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1

Introduction

1.1 Motivation

Economical and environmental reasons force a more efficient use of the
power networks. Improved network operation has been made possible with
the introduction of active power electronic components for power condi-
tioning, protection, and conversion. Characteristic for power electronics is
that they have switching dynamics, and that they are highly dependent
on control. The switching nature of power electronics results in increased
harmonic injection into the grid.

The common approach to steady state stability analysis and control de-
sign, however, assumes sinusoidal conditions. This assumption is based
on conditions in traditional power systems, where the amount of harmon-
ics is neglectable. Even though harmonics exist, they are believed not to
affect the stability of the system. Hence, harmonics are not considered
in stability analysis. With an increasing amount of switching components
attached to the grid, this picture has to change. Harmonics can lead to un-
predicted interaction between components, which in worst case can lead
to instability. To guarantee stable network operation, the dynamic aspects
of the harmonics have to be considered. A problem is that such analysis
is complicated, and as power systems are very large and complex, one has
to rely on simplified analysis and simulations.

This thesis describes a method to combine the continuous dynamics
of the power system with the switching power electronics. The idea is
to linearize the system around the periodic steady-state operating point,
which normally can be derived by assuming a sinusoidal grid voltage. The
result is a linear time periodic (LTP) model, which captures the coupling
between different frequencies that arise due to the periodic dynamics. A
frequency domain framework is developed, and it is shown that many
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Chapter 1. Introduction

results developed for common linear time invariant (LTI) systems can
be generalized to time periodic systems. Hence, many existing results on
robustness analysis, robust controller design and model reduction can be
directly applied.

1.2 Contributions of the Thesis

A frequency domain framework for modeling and analysis of electrical
systems with a mix of continuous and discrete dynamics is developed. This
is an infinite dimensional transfer function matrix H (s) which describes
the input-output relation for an LTP system in frequency domain

...

Y(s− jω 0)
Y(s)

Y(s+ jω 0)
...


=



...
...

...

⋅ ⋅ ⋅ H−1,−1(s) H−1,0(s) H−1,1(s) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ H0,−1(s) H0,0(s) H0,1(s) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ H1,−1(s) H1,0(s) H1,1(s) ⋅ ⋅ ⋅

...
...

...
. . .





...

U(s− jω 0)
U(s)

U(s+ jω 0)
...


.

With the HTF, analysis of LTP systems can be performed with methods
developed for multi-input multi-output LTI systems.

The HTF approach is shown to be closely related to methods for LTP
systems analysis of digital control systems. This means that many strong
results developed for the analysis of the inter-sample behavior of sampled-
data system also can be applied to power system analysis.

The HTF is an infinite dimensional operator, which for computations
has to be approximated by a finite dimensional operator. This may lead to
convergence problems. The concept of roll-off for LTP systems is defined
and can be used to justify the use of truncated HTFs. Relations to power
system modeling and the concept of computational causality are discussed.

The thesis contains four papers with different power system applica-
tions. Below, the contents of the papers is briefly summarized. References
to related publications are also given. The work in Papers II, II, and IV,
has been done in collaboration with people from the industry.
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1.2 Contributions of the Thesis

Paper I

Möllerstedt, E. and B. Bernhardsson: “Harmonic analysis of distribution
networks.” Submitted Nov. 1999 to IEEE Trans. on Power Systems.

Contributions
The paper presents a method to analyze the periodic steady-state solution
of power distribution networks. Components with nonlinear and switching
dynamics are replaced by Harmonic Norton Equivalents which describe
the steady-state coupling between different harmonics. It is a harmonic
balance approach, which utilize that the harmonic level in power system
is low. This means that if the components are linearized at sinusoidal
network conditions, the steady state solution of the total network can be
obtained without iterative methods. The Harmonic Norton Equivalent is
the steady state gain of the HTF, H (0). Hence, using the HTF, harmonic
balance methods can be generalized to non-periodic conditions. A proce-
dure for obtaining the models from measurements is also presented.

The paper is based on the licentiate thesis [Möllerstedt, 1998], the con-
ference papers [Möllerstedt et al., 1997a] and [Möllerstedt et al., 1997b],
and the technical reports [Möllerstedt et al., 1997c], [Möllerstedt et al.,
1997d].

Paper II

Möllerstedt, E. and B. Bernhardsson (2000): “A harmonic transfer func-
tion model for a diode converter train.” In Proceedings of IEEE Power
Engineering Society Winter Meeting 2000, Singapore.

Contributions
This paper presents the analysis of a diode converter locomotive. Lin-
earization around the nominal solution results in an LTP model which
is used to derive the HTF of the locomotive. The nominal solution is ob-
tained via time domain simulation. With this approach, a frequency do-
main model of the locomotive is obtained, avoiding complicated nonlinear
frequency domain modeling. The model captures the dynamic coupling be-
tween the ac side and the dc side of the converter, taking into account the
non-ideal commutation of the converter. The resulting frequency domain
model is validated with simulations.

The model of the diode converter locomotive was derived in collabora-
tion with Adtranz, Switzerland.
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Chapter 1. Introduction

Paper III

Möllerstedt, E. and B. Bernhardsson (2000): “Out of control because of
harmonics - an analysis of the harmonic response of an inverter loco-
motive.” IEEE Control Systems Magazine, 20:4, pp. 70–81.

Contributions
An LTP model of an inverter locomotive with force commuted high fre-
quency converter is derived. By connecting the HTFs of the sub-models,
the HTF of the complete locomotive, including the converter controller, is
obtained. Since railway systems are single phase, the dynamic coupling
between the ac side and the dc side of a converter is not captured by LTI
models. Using the HTF, the system can be analyzed in frequency domain,
which facilitates ways to assure stable operation of the locomotive. The
amplitude margin for the controlled system is obtained from the general-
ized Nyquist theorem. The model of the inverter locomotive was derived in
collaboration with Daimler-Chrysler, Germany, and Adtranz, Switzerland.

Paper IV

Möllerstedt, E., A. Stothert, and H. Sandberg: “Robust control of power
converters.” To be submitted.

Contributions
This paper presents a systematic approach to power converter modeling,
applied to a micro-turbine line side converter. For a three-phase system,
transformation to rotating coordinates results under ideal conditions in
a time invariant model. Hence, linearization of the system results in an
LTI model. A controller structure is proposed, which simplified converter
control design and analysis. It is shown that the common objectives for
converter control make linear quadratic optimal (LQ) control design suit-
able, and an LQ controller is derived from the nominal LTI model. The
control design is evaluated with time domain simulation.

Harmonics, unbalanced ac systems, and switching dynamics of the
converter implies that transformation to rotating coordinates results in
a time-varying model. This means that stability cannot be guaranteed
using LTI analysis only. Such non-ideal conditions are easily incorporated
in the derived model, and the result is an LTP model. The model structure
makes it straightforward to get the system on the so called standard form
for robustness analysis. Integral Quadratic Constraints (IQCs) are used
to evaluate the control design under non-ideal conditions. The paper is an
extension of the work in [Möllerstedt and Stothert, 2000].

