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I. INTRODUCTTON

The word identify is deflned as: ,,to recognize or es-tablish as being a particular person or tfring,, or ,,;;
determine Èo what group a given specimen belongs,,,
These definÍtions cover reasonably werl the way in whichidentification is used 1n the control engineering fleld.rn this context identification usuarry covers some for_marized aspects of modering of dynamical systems basedon experimental data.

since modeli-ng of dynamical systems appears Ín many dif-ferent fields, it is natural that contrlbutlons' are widely spread in the literature. Apart fromengineering systens identlfication is discussed ln physics,biology' medlcine and economy. The purpose of this paperis an effort to give the status of the fleld wit,h particulemphasis on problems related to process control.

system identificatlon played a predominant role in clas_sical control theory, The fact that the transfer functionof a system can be determined by frequency or transientresponse analysis was an important factor whlch substan_tially contributed to the success of classical contrortheory. with the advent of the so-carled modern contrortheory it quickry became apparent that effictent methodsto determine the approprj-ate moders were racklng. Thesearch f,or such methods has been a strong motivatfon formuch of the recent work Ín system ldentlffcation.

There is a substantiar riterature on system identíflcation.
'FAC 

has sponsored a seguence of symposla devoted to theproblem' Good source of references are the preprintsfrom the first three which r^/ere herd in prague 1967 and rgToand in the Hague Lg73. ïn Ig74. a special issue devoted tosystem identification was pubrished by ïEEE. There arealso several survev papers e.g. Äström
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and Eykhoff (1970), Bekey (1970) and Nieman (1971). rtis thus of rittle use to attempt a survey of the fierd.rt is instead attempted to make a personal evaruation ofthe flerd wlth respect to the needs and uses of p.o".""control

The ;
The paper is organized as for-rows . (lor^ulation of lden-tification problems is discussed Ín sectfon 2. some no_tatlon is arso lntroduced ln that section. A brief re_view of some aspects of the theoreti-car devel0pments 1sgiven in Section 3. The emphasis 1s on recent develop_
ments and on results that are of interest to applfcatl0ns.A reader who wants a more comprete revlew of ldentfflca-tion theory is recommended arso to consult Âström-Ernnoff(197r). The use of system identiflcation technigues whenmodellng dynamlcal systems is dlscussed ln section 4, andthe applicati-on of system identlficatf on to orr-irn" 

-con_

trol 1s covered in Section 5. particu_
lar emphasi-s has been glven to on-lfne identtfication
methods and their use ln self-tunlng regulators. The con_cluslons are given in section 6 where the lmportance ofln.eractive computlng techniques for modeling 1s empha-sized.
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2. FORMULATION OF TDENTIT'ICATION PROBLEMS

systém identiflcation incrudes the folrowing steps

IJxperimental p lannlng
Selection of Model Structure
Parameter EstimaLÍon
Valldation

Experimental plannrng rncrudes serection of input sig-
nals and sampring rates but arso many practlcar probrems
that are concerned with performing experlments in an in-
dustrlal environment. The experiment resurts in records
of input output data from the process.

The model structures
usual models used in

usually considered j.nvolves the
automatic control.

State models of the form

dx(t)ar- f (x(t) , u(r) , v(r) )

y(t)
(2.1)

9(x(¡¡, u(t), e(t))

where u is the input, y the output, x the state
dlsturbances are commonly used. Linear systems

f (x, u, v) Ax+Bu*v
(2 ,2)

9(x, u, e) =Cx+Du+e

have been given particular attention.

and e, v
where

For linear
of impulse

systems lnput - output descrlptions in terms
responses or the transfer function model
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y(t) G(p) u(t) + u(p) e(r) (2 ,3)

are also cornmon. fn (2.2) u denotes the lnput, e thewhite noise, y the output, p = d/dt is a differential
operator and G and H are matrices of rational functions 1n p.

A

sented by

+A
1

transfer functlon matrix is
the differentiat relatlon

sometimes repre-

.noy
dtn

.n- Ioy
dtn-1

dun- 1

F (2 .4)
+ *Av

nJ Bt + +Bu
n

Discrete time
also commonly
which include
systems, and

versions of the models glven above are
used. More general modelstructures,
transport delays and distributed parameter
Rosenbrockrs system matrj_ces are also used.

NotÍce that a signlficant trend in the recent development
ls to attempt to model both the process dynamics and thedisturbances. This is of course 1n crose agreement wlththe needs of the control engineer because wlthout distur_
bances there is no control problem.

rhe moders are usuarly obrairred from rhe fundamen..ll{å*!"t-
governing the process. They wirl contaln unknown parame_ters and functions. The class of models may for examprebe such that it, includes descriptfons l'ke (2.1) wherethe dlfferential equations have different order.

