CALL OF FUNC, FX OR FXX WANTED (ICONT= L.2)

(I) (XX3I HO METEMAHAR WOLLEXX) (I) IMPLEMENTED IN FUNC

BHT MI. JAMASIXE CBAAJOBO BS ISOM BMAM BMITUORSUS JAUTOA BHT

0000000 .] 0 Э ,,,1 J 0 O 0 0 Э

О

0

J

D

00000

U

IJ Ö

ā

Э

Э

C

0

0

0

0

0

Э O 0

Э

XXHI

Э ٥ Ü 0 **9** 0 0 0000 0 0 ... 9 Э Ö Ö 0

0

J

Ĵ

0

Ĵ O Ü

000

٩

Э

TO CALL FUNC WITH DUMMIES. ELAST AUT BE USED IN FUNC IN OROER TO MAKE IT POSSIBLE PROGRAM THAT CALLS WELME, IF ICONT IS 0 (1) THEN FX AND FXX

CARBI (THIRS LOTZET NEW LETIN W. NW. XW.) TESTO, DERINT CRASS

CALLED AND PRINT MAY BE A DUMMY. NELME IN ORDER TO PRINT A MESSAGE. IF LPRINT W, PRINT IS NOT PESCIEMINT) ITERATIONS AND ON EXIT OF NELME PRINT IS CALLED BY AT THE BEGINNING OF THE FIRST LTERATION, ON EVERY SUBSEQUENT

(1)- DELINES THE POLYHEDRON, SIZE(N,N+4), DIMENSIONED(N,), $\times M$

THE FIRST N+1 COLUMNS OF WX CONTAIN THE VERTICES OF

AT THE VERTICES, SIZE(A+4), (I) - VECTOR CONTAINING THE VALUES OF THE OBJECTIVE FUNCTION HM. THE FOLYHEDRON,

- ILEKULION NOWBERY (I) BLIN - ACTUAL DIMENSION OF THE OFTIMIZATION PROBLEM. (I.) 14

- NUMBER OF CALLS OF FUNC, (I) N.JN

(I) AOTADIOMI TMIA9 - TMIA91 - DELVINED SIGNETING CKILEKION: (I) LESLG

(1) (ВМЈВИ НО ЯОТАОТОМІ ЯОЯЯВ ---TERES SEE THE ARGUMENT LIST OF WELMF.

SEE THE ARGUMENT LIST OF MELME.

THE SUBROUTINE PARTME IN THE LIBRARY CAN BE USED AS THE ACTUAL EXTERNAL, IT WEED NOT BE INCLUDED AT LOADING. IS GOING TO BE USED AS PRINT AND IF THIS DUMMY IS NOT DECLARED PROGRAM THAT CALLS MELME, IF IPRINT IS SET TO ZERO AND A DUMMY BHT NI JANYETXE GERALDEG BE TRUM BMAN ENITUDABUR JAUTOA BHT

SUBROUTINE PRINT.

COHLEM

...

HIMMELELAD, D.M. (1972). THE METHOD OF CALCULATING A STARTING POLYHEDSON CAN BE FOUND IN COEFFICIENT TO LAS AND THE EXPANSION COEFFICIENT TO 2. THE REFLECTION COEFFICIENT IS CHOSEN TO 1, THE CONTRACTION POLYHEDRON SEARCH DESCRIBED IN NELDER J.A. AND MEAD R. (1964). BUBIXELS A 90 MOITATHEMEMBARD IMPLEMENTATION OF A FLEXIBLE

RETUREMENT

MC GRAW HILL BOOK COMPANY, NEW YORK, P. 148-157 C SMIMMARSORY RABMILMOM CBILFAA, (STQ1) ,M.G.CHALBARMIH ... MINIMIZATION, THE COMPUTER JOURNAL, VOL. 7, P. 308 I, NELDER, J. A. AND MEAD, R. (1954) ^A SIMPLEX METHOD FOR FUNCTION

CHARACTERISTICS

HZIS

91ZT GDD TED

BZST :II dOd

TIBRARY SUBROUTINES REGUIRED: RMACON, MMOVE

```
О
OBJECTIVE FUNCTION AT THE VERTICES OF THE INITIAL FOLYHEDRON.
                                                                       Э
                                                                        0
NOW THE INITIAL POLYHEDRON EXISTS, CALCULATE THE VALUE OF THE
                                                         BONILMOD 95
                                                     TO+V=(I'I)XM
                                                         20 COMLIMOE
                                                        MX(I)1E
                                                      N'T=1 02 00
                                                ΣO+∀=(ISATIdN'I)XM
                                                            Z(4+0=8
                                                            ( I )X=\(\pi\)
                                                      N'T=I 00 00
                                                  DI=Cx(Balify)+DQ
                                                        D3=0*8+D2
                                                            17-9=9
                                                 C=ADIRLIN( \websilen)
                                                 (Θ*∀)/TISICA-=ΣC
                                                   B=8661(EFMBFI)
                                                      (0'Z)LH9S=V
                                   IE( MES( ADISLT )' FE' W) ADISLT=W
                                                      1SIGA=T1SIGA
                                                                        IN THE FIRST N+1 COLUMNS OF WX
VDIST THE DISTANCE BETWEEN TWO VERTICES AND STORE THE VERTICES
   CALCULATE THE INITIAL POLYHEDRON: LET X BE THE CENTROID AND
                                             IE(WODE'NE'0) BELOEM
                                           IE(WODE EG'T) 80 16 28
                                                                        О
   STATE INITIAL POLYMEDBON GIVEN OR HAS IT TO BE CALCULATED'S
                                                                        Э
                                                                        Ö
                          IF(N,LT.2 .0R, MAXEW,LE.WPLUS1) RETURN
                                                             T=MMHI
                                               IE(EbS'FL'V) EbS=0
                                                ( ₹ )NOO∀WHXØ ' ØØT=∀
                                             FLMPL1=FLOAT(NPLUS1)
                                                      ELM=ELMONT(N)
                                                        £*N=£SATIdN
                                                        Z+N=ZSOTidN
                                                        T+N=TSATIAN
                                                                        0
                VALIDITY TEST AND CALCULATION OF INITIAL VALUES
                                                                         0
                                                                         0
                                                    DATA ICONT ARA
                                NISHIS GHILLIYAMMASIATDG ARDA ATAQ
                                                                         0
                                                                         \bigcirc
                                    -CAMMA: EXPANSION COEFFICIENT
                                                                         Э
                                  -BETA : CONTRACTION COEFFICIENT
                                                                         Э
                                   ALFA : REFLECTION COEFFICIENT
                                                                         Э
                                     DIWERSION XCT P MX(N'T) ME(T)
                                                                         0
                            IPRINT, PRINT, WX, WF)
      SUBROUTINE NELMECFUNC, X, FMIN, N, MODE, VDIST, MAXFN, EPS, IERR,
                                                                         O
                                                                         Э
                                                                         \ddot{}
                                                                         I
                                                                         0
                              INTERNAL SUBROUTINES REGUIRED: NEWX
                                                                         Ü
```