The model of the micro-turbine unit was derived in collaboration with
ABB Corporate Research, Switzerland.
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1.3 How to read the Thesis

1.3 How to read the Thesis

The thesis consists of two parts:

Part I

In Part I the LTP system theory is developed. Chapter 2 describes con-
cisely the concept of power system stability. In Chapter 3 background
materials on LTP analysis is presented. The harmonic transfer function
(HTF) is defined in Chapter 4, and it is related to the lifting approach to
LTP system analysis. Using the HTF, a number of results from LTI the-
ory are generalized to LTP systems. The HTF is an infinite dimensional
operator, which for computations has to be approximated by a finite di-
mensional operator. This may lead to convergence problems, which is the
focus of Chapter 5.

Part II

Part II consists of the four papers with power system applications for the
developed LTP system theory.

Since each paper starts with a short introduction to the LTP theory,
there is a considerable overlap. The theory sections in the papers show
how the theory has evolved during the project. The material presented in
Part I is written last, and is more complete and up-to-date. If the reader
has done a good job on Part I of the thesis, he or she has the authors per-
mission to skip the theory parts of the papers, or perhaps glance through
them for the notation.

However, the reader may also start by reading the papers, and then,
motivated by the applications, go back to selected sections of Part 1.
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2

Power System Stability

A power system consists of a number of synchronous generators, which
rotate synchronously and generate the power consumed by the loads.
The generators are interconnected by the meshed transmission system.
A number of distribution systems are also connected to the transmission
system, via transformers that transform the high voltage of the trans-
mission system to lower voltage levels. The distribution systems are in
general radial and distribute the power to the loads.

The power transfer between two synchronously rotating machines de-
pends on the rotor angle difference. Power is transfered from the leading
machine, and the amount of transfered power is increased if the angular
difference is increased. The angle-dependent torque is called the synchro-
nizing torque: If a machine speeds up, it will automatically take a larger
part of the total load and decelerate back to synchronous speed. This im-
plies that power systems are self stabilizing.

As the load demand and the generation change continuously, the sys-
tem must automatically adjust to the new conditions. Power system sta-
bility is the ability to keep the generators in synchronism, and to keep
a desired voltage and frequency in the presence of load and generation
variations and disturbances.

2.1 Power System Stability Analysis

Power systems are large, complex and highly nonlinear systems. Stability
analysis has to be performed with simplified models. Depending on the
nature of the potential instability, the size of the disturbance, and the time
scale, different approaches to modeling and system analysis are used. This
leads to a classification of power system stability. This classification is well
known to power engineers, and can be found in any book on power system
stability. A good reference is [Kundur, 1994].

14



2.1 Power System Stability Analysis

Based on the nature of the potential instability the following classifi-
cation is made:

Angle stability is the ability to keep the generators in synchronism.
This is a problem of balancing active power, as imbalance in me-
chanical torque and electrical torque makes a generator accelerate
or decelerate. If a generator speeds up, the load angle is increased,
and the machine automatically takes a larger part of the load. This
increases the electric torque and decelerates the machine. If this
increase in electric torque is enough to stop the acceleration, the
system remains in synchronism.

Voltage stability is the ability to supply the load with a high enough
voltage. This is a problem of balancing reactive power. An inductive
load supplied via a weak line leads to a large voltage drop across
the line. The load voltage will then be low. Since many loads aim
to draw constant power, a low voltage implies an increased current,
which further increases the voltage drop. If the voltage drop cannot
be compensated for by reactive power injection, the result may be a
voltage collapse.

Frequency stability is the ability to keep the frequency steady at the
reference frequency (for instance 50 or 60 Hz) under continuous load
variations.

Stability analysis can also be classified depending on the size of the
disturbance and the method used to analyze the problem. This leads to
transient, or large signal, stability and steady state, or small signal, sta-
bility.

Transient stability The system must be able to withstand large dis-
turbances like a line fault, or the loss of a generator. To keep the
system stable and to return to a new steady state operating point,
the system is dependent on fast operation of protection devices like
breakers to clear the fault, and protection schemes for disconnecting
and reconnecting components. Transients in power systems are fast
phenomena, and include a mix of continuous dynamics and discrete
events. The most common approach to transient analysis is time do-
main simulation, using Electro-Magnetic Transients Programs, like
EMTP [EPRI, 1989]. Some work has also been done using energy
functions and Lyapunov methods [Hiskens and Hill, 1989]. Correct
transient stability analysis is dependent on accurate models, reflect-
ing the relevant dynamics of the components and the network. This
is a well established and mature area.
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Chapter 2. Power System Stability

Small signal stability Power systems are stable but very oscillatory
systems. Attempts to improve the transient stability often reduce
the damping further. Damping is also reduced when power systems
in separate regions are interconnected. If neighboring power sys-
tems are connected, reliability is improved and back up power can
be shared between the systems. However, the interconnecting lines
have limited transfer capabilities, which leads to weak couplings be-
tween the regions. The result is poorly damped swing modes, with
strong regions swinging against each other. Under extreme condi-
tions, the system becomes unstable. Stable operation is dependent
on proper design and dimensioning of the transmission system.

In small signal analysis, the normal operation of the system is ana-
lyzed. Therefore protection devices do not have to be considered. Without
the switching dynamics of the protection devices, the network can be an-
alyzed with linear methods. The dominating dynamics come from the ro-
tating machines, whose large masses result in time constants in the range
of seconds. This implies that the rotational speed of the generators is kept
close to the fundamental frequency (50 or 60 Hz), generating sinusoidal
phase voltages.

Because of nonlinearities in the network, currents and voltages will
always have a certain level of harmonics. Harmonics and unsymmetri-
cal three phase signals result in a periodically pulsating torque on the
generators, but the large masses of the synchronous machines make the
influence of this negligible, and the system is well approximated by consid-
ering only the slow variations in the fundamental frequency component.
Hence, normally only the fundamental frequency component of voltages
and currents is considered, and the dynamics of the power lines are re-
placed by the fundamental frequency impedance, that is, a static gain.
To fit in the linear framework, loads are normally modeled as constant
current sinks, constant impedances, or constant power sinks.

2.2 Harmonic Analysis

The harmonics are traditionally seen as high frequency distortions that
do not contribute to the dynamics of the system, and thus do not have
to be considered in stability analysis. Harmonics are normally treated as
a steady state problem, leading to increased losses, overheating, reduced
life lengths of components, and malfunction of sensitive loads [Key and
Lai, 1995]. As harmonics do not affect the stability of the system, a stable
steady state operating point is always assumed in harmonic analysis.

A popular method for harmonic analysis is harmonic balance. This
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2.2 Harmonic Analysis

is a frequency domain method which can be used iteratively to find the
steady-state solution of a nonlinear network [Kundert and Sangiovanni-
Vincentelli, 1986]. Nonlinear loads are modeled as harmonic current sources
into a linear network. In each iteration the node voltages are calculated by
solving a linear equation system, and then the nonlinear current sources
are updated according to the improved node voltages. The convergence of
the method can be improved by using Newton iterations. The Jacobian
matrices used in such iterations are linear models of electric systems at
non-sinusoidal conditions, and can be seen as the first linear time periodic
models for power systems. The matrices describe the coupling between
the Fourier coefficients of the currents and voltages. However, as only the
steady state is concerned, these are static models and are not sufficient
for stability analysis.

