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ABSTRACT

The convergence of a proposed method for state estimation
in power systems is analysed for a case with constant state
vector, 1In particular, a set into which estimates obtained
by two versions of the SCI method converge are determined.
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1. Introduction.

The safe and economic operation of power systems requires
the knowledge of certain variables in the power system.

To avoid the overloading of transmission lines it is nec~-
essary to know the line flows in real time. To do an
economic load dispatch calculation it 1is often required
that the power demand at every bus in the system is known.

The power system state estimator is designed to use re-
dundant measurements and a model of the power system in
order to estimate the present state. Often the bus vol-
tages are taken as state variables. The measurements can
be bus voltage magnitudes, line current magnitudes, ac-
tive and reacti&e line power flows, total bus current
magnitude, and finally active and reactive busg power in-

jections.

Several methods for power system state estimation have

been proposed. A literature survey is given in [1].

To our knowledge there are no convergence results of the
proposed methods reported in the literature. To avoid
too much simulation and off-~line checkout on real data
it is valuable if some convergence results could be ob-
tained. In this report we study the convergence proper-
ties for two versions of the SCI-method, proposed by

R. E. Larson et. al. [6, 7, 8, 9]. The analysis is per-
formed under the assumption that the state is constant
but unknown.



2. Problem, Model and Methods.

Let x(n) denote the p-dimensional state of the power system
and let y(n) be the r-dimensional observation wector (measure-
ments) taken at time n. The observations are non-linear
functions of the state and it is assumed that they are cor-

rupted by additive noise:
y{n) = gi{x{n)) + e(n) 1)

where {e(n)} is a sequence of random variables with zero

mean and
E e(n) e(n)T = R

Usually it is assumed that {e(n)} is a sequence of gdussian,
independent variables, but in this report we assume only
that

E e(n) e(m) g ¢ o > 0

1 + |m-n|®

which seems to be more realistic.

It is assumed that g is twice continously differentiable

and we denote

G(xo) = %ﬁiﬁl (r/p-matrix)
:xo
Problem

Given the equations for the dynamics of the state, and the
measurements {y(n), y(n-1), ..., y(0)}, determine an esti-

mate x(n) of the state x(n) at time n.



Model
An often used model for the dynamics of the state is
x{(n+1) = x(n) + vi(n) (3)

where {v(n)} is a sequence of independent, random vectors
with E v(n) = 0 and

E vin) v(n)T = Q(m)

Method I (F. C. Schweppe, [2, 3, 4, 51).

This method uses only one measurement vector and does not

use any model of state dynamics.

1aq X ¥ Ky - glx)] 12 1,.0.,r (5a)
_ o -1
‘..1 - T [ _1 A
PT = 6T (xR G(x,) (50)

Method II (A non-sequential version of the SCI-method).

x(n+1) = x(n) + KM y(n) - g(x(n))] ‘ (6a)
_ T,” -1
K(n) = P(n)G (x(n))R {(6b)
P 1(n+1) = (P(n) +diag(q(n)))""
¢ diagieT xR ek (nd) 1 (6c)



Notice that P(n) is always diagonal. This choice is made
in order to decrease the computational effort. GSince the
off diagonal elements are "stripped", the method has some-

+times been called "stripped Kalman Tiltering®.
PP

Method IXIT ( The sequential version of the SCI-method,
R. E. Largon et. al. [6, 7, 8, §1J).

x{n¢1)j x(n+’|)j_1 + K(n+1)j[y(n)j - g(x(n+1)j“1}«1 (7a)

J
K(n+1), = P(n+1). Go(x(n+1). .): RIL (7b)
j j j=173 %33

2~ Venets. = =
2 (1'11115} - P{Il&'1)j_1

¢ diagl6r (x(n+1)s ). Rt G(x(n+1): )] (7¢)

= J=173 731 - 1-173 .

P{n%?)o = P(n)r + diag (Q(n)) (743
P(0), = diag(Pyy» Ppgs -+» Prgd = Cyel (7e)

x£n+1)0 = x(n)r

The difference to method II is that a new estimate is cal-
culated after each component of the measurement vector is

cbhtained
where

X(n)j the estimate at Ytine n based on j of the measurements
at line n ‘
y{n) the j:th component of the measurements at line n

g(x)j

G(x)j the j:th row of G(x).

the j:th component of g(x)

Rjj“1 the jj:th component of R_1



3., Convergence Results.

In this section the ceonvergence properties of the algorithms
(6) and (7) will be analysed. Since the estimates should
track the time varying true state and the measurements are
noisy, there is no possibility that ;(n) - x(n)} tends to
zero as n increases. Therefore, the convergence analysis

will deal with the idealized case

x{n+1) x(n) = %

0 and we have a constant but unknown state vector.

I

i,e. Q
Such analysis will have relevance also in the case where the
state is varying slowly in time (|Q(n)| small). If the
algorithm is not capable of converging to the true value in
the case Q(n) = 0, then it will, in general, have poor track-
ing properties in the time varying case (3). The analysis

is based on the theory for recursive stochastic algdrithms

given by Ljung in [10].

Theorem 1.