20 CONTINUE

TSATUM T=XI 09 00

T--WHEI

```
TSOTHWENSINI
                                              ME(IHICH):ME(METHE):M
                  CHILL MMOVE( WX( 1, MPLUSS ), W.Y. I. PHIGHOUR, U. D. RUNG.
                                                                         I
                                                                         Э
                              (CBSCLAN), )XW Y8 (HPEHI,, )XW BDAL9BA
                                                 OF THE POLYHEDRON,
                                                                         O
XELMEN MEN W SW (SSATEN') DAN 18200W (MOIHIDEM > (SSATEN)EM (OR
                                                                         \bigcirc
                                                                         0
                            IECMECMECTERS EN MECTHROMY) BO LO TOO
                                                                         0
                                       IR ME(METRRS) > ME(IHICH) &
                                                                         0
  TRO CONLINCE
                                                          GII OL OS
                                          TECT 'EG' IHIGH) CO LO 720
                                IECMECALINES ((1) PM (18) (2801948) PM (18)
                                                  DO IRB I=I'WATORI
                                                           ISO CONLINGE
                                                                         0
                                                                         O
                                            I NOI EGAMT 10 IHIGH 5
     QNA 1+M....t=1 JLA MOR (1) FW ( CEULSM) HW SI TUS .(WOLL) FW
                                                                         0
                                                                         0

    ( \SSULRN )=W TAHT WWQWA SI TI MAR80AR =HTP =0 TMIOR SIHT TA

                                                          021 01 09
                                              MECIMICH DEMECHBINED
                  CMIT WMODE(MXCI) MSCR22 PMXCI) IMICH) MY I PO MY I MY II W
                                                           ITS CONLINCE
                                                                         \ddot{}
                                                                         Э
                              '(SSATHA'')XM AB (H9IHI'')XM BOWTHBM
                                                                         ...1
          ACCEPT WX(., MPLUSS) AS A NEW VERIEX OF THE POLYHEDROW.
                                                          02T O1 00
                                              MECINION DEMECHBINING )
                   CMLL MMOVE(WX(1)NPLUSA (WX(1)IMIGH),N,1,0,0,0,0
                                                                         0
                             BEBEWCE MX(''IMICH) BA MX('''MBENRG)"
                                                                         ACCEPT WX( , APLUSA ) AS A MEW VERTEX OF THE POLYHEDROM.
                                                                         U
                             IE(MECHATORY)'8E'ME(IFOM))80 10 118
                                                                         TEST FUNCTION VALUE AT EXPANSION POINT.
                                                                         Ü
                                          IECIERRI, WE, Ø) 60 TO 500
CALL FUNCTURE (MXC1, WPTUS4), WPTUS4), DUM1, DUM2, N. 100NT, LERRI, IDUM2)
                                                          tentarios XI
                                                          ナキが同り無が出が
       ((bsandamit)xminipadesi(ssandamit)xmicsendamit)xm)xmdxmdn ddec
                                                                         000
                             INIOS TAHT TA ((ASUJSM) BUJAV GNA
    (( $SNTaN (') XM~( $SNTaN (') XM )*VMMV9+( $SNTaN (') XM =( \text{VSNTaN (') XM
                                                                         0
                         TRY EXPANSION! CALCULATE EXPANSION POINT
                                                                         J
                                             '(MOTIDEM ) (SSATEN)EM
                                                                         0
                              OZI OL OS ((MOTI) HM'ES (ESOTAN) HM) HI
                                                                         Э
                          THISA MOITOSJASA TA SULAV MOITONUS TEST
                                                                         О
                                          IE(IERR1, NE, 0) 60 TO 500
CALL FUNC(WX(1, NPLUS3), WF(NPLUS3), DUM1, DUM2, N, ICONT, IERR1, IDUM2)
```

CALL NEWX(WX(I, NPLUS2), WX(I, IHIGH), ALFA, W. WX(I, MPLUS3))

N'I=I'M

IX=MbC082

```
IF(WF(I),GT,WF(IHIGH)) IHIGH=I
  140 CONTINUE
\mathbb{C}
      TRY CONTRACTION: CALCULATE CONTRACTION FUINT
WX(., MPLUS4)=WX(., MPLUS2)+BFTA*(WX(., MPLUS2)+WX(., THTRH))
C
      AND VALUE AT (WF(NPLUS4) THAT POINT.
(
      CALL NEWX(WX(1, NFLUS2), WX(1, IHIGH), BETA, N, WX(1, NFLUS4))
      NEN=NEN+1
      IX=NPLUS4
      CALL FUNC(WX(1, NPLUS4), WF(NPLUS4), DUM1, DUM2, N, ICONT, IERR1, IDUM2)
       IF(JERRI, NE. 0) GO TO 500
0
       TEST FUNCTION VALUE AT CONTRACTION POINT.
\mathbb{C}
f*;
      TECME(NEWUS4), GT. WE(IHIGH)) GO TO 150
WE(NELUSA) < WE(IHIRH) ACCEPT WX(..NPLUSA) AS A NEW VERTEX OF
C
0
       THE POLYHEDRON.
      REPLACE WX(., IHIGH) BY WX(., NPLUS3).
C
C
      CALL MMOVE(WX(1,NPLUS4),WX(1,IHIGH),N,1,0,N,N)
       WF(IHIGH)=WF(NFLUS4)
       GO TO 170
C
       REDUCTION: REPLACE ALL WX(.,I) BY WX(.,ILOW)-0.5*(WX(.,ILOW)-
C
                   WX(., 1))
Ö
  150 CONTINUE
       NEDWARMENAN
       DO 160 IX=1.NPLUS1
       IF(IX,EG. ILOW) GO TO 160
       CALL NEWX(WX(1, ILOW), WX(1, IX), -0.5, N, WX(1, IX))
       CALL FUNC(WX(1,IX), WF(IX), OUM1, OUM2, N, ICONT, IERR1, IOUM2)
       IF( IERR1, NE. 0) 60 TO 500
  160 CONTINUE
1
177
       TEST OF CONVERGENCE
0
C
       CALCULATE THE TEST QUANTITY
       TESTQ=SORT(SUM((WF(I)-WF(NFLUS2))**2/(N-1)))
   170 CONTINUE
       Ama
       DO 180 I=1.NFLUS1
       SHAF(I)-WF(NPLUS2)
       在中台平台來自
   188 CONTINUE
       TESTO = SORT( A/FLNFL1)
       IF(TESTG.LT.EFS) 60 TO 200
|_{\mathbb{Z}_{2}^{n}}
       THE CONVERGENCE CRITERION IS NOT FULFILLED.
000
       TEST RUMBER OF FUNCTION EVALUATIONS
       IF(NFN, GE, MAXFM) 60 TO 190
000
       PRINT A MESSAGE AND DO A NEW ITERATION.
       NERINT-MERINT-L
       IF(NPRINT, GT, 0 , OR, IPRINT, EQ. 0) GO TO 70
       CALL PRINT(WX,WF,N,NITE,NFN,TESTO,IPRINT,IERR)
       NEETHT#16BSER
       90 TO 70
```