The identiflcation problem can be formalized as follows:

"Glven a class of models ,rl,
output data from a process
under certain experimental
crlterion (C). Find a model
fits the experimental data
criterion".

records of input -
obtained

conditlons (E), and a
1n the class which
1n the sense of the

(2.5)
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The crlterion is often stated as an optimfzation crite-
rion, for exampre to minimize a measure of the devia-
tion of the moder output and the measured output. rf
the disturbances appearing j.n the model (2.I) are
stochast.ic processes, the parameter est,lmation problem
can also be stated in statistlcal terms. The maxfmum
likerihood method is a popular method for parameter estl-
mat'ion which agaÍn reduces to an optlmization problem.
The parameter estimation problem thus freguentry reduces
to an optimization problem.

when choosing the experimental condltions, the moder
structure and the crlterion, severar assumptlons on the
properties of the process have to be made. These assump-
tions can only rarery be veri-fied. By a careful checking
of the resurts it is, however, posslbre to see that the
measured resurts at Least do not vlorate the assumpti-ons
made. Thls is the purpose of the validation step. rt

consists of applicati-on of common sen'se and some-
ti-mes also statistics. rt 1s of course never possible to
guarantee that the assumptions made are true. Therefore
the results must often be crosschecked by repeatlng the
process using new experlments. serious modelers and
fdent,lfiers therefore never consider the flnal moder as
true, but rath$S a reasonabre candfdate which can be used
til lt is rejected by further experiments.

un-
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3. PROGRESS IN THEORY

The identificatlon problem has received much attention
from theoretlcar researchers over the past decades. The
reason has partry been the availab1lÍty of a set of newproblems that are amenable to analysis, ph.D. theses andappropriate pubrications. rn some cases the probrems
have been motivated by the desire to obtaln model_s like(2'1) , (2.2) for an industrlar process, in order to appty
modern control theory. The theory devel0ped has unaou¡t_edry given a signrficant inslght and understanding of
many problems even if no totarly coherent picture is yet
available - An atternpt has been made here to glve an
overvÍew of some important results. To avold dupli_cation of arready published materiar it is recommended
that' ttre lnterested reader arso consults the survey pa-per Âström-Eykhoff (f97f) .

stem The

The very active research in system theory has grven veryimportant results on the properties of dynamlcal systemsand their different descrlptions. A typical example isthe decomposition theorem given by Kalman (1963) which saysthat a Linear time invariant system

dx(t)
Ë=Ax(t) +eu(t)

(3.1)
Y(t) =Cx(t) +ou(r)

can be decomposed into four subsystems and that the trans-fer function is uniquery given by the subsystem which is
comple
able.

tely re achable (controllable) and comptretely observ-
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This result clearly gives a limlt to what can be deter-
mined by analysing input output records. Together with
the criteria for observabillty and reachability Kalman's
results also provide useful hÍnts as to the selectj.on of
suitable sensors and actuators that are needed
to obt,aln relevant Ínformatlon about a system. Kalman,s
results, however, only appty to linear systems.

Realization Theory

The speclal case of the identÍfication problem which is
obtained when t,he model is linear, given by (3.I), and
the measurements noise free ls called the reali-zation prob-
Iem, Ho and I(alman (1965), Even if this problem is highllz simp-
lified, its solution provides important insight. A pros-
pective user should however be warned that many specific
results, for exampre the methods to determine the order of
the
are

stem
ffic

S

n prause_ctice because of the very restrictive as-
sumptlons made when negrecting disturbances both in the
process and ln the measurements.

Parametrization of the Models

By definlng the crlterion (C) in the identlficatÍon prob-
lem (2.5) as an optimization crfterion, the identification
problem becomes an optlmf zatj-on problem. If the experÍ-
mentar data is gathered digitally, the experiment results
in a finite data set. rf a non-parametrlc moder is used
e.g. an impulse response, then there are roughly speaking
an inflnite number of parameters to satisfy flnitery nany
constraints and it, is not unlikely that a p.erfect. fj-t can
be obtained. rhe penalty is that the moaàffåf;Ëåfiå8"t"

de terminin g the rank of the Hankel matrlx,
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highly irregular. An ad hoc smoothing is then introduced
to obtain a smooth resurt. Typical examples are estima-
tion of spectral densities and determination of transfer
functions and impulse responses by correlation methods. In these
cases the smoothing appears as truncation of series and
serection of spectrar or rag windohrs. By íntroducing a
parametric model, the smoothing is lnstead done with re-
spect to the structure of the particular model which hope-
fully is based on sound physicar knowledge. The selection
of the class of models and the parametrization of a dyna-
mical system are thus important problems.