Modern Power Systems and Harmonic Instability

The introduction of power electronics in power systems has resulted in
new possibilities for generation, transmission and protection. High-power
electronic converters facilitate the connection systems of different frequen-
cies. High voltage dc transmission has become a competitive alternative to
ac transmission over large distances. Small flexible generation units have
become an important complement to traditional large scale generation.
These small units are often connected to the grid via power electronics.
Fast switching power converters result in improved performance and re-
duced losses in electric drives. Power electronics is also used for improved
reactive power compensation, where fast acting components like static var
compensators or thyristor controlled series capacitors are used to main-
tain stable operation under a high degree of compensation.

The picture of power systems as slowly varying systems, whose sta-
bility can be determined by studying only the fundamental frequency,
is changing. Power electronic devices tend to produce harmonics that
may provide coupling between dynamic processes in different frequency
ranges [Hauer and Taylor, 1998]. The harmonic coupling and the high
complexity of the system, in combination with more stressed systems due
to optimized operation, make proper analysis more and more important if
stability and secure operation is to be guaranteed. The dynamic coupling
between the component and the network, and between several of these
components must be considered. This motivates the concept of harmonic
instability, that is, stability problems that cannot be detected if only the
fundamental frequency dynamics is considered.

The situation is particularly problematic in single phase systems, like
railway networks. By considering sinusoidal conditions only, there is no
way to describe the dynamic coupling between the AC dynamics and the
DC dynamics of a modern locomotive. Hence, converter controllers have
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Chapter 2. Power System Stability

to be tuned using ad hoc tuning rules verified by simulations. The re-
gional railway system in Zürich suffered from harmonic instability twice
in 1995. The traffic was operated by modern locomotives with high fre-
quency power electronic converters. Due to improper controller software
of the converters, the system became unstable and locomotives were shut
down by protective equipment due to too high levels of the 6th harmonic
(100 Hz) in the current. At the same time, a 165 Hz component of more
that 2 kV could be observed in the voltage[Meyer, 1999].

The problem becomes emphasized in a deregulated power market.
Much effort is made to get norms and standards that guarantee a safe
operation of modern networks. Norms on harmonics only consider steady
state harmonic interaction: How high harmonic levels must a component
withstand, and how much harmonics may be injected into the grid, in
steady state? This is not sufficient if stability is to be guaranteed. It is
necessary to have some limits on the dynamic coupling. Forcing all com-
ponents to be passive would, for instance, guarantee safe operation, but
that is a too conservative demand.

A Sampled-Data System Analogy

The assumption that only the dynamics of the fundamental frequency is
relevant is common in computer-controlled systems. The control is based
on a sampled measurement of the process output, and the common ap-
proach is to consider the system only at the sampling instants. An anti-
aliasing filter is used to make sure that no high frequencies are folded
down to the sampled measurements. The control signal is applied to the
process by means of a hold circuit, which keeps the control signal constant
over each sampling period. This implies that high frequency harmonics
are injected into the system. As the process is low pass, these high fre-
quencies will be damped out, and no important information is lost during
the sampling, as long as the sampling frequency is chosen high enough.

For a power system, this is equivalent to the assumption that only the
fundamental frequency is relevant. The only difference is that the fast
dynamics of the power electronic devices cannot be compensated for by
choosing a higher sampling frequency. Unless the dynamics of the power
electronic devices are controlled to be slow, the analysis methods must be
changed, so that the frequency coupling is considered. There has been a
lot of research on the inter-sample behavior of sample data systems. The
system is then modeled as a linear time periodic (LTP) system. Because
of the strong analogy, it is natural to try to adopt these methods to power
system analysis. An LTP system is the result of linearization around a
periodic solution. LTP systems capture the coupling between frequencies
and can thus be used to analyze the local stability of the periodic solution,
and what happens when that system is changed and new components are
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2.2 Harmonic Analysis

added. The problem with LTP analysis is that it is somewhat more com-
plicated than LTI analysis. However, if LTI analysis does not do the job,
and simulation alone is not enough, LTP analysis might prove a valuable
tool, despite the more complicated analysis.
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3

Linear Time Periodic
Systems

Because of the well-developed linear system theory, a common approach to
system analysis is to linearize the system, and use the linearized models
to analyze the local behavior of the system in the neighborhood of the
linearization point.

Consider the nonlinear system

dx
dt
= f (x, u),

y = n(x, u),

where x ∈ Rn are the state vector of the system, u ∈ Rm is the input, and
y ∈ Rp is the output. If the system is linearized around the equilibrium
point {x0, u0}, the result is a linear time invariant (LTI) system

dx
dt
= Ax + Bu (3.1)

y = Cx + Du, (3.2)

with constant matrices

A = V f
V x
(x0, u0), B = V f

Vu
(x0, u0),

C = Vn
V x
(x0, u0), D = Vn

Vu
(x0, u0).

Linear time invariant systems have a number of properties that simplify
the analysis. Stability is determined by the eigenvalues of the system
matrix, A. The solution of the state equations (3.1) can be obtained an-
alytically for given input u(t) and initial state x(t0). A sinusoidal input

20



leads, in steady state, to a sinusoidal output of the same frequency. This
frequency separation property, in combination with the linearity, makes
the frequency domain attractive for input-output analysis of LTI systems.

If the system does not have an equilibrium point, the system can in-
stead be linearized around a trajectory. The resulting linear model may
then be time varying and describes the local behavior in the neighbor-
hood of the trajectory. For general linear time varying systems, many of
the nice properties of LTI systems fail to hold. For instance, even if the
eigenvalues of the system matrix always remain in the left half plane, sta-
bility is not be guaranteed. The state equations do not have an analytical
solution, and the frequency separation property is lost.

If the nominal trajectory, or solution, is periodic

u0(t+ T) = u0(t),
x0(t+ T) = x0(t),

the result of the linearization is a linear time periodic (LTP) system

dx
dt
= A(t)x + B(t)u

y = C(t)x + D(t)u,
(3.3)

where

A(t) = V f
V x
(x0(t), u0(t)), B(t) = V f

Vu
(x0(t), u0(t)),

C(t) = Vn
V x
(x0(t), u0(t)), D(t) = Vn

Vu
(x0(t), u0(t)),

are T-periodic matrices, that is, A(t + T) = A(t) and similarly for B(t),
C(t), and D(t).

Periodic solutions typically arise in rotating mechanical systems. LTP
systems have, for instance, for a long time been used to analyze helicopter
dynamics, see for example [Wereley, 1991], [Hwang, 1997] and references
therein. Periodic variations arise due to the rotation of the system. A
good example is also a wind power plant, where there is a distortion in
rotor torque when the rotor blade is in shadow of the tower. The peri-
odic solution can also arise from the dynamics of the system, for instance
self-excited oscillations, or limit cycles, of nonlinear systems, or in sample
data system, where the periodicity arises from the periodic sampling of
measured outputs and periodic updating of control signals. The periodic-
ity implies that, to some extent, many properties of LTI systems can be
generalized to hold also for LTP systems.
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LTIest H(s)est

Figure 3.1 For an LTI system, the response to a complex exponential est is itself
a complex exponential.

3.1 Frequency Separation of LTP Systems

A linear operator, H, is said to be time-invariant if, for every τ > 0, it
commutes with the shift operator, Sτ , defined by

Sτ u(t) = u(t− τ ).