C

```
END OF AN ITERATION LOOP
0
(")%
()
      FUNC HAS BEEN CALLED MORE THAN MAXEN TIMES.
\mathbb{C}
\mathbb{C}
  190 CONTINUE
       TERR=3
      GO TO 205
\mathbb{C}
       THE CONVERGENCE CRITERION IS FULFILLED, BUT THIS DOES NOT
\mathbb{C}
       CERTAINLY MEAN THAT A LOCAL MININIMUM IS FOUND.
(])
O
  200 CONTINUE
       IERR=0
OUTPUT THE RESULT, PRINT A MESSAGE AND RETURN.
Ü
  205 CONTINUE
       DO 210 I=1, NPLUS1
       IF(WF(I), LT, WF(ILOW)) ILOW=I
  210 CONTINUE
       CALL MMOVE(WX(1) ILOW), X, N, 1, 0, N, N)
       FMIN=WF(ILOW)
       IF(IPRINT, NE. 0) CALL PRINT(WX.WF, N. WITE, NFW, TESTO, IPRINT, IERR)
       RETURN
Č
       FUNC HAS BEEN CALLED WITH AN ILLEGAL X (WX(...IX)) IN THE
       INITIALIZATION PART.
  400 CONTINUE
       TESTO-0.
       DO 410 J=IX, NPLUS1
       WF(J)=Ø.
  410 CONTINUE
       DO 420 J=MPLUS2, MPLUS4
       WF(J)≕Ø.
       00 420 I=1, N
       WX(I,J)≕Ø.
  420 CONTINUE
Ü
_{\mathbb{C}}^{\mathbb{C}}
       FUNC HAS BEEN CALLED WITH AN ILLEGAL X (WX(.,IX)).
       MOUF THIS X TO WX(...NPLUS2).
C
  500 CONTINUE
       IEEE=2
       IF(IX.NE.NPLUS2) CALL MMOVE(WX(1,IX),WX(1,NPLUS2),N,1,0,N,N)
       GO TO 205
       END
```

SUBROUTINE NEWX(X1,X2,ALFA,N,X3)

CALCULATES X3=X1+ALFA*(X1-X2)

DIMENSION X1(1), X2(1), X3(1)

DO 10 I=1, N

X3(I)=X1(I)+ALFA*(X1(I)-X2(I))

10 CONTINUE RETURN

END

AND ITS FUNCTION VALUE IS FRINTED. .) VALUES IS SUPPRESSED AND ONLY THE VERTEX WITH THE LOWEST VALUE 0 THE ISSIFICE OF THE PRINCIPE OF ALLICES AND THEIR FUNCTION CCOMOTHATES OF THE VERTICES (XI(J)) HAVE THE FORMATS 616.7. BHI ONA K.AIO TAMANCE BMI BVAH (Y.EX)XRY) 8BULAV KOLIDAUR BHT 0 00000000 (bt)tx .''' (6)tx/ (8)tx/ 0 PECKLOS ZXICIOS VXICIOS Э L(X)Ţ) ILEMATION NO. =16 NO. OF CALLS OF FUNC=16 STOPPING CATTERION=66.3 0 0 THE FRINTING IS IN THE FORM 0 'PRINT FROM NELME', TXBT BHT HTIW BAAA WBW A WO STAATS BUITGIAA BHT 0 FEINT IN MELME IS CONTROLLED. IN THE DOCUMENTATION OF MELME IT IS DESCRIBED HOW THE CALLING OF Э Э Э HOLES ARGUMENTS: SEE THE DOCUMENTATION OF THE SUSROUTINE NELME. Э Э PROGRAMTYPE: SUBROUTINE Э Э **** **** **** **** **** 0 BOVSO 7 O SEE THE DOCUMENTATION OF THE SUBMOUTINE MELME. C TO BE USED AS THE ACTUAL SUBROUTINE PRINT IN THE SUBROUTINE NELME. 0 0 HSOJSNa 3 0 0 *CELLED: 0 AERSION: 0 Э FOND INSTITUTE OF TECHNOLOGY, SWEDEN INSTITUTE: DEPARTMENT OF AUTOMATIC CONTROL 0 0 C 0 IMPLEMENTOR: SUEN ERIK MATTSSON 61-90-8Z61 :BLVO 0 0 0 KEAMORDEE Э 0 Э TWAGARDS SORIBAN IN 0 (1 C SOBILLE: ING WOOLINE OF THE SUBROUTINE NELME C 7 **** **** **** **** NUME: EMETHE HUMBERS

```
"(ZSMIJAM"")XM MI GMODE
                                                                                                                                                                                                                                                                                                                 0
          BS NWO IWHI X TWEETHIN WE WIIM GETTWO WEER SWM DNOO (Z-WAEL BI
                                                                                                                                                                                                                                                                                                                  Ţ
                                                                                                                                                                                                                                                                MAUTER
                                                                    CAM FORMATOZZIX, 28HSTOPPING CRITERION SATISFIED/IHL)
                                                                                                                                                                                                                      MELLECTORY, 248 >
                                                                                                                                                                                         09 01.08 (0'3N'8V31) JI
                                                                                                                                                                                                                                                                                                                 0
                                                                          IE IEBE-9' LHE SLOBBING OMILEBION IS SULTSETED:
                                                                                                                                                                                                                                                                                                                 О
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                            ILCIERE'EG'-T) WELDEN
                                                                                                                                                                                                                                                                                                                 0
IF IERR=1, THE SEARCH OF BETTER VALUES IS GOING TO BE CONTINUED.
                                                                                                                                                                                                                                                                                                                 3
                                                                                                                         de desire ( T on the contract of the cont
                                                                                                                                                                                                      DO do I=ISTART, IEND
                                                                                                                                                                                                                                                       20 CONLINGE
                                                                                                                                                                                                                                                  IEMD=IFOM
                                                                                                                                                                                                                                          WOLI=TAATSI
                                                                                                                                                                                                                                                       S0 CONTINUE
                                                                                                                                                              IE(ME(I)'T'ME(ICOM)) ICOM=I
                                                                                                                                                                                                                                         DO 30 I=I'N
                                                                                                                                                                                                                                          IFOM=Mbrost
                                                                                                                                                                                                                                                       IO CONTINUE
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                               LIMD THIS VERTEX.
                                                                  KES' EMINI ONTA INC NEMIEX MITH THE COMEST VALUE.
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                       ee ol os
                                                                                                                                                                                                                                          TEMD=MEFORT
                                                                                                                                                                                                                                                       I=TAAT81
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                 (1)
                                                                                                          NO, PRINT ALL VERTICES AND THEIR VALUES.
                                                                                                                                                                                                                                                                                                                 \mathbb{O}
                                                                                                                                                                               IECIERINT, T.T. Ø) 60 TO 10
                                                                                                                                                                                                                                                                                                                 0
                                                                                           IS THE PRINTING OF ALL VERTICES SUPPRESSED?
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                            SZØ FORMAT(1X,4HF(X),11X,1HX)
                                                                                                                                                                                                                        MELLECTORY 250)
                                                                                                            α 'ete '= NOIHELING ONIHELION=' ete' α 'Σ' \ 1846 ΣΧ' 1848 ΣΧ'
    DID HORMAT(NIX, 14HITERATION NO. =, 16, 2X, 21HNO. OF CALLS OF FUNC=, 16,
                                                                                                                                                      MELLE( CON1, 210) WITE, MFN, TESTQ
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                 (")
                                                                                                                                                                         BEINI MILE' NEW 940 LESIG"
                                                                                                                                                                                                                                                                                                                  0
                                                                                       200 FORMATCIALLIANTERNAT FROM MELMEZIX, 16(1HX)//)
                                                                                                                                                          IE(WILE'E0'0) MULLE(COOL'200)
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                  Э
                                                                                                                ON ENTRY OF NELME, START OW A NEW PAGE.
                                                                                                                                                                                                                                                                                                                  Э
                                                                                                                                                                                                                                              T+N=ISTINN
                                                                                                                                                                                                                                     797INOT WIMO
                                                                                                                                                                                     DIMERSION MX(N'I) ME(I)
                                                                                                                                                                                                                                                                                                                 Э
                                                SUBMOUTINE PHELDE(MX, WE, N, NITE, NEW, TESTO, 1981N1 1EPMA
                                                                                                                                                                                                                                                                                                                  O
                                                                                                                                                                                                                                                                                                                 0
                                                                                                                                                                                                                                                                                                                #(<u>__</u>)#
                                                                                                                                                                                                                                                                                                                 О
                                                                                                                                                                                                                                                                                                                 Э
                                                                                                                                                                                                                                        METWE EXILE'
```