when the models are derj-ved from physicar laws, there are
often natural parametrlzations. when the parametrization
is givenr__lfother-important probrem is to decide if there- ,rJ¿gtues- of the.,are several--vparameters which give the same input output
properties- This is the problem of parameter
identifiabilit . Mathematically this problem reduces to
determine if a nonlinear equation has a unique solution.
There are several rocar results, but (naturarly) very few
globar results. rn the particurar cases where solutions can
be found, very valuabre information can be extracted from
them. For exampre, Ít can be decíded which paramet,ers can
be determined from a particular experiment. The analysis
may also suggest changes fn the experimental procedure which
will result ín parameter identifiabirity. !'or example
i-ntroduction of more sensors - and more actuators.

Notice, however, that if the aim of the modeting is to de-
sign a contror law, then parameter identiflabirity is of
less importance because any input output description
wil-l suffice for the contr:ol design.

rn sorÊ c¿ss5, for example when strongry simplífied models
are made for complex phenomena, it may be difftcult to
have a parametrj.zation with a natural physicar interpreta-
tion. A moder may for exampre simpty be a n:.th order rinear
stochastic system. rt may then be asked if there are
parameter identifiabte representations of such systems and
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est number of parameters,
tions.
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representations with the small-
so-called canonical representa-

canonical representatj-ons of linear, time invariant stoch-
astic systems are known if the systems have one output or
one input only. For multivariable systems, however, no
such parametrization can be given unless the observability
and reachabititv indices are known. See e.g. Rosenbrock (1920)

Several methods have been proposed to determine the structuraL
indices (Kronecker invariants). The techniques depend, however,
on judicious choice of test quantities, and they do not work
well on noisy data. An interesting alternative to estimate the
structural indices simultaneousry with the parameters has
recently been proposed by Ljung and Rissanen (f925).

Another problem which also faces the moderer is the fot-
lowj-ng. A parametric model has been obtained. rt is quickty
rearized that all parameters cannot be determined uniquery.
very poor fit to the experimentar data is obtained when
attempting to vary a subset of the parameters until the "right',
subset is found. The problem is clearly related to sensltivity
theory. Physical insight is often a good guicle but it would
be highly deslrabte to have systematic tools.

Finally a few comments on discrete time models. since the in-
put output data is freguently sampled, it is tempting to fit
discrete time models discret,ry. This usualry t:SF= to simpler
calculatÍons. Another advantage is that samplin!"a linear
system consÍsting of a time delay and a rational transfer
function will always yield a rational pulse ¡r'3¡sfer function.
Hence there are no problems of pure time derays. A serious
drawback is, however, that the naturar physical parametrÍza-
tion is usually expressed in continuous tlme modets. rt is
therefore useful to have technigues and software avairable
that admits fitting a continuous time model. See KäIlström et.al.

(re7s).
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Cri teri-a

The first formulation, sorution and applícation of an iden-
tification problem h¡as given by Gauss (1g09) in his famous
determination of the orbit of the pranet ceres. Gauss for-
mulated the identification probrem as an optimization problem
and introduced the principle of least. sguares in the followinq
\¡/ay :

"Therefore, that will be the most probable sys-
tem q¡ values of the unknown quantities pr et

r I s, etc. , in which the sum of the squares of
the dÍfferences between the observed and com-
puted values of the functions V, V,, V, r, etc.
is a minimum".

Ever since, the least squares criterion has been used ex-
tensively. Nowadays the least squares method (tS) commonly
refers to a method where not only the criterion is quadra-
tic but also the model is such that the errors (i.e, the
differences between the observed and computed values) are
linear in the parameters. The solution of the problem can
then be given in closed form. rt should, hora/ever, always
be remembered that least squares Ís often chosen for mathe-
matical convenÍence. This was clearly pointed out by Gauss.