Let the input be a signal of a single complex frequency, s, that is, u(t) = est.
This gives an output, denoted y(t) = H est. The time invariance implies

y(t− τ ) = Hu(t− τ ) = H es(t−τ ) = H est e−sτ = e−sτ y(t),

where the last equality is due to the linearity of the system. This holds
for any τ , in particular, τ = t, and thus

y(t) = y(0)est.

The output is hence also a signal with the single frequency, s. This is the
frequency separation property of LTI systems, see Fig. 3.1.

An LTP system only commutes with the shift operator when τ is a
multiple of the period time T

HST = ST H . (3.4)

Now let the input be an exponentially modulated periodic (EMP) signal

u(t) = up(t)est, (3.5)

where up(t) is T-periodic. This gives an output y(t) = Hup(t)est, which
due to the periodicity of the system is satisfies

y(t− T) = Hu(t − T) = Hup(t− T)es(t−T) = Hup(t)est e−sT = y(t)e−sT .

With yp(t) = y(t)e−st this gives

yp(t− T) = y(t− T)e−s(t−T) = y(t)e−st = yp(t).
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LTPup(t)est yp(t)est

Figure 3.2 For an LTP system, the response to an EMP signal up(t)est is itself
an EMP signal.

Hence yp(t) is T-periodic. This means that the output y(t) = yp(t)est

is an EMP signal. An LTP system hence maps EMP signals onto EMP
signals, see Fig. 3.2. Expressing the periodic functions, up and yp, with
their Fourier series gives

u(t) = up(t)est =
∑

ukejkω 0 t est =
∑

uke(s+ jkω 0)t,

and similarly for y(t). This means that for LTP systems there is cou-
pling between frequencies separated by a multiple of the fundamental
frequency, ω 0 = 2π/T . This complicates the analysis of LTP systems in
frequency domain.

3.2 LTP System Analysis

In this section the common approaches to analysis of LTP systems will be
summarized briefly.

State Equation Solution

Consider the autonomous system

dx
dt
= A(t)x(t), x(t0) = x0.

The solution of this system can be written

x(t) = Φ(t, t0)x0,

where Φ(t,τ ) is the fundamental matrix, or state transition matrix of the
system, satisfying

V
V t

Φ(t,τ ) = A(t)Φ(t,τ ), Φ(τ ,τ ) = I. (3.6)
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For a system with external input u(t)

dx
dt
= A(t)x(t) + B(t)u(t), x(t0) = x0,

the solution is given by

x(t) = Φ(t, t0)x0 +
∫ t

t0

Φ(t,τ )B(τ )u(τ )dτ . (3.7)

For a T-periodic linear system, the monodromy matrix

ΦT(t) = Φ(t+ T , t)

is a periodic matrix, describing how the states evolve over one period,

x(t+ T) = ΦT(t)x(t).

The matrix Φ(t+T , t) is called the monodromy matrix at time t. The eigen-
values of the monodromy matrix are independent of t [Colaneri et al.,
1998]. These eigenvalues are the so called characteristic multipliers of
A(t). A T-periodic system is asymptotically stable if and only if all eigen-
values of the monodromy matrix are inside the unit disc.

For a linear time invariant system, the fundamental matrix is given
by

Φ(t,τ ) = eA(t−τ ).

For an LTP system there is no simple way to get an analytical expression
for the fundamental matrix. Often one has to use time-domain simulation.

Floquet Decomposition

It was discovered by Floquet [Floquet, 1883], as early as 1883, that for any
LTP system on state-space form (3.3), there is a T-periodic state transfor-
mation x(t) = P(t)z(t), the so-called Floquet decomposition, that trans-
fers the system to a similar state-space form with a constant (generally
complex-valued) system matrix,

dz
dt
= Âz(t) + B̂(t)u(t),

y(t) = Ĉ(t)z(t) + D(t)u(t).
(3.8)

The state transformation implies that

Φ(t,τ ) = P(t)Φ̂(t,τ )P−1(τ ) = P(t)eÂ(t−τ )P−1(τ ).
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Inserting this into (3.6) gives that the T-periodic state transformation
matrix satisfies

d
dt

P(t) = A(t)P(t) − P(t)Â.

By choosing P(0) = P(T) = I, the constant matrix, Â, is given by

eÂT = Φ(T , 0),

that is, ÂT is the logarithm of the monodromy matrix of the system. Note
that even if A(t) is real valued, it might happen that a non-real complex
matrix Â is required. The eigenvalues of Â are called the Lyapunov expo-
nents of the system. The system is asymptotically stable if and only if all
eigenvalues are in the open left half plane. This corresponds to the case
when all eigenvalues of Φ(T , 0) are in the open unit disc.

Floquet decomposition can be used to determine stability of the system
by time-invariant methods. The input-output relation is, however, still
periodic.

Time Domain Analysis of Periodic Systems

Time domain methods for linear invariant systems are often straight-
forward to generalize to time periodic systems. Likewise, time periodic
systems can be treated as a special case of linear time varying systems.
The analysis often involves solving a time periodic equation. Stability, for
instance, can be analyzed by means of Lyapunov theory. A periodic system
is stable if the Lyapunov equation

d
dt

P(t) = P(t)AT(t) + A(t)P(t) + Q(t), (3.9)

has a unique positive-definite solution P(t), for Q(t) periodic and positive-
definite. The solution of (3.9) is [Kano and Nishimura, 1996]

P(t) = ΦT(0, t)P0Φ(0, t) −
∫ t

0
ΦT (s, t)Q(s)Φ(s, t)ds,

where P0 = P(0). A T-periodic solution has P(T) = P0, and thus for t = T
we have

P0 = ΦT(0, T)P0Φ(0, T) −
∫ T

0
ΦT(s, T)Q(s)Φ(s, T)ds.

This is an algebraic Lyapunov equation in discrete time. Lyapunov equa-
tions are used to determine exponential stability of periodic orbits in [Hauser
and Chung, 1994].
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The periodic pair {A(t), B(t)} is said to be stabilizable if there exist
a T-periodic L(t) such that A(t) − B(t)L(t) is stable. Likewise, the pair
{A(t), C(t)} is said to be detectable if there exist a T-periodic K (t) such
that A(t)−K (t)C(t) is stable [Bittanti and Bolzern, 1986], [Colaneri et al.,
1998].

Another example where a periodic equation occurs is linear quadratic
optimal (LQ) control, where the aim is to derive the state feedback gain
u(t) = −L(t)x(t) that minimizes a quadratic loss function

J =
∫ ∞

0
xT Mxx + uT Muudt.

Provided some technical conditions are fulfilled, the optimal feedback gain
is given by

L(t) = Mu(t)−1 B(t)T R(t),
where R(t) is the unique T-periodic positive definite solution of the peri-
odic Riccati equation

− d
dt

R(t) = A(t)T R(t) + R(t)A(t) − R(t)B(t)Mu(t)−1 B(t)T R(t) + Mx(t).

Pole placement control design cannot be used in a straightforward
way, since the eigenvalues of a periodic system are time varying. How-
ever, the characteristic multipliers of A(t), that is, the eigenvalues of the
monodromy matrix, Φ(T , 0), are independent of t. Hence, one possible de-
sign strategy would be to find a feedback gain L(t) that gives the desired
characteristic multipliers of the system [Tornambè and Valigi, 1996].