ON EXIL FROM NELME A SHORT MESSAGE IS PRINTED THAT TELLS WHY

Э

```
50 CONTINUE
      IF(IERR.NE.2) 80 70 60
      WPLUS2=N+2
      WRITE(LOUT 550) (WXCI,NPLUS2), I=1, N 1
  550 FORMAT(//ix,40MFUNC MAS BEEN CALLED WITH THE ILLEGAL X=
             Z(1X,8G15,7))
     312
215
      WRITE(LOUT, 500)
  560 FORMAT(181)
      RETURN
C
      lekk=3,
   60 WRITE(LOUT, 570)
  570 FORMAT(//1%, 23MFUNC CALLED MAXEN TIMES/1H1)
      RETURN
      EMD
```

APPENDIX B

Results from the minimization of five functions using NELME.

Function	1	(Rosenbrock's function)	29
	2	(Wood's function)	37
	3	(Fletcher and Powell's helical valley)	7 45
4	4	(Powell's quartic function)	53
	5	(A quadratic function with	61
		truncated linear terms)	

If a number in the column "number of evaluations required" is 2000 or greater, it means that NELME failed. The polyhedron has degenerated before reaching the minimum point.

PRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2 UNTIL F(X) < 1.E-1 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING POINT IS (-1.2, 1.0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
Ø, 1	64	204	0.1416-01
0, 2	51	159	0.213E-01
0.3	70	214	0,294E-01
9.4	60	191	0.406E-01
0.5	చద	209	0,288E-01
0.6	59	191	0.184E-01
0.7	72	220	0.150E-01
Ø, 8	47	151	0.443E-01
0.9	70	229	0.285E-02
1.0	59	185	0,195E-01
1.1	63	200	0.547E-02
1.2	63	198	0.536E-02
13	51	164	0.712E-01
1 4	64	202	0.651E-01
1.5	48	149	0.207E-01
1.6	58	187	0.181E-01
1.7	63	198	0.498E-01
1.8	43	192	0.155E-01
1.9	55	175	0 ₁ 359E-02
2.0	72	229	0.925E-02
2.1	57	183	0.338E-01
2.2		171	0.342E-01
2.3	69 55	214	0.133E-01 0.249E-01
2.4	58	187	0.464E-01
2.5	64	202 271	0.161E-01
2.6	86	272	0.101E-01 0.242E-01
2.7 2.8	89 80	252	0.668E-01
2.9	81	255	0.538E-01
3.0	92	284	0.457E-01
3.1	8	32	0.110
3.2	10	38	0.743E-01
3.3	6	26	0.877
3.4	1.	8	1.45.
3.5	å	23	0.311
3.6	5)	24	2.38
3.7	102	321	0.115E-01
3.8	99	309	0.990E-02
3.9	30	98	0.171E-01
4.0	43	143	0.345E-01

KAMAKKAMAKAME PRINT EKOM NETWE

minimization of forestance to excluse the initial polyheoron. STARTING POINT IS (+1.2, 1.0).

NUMBER OF ITERATIONS REQUIRED	NUMETR OF EVALUATIONS REQUIRED	RESTO OF
113 95 111 96 84 88 93 112 92 92 97 105 101 111 95 90 105 87 73 113 95 108 102	354 297 353 306 271 280 296 344 288 288 277 275 330 316 356 276 309 285 326 276 213 184 236 354 296 343	0.37:E-0:0:495E-0:0:4118-02 0.4118-02 0.295E-0:0:0:274E-0:0:274E-0:0:0:133E-0:0:0:205E-0:0:0:241E-0:241E-0:244E-0:241E-0:244E
103 92 96 109 122 95 102 116 111	327 ° 283 305 341 387 306 316 361 344 343	0.737E-01 0.412E-01 0.264E-01 0.313E-01 0.666E-02 0.259E-01 0.391E-01 0.232E-01 0.116E-01 0.174E-01
	TTERATIONS REGUIRED 113 95 111 96 88 93 112 92 92 87 105 101 111 95 96 105 87 73 113 95 108 109 109 109 109 109 109 109 109 109 109	TTERATIONS EVALUATIONS REGUIRED REGUIRED 113 354 95 297 111 353 96 306 84 271 88 280 93 296 112 344 92 286 87 277 94 295 105 321 87 275 105 330 101 316 111 356 95 296 105 326 87 276 96 309 90 295 105 326 87 276 67 213 57 184 73 236 113 354 95 296 108 343 109 341 122 387 95 306 109 341

вопинериом

THE INILIAL

HO BZIS

GENIBED

MUMBER OF

ILEEVLIONS

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2 0 UNITL F(X) (-1,2,-1,0). STARTING FOINT IS (-1,2,-1,0).

REGUIRED

иливек ок

ENVITABLE

NETWE

HERLG OF

0'16TE-05	62.00.02	12. 12.	Pr. 1 A.,
20-3651'0	770 770	99 TS	Ø'b 8'Σ
20-322'0	GZΩ	121	8'Σ
20-3022 0	99£	STT	Σ.Σ
Σ0-3909'0	96	87	9.5
70-3787.0	1 T T	ΣΣ	g'g
ΣØ-3188'0	T T T	2. 2. C Z.	p 'S
20-3700-0	221	82	v 2. T 'T
20-3ZII'0	79I	0 <u>5</u>	
ZO-BUTT'O	86	6Z	7.2
Ω-38pb'0	292	ZTT	Θ'Σ
0' 20de-05	t8Z	06	8 8
0 de2E-02	798 798	76	8 12
0'188E-05	112	101	2.2
20-3525.0	TZΣ	201	5.5
0'23dE-05	122	24	Ś.Z
0.633E-02	212	89	₽ °Z
0' 766E-05	200	5 8	£ ' Z
0'842E-02	813	89	5.2
20-3229'0	523	68	ī z
Σ0-399Z'Ø	797	te	8.5
0'IZIE-0S	7. E. C.	£ Z.	6 1
0'IISE-0I	922	セム	8'1
20-3012'0	2772	62	7.1
20-B226'0	072	SZ	9 1
Z0-3ZS2'0	881	1.9	å · ī
0'111E-05	Carry Cong.	08	to " T
20-390S'0	2 7 2	2.2.	£ ' T
0'18SE-0S	197	98	2.1
20-352Z'0	192	28	τ . τ
20-3992'0	257	28	Ø ' T
20-36TS'0	2.47	68	6 8 Ø
Z0-36tI'0	212	29	8"0
0'518E-05	697	98	Z*Ø
Z0-96ZT'0	222	27	9'0
20-398Z'0	csz	18	S*Ø
0'181E-05	タかさ	h. h.	b'0
20-34G8'0	192	98	$\Sigma^{\otimes} \mathcal{O}$
0, 201E-03	912	07	2'0
0' I 02E-05	292	28	1.0

PRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2 UNTIL F(X) < 1.E-3 FOR DIFFERENT SIZES OF THE INITIAL FOLYHEDRON. STARTING FOINT IS (-1.2, 1.0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
4.1 4.2 4.4 4.5 4.7 4.9 5.1 5.2 5.5 5.6	121 111 141 110 102 101 109 121 101 109 100 113 118 103 120	381 350 444 349 326 320 343 371 317 340 317 351 364 326 379 364	0.487E-02 0.260E-03 0.679E-03 0.258E-02 0.839E-03 0.202E-02 0.350E-02 0.131E-02 0.132E-02 0.134E-02 0.134E-02 0.387E-03
5.7 5.9 6.0 6.1 6.2 6.4	134 111 113 105 129 101 78 76	422 346 362 331 400 321 248 243	0.341E-03 0.893E-03 0.515E-03 0.161E-02 0.601E-03 0.152E-02 0.140E-02
6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2	101 133 112 129 111 119 112 109	322 415 346 409 356 381 349	0.675E-03 0.102E-02 0.696E-03 0.164E-02 0.976E-03 0.156E-02 0.173E-02
ア、3 ア、4 ア、5 ア、 <i>2</i> ア、2 ア、9 8、節	137 148 111 119 130 129 126 123	430 467 355 373 407 402 390	0.869E-04 0.107E-02 0.175E-02 0.560E-03 0.433E-03 0.965E-03 0.153E-02

PRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2*(1-X(1))**2 UNTIL F(X) < 1.E-5 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON, STARTING POINT IS (-1.2, 1.0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
0.1 0.2 0.4 0.5 0.8 0.9 1.2 1.2 1.3 1.5 1.7 1.9	90 92 93 85 76 92 99 84 83 86 80 86 80 78	286 254 285 271 270 248 276 230 304 268 279 266 259 273 214 257 271	0.168E-04 0.691E-05 0.591E-05 0.176E-04 0.270E-04 0.684E-04 0.308E-04 0.103E-04 0.726E-05 0.135E-04 0.14E-04 0.109E-04 0.762E-05 0.159E-04 0.192E-04
2.0 2.1 2.2 2.3 2.4	75 90 102 77 90 75	249 285 316 249 277 240	0.191E-04 0.184E-04 0.683E-04 0.127E-04 0.499E-04 0.278E-04
2.5 2.6 2.7 2.8 2.9 3.1 3.1	80 109 105 100 95 123 35	255 345 326 318 303 382 118	0.408E-04 0.212E-04 0.530E-04 0.236E-04 0.638E-05 0.164E-04
3.3 3.4 3.5 3.5 3.7 3.9	55 43 41 42 36 123 123 63	180 139 139 140 122 386 282 201	0.138E-03 0.823E-04 0.193E-04 0.164E-05 0.913E-05 0.198E-04 0.624E-03 0.672E-05 0.104E-04

PRINT FROM NELME *******

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2UNTIL $F(X) \leftarrow 1.E-5$ FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-1.2, 1.0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
THE INITIAL POLYHEDRON 4.23456789012345678901234567890	TERATIONS REQUIRED 131 117 145 119 107 106 115 128 107 113 104 119 123 124 144 117 116 110 137 107 85 76 106 140 119 137 121	EVALUATIONS REQUIRED 415 370 459 379 344 337 364 395 331 372 380 367 369 347 427 341 270 243 336 439 368 437 368 437 369	NELME 0.222E-05 0.121E-04 0.404E-04 0.232E-05 0.159E-04 0.375E-04 0.123E-04 0.561E-04 0.249E-03 0.840E-05 0.523E-04 0.170E-05 0.734E-05 0.734E-05 0.734E-05 0.734E-06 0.142E-04 0.142E-04 0.142E-04 0.149E-03 0.483E-04 0.149E-03 0.483E-05 0.922E-05 0.804E-05
ア・1 ア・2 ア・3 ア・5 ア・6 ア・8 ア・9 8・6	122 117 145 153 118 126 138 132 133	382 373 454 484 375 395 433 414 411 405	0.394E-05 0.954E-05 0.452E-04 0.299E-05 0.119E-03 0.333E-04 0.599E-05 0.154E-04 0.810E-05 0.950E-05

FRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2UNTIL $F(X) \leftarrow 1.E-7$ FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING POINT IS (-1,2,1,0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
30			
0.1	9.7	308	0.273E-06
0.2	89	276	0.731E-07
0.3	96	296	0.138E-06
0,4	94	3.3.3	0.113E-06
0.5	88	281	0.289E-05
0.6	81	267	0.5745-07
0.7 0.8	95 76	293	0.611E-06
0.0 0.9	105	244 324	0.808E-07
1.0	89	279	0.347E-06 0.259E-06
1 - 1	90	291	0.289E-06
1.2	88	280	0.287E-06
1.3	ä7	274	0.211E-06
1.4	89	265	0.472E-07
1 23	74	233	0.463E-07
1.6	83	269	0.447E-06
1.7	89	201	0.130E-05
1.8	88	274	0.748E-07
1.9	83	.265	0.924E-07
2.0	94	300	0.262E-06
2.1	109	341	0.133E-96
Paris Paris Paris I delan Paris Mary	82	266	0.239E-06
2.3	98	299	0.131E-06
2,4 2,5	86	27.6	0.432E-07
2.6	86	276	0.108E-06
2.7	113 109	360 342	0.767E-07 0.341E-06
2.8	105	336	0.147E-06
	98	315	0.145E-06
3.0	1.28	401	0.979E-07
3.1	38	129	0.223E-06
3.2	60	200	0.554E-07
3.3	46	151	0.244E-05
3,4	4,5	1.53	0.114E-06
3.5	47	1.00	0.199E-06
3.4	40	137	0.708E-07
3.7	126	398	0.354E-06
3,8	122	404	0.297E-06
3.9	65	209	0.420E-06
4.0	77	The best files and said said	0.434E-06

PRINT FROM NELME ********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2 UNTIL F(X) < 1.E-7 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING POINT IS (-1,2,-1,0).