"Denoting the differences between observatlon
and calculation by A , A, , Ar , , etc. r the first.
condit,ion will be satisfled not only if AA +
ArA' * [r 16r t + etc.r is a minimum (which is
our principle), but also if a4 + a'4 + A"4 +

or a6 + a'6 + at'6 + etc. r or in general, f f
the sum of any of the powers with an even ex-
ponent becomes a minimum. But, of all these
principles ours is the most simply, by the
others we should be ted into the most compllca-
ted calculations', .

the least squares
this formulation.

etc. ,

problem
There 1s

Because of the simplicity of
It. j-s always tempting to use
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also a $/hore collection of methods available which con-
sists of iterative uses of least sguares, repeated
'least squares (2LS, 3LS, ... etc. ) , generalized least
sguares, instrumentar variables. rt is, however, usefur
to remember that many of these methods \^rere introduced
before the time when diqital computers were easilv accessable.

ltlhen the disturbances of a process are described as stochastic. theprocesses' identiffcation probrem can be formulated as
a statisticar parameter estimation problem and the whore
artillery of statistical estimation methods becomes available.
The maximum likerihood method is a popular technique which
has many attractive statistical properties. see e.g. .Âström
and Bohlin (1965), Balakrishnan (1969) and Mehra (1969). This
method can also be interpreted as a least squares
criterion if the quantity to be minimized is taken as the sum
of squares of the prçd.!çrlgrr erregs or more precisely in the
case of discrete time observations at times .bo, trr...tN the
criterÍon is given by

v(o) N/Z los det

where . (ti) are the prediction errors

e(tr) = y(ri) y (t. lti_r)

þ roe en (3.2)

(3.3)

have
the nice
to this

1NR. å 1.l'(ri)n-le(tr) +

usÍng such an interpretation it 1s not necessary to
assumptions on normality of the residuals. Many of
properties of the I'lL technique can also be extended
case. See Ljung (f925).



r3.

Sampling Rates

I¡'lhen the maximum likerÍhood method is applied to deter-
mine the parameters of a dynamicar system, the dynamics
of the model is thus only judged by its ability to pre-
dict the output over intervals corresponding to the spacing
of the sampring points. This means that the serection of
sampling rates is crucial. rt also explains why the models
obtaÍned from ML carcuration frequently give a bad repre-
sentation of low freguency dynamics. The discussion also
immediately suggests using non-uniform sampling where the
spaclng between the sampling points cover the tíme interval
of interest. rt arso emphasizes the desirability to look
closer to the criteria used in stating identification problems
and if possibte rerate them to the urtimate use of the model.

ti-mization Al orithms

rt has arready been mentioned that identification problems
read to a nonlinear optimization probrem. rn the identifi-
catj-on probrems a function evaruation Ínvorves simulation
of a dynamicar system. such calcurati-ons can easily become
excessive. Much effort and ingenuity has therefore gone into
the development of suitable computer atgorithms. The evalua-
tion of gradients of the ross function can, for exampre be
done eithêr by sensitiviþz finctions or by using the adjoint
variabres associated with the differential equations which
also appear in optimal control problems.

The problems may often be subject to the inherent diffi-
culty of ,ro.,íir,".r optimization, namely existence of
multiple minima. These probrems are crosery related to the
problem of identifiability. rn special cases when the
problem can be formulated in such a h/ay that the crite-
rion is a quadratic function of the parameters, a crosed
form sorution is thus possible. Due to the simplicity of
such problems many efforts have been made to invent algorithms
whÍch consÍsts of an iteratÍve seguence of reast squares
problems. Typical examples are the generalized least squares
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and the iterative least squares
in econometrics. See e.q. Wotd

methods which originated
(re64)

Let it suffice to mention here that there are many opti-
mization schemes and many computational tricks availabre,
but that the numerical calcurations are far from trivial
and rarery investigated. see Âström and Bohtin (1965),
Ä,ström (1969 ) and Gupta and Mehra (Ig74)

Statistical Ana I S].S

when the identification problem is formurated as a sta-
tisticar parameter estimation probrem, there are many
ideas and resurts from statistics that can be exploited.
Such an approach wil1, however, require that certain
assumptions are made on the mechanism which generated the
data i.e. the rear process. This is most unpreasant be-
cause the real process is often nonrineaÇ time varying,
and infinite dimensÍonar and little is known about it. rt
is also freguently togically inconsistent bacause it Leads
to "circular proofs". A typicar case is that it is assumed
that the data was in fact generated by a oynamical system
which berongs to the class of models considered.

Great care should therefore be used when the results of
statistical anaryses are interpreted. rt has been found
empirically that many methods work very well on simurated
data but very poorry on rear data. This reflects that cer-
tain resurts are sensitive to variations in the data genera-
tion and it Índicates tha needs for research into the problem
of mismatch between the model structure and the datageneration.
Some results in this area have been obtained by Ljung (1975).