Frequency Domain Analysis of Periodic Systems

Frequency domain methods are often used for analysis and control design
of linear time invariant systems. The strength of the frequency domain
is the frequency domain separation of LTI systems, which implies that
the systems can be analyzed frequency by frequency. Since this does not
hold for periodic systems, as discussed in Section 3.1, frequency domain
methods for LTI systems do not generalize to the periodic case. One way
to get around this problem is to transform the periodic system to a time
invariant equivalent representation. This will be explained in the next
section.

3.3 Transformation to Time Invariant Representations

To be able to exploit frequency domain methods to analyze LTP systems,
the systems can be transformed to equivalent time invariant representa-
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T 2T 3T 4T t0

ũ0 ũ1

ũ2
ũ3

Figure 3.3 By splitting up the signals in segments ũk(t) of length T , a T-periodic
continuous time system can be transformed to a discrete time invariant system
whose inputs and outputs are sequences of segments in L2[0, T ].

tions. Two popular transformations are lifting and the cyclic reformula-
tion. These are closely related; lifting leads to a more compact represen-
tation, whereas the cyclic representation [Colaneri and Kučera, 1997] is
more appropriate for model reduction, as the structure of the original LTP
system can be preserved.

Lifting

One way to analyze LTP systems in frequency domain is to use lifting
techniques to transform a continuous time or discrete time LTP system
to a discrete time LTI system, which can be analyzed with LTI meth-
ods. Lifting is a common approach to analyze the inter-sample behavior
of sampled-data systems [Bamieh and Pearson, 1992], [Yamamoto and
Khargonekar, 1996], [Dullerud, 1996].

For a continuous time system, lifting implies splitting the continuous
input u(t) into segments, ũk, of length T , as shown in Fig. 3.3, and analyz-
ing how these segments are mapped onto similar segments of the output,
ỹk. If the original signal, u(t), is in L2(−∞,∞), that is,

hhuhh2 =
∫ ∞

−∞
hu(t)h2dt < ∞,

then the lifted signal, ũ, is in l2(L2[0,T]), that is, the sum of the L2[0, T ]-
norms of the segments is bounded.

hhũhh2 =
∞∑

k=−∞

∫ T

0
hũk(t)h2dt = hhuhh2 < ∞.

As the norms are equal, lifting is an isometric mapping.
With lifted signals, a causal LTP system H : L2(−∞,∞) → L2(−∞,∞)

is transformed to the discrete time system H̃ : l2(L2[0,T]) → l2(L2[0,T]). Using
the fact that h(t+ T ,τ + T) = h(t,τ ) gives

ỹn = H[0]ũn + H[1]ũn−1 + H[2]ũn−2 + . . . , (3.10)
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where the operator H[k] : L2([0, T ]) → L2([0, T ]) is defined via

(H[k]v)(t) =
∫ T

0
h(kT + t,τ )v(τ )dτ , t ∈ [0, T ].

More illustrative is to write (3.10) on vector form



...

ỹn−1

ỹn

ỹn+1

...


=



. . .
. . .

. . .
. . .

. . .
. . . H[0] 0 0

. . .

. . . H[1] H[0] 0
. . .

. . . H[2] H[1] H[0]
. . .

. . .
. . .

. . .
. . .

. . .





...

ũn−1

ũn

ũn+1

...



The fact that lifting is isometric implies that if the original system, H,
is bounded, then the lifted system H̃ is also bounded and the induced
L2-norm of the original system equals the induced l2-norm of the lifted
system [Bamieh and Pearson, 1992], that is,

hhHhhL2 = hhH̃ hhl2 ,

where

hhHhhL2 = sup
u ∈ L2

u �= 0

hhHuhhL2

hhuhhL2

,

hhH̃ hhl2 = sup
ũ ∈ l2

ũ �= 0

hhH̃ũhhL2

hhũhhL2

.

Transfer Functions for Lifted Systems

A lifted signal, ũ, can be transformed to frequency domain via the z-
transform

Û(z) = (Zũ)(z) =
∞∑

k=−∞
ũkz−k,

which is defined for those z for which the sum converges absolutely. For
such z, Û(z) ∈ L2[0, T ]. The z-transform maps an infinite sequence of
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L2[0, T ]-functions to one L2[0, T ]-function that depends on the complex
variable z. The infinite sequence can be recaptured with the inverse trans-
form

ũk = 1
2π j

∮
Û(z)zk−1dz, k = 0, 1, ...

where the integration contour encloses all singularities of Û(z). Using the
z-transform, an LTP system can be analyzed by analyzing the response to
an L2[0, T ]-valued function of z, Û(z), instead of analyzing the response
to an infinite sequence of L2[0, T ]-functions. The input-output relation can
now be written

Ŷ(z) =
∞∑

k=−∞
ỹkz−k =

∞∑
k=−∞

∞∑
l=0

H[l]ũk−l z−k

=
( ∞∑

l=0

H[l]z−l

)( ∞∑
m=−∞

ũm z−m

)
= Ĥ(z)Û(z),

where the transfer function operator

Ĥ(z) =
( ∞∑

l=0

H[l]z−l

)

is the z-transform of the sequence of lifted operators {H[l]}. Note that the
summation only involves l ≥ 0 as H is assumed causal. An H∞ norm of
the operator Ĥ is defined as

hhĤ hh∞ = sup
hzh≥1

hhĤ(z)hh

As the z-transform is isometric, this norm is equal to the induced L2-norm
of the original system H [Bamieh and Pearson, 1992], that is,

hhHhhL2 = hhĤ hh∞. (3.11)

A State-Space System

The lifted representation of a system on state-space form becomes

xk+1 = Ãxk + B̃ũk

ỹk = C̃xk + D̃ũk.
(3.12)

Here xk ∈ Rn and the functions ũk ∈ Lm
2 [0, T ] and ỹk ∈ Lp

2[0, T ] are
defined as ũk = u(t + kT) and ỹk = y(t + kT) for k ∈ Z, and t ∈ [0, T ].
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G

HC SamplerHold

y(t)u(t)

u(tk) y(tk)

Figure 3.4 A sample data system consisting of a continuous time process con-
trolled by a discrete time controller. A sampler (A/D converter) is used to get
sampled process output data to the controller, and a hold circuit (D/A converter)
converts the discrete control signal to continuous time.

The operators Ã : Rn → Rn, B̃ : Lm
2 [0, T ] → Rn, C̃ : Rn → Lp

2[0, T ], and
D̃ : Lm

2 [0, T ] → Lp
2[0, T ] are given by

Ã = Φ(T , 0)

B̃ũk =
∫ T

0
Φ(T ,τ )B(τ )ũk(τ ) dτ

C̃ = C(t)Φ(t, 0)

D̃ũk =
∫ t

0
(C(t)Φ(t,τ )B(τ ) + D(t)δ (t− τ ))ũk(τ ) dτ .

The transfer function operator for a system on state space form be-
comes

Ĥ(z) = C̃(zI − Ã)−1 B̃ + D̃.

and is defined if z is not an eigenvalue of Ã.

3.4 An LTP Model of a Sampled-Data System

For later reference, we will now show how a sampled-data system, that
is, a continuous time process controlled by a discrete time controller, can
be modeled as an LTP system in continuous time.