SIZE OF THE INITIAL POLYMEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
			0.206E-06 0.790E-07 0.205E-07 0.214E-06 0.213E-07 0.843E-07 0.727E-06 0.727E-06 0.997E-07 0.451E-07 0.451E-07 0.624E-07 0.798E-07 0.798E-07 0.264E-07 0.264E-07 0.264E-07 0.162E-06 0.272E-06 0.272E-06 0.113E-06 0.113E-06 0.113E-06
7.1 7.1 7.2 7.3 7.4 7.6 7.6 7.9 8.0	125 125 122 149 158 122 131 143 137 138	498 394 390 468 502 390 415 451 432 429 423	0.290E-07 0.582E-07 0.670E-07 0.831E-06 0.139E-06 0.975E-06 0.481E-07 0.100E-06 0.230E-06 0.200E-06

PRIOT STOM DELME

MINIMIZATION OF FIX = 100*C*C2 >-x(1 0xx2 **x2+1+5.1 **x2+5 **x2+5 **x2+1+5.1 **x2+1+5.1

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REGUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
0.123456789012456789012456789012456789012456789012456789012456789000000000000000000000000000000000000	92 193 49 46 46 48 49 43 43 43 43 43 43 43 43 43 43 43 43 43	248 541 146 161 150 276 1150 1276 105 105 105 1000 1056 1324 2000 1656 1324 248 2600 2000 1656 1326 2000 2000 1656 1328 415 477	0.488E-02 0.751E-02 0.751E-01 0.572E-01 0.726E-02 0.153E-01 0.176 0.142 0.397E-01 0.477E-01 0.477E-01 0.190E-03 0.190E-03 0.190E-03 0.369E-04 0.369E-06 0.369E-06 0.369E-06 0.369E-01 0.369E-01 0.369E-01 0.190E-01 0.190E-01 0.190E-01
5,7 X,8 3,9 4,9	105 101 57 37	337 329 184 131	0.844E-02 0.1485-01 0.860E-02 0.930E-01

FRINT FROM NELME *********

MINIMIZATION OF $F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2+90*(X(4)-X(3))**2+(1-X(3))**2+10.1((X(2)-1)**2)+(X(4)-1)**2)19.8*(X(2)-1)*(X(4)-1)UNTIL <math>F(X) \leftarrow 1.E-1$ FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-3,-1,-3,-1).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
4.1	196	604	0.224E-01
4.2	267	804	0.953E-02
4.3	24	94	0.650E-01
4.4	656	2001	
4.5 4.6	349	1021	0.506E-04 0.248E-01
4.7	325	965	0.541E-02
	384	1149	0.584E-02
4.8	292	877	0.862E-02
4.9	291	858	0.582E-01
5.0	268	799	0.212E-01
5.1	343	1081	0.264E-02
5.2	369	1106	0.127E-01
5.3	245	726	0.492E-01
5,4	325	961	0.161E-01
5.5	252	255	0.624E-02
5.6	895	2 99 1	0.475E-05
5.7	320	968	0.467E-02
5.8	253	772	0.552E-01
5.9	130	409	0.118E-01
6.0	133	412	0.295E-01
6.1		438	0.648E-02
6.2	221	67 0	0.503E-01
6.3	244	716	0.336E-01
6.4	71	226	0.154E-01
6.5	83	267	0.225E-01
6.6	222	652	0.352E-01
6.7	283	854	0.230E-01
6.8	271	-794	0.725E-01
6.9	67	222	0.134E-01
7.0	33	123	0.185E-01
2.1	24	91	0.332
7.2	17	69	1.31
2.3	932	2001	0.302E-06
7.4	64	219	0.175E-02
7.5	58	199	0.189E-01
7.6 7.7 7.0	67 68	221 214	0.122E-01 0.430E-01
7,8	55	193	0.217E-01
7,9	75	241	0.391E-01
8,0	152	469	0.186E-01

PRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2+90*(X(4)-X(3))**2+(1-X(3))**2+10.1((X(2)-1)**2)+(X(4)-1)**2) 19.8*(X(2)-1)*(X(4)-1) UNTIL F(X) < 1.E-3 FOR DIFFERENT SIZES OF THE INITIAL POLYMEDRON. STARTING POINT IS (-3,-1,-3,-1).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTQ OF NELME
0,1	211	613	0.321E-04
0,2	217	644	0.171E-02
0.3	101	306	0.673E-03
0.4	115	358	0.150E-04
0.5 0.6 0.7	129 127 129	395 394 395	0.998E-02 0.427E-03
0.8 9.9	134 101	397 317	0.600E-04 0.283E-03 0.292E-03
1.0	35	125	0.616E-02
1.1	126	393	0.412E-03
1.2	92	293	0.613E-03
1.3	128 670	397 2001	0.013E-03 0.159E-02 0.105E-05
1.5	863	2000	0.148E-05
1.6	951	2000	0.477E-06
1.7	658	1918	0.282E-03
1.8	588	1713	0.228E-03
	378	1125	0.583E-03
2.0	324	967	0.479E-03
2.1	302	884	0.304E-03
2.2	954	2000	0.369E-06
2,3	950	2900	0.369E-06
	956	2901	0.674E-06
2.5	950	2000	0.640E-06
2.6	947	2000	0.302E-06
2.7	335	964	0.881E-03
2.8	146	445	0.106E-02
2.9	134	421	0.924E-04
3.0	81	254	0.851E-03
3.1	101	311	0.156E-02
3.2	389	1146	0.794E-03
3.3 3.4 3.5	320 263 149	941 804	0.135E-02 0.185E-03
3.8 3.7	204 161	458 608 499	0.897E-03 0.103E-02 0.238E-03
3.8	127	415	0.816E-03
3.9	80	256	0.138E-03
4.0	75	250	0.147E-02

POLYHEDRON

HO BZIS

THE INITIAL

REGUIRED

SMOITAAHTI

HO REER OF

REPRESENTED BY THE CONTRACTION OF THE STATE OF THE INITIAL POLYHEDROW, $19\cdot 8*(X(3)-1)*(X(4)-1)$ $10\cdot 8*(X(3)-1)*(X(4)-1)$ 20*(X(3)-1)*(X(4)-1) 30*(X(3)-1)*(X(4)-1) 30*(X(3)-1)*(X(4)-1) 30*(X(3)-1)*(X(4)-1) 30*(X(3)-1)*(X(4)-1) 30*(X(3)-1)*(X(4)-1)

REGUIRED

NOWBEEK OF

SMOILWOTWAR

METWE

TEST@ OF

£0-3Z9t'0	to Z.G	981	0'8
Ω-BΩ6Z'0	915	86	6'2
20-B22Z'0	292	87	8.7
Z0-3101'0	787	88	4.7
9'512E-92	292	911	9 12
60-392Z'0	600	921	S'Z
20-3011'0	C 2. 2.	ser	₩ 'Z
90-330£ '0	1002	Z2.6	£ 'Z
Σ0-3999:0	092	Landa.	2.2
20-3952'0	2.2.2	98	τ'Ζ
ΣØ-BZ99'Ø	872	2.60.2	0 'Z
20-325910	trΩΩ	70°T	619
0'36\E-03	ØØ6	802	8'9
Z0-BZS9'0	Z907	∠₩∑	2'9
20-3502'0	226	722	9 ' 9
20-3012'0	9£6	TUT	9
0'158E-05	388	154	b '9
20-392b'0	676	250	Σ'9
0'558E-05	072	282	2.6
ZØ-BISS'Ø	Z55	621	1,5
20-3229'0	965	Ø9T	0'9
70-30ZZ '0	$\Omega \Sigma \mathcal{P}$	500	6'8
20-309S'0	ZVZI	ΣIt	8'9
0'28dE-02	SZII	$\Sigma Z \Sigma$	Z 'S
S0-3SZ6'0	1002	968	9.3
20-BSt6'0	bsot	taΩ	@'G
20-380b.0	620T	OSS	b'S
6, 242E-64	268	787	Ω'⊊
Σ0-399'0	$\Sigma \angle X T$	T62	Z ' G
Ω0-3681'0	TEET	897	TIE
20-3296'0	9101	δΩΩ	0'9
0'Sd1E-05	Z68	$\Sigma\Theta\Sigma$	6 ° iz
20-39ST'0	8907	SSI	8'5
0'624E-02	EGC I	227	Z'b
20-3299'0	1514	さまか	9 ' ኮ
20-329t'0	62TT	ω_{Θ}	G'b
t0-390S '0	2007	999	わ'か
20-3299'0	346	807	2 ' tz
20-3229'0	626	60 <u>0</u>	2,4
Z0-E02'0	899	217	1.4
			2

FRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2+90*(X(4)-X(3))**2+(1-X(3))**2+10.1((X(2)-1)**2)+(X(4)-1)**2) 19.8*(X(2)-1)*(X(4)-1) UNTIL $F(X) \leftarrow 1.E-5$ FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-3,-1,-3,-1).