The estimate x(n) generated by algorithm (6) with Q = 0
converges with probability one to the set

D, = {XIGT(X)R_1[g(X) - g(x*)] = 0Yulw=}

as n tends to infinity.
Proof
Introduce s(n) = n P(n). Then (6) can be written

A

i(n+1) = x(n) + % s(n)GT(;(n))R‘1[g(x*) - g(x(n)) + e(n)]
(8)

s T(ne1) = 57 () t=tr diaglex(n) TR 6 (x(n)) =57 (n) ]



Choose a cgmpact subspace DB of R¥ and a compact subspace
Y
DB of RPYPY, Introduce

£(x) = 6T(xIR T(g(x") - g(x))
Vix, e(n)) = 6TGOIR™Y e(n)
H(x) = diaglGr(x)R™) G(x)]

and

Qx, e(n)) = £(x) + V(x, e(n))
From (8)

x(n+1) = x(n) + % S(n) Q(x(n), e(n))

s”Tn+1) = 570y + Lxn))-s7"m)]
Let

zZ_ = (%(n), col 851(n))

n
Then

- 1
Znet = Zn 7 Q(z,,e(n))

where the p first elements of a are
[4_(z_,em)172 P = s(n) Q(x(n), e(n))

and

| T S
[, ¢z ,em)IP* e PP L o) R (n) s CRRER-S
n+

Since g(x) is twice continous differentiable



[ar(xy] < x x € Dy

s , .Y . .
Hence Q(z, e(n)) is Lipschitz continuous in Dp with Lip~-
schitz constant K|e(n)|. Theorem 1 in Ljung [10] can
thus be applied. The noigse conditions are clearly satis-

fied, since

=g+ 48 (2%, e(n)) - ]
tn+1 - tn n Qn el S tn

where
2% = (x°, col[So)_1])
and

Pn+1 Pn

1
+ H[Klenl -yl

converge w.p.. to

5 s? £(x°)
lim E Qn(zo, e(n)) = , -1
N+ col[H(x®) -~ (s°)™ "]

and
E Klenl , respectively
according to the results of Section 4 in Ljung [10] and (2).

The convergence of (6) now relies upon the stability of the
ordinary differential equation (ODE). '

N . A,

z = lim E Qn(2, e(n))
n-%oc

or



Choose as Lyapunov function

- # T -1 *
Vi, S ) = [g(x) - gx )]" R [g(x) - g(x )]
Then
Vix, 571 = 20gx) - g T R ek =

-1

2{g(x) - g(x*)iT R ' G(x)S GT(x) R-1[g(x) - g(x*)]

But, since $ is positive definite by necessity, V(x, 8-1) £ 0
and V(x, 8—1) = 0 = x € Dc. It now follows from the cor-
rolary of Theorem 1 in Ljung [10], that x(n) -+ DC w.p.1 as

N-rc

Remark.

The conclusion of the theorem can be sharpened. Itis stated
that x(n) will converge either to infinity or to a sta-

tionary point of the ODE (10). In fact, as shown by Gustavsson,
Ljung and S&derstrdm in [11], ;(n) can converge only to

_stable stationary points of (10). Hence, the unstable points
can be excluded from the set D,. To do so linearize (10a)
around X, € Dc:

1

IQ-

f(x) Ax (12)

X=X
0

Ax = [H(xo)]

[a¥

X

f(x) introduce the notation

™

where Ax = x - Xgoe To find

Pig = the k% element of R-1

and the matrix

(aij) = A(x)
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where
r (k)
.y = b %Eﬂ_gﬁil . 2(g(z)(x) - g(z)(x*)) (13)
175 k,f,=1 Xj Xi s

Then, after some calculation, it is found that

f{x) = -H(x) - A

Consequently, the stability properties of (8) are determined
by the matrix

B(x) = -I -[H(x)] TA(x)
Introduce the set

D, = {x|B(x) has all eigenvalues in the left hand plane}.

Then the conclusions of Theorem 1 can be sharpened to

x(n) > D_ 0 D; w.p.1 as n»e, (14)
{n]

The sequential method (7) can be treated in a simular way.
It follows from (7) that with the notations introduced in
the proof above

1 =
RN

(1) (r)
r ] LI n

It is easily seen that

- \y

0cz{", oo 2 e = 3l ea))
and that

16(2(1), e e z(r); e(ny)) - a(z;ﬁ), e(n))| =

- 2;1)||e(n)l



11'

But if the estimates z;l) do not tend to infinity then

lz<i) _ Zé1)l

max
n

1<igp

and consequently the sequence {z } produced by (6) and the
subsequences {2(1)} produced by (7) will have the same asymp-
totic propertles. Hence the convergence result, Thecorem 1,

is valid also for the sequential method (7).
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4., Concluding Remarks.

Theorem 1 states to which points the state estimate will
converge. 1t is naturally disirable that D = {x*}.* To
obtain this, G(x)[g(x) - g(x )] = 0 must imply x = x .
This is a condition on the measurement vector. By select-
ing a suitable and sufficiently large set of measurements
at each timepoint n, this condition can be satisfied. If
we use the input data to a conventional locad flow, we
know that rank G(x) = p - 1. By adding the measurements

of the slack bus voltage the rank can be increased to p.

The point {«} in the set D, poses no practical problem if

g(x)g(x)T tends to infinity as {x} tends to infinity. 1In
any implementation the estimates Xp will not be allowed

to wander off co infinity. One straightforward and simple-
minded way to exclude the point {=} from D, is to restart

the algorithm in x if lxnl is unrealistically large, where

¥

X denotes the solution of a load flow.
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