A typical sample data system is shown in Fig. 3.4. A continuous time
system G is controlled by a discrete controller H. The continuous output
from the system, y(t), is converted to a discrete time sampled signal by
the A/D-converter, or sampler. The controller use the sampled output to
calculate a control signal, which is converted back to continuous time by
a D/A converter, or hold circuit.
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3.4 An LTP Model of a Sampled-Data System

It is well known that the sampling results in aliasing, or frequency
folding. For a sampled signal there is no way to separate frequencies that
are separated by a multiple of the sampling frequency. The hold circuit
converts the discrete control signal to a piecewise constant continuous
time signal. This results in high frequency distortion into the system.

The common approach to analysis of sample data systems is to treat
the combination of the hold circuit, the continuous process and the sam-
pler as a discrete time system, which is controlled by a discrete time con-
troller. This way, the system is only considered at the sampling instants.
If the sampling frequency is high enough, the sampled output gives a good
picture of the continuous time output of the process. An anti-aliasing filter
is used to avoid that high frequency noise is folded down to the sampled
signal. The high frequencies generated by the hold circuit do not affect
the system if the dominating dynamics are of lower frequency. The choice
of sampling frequency is normally done by a rule of thumb, based on the
open loop or closed loop dynamics of the system [Åström and Wittenmark,
1997].

Proper process behavior cannot be guaranteed using assumptions and
rules of thumb. Even though the sampled output of the system looks good,
there can be hidden oscillations due to the high frequencies injected into
the system. There has been a lot of research on the inter-sample behavior
of sample data systems, for a good introduction and overview, see [Bamieh
and Pearson, 1992].

The common approach to inter-sample analysis is to model the system
as a continuous time LTP system, see for example [Åström and Witten-
mark, 1997]. The discrete signal is in continuous time represented by an
impulse train. This way the relation between the continuous time signal,
y(t), and the sampled signal, y∗(t), is

y∗(t) =
∑

k

δ (t− kT)y(tk) =
∑

k

δ (t− kT)y(t),

where T is the sampling time. Hence, the sampling can be described by
a multiplication operator y∗ = my, where

m(t) =
∑

k

δ (t− kT).

By writing y(tk) =
∫∞
−∞ δ (τ − kT)y(τ )dτ , the sampled signal can be ex-

pressed as a convolution

y∗(t) =
∑

k

δ (t− kT)
∫ ∞

−∞
δ (τ − kT)y(τ )dτ =

∫ ∞

−∞
h(t,τ )y(τ )dτ ,
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where
h(t,τ ) =

∑
k

δ (t− kT)δ (τ − kT)

is the impulse response of the sampler.
With the sampled signal modeled as above, the input to the discrete

time controller is a periodic impulse train. This means that the discrete
time controller can be modeled as an LTI system. The periodicity is as-
sured by the fact that the input is periodic. The continuous time transfer
function for the controller is obtained from the discrete time transfer func-
tion H(z) as

Y∗(s) = HC(esT )U∗(s).
The hold circuit keeps the signal constant over one sampling period. The
impulse response should thus be a unit pulse with duration equal to the
sampling time. This gives the transfer function

Hhold(s) = 1− e−sT

s
.

With this, instead of studying the feedback connection of a discrete time
system and a discrete time controller, the system can be analyzed by
studying the feedback connection of the continuous time LTI system G(s)
and an LTP continuous time controller.

A problem with this modeling approach is that the sampling operator
is not bounded from L2 to l2. One way to get around this is to place a
linear filter, Hf , without a direct term in front of the sampler. the operator
mHf is bounded from L2 to l2.
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4

The Harmonic Transfer
Function

In this chapter, a continuous time transfer function for linear time pe-
riodic (LTP) systems is derived based on the impulse response. The ap-
proach is closely related to the time dependent transfer function for gen-
eral time.varying systems described in [Zadeh, 1950], and [Ball et al.,
1995], and the frequency response operator.

4.1 The Harmonic Transfer Function

The input-output relation of a linear time invariant (LTI) system is con-
veniently described in the frequency domain as

Y(s) = H(s)U(s),

where U(s) and Y(s) are Laplace transforms of the input and output
respectively. The transfer function, H(s) is defined as H(s) = L h, where
h(t) is the impulse response of the system.

We saw in the previous chapter that for an LTP system there is cou-
pling between frequencies separated by a multiple of the fundamental
frequency, ω 0, of the system. In frequency domain, this means that there
is coupling between U(s+ jmω 0) and Y(s+ jnω 0). This coupling can be
described by the transfer function Hn,m(s), Hence,

Y(s+ jnω 0) = Hn,m(s)U(s+ jmω 0).
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However, there is coupling for all m, n = 0,±1,±2, . . .. This gives

...

Y(s− jω 0)
Y(s)

Y(s+ jω 0)
...


=



...
...

...

⋅ ⋅ ⋅ H−1,−1(s) H−1,0(s) H−1,1(s) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ H0,−1(s) H0,0(s) H0,1(s) ⋅ ⋅ ⋅
⋅ ⋅ ⋅ H1,−1(s) H1,0(s) H1,1(s) ⋅ ⋅ ⋅

...
...

...
. . .





...

U(s− jω 0)
U(s)

U(s+ jω 0)
...


,

(4.1)
or short

Y (s) = H (s)U(s).
The doubly infinite matrix H (s) is called the harmonic transfer func-
tion (HTF). The HTF implies that an LTP system can be analyzed as an
LTI system with infinitely many inputs and outputs. In this chapter it
is shown how the elements Hn,m(s) are obtained from time domain in-
formation of the system. It is also shown that the HTF is equivalent to
the transfer function for the lifted system, with a special choice of base
functions. Some basic properties and stability results are also given. The
fact that the HTF is infinite dimensional implies a number of numeri-
cal difficulties. For computations, the infinite dimensional matrix has to
be replaced by a finite dimensional truncated matrix. Questions about
truncation errors and convergence will be treated in Chapter 5.

The HTF H ( jω ) is equivalent to the frequency response operator used
for analysis of sampled-data systems in [Yamamoto and Khargonekar,
1996] and [Araki et al., 1996].

4.2 Structure of the HTF

The response to a signal u(t) ∈ L2[0,∞) is for a causal linear system
given by

y(t) =
∫ t

0
h(t,τ )u(τ )dτ ,

where h(t,τ ) is the impulse response, which for an LTP system satisfies

h(t+ T ,τ + T) = h(t,τ ).

The function h(t, t− r) is, for any fixed r, periodic in t and can, under
appropriate convergence conditions, be expressed as a Fourier series

h(t, t− r) =
∞∑

k=−∞
hk(r)ejkω 0 t,
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H−2

H−1

H0

H1

H2

u(t) y(t)

ej2ω 0t

ejω 0t

e− jω 0t

e− j2ω 0t

Σ

�

�

�
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Figure 4.1 The input-output relation of an LTP system can be expressed by in-
finitely many LTI systems.

with

hk(r) = 1
T

∫ T

0
e− jkω 0 th(t, t− r)dt. (4.2)

The impulse response of an LTP system can hence be written as an infinite
sum of (possibly complex valued) LTI impulse responses

h(t,τ ) =
∞∑

k=−∞
hk(t− τ )ejkω 0 t, (4.3)

The input output relation corresponding to (4.3) is shown in Fig. 4.1, and
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Chapter 4. The Harmonic Transfer Function

can be expressed as an infinite sum of convolutions

y(t) =
∫ t

0

∑
k

hk(t− τ )ejkω 0 tu(τ )dτ

=
∫ t

0

∑
k

hk(t− τ )ejkω 0(t−τ )u(τ )ejkω 0τ dτ

=
∑

k

∫ t

0
hk(t− τ )ejkω 0(t−τ )u(τ )ejkω 0τ dτ =

∑
k

(hk(t)ejkω 0 t ∗ u(t)ejkω 0 t),

where it is assumed that the order of integration and summation can be
changed. Laplace transformation gives

Y(s) =
∑

k

Hk(s− jkω 0)U(s− jkω 0), (4.4)

with

Hk(s) = L hk =
∫ ∞

0
e−srhk(r)dr.