SIZE OF THE INITIAL POLYHEDRON	NUMSER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
	ITERATIONS	EVALUATIONS	
2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	950 947 376 163 154 115 123 444 328 279 179 220 173 139 112 90	2000 2000 1086 499 477 358 383 1313 975 855 553 654 536 456 354	0.074E-06 0.649E-06 0.302E-06 0.533E-05 0.208E-04 0.827E-05 0.724E-05 0.438E-05 0.637E-05 0.563E-05 0.563E-05 0.585E-05 0.219E-04 0.299E-05

PRINT FROM NELME **********

MINIMIZATION OF $F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2+90*(X(4)-X(3))**2+(1-X(3))**2+10.1((X(2)-1)**2)+(X(4)-1)**2) 19.8*(X(2)-1)*(X(4)-1) UNTIL <math>F(X) \leftarrow 1.E-5$ FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING POINT IS (-3,-1,-3,-1).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
			0.817E-08 0.130E-04 0.684E-05 0.506E-04 0.108E-04 0.197E-04 0.231E-04 0.274E-08 0.522E-04 0.502E-05 0.475E-05
7,4 7,5 7,6 7,7 7,8 7,9 8,0	118	376 454 403 312 326 375 615	0.860E-05 0.242E-04 0.130E-04 0.751E-05 0.668E-05 0.139E-04 0.947E-05

FRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2+90*(X(4)-X(3))**2+(1-X(3))**2+10.1((X(2)-1)**2)+(X(4)-1)**2)19.8*(X(2)-1)*(X(4)-1)UNTIL F(X) <math>< 1.E-7 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-3,-1,-3,-1).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
0.1 0.2 0.3 0.4 0.6 0.7 0.9 1.1 1.3 1.5 1.7 1.7 1.7 1.7 2.1 2.1	272 242 142: 149 175 148 170 169 151 120 151 670 863 951 682 626 399 352	789 729 428 456 541 467 521 504 485 358 475 2000 2000 2000 2000 1829 1199 1059	0.796E-07 0.127E-06 0.495E-07 0.314E-06 0.345E-07 0.135E-06 0.142E-06 0.128E-06 0.128E-07 0.512E-07 0.175E-06 0.148E-05 0.148E-05 0.477E-06
2.34 2.54 2.78 2.90 3.12 3.45 3.45 3.45 3.67 3.67 3.67 3.67	954 950 950 947 391 168 170 124 146 456 338 297 192 228 181 154 110	2000 2001 2001 2000 2000 1133 517 535 399 453 1352 1011 715 594 679 567 499 460 362	0.369E-06 0.369E-06 0.674E-06 0.640E-06 0.302E-06 0.685E-07 0.132E-05 0.198E-07 0.562E-07 0.784E-07 0.105E-06 0.841E-07 0.383E-07 0.559E-07 0.431E-06 0.124E-06 0.124E-06

MINIMIZATION OF $F(X)=100*(X(2)-X(1)**2)**2+(1-X(1))**2+90*(X(4)-X(3))**2+(1-X(3))**2+10.1((X(2)-1)**2)+(X(4)-1)**2)19.8*(X(2)-1)*(X(4)-1)UNTIL <math>F(X) \leftarrow 1.E-7$ FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-3,-1,-3,-1).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
4.1	502	2000	0.817E-08
4.2	334	1014	0.469E-07
4.3	136	438	9.106E-06
4.4	656	2001	0.506E-04
4.5	418	1232	0.386E-07
4.6	445	1322	0.743E-07
4.7	444	1332	0.170E-06
4.8	376	1132	0.133E-06
4.9	498	2001	0.274E-08
5.0	373	1126	0.388E-07
5.1	485	1434	0.116E-06
5.2	429	1295	0.126E-06
5.3	420	1226	0.240E-06
5.4	391	1165	0.134E-06
5.5 5.6 5.7 5.8	377 895 388 477	1139 2001 1182 1438	0.717E-07 0.475E-05 0.112E-06
5.9 6.0 6.1 6.2	237 224 247 337	735 694 758	0.874E-07 0.957E-07 0.590E-07 0.116E-06
6,3 6,4 6,5	342 172 163	1014 1021 539 516	0.348E-07 0.680E-06 0.180E-06 0.732E-07
6.6	386	1143	0.785E-07
6.7	374	1140	0.526E-07
6.8	324	966	0.253E-06
6.9	132	429	0.102E-06
7,0	143	459	0.327E-06
7,1	118	382	0.894E-07
7,2	110	369	0.670E-07
7,3	932	2001	0.302E-06
7.4	128	414	0.124E-06
7.5	166	522	0.675E-07
7.6	142	450	0.813E-07
7.7	104	348	0.820E-07
7,8	122	396	0.323E-06
7,9	133	423	0.792E-07
8,9	207	644	0.134E-06

中医工行工 中国归纳 的EL中E 中来水水水水水水水水水水水

MINIMIZATION OF F(X)=100*(X(3)-10*aTap2(X(2),X(1))/(2*p1))**2+(50PT(X(1)**2+X(2)**2)-1)**2+X(3)**2 UNTIL F(X) < 1.E-1 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-1,0,0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
2.12 2.34 2.45	203 198 142 153 144 867 146 796 148 198 207 117 23 12 10 24 117 27 31 48 48 48 48 48 48 48 48 48 48 48 48 48	639 609 428 471 4364 2001 4364 2001 4364 4364 2001 4364 4364 2001 4364 4364 3304 4364 3304	0.019E-01 0.278E-01 0.144E-01 0.167E-01 0.983E-01 0.107E-03 0.000 0.681E-02 0.143 0.147E-01 0.496E-02 0.471E-01 0.353E-01 0.353E-01 0.465 0.279 2.45 2.50 0.707E-01 0.307E-01 0.693E-02 0.127E-01 0.127E-01 0.127E-01 0.127E-01 0.127E-01 0.574E-02 0.127E-01 0.574E-02 0.127E-01 0.574E-02 0.574E-02 0.574E-02 0.574E-02 0.574E-03
4.6	eng dig	16♥	0.135E-01,

PRINT FROM NELME *********

MINIMIZATION OF F(X)=100*(X(3)-10*ATAN2(X(2),X(1))/(2*PI))**2+(SQRT(X(1)**2+X(2)**2)-1)**2+X(3)**2 UNTIL F(X) < 1.E-1 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-1,0,0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REGUIRED	TESTR OF NELME
POLYHEDRON 4.123456789012345678901234566.7890123 7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7			0.267E-01 0.351E-01 0.101 0.364E-01 0.373E-01 0.908E-01 0.497E-01 0.497E-01 0.494E-01 0.494E-01 0.492E-01 0.167 0.571E-01 0.16E-01 0.556E-01 0.599E-01 0.169E-01 0.169E-01 0.203E-01 0.203E-01 0.342E-01 0.342E-01 0.556E-01 0.573E-01 0.733E-02
フ、4 ファ5 フ、6 フィフ フ、8 カ・タ 8、0	85 40 56 50 99 54 81	267 141 179 168 313 187 253	0.486E-01 0.229E-01 0.367E-01 0.126E-01 0.231E-01 0.351E-01 0.329E-01