Provlded that assumptions on the data generation can be made
many useful results can be obtained. For exampre it is some-
times possible to determine the statistical propertÍes of the
estimates for. large data sets. Assuming that the mechanism
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which generated the data is known it is also possible
to analyse if the estimates converge wlth increasing data
sets. rn particurar if the model structure is flexibre
enough to incrude the data generating mechanism it is then
also possible to obtain condi-tions such that the estimates
will converge to their "true varues,'. st.atisticar methods
can also be used to decide between models having different
structures. For example, the choice between the moders
having a dÍfferent number of parameters can be formulated
as a hypothesis test using the test quantity

Vt 2 P2NV
t t P2 P1 (3.4)V P12

where V, is the loss funct,ion (e.g. the negative 1oga_
rithm of the likelihood function) of the model havlng p,
parameters and N the number of samprlng points. The model
with more (pZ) parameters ls preferred if the value t is
sufflciently large.

An lnteresting approach to
been glven by Akaike (f923)
terion

problem has recenÈly
suggests using the cri-

this
who

Arc 2 Log (Ur,¡ + 2p (3.s)

where ML is the maximum likelihood and p is the number of
parameters. Akaikers eriterion, which fs based on
information theoretic consíderations, is equivalent to
(3.4) if Vl is close to Vr. It does, however, dispense
with the arbitrary selection of a risk level associated
with the hypothesis testing.
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Experimen tal Conditi-ons

rt is always difficurt and costry to perform experiments
on real industrial processes. Many of the recently de-
veloped methods for system identification have broadry
speaking reduced the constraints on the experiments at
the expense of increased computations. For example it i_s
no J-onger necessary to have input signals with a precisely
prescribed form tike sinusoids or pulses having special
shapes.

There is a substantial literature on planning of statistical
experiments. See e.g. Cox (f959) and Federov (Ig72). These
resurts have been extended to estimation of parameters in
models of dynamical systems. see e.g. Goodwin et.ar . (Lgl4)
and Mehra (L974).

Alr resul-ts on optimar input design are, however, based on
the assumption that a moder of the process is known. This
means that the resurts can only be used when a reasonably
good apriori knowledge of the dynamics of the process and its
environment is avai-lable. Good apprications are known. The
resuLts ftây, however, âfso be strongry missreading if the
process dynamics differs from the apriori assumptions. The
results on design of optimal inputs are also restricted be-
cause it is frequently assumed that the process is open roop
during the experiment, The possibility to base system identi-
fication on data obtained under closed loop control of proces-
ses have been exprored. The presence of the feedback may
result in rack of identifiability. rf the feedback is
sufficiently comprex e.g. rinear of high order, nonrinear
or timevarying, then identifiabirity may stitl be retained
even if data is gathered during crosed loop operation. There
are in fact situations where the crosed loop experiments
wilt give better resurts then open roop experiments. A de-
tailed discussion of this is given in söderström et.ar. (1925).
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4. THE ROLE OF SYSTEM IDENTIFICATION IN MODELTNG

Models and Mode linq

The major results of control theory are based on the
assumption that a model for the dynamics of the process
and its environment is available. The lack of such a

model is thus a severe obstacle towards a more widespread
use of control. Many difficult control problems are created
by neglect of dynamics in the process design. The avail-
ability of models will also offer the potential of design-
ing an efficíent process with a control system as an

integral part. Modeling is thus an important task that
will gain in importance in all areas of process control.

Before discussing how identification fits into this, tr

will give a few personal opinions om modeling of dynamical
systems. First it is important to realize that there is
no such thing as the r-rodel of an industrial process. It
is much more useful to think in terms of a hierarchy of
model-s,, ranging from very detailed and complex simula-
tion models of whole processes to the 'back of an en-
velop model' whj,ch is easÍly to manJ-pulate analytlcally.
The simple models are used for exploratory purposes to
obtain orders of magnitude, the gross features of the
system behaviour and to judge íf proposed control schemes

are reasonable etc. The very complicated simulation mo-

dels, which may also contain pieces of the real process,
are used for a detailed check of the control system to
make sure that no details have been neglected. The com-

plicated models'take a long tlme to develop and they are
costly to maintain. They do, however, reproduce the pro-
perties of the real system with high fidelÍty and they
are a necessity for design of critical processes.
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Between the two extremes there may be many different
types of models which are used for design of control
systems. A characteristic feature of a successful
control engineer ls that he has a very well developed
intuition which allows him to choose the right model
for a particular problem. The crucial problem is of
course to steer between oversimplification with the
danger of disaster and overcomplication which requires
too many resources.