Hence, Y(s+ jnω 0) is given by

Y(s+ jnω 0) =
∑

k

Hk(s+ j(n− k)ω 0)U(s+ j(n− k)ω 0)

=
∑

m

Hn−m(s+ jmω 0)U(s+ jmω 0),
(4.5)

which gives for the elements in the HTF

Hn,m(s) = Hn−m(s+ jmω 0).

This gives the HTF a diagonal structure

H (s) =



. . .
. . .

. . .
. . .

. . .
. . . H0(s− jω 0) H−1(s) H−2(s+ jω 0) . . .

. . . H1(s− jω 0) H0(s) H−1(s+ jω 0) . . .

. . . H2(s− jω 0) H1(s) H0(s+ jω 0) . . .

. . .
. . .

. . .
. . .

. . .


. (4.6)
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Figure 4.2 A Bode amplitude plot for an LTP system. The plot clearly shows a
diagonal structure which comes from the fact that for LTP systems there is coupling
between frequencies separated by the fundamental frequency of the system. The plot
shows the bode amplitude of the LTI transfer function Hk( jω ) on the kth diagonal.

A Bode Amplitude Plot

The Bode plot is a popular way to graphically illustrate the frequency
response of an LTI system. The Bode amplitude plot is a two dimensional
plot with frequency on the x-axis, and gain on the y-axis. Because of
the frequency coupling, a Bode amplitude plot for LTP system is three
dimensional, with input frequency on the x-axis, output frequency on the
y-axis, and gain on the z-axis. The Bode amplitude plot is obtained by
plotting the absolute values of the elements of H ( jω ) for −ω 0/2 < ω <
ω 0/2. An example is shown in Fig. 4.2. The LTI transfer functions, Hk( jω )
are shown as diagonals.

Symmetry

For a real-valued LTI system H the transfer function satisfies the sym-
metry

H(s) = H(s),
where s denotes complex conjugate of s. This means that the system only
positive frequencies has to be considered, and that poles and zeros always
come in conjugate pairs. The observant reader can see that hHk( jω )h in
Fig. 4.2 is not symmetric. This is because the impulse response hk(t) (4.2)
can be complex valued.

The following symmetry holds for the harmonic transfer function. It
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Chapter 4. The Harmonic Transfer Function

shows that the poles and zeros of the HTF H come in conjugate pairs, even
though this does not necessarily hold for the individual transfer functions,
Hk(s), since they can have complex coefficients.

THEOREM 4.1
If h(t,τ ) is real-valued then

H−n,−m(s) = Hn,m(s).

PROOF 4.1
As the impulse response h(t,τ ) is real valued, it holds that

h−k(r) = hk(r).

This gives for the transfer functions

H−k(s) =
∫

e−sth−k(t)dt =
∫

e−sthk(t)dt = Hk(s).

Since element (n, m) in the HTF is defined as

Hn,m(s) = Hn−m(s+ jmω 0),

a direct computation gives that

H−n,−m(s) = H−(n−m)(s− jmω 0) = Hn−m(s+ jmω 0) = Hn,m(s).

HTF for Systems on State Space Form

In [Wereley, 1991] the harmonic transfer function matrix (HTF) for LTP
systems on state space form is defined via a direct computation of the
response to exponentially modulated periodic (EMP) signals (3.5). The
method is based on the harmonic balance approach in [Hill, 1886]. If the
input to an LTP system is EMP, then, in steady state, the state vector
and output will also be EMP

u(t) =
∑

m

Um esmt,

x(t) =
∑

m

Xm esmt,

dx
dt
=
∑

m

sm Xm esmt,

y(t) =
∑

m

Ym esmt,
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4.3 Examples

where sm = s+ jmω 0. Inserting this into (3.3) gives

∑
n

sn Xnesnt =
∑

n

(∑
m

An−m Xm +
∑

m

Bn−mUm

)
esnt,

∑
n

Ynesnt =
∑

n

(∑
m

Cn−m Xm +
∑

m

Dn−mUm

)
esnt,

where Ak, Bk, Ck, and Dk are the Fourier coefficients of the periodic sys-
tem matrices. The principle of harmonic balance now implies that these
equations must be fulfilled for each frequency, sn. This can be written in
a compact way

sX = (A −N )X +BU (4.7)
Y = C X +DU, (4.8)

where U, X , and Y are vectors of Fourier coefficients

U = [ . . . U−2 U−1 U0 U1 U2 . . . ]T ,

etc., and A , B , C , and D are Toeplitz matrices of Fourier coefficients

A =



. . .
. . .

. . .
. . .

. . .
. . . A0 A−1 A−2

. . .
. . . A1 A0 A−1

. . .
. . . A2 A1 A0

. . .
. . .

. . .
. . .

. . .
. . .


,

etc., and N is a block diagonal matrix

N = blkdiag{ jnω 0I }.

By eliminating the state vector X in (4.7), the harmonic transfer func-
tion, H (s), is obtained as

Y = (C (sI − (A −N ))−1B +D )U = H (s)U. (4.9)

4.3 Examples

The HTFs will now be derived for some simple but illustrative examples.
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Figure 4.3 The Bode amplitude plot of a sinusoidal multiplication operator, y(t) =
sin t ⋅ u(t).

Example 1: Multiplication Operators A simple LTP system is mul-
tiplication with a sinusoid

y(t) = sin(ω 0t) ⋅ u(t).
The response to an EMP signal is

y(t) = ejω 0 t − e− jω 0t

2 j

∑
m

um esmt

=
∑

m

um
esm+1 t − esm−1 t

2 j
=
∑

m

um−1 − um+1

2 j
esmt =

∑
ym esmt.

The HTF of the multiplication operator is thus

H sin = 1
2 j



. . .
. . .

. . .
. . .

. . .
. . .

. . . 0 −1 0
. . .

. . .
. . . 1 0 −1 0

. . .
. . . 0 1 0 −1

. . .
. . .

. . . 0 1 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,
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Figure 4.4 The Bode amplitude plot of a square wave multiplication operator.

that is, a constant matrix, independent of the complex frequency s, with
the Fourier coefficients of sinω 0t on the first off diagonals. Similar calcu-
lations give that for a general T-periodic multiplication operator

y(t) = D(t)u(t)

the HTF, H (s), is a Toeplitz matrix

H (s) =



. . .
. . .

. . .
. . .

. . .
. . .

. . . D0 D−1 D−2
. . .

. . .
. . . D1 D0 D−1 D−2

. . .
. . . D2 D1 D0 D−1

. . .
. . .