BOTAHEDEON

SIZE OF

THE INITIAL

CHRITCH

MOMBER OF

SMOILWHELI

GENIRED

до ввамом

ENGLIANTIONS

METWE

HO BLSHL

8 78-E-82	967	āò	0 'b
E0-Sppp'8	297	\$ P	67 X
gg-Bozg'e	ZSZ	á8	8 2
20-Ep91'0	722	88	2 S
24-1182 4	ZZZ	89	9 ' X
C0-H092'0	asz	88.	Z 1 <u>X</u>
20-19b2'0	192	98	ir X
CO-BIGHOS	92Z	i7 Z	V 4 C 3 C E.
8'298E-83	977	to La	z. z. Z + 2
Z0-BZTT 0	621	4.9	Ţź
ZO-HOTT'Ö	zŶï	T.S	Θ'Σ
ZØ-9261 Ø	79T	TS	6 'E
6'64BE-82	70Z	† ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	0 0 7 8
20-3281 0	192	0 12	
0'd58E-02	Sat	69	3'2 9'2
ΣØ-3262'Ø	mu v	12 E. T	
0 171E-02	Z IZ	99	22 C.
0 118E-02	ØZZ	m 7 128	77 ' Z
20-1661 0	Sal Alice Sal Alice Alice Sal	97 2	\$ 5
20-3209 0	7. 15 to 1. 15 to	lan L. L. L	
Z0-E969'6	GST	4. 4. 9 55	7 7
W'IINE-WS	621	Z to	0 Z 6 T
ZØ-EC92'0	201	es.	
74-3981 9	a v r	ere. Cita	8 1
20-32Z9'8	¥8Z	Times	₹ . Î
Z0-39Z1'0	782 782	iz ZT	
B' 18dE-BS	100 to	06	
EB-BBBC'A	29 iz	63 (D) 13 (A) (T)	100 100 100 100 100 100 100 100 100 100
20-3202 o		OV. VZT	£. 1.
Σ0-38b9'0		852	
ZØ-BASS'Ø	7.4G	981	7 8 T
ZØ-BøGZ'Ø	649	126 T	Ø 'I
020 0	1098		6 1 0
90-3611'a	1000	262 neen	8 0
26-3821'6	109	998	Z Ø
0.128E-03	26G	TAT	9 10
Σ0-E896'0		v 51	910
20-8946 G	149 roc	26T	n'ë
Σ0-3989'0	199 417	981	2'0
8' d22E-02	672	and and are	2.0
and of all the back 19	807	pas past page past past past past past past	**************************************

BOTAHEDRON

HO HZIS

THE INILIAL

本本本本本本本本本本本本本本本

REGUIRED

ITERATIONS

NUMBER OF

UNTIL F(X) \langle 1.E-3 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING POINT IS (-1,0,0). Z**(£)X+Z**(T-(Z**(Z)X+Z**(T)X)1905) WINIMIZATION OF F(X)=190*(X(3)-10*ATANZ(X(2),X(1)))(2*PI))**2*

REGUIRED

EVALUATIONS

HO MESWAN

METWE

LESIG OE

20-329210	22 (23 A.)	GII	0.18
20-BSZ2 '0	210	SOT	6 1
Z0-3022'0	246	011	8 · Z
\$6-521\$ '6	672	TOS	Z ' Z
20-3665'0	See de See	t/8	9 1 Z
Z0-BZ81'0		607	g 'Z
20-3ZZ2 '0	125	921	b ' Z
20-3001'0	t283	1.53	\$ 12
20-366210	2.92	Z I I	Z ' Z
20-862Z'0	827	991	1 2
go-ezgg'o	to (0 to	ØET	0'Z
20-30b2'0	īØb	bZT	6 ' 9
b0-3582'0		bit	8'9
Ω0-3106'0	T. Gi Si	TIT	2.9
20-90/2'0		ETT.	9.9
20-3829'0	972	ØII	g ' 9
0.6255-93	292	ītī	b ' 9
0.1916-02	992	08	Ω'9
20-859'0	bbS.	881	2 9
20-3218'0	461	The state of the s	7.49
ZO-BOST'O	63 C. C.	₩.	ø·ý
Σ0-BSb9'0	7.72	7.2 T	8 '8
Z0-BSII'0	692	STI	8/9
0'563E-02	222	88	7 5
20-36Z0'0		62	9 '6
Σ0-35TT'0	(28x	811	2
20-394C.G	262	921	b 'S
ΩA-3985'0	47.2	60 €	X. In
20-9629'0	210 to	137	The state of the s
20-366Z10	512	69	7.
Z0-3801'0	TAX	981	0'5
0°4456-02	Con Con Tree	%	6 ° b
70-3607'0	£2.7.7	1 78	8 1
20-BZ61'0		06	Z ' t
0'279E-02	186	99	9 ' 7
20-3669'0	882	08	á ti
20- <u>j</u> b26'0	EIE	TOT	iv tiv
0'522E-05	912	89	Σ'b
Z0-3661'0	Z87	26	Z ' iz
20-EZE+'0	921	t/G	T'b
			. 42

户尺工NT FROM NELME 本本本本本本本本本本本本本本本本

MINIMIZATION OF F(X)=100*(X(3)-10*ATAN2(X(2),X(1))/(2*PI))**2+(SQRT(X(1)**2+X(2)**2)-1)**2+X(3)**2UNTIL F(X) < 1.E-5 FOR DIFFERENT SIZES OF THE INITIAL POLYHEDRON. STARTING FOINT IS (-1,0,0).

SIZE OF THE INITIAL POLYHEDRON	NUMBER OF ITERATIONS REQUIRED	NUMBER OF EVALUATIONS REQUIRED	TESTO OF NELME
0.1234567890.12845678901.12845678901.12845678901.2845678901.2.12845678901.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	235 254 201 206 203 209 866 797 201 193 269 166 161 140 260 150 60 75 79 99	732 774 604 632 622 654 2001 2001 604 606 822 560 522 498 433 815 473 196 240 261 319	0.623E-04 0.213E-04 0.140E-04 0.908E-05 0.148E-04 0.119E-06 0.000 0.209E-04 0.672E-05 0.183E-04 0.469E-05 0.173E-04 0.173E-04 0.173E-04 0.173E-04
2.2 2.3 2.5 2.5 2.7 2.9 3.4 3.5 3.4 3.5 3.9 4.0	87 93 89 147 67 71 60 60 90 96 146 112 107 76 100 103 100	280 299 255 467 221 196 229 195 191 280 367 356 346 251 315 327 315	0.315E-04 0.116E-04 0.366E-05 0.636E-05 0.733E-04 0.811E-05 0.146E-04 0.533E-05 0.109E-04 0.225E-04 0.400E-05 0.402E-05 0.786E-05 0.626E-05 0.163E-04 0.128E-04 0.128E-05