Black Boxes, Grev Boxes and White Boxes.

Process models can be obtained from basic physical laws
(the White Box approach) or by fitting a linear transfer
function or time series model to input-output data (the
Black Box approach). There is sometimes a controversy
among modelers concerning the appropriate approach.

The Brack Box approach can be done fairry quickry. Experi-
ence has shown that it usually leads to fairly simple
models. A disadvantage is that the approach reads to a

rinear moder for a particular operating condition. The
models derived from physicar laws are usually varid over
a wide operating range. They also provide good insight
Ínto the behaviour of the system. A drawback with white
box modeling is that the physicar knowledge is not always
easily available. The models tend to be complex and they
take a long time to develop.

Recognizing the advantages and disadvantagës of modeling
from physlcal laws and from input-output experiments, it
seems highly desirable to try to exploit both methods in
order to solve a particular modering probrem (the Grey Box
approach). The examples given later in this section illu-
strate this approach.
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fdentification as a ¡,!odeling Tool

System identification techniques proved useful tools
for several aspects of the modeling process. It can
be used in exploratory phases when little is known
about aÐÊ*gro.ess. The order testing procedures can
suggestlmodel complexity needed to explain the meas-
ured data. fdentification procedures can also be very
valuable in those cases when a lot of a priori know-
Iedge is available and the problem is to determine pre-
cisely the values of certain coefficients. These as-
pects are illustrated belo$/ by examples from specific
applications.

Power Boilers

A detailed presentation of this work ls given in Eklund
(I97f). The goal was to arrive at a reasonably simple
model for design of controls for a drum boiler. The
basic physics is fairty well understood although the
phenomena are complicated. Key questÍons are related
to choice of suitable approximä.tions and lumping of the
distributed system. The basis of the work was a set of
experj-ments performed by removing all regulators and
perturblng fule flow, steam flow and feedwater. In thls
modeling exercise, identificatÍon was used in the forrow-
ing way. Simple transfer function models were fitted
using the maximum likelihood method. The applicatÍon of
statistical methods for order test gave an indication i

of the model comprexity required to explain the measured
data. The results indicated clearly that low order mo-
dels were sufficient. using these results it was attempted
to derive physical moders having the appropriate comprexity.
The major problem h/as to decide when to describe a con-
servation law by a static or a dynamic model and to de-
termine a suitable J.umping of distributed phenomena,
Guided by the results of the identj.fÍcation many possi-
bilities could be eliminated. A few arternative models
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remained. The parameters of these \Á¡ere estimated. Based
on analysis of these model it was flnally possible to
make the final selection.

Ship Steering Dynamics

A detailed presentation of this work is given in Âström
and Källström (f975). The basic physical laws were
available. A key problem was to determine if extra
state variables had to be lncluded to moder disturbances.
Another important pioblem was to determine if certain
physical parameters (tfre so-called hydrodynamic deriva-
tlves) which appear in the equations of motion can be
determined from an experiment where the rudder is perturbed
and the resurtj-ng motlon observed. An analysis of the con-
ditions for parameter identifiabilit.y showed directly
that the parameters could not be determj-ned from heading
measurements only. I was necessary also to measure a

velocity component in order to achieve identifiabitity.
By fltting models of the form (2.3) and testing for the
appropriate order it was found that j-n the particular
case a marginal improvement could be obtained by j-ntro-
ducing an extra state variable for modeling dlst,urbances.
A careful analysj-s of the model-, however, revealed
that these dynamics could be attributed to quantization
errors in the measurement and not to disturbances
generated by wind and waves.

Estimatlon of Thermal Diffusivitv

This work is described in Led
a copper rod with Pel!Íe.r ef fçqof the- rodand cooling each end-y'rhe key

en (I97 4) . The process is
ct elements for heating
problem 1s to determine

if the process can
form

be modeled by an eguation of the
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to characteríze the measurement noise and to determine
the parameters accurately. The parameters a and b \¡rere

determined as maximum likelihood estimates. A careful
analysis of the residuals revealed that the available
measurements did not contradict the assumptÍon that the
process was governed by (4.I). Accurate parameter estimates
\^Iere also obtained.

Interactj-ve Computinq

Interactive computing 1s an indispensible tool for sys-
tem identification. ft allows a problem solver to com-
bine his intuitlon and insigLÈ with extensive numerical
calculation. It also provedes a direct link between
the user and numerical calculations without needing
programmers as intermediaries. An interactive program
package IDPAC, Wieslander (Lg75') | has been in operation
for several years at the Department. of Automatic Control
at Lund Institute of Technology. The program runs on a

process computer PDP 15/35.

The program has facilitÍes for j-nput - output, editÍng
and display of data. It j-ncludes several estimation
procedures like correlatfon and spectral analysis, least
sguares and maximum likelihood estimation. It has
facilities for slmulation and model analysis. The pro-
gram is command driven, which means that the user ini-
tiates the different operations by typing commands on
a terminal. The program also has a l,tACRO facÍlity, which
means that a user can combine several commands. In thls
way it is possible both to have a large flexibility for
the experienced user and to allow for a simple use of
standardÍzed procedures for an lnexperienced user.
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An example of the use of the program is given below

1. MOVE DK WORK <- DT DATA

2. PLOT WORK

3. TREND <- WORK (2) 1

4. ML PART <. WORK I

5. ML PAR2 <- WORK 2

6. ML PAR3 <. WORK 3

(r 3)

The first command slmply moves the columns I and 3

on the data file DATA from magneti.c tape to a work
area on the disc. The second command plots the data on
the graphicar display. The third command removes a first
order trend from the second column in the file VùORK.

The commands 4, 5 and 6 perform Maximum Likelihood esti-
mation of the parameters in the discrete time analog
of the modeL (2.4) using the data in the fite WORK.

rhe esrimared param"t"r$T1r,"88å"*ír"" pARt, pAR2 and
PAR3.

To analyse the models we can for example proceed as fol-
lows.

7. RESID RES +- PAR2 WRK 20

This means that the residuals of the model with para-
meters PAR2 are computed and stored in the file
RES. fn this computation the covarj-ance function of
the residuals and the cross covariance function between
the input and the residuals are also computed and
automaticalty displayed. The commands

8, DETER DET +. PAR2 WoRK (1)

computes the deterministic output of the model with
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ptrmeters PAR2 v/hen the input is the process Ínput
WORK (1) and the disturbances neglected. The command

9, PLOT NL WORK (2) DET

finally plots the process output V'IORK (21 as separate
points and the output of the slmulated model.

The experlences with the interacti-ve package IDPAC

have been very good. In practically oriented research
projects it has been possible to analyse industrlal
data quickly and at reasonable cost. !,ùith the aid of the
program it has been easy to teach students and lndustrial
workers to master many techniques of system identifica-
tion. The computer used gives naturally a lÍmit to the
size of problems that can be handled and the complexity
of the ldentification algorithms that can be used.

I

,t

i
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5. ROLE OF IDENTTFTCATTON FOR ON-LINE CONTROL

Desi qn of Control A1 gorithms

rn some cases the problem facing a contror engineer is
simpry to design a control argorithm for an existing
process using sensors and actuators that are currently
available. Many problems of thls type are solved simp-
ly by lnstalllng a three term controller and tuning its
parameters. rn some cases, for exampre when the varl-
able to be controrled has a signiflcant, effect on pro-
duct quality, it may be justified to be a rfttle more
ambitious and attempt to minimize the standard devia-
tion of the fluctuations. For rinear stochastic systems
this can be done with a slmple stochastÍc input output
model like (2.31 without havfng deeper insight into
the system dynami-cs. The probrem sorver then has to go
through the followlng steps

Plan experiments
System identification
Deslgn of control laws
Implementation.

For safety's sake it is sometimes advfsabre to go through
the steps 1 and 2 twlce to make sure that the process
does not change too much. system Ídentificatlon clearry
prays an important rore in this procedure. rt has been
my experience based on several appllcatl0ns spread out
over the past, r0 years that the procedure can be conveni--
ently done in a week or two provided that suitable soft-
ware for the steps 2 and 3, as well as an on-rlne compu-
ter with frexlble control software are avairabre. A typl-
cal case is reported in Äström (1967). The procedure also
gives valuable lnsight in the sense that lt terls the best

I
2

3

4
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result that can posslbly be obtained under the given
circumstances. The major obstacle often conslsts of
finding suit,able conditÍons when plant experiments can

be performed. The technical problems assocÍated with
the system identification are selection of sampling
intervals and determination of a suitable model complex-
ity. The partlcular method used for system identlfi-
cation is not crucial as long as it allows for determi-
nation of both process dynamics and the spect,ral den-
sity of the disturbances

Performance Evaluation of Existinq Control Loops

Another problem that occurs in process control 1s to
decide if existing control loops are performlng reason-
ably well or if there 1s a need to adjust the controller
settings, System identification technlques can be very
useful for this problem. The idea Ís very simple. Per-
form an experiment to determine the dynamics of the pro-
cess and the dist,urbances. Carry out. the system lden-
tification. EvaluaLe the optlmum performance and com-

pare with actual results.

In some cases where the conditions for fdentiffablllty
under closed loop conditÍons are satlsfied the experi-
ment simply consists of recording the control variable
and the system output under normal operating condÍtions.
In other cases it fs necessary to fntroduce perturba-
t,ions by changing the set point, or by changing the regu-
lator settings as v/as discussed in Section 2.

fn the special ca,se of minirnum variance control for a

minimum phase system it is known that the covariance
function wlll vanish for lags greater than the sum of the
transport delay of the system. See Âström (1970). It
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is then sufficient to record the system output only
and compute its covariance function

AppIÍcations of system identification techniques to per-
formance evaruation of control loops both during normal
operation and in connection with commissj-oning of computer
control systems in the paper lndustry have been tried ex-
tensively Ín the Swedish paper industry, see ê.g. Hägg-
man (1975).

Self-tuninq Regulators

The procedure consisting of on-rine experiments and off-
l1ne computations can be tlme consuming and costly, pâE-
ticularly if the off-Ilne computlng faciritÍes are not
avallable at the plant. rt has also been my experience
that the transfer of data between different locations
and different computers often invorves triviar but un-
pleasant problems. From a practicar point of view it. is
therefore meaningfur,to ask if it is not possibre to pro-
vide the on-Iine control algorithm with a real-tíme
parameter estimator.

In this way lt would be possible both to evaluate the
performance of control loops on-line and also to provlde
on-line tuning. The configuration of the cont,ror loop
would then be as shown in Flg. 5.1.
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Fig. 5 ,1 Structure of control loop with on-llne
tuning.

Control loops of this type have been proposed for a

long t,lme. Recently developed analysls has provided
valuable fnsight into the propertj.es of some simple
control loops of this type. Simple algorithms of this
type, like those based on least squares identification
and mÍnimum variance control, have been shown to have
some unexpectedly nice propertles llke abillty to sta-
bilize any mlnimum phase system and convergence toward
the minimum variance regulator that could be designed
1f the process and distrubance dynamics were known. -

( The self-tunlng regulators are also very easy to im-
plement requiring only about 35 lines of FORTRAN pro-
grammlng. Their feasibility in use in the process in-
dustry has also been demonstrated. A review of the results
are given in Äström et.aI. (1975).
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6. CONCLUSTONS

There has been substantial progress in the field of
system identification over the past 20 years. The re-
search has given valuable insighb as well as new algo-
rithms for estimating parameters in models of dynami-
cal systems. Broadly speaking the new methods have made

if possible to solve new identification problems. The
technlques have also relaxed the requirements on the
experimental conditions j-n return for increased com-
putations.

Many important theoretical issues like convergence of
the estimates, design of experiments, etc. have been
partly resolved at least for Iinear stochastic systems.
There are, however, important questlons still unsolved,
like estimation of structurar indices of multivariable
systems, parametrization of descriptions of dynamical
systems, numericar properties of identiflcatlon algorithms
etc. The available results, together with weIl-known
classicar methods, provide very effective tooLs for systems
modeling. Many techniques have been tried Ín special
industrial applications. In a few' cases they are also
being applied in a routine fashion. There is, however,
still a long way to go before the methods are part of
engineering practice. This is partry a matter of cost. rt
is a substantial effort to develop the software needed
to be able to use the technÍques eeonomically. The avaira-
bility of interactive softh/are for computer afded modering
cannot be overemphasized. Apart from modeling, system
identification methods can also be very usefur for process
diagnostics, trouble shooting and performance evaluatÍon
of control systems for industrial processes.

system j-dentification methods are also useful for onrine
contror, Particurarly the recursÍve estimation methods can
be applied to design self-tuning and adaptive control algorithms.
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It j-s admittedly very difficult to gfve useful advlse
on future research needs. Slnce t,hls fs a major purpose
of this meeting, f would tike to give the following
suggestions.

o Establish groups that can build
up and malntain expertise Ín system ldentlfication
within the framwork of modelling of Índustrial processes.
Malce sure that they have access to real processes,

,o

o

Develop lnteractive software for system ident,fficatfon.

Explore possibilities of using system identlflcation
for process diagnostics.

Contlnue work on using recursive identiffcation for
self-t,uning and adaptive control.

o Study fundamental theoretical probfems,

It
t,
ri
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