. . . D2 D1 D0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,

where Dk are the Fourier coefficients of D(t).
Note that a multiplication operator can be seen as a state space system

with only a D matrix. The result is thus covered by (4.9), with H (s) =D .
It can also be obtained from the impulse response of a multiplication
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Figure 4.5 The Bode amplitude plot of an LTI system with transfer function
H0(s) = 1/(s + 0.5). The diagonal structure shows that for an LTI system there
is no frequency coupling.

operator
h(t,τ ) = D(t)δ (t− τ ) =

∑
k

Dkδ (t− τ )ejkω 0 t.

Example 2: LTI Systems LTI systems are a special case of LTP sys-
tems, and must therefore have HTFs. For an LTI system there is no cou-
pling between frequencies. The matrix in (4.6) has the standard transfer
function H0(s) on the diagonal and all other Hk(s) are zero.

Example 3: LTP Systems on State Space Form For a general LTP
state space system, with time periodic A(t), B(t), C(t), and D(t), the
transfer functions, Hk(s), cannot be expressed as explicitly as for LTI
systems, see (4.9). However, for systems with constant A-matrix, they
are given by

Hk(s) =
∑

l

Ĉk−l((s+ jlω 0)I − Â)−1 B̂l + Dk. (4.10)

where B̂k, Ĉk, and Dk, are the Fourier coefficients of the periodic functions,
B̂(t), Ĉ(t), and D(t), respectively. (4.10) can be derived as the product of
three matrices, the Toeplitz matrix corresponding to the periodic function,
Ĉ(t), the diagonal matrix for the transfer function, H0(s) = (sI− Â)−1, and
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Figure 4.6 The Bode amplitude plot of an LTP system with Â = −0.5, and B(t)
and C(t) as square waves. This can be seen as the LTI system in Fig. 4.5, with
square wave modulation of input and output.

the Toeplitz matrix of B(t). A constant A-matrix can always be obtained
via Floquet decomposition.

Example 4: A Sampler The HTF of the sampler in Section 3.4 can be
derived from the impulse response

h(t,τ ) =
∑

k

δ (t− kT)δ (τ − kT).

This gives

hk(t) = 1
T

∫ T

0
h(r, r − t)e− jkω 0rdr = 1

T
δ (t),

Hk(s) =
∫ ∞

−∞
e−sthk(t)dt = 1

T
.

This gives in Laplace domain

Y∗(s) =
∑

k

1
T

Y(s− jkω 0),

where Y∗(s) is the Laplace transform of the sampled signal y∗(t). The
HTF of the sampler simply becomes a matrix with all elements equal
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Figure 4.7 The Bode amplitude plot of a sampler. It is clear that the sampler
does not distinguish between signals of frequencies separated by a multiple of the
fundamental frequency. For sampled-data systems this is called aliasing.

(= 1
T )

Hsamp(s) = 1
T



. . .
...

...
...

. . .

. . . 1 1 1 . . .

. . . 1 1 1 . . .

. . . 1 1 1 . . .

. . .
...

...
...

. . .


.

4.4 A Lifting Interpretation

LTP system analysis using the transfer function, Ĥ(z), is complicated by
the fact that it is operator valued, and thus infinite dimensional. For com-
putations, it has to be projected on a finite dimensional basis. This can be
done using several different methods. The fast sampling and lifting tech-
nique [Yamamoto et al., 1997], [Lindgärde, 1999] implies that the system
is sampled using a very high sampling rate. This way, the continuous
signals, ũk(t) and ỹk(t), are approximated by piecewise constant signals.
This leads to a discrete time system of finite dimension.

44



4.4 A Lifting Interpretation

A frequency domain approach is used in [Yamamoto and Khargonekar,
1996] to define the frequency response operator, which is equivalent to
H ( jω ). As ũk(t) and ỹk(t), and also Û(z) are functions in L2[0, T ], they
can be expressed in the base {e( jω+ jnω 0)t}∞n=−∞ (which for ω = 0 gives the
classical Fourier series).

It can be shown that the HTF H (s) is in fact equivalent to the lifted
transfer function Ĥ(esT ) if instead the base {e(s+ jnω 0)t}∞n=−∞ is used. In
this base, Ũ(z) can be written

Û(z) =
∞∑

n=−∞
ûn(z, s)e(s+ jnω 0)t,

where

ûn(z, s) = 1
2π j

∫ T

0
Û(z)e−(s+ jnω 0)tdt

= 1
2π j

∫ T

0

∞∑
k=−∞

ũk(t)z−ke−(s+ jnω 0)tdt

= 1
2π j

∞∑
k=−∞

z−k
∫ T

0
ũk(t)e−(s+ jnω 0)tdt.

(4.11)

The input-output relation of an LTP system can now be written

Ŷ s(z) = Ĥ s(z)Ûs(z),

where

Ûs(z) = [ . . . û−1(z, s) û0(z, s) û1(z, s) . . . ]T , and

Ŷ s(z) = [ . . . ŷ−1(z, s) ŷ0(z, s) ŷ1(z, s) . . . ]T ,
(4.12)

are infinite dimensional vectors, and Ĥ s(z) is a doubly infinite, complex
valued matrix

Ĥ s(z) =



. . . . . . . . . . . . . . .
... Ĥ−1,−1(z, s) Ĥ−1,0(z, s) Ĥ−1,1(z, s) . . .
... Ĥ0,−1(z, s) Ĥ0,0(z, s) Ĥ0,1(z, s) . . .
... Ĥ1,−1(z, s) Ĥ1,0(z, s) Ĥ1,1(z, s) . . .
...

...
...

...
. . .


, (4.13)
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where the elements are given by

Ĥm,n(z, s) = 1
2π j

∫ T

0
e−(s+ jmω 0)t

{
Ĥ(z)e(s+ jnω 0)t

}
dt.

The matrix Ĥ s(z) is in fact the discrete time version of the HTF. This is
shown by observing that U(s+ jnω 0) can be written

U(s+ jnω 0) =
∫ ∞

0
e−(s+ jnω 0)tu(t)dt

=
∞∑

k=0

∫ T

0
e−(s+ jnω 0)(t+kT)ũk(t)dt

=
∞∑

k=0

(est)−k
∫ T

0
e−(s+ jnω 0)tũk(t)dt.

Comparing this with the z-transform in (4.11) gives the following relation

Un(s) = ûn(esT ).

This shows that the HTF approach is in fact equivalent to lifting, with

U(s) = Ûs(esT ),
Y (s) = Ŷ s(esT ),
H (s) = Ĥ s(esT ).

4.5 LTP System Analysis using HTFs

The relation between the harmonic transfer function and lifting implies
that many results for lifted systems can be directly applied to HTFs. Al-
gebraic system operations, like series connection and parallel connection
are preserved under lifting [Bamieh and Pearson, 1992]. The HTF for two
LTP systems in series becomes

H 1+2 = H 1 +H 2,

and for two LTP systems in parallel

H 12 = H 1H 2.
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LTP System Gain

For a stable LTP system, H, the H∞ norm (3.11) can be calculated by

iH i∞ = sup
Re s ≥ 0

hIm sh < ω 0/2

σ max(H (s)), (4.14)

where σ max denotes the maximum singular value, which is well defined for
the doubly infinite matrix H (s) and can be calculated as the limit of finite
matrices using finite projection methods, under appropriate convergence
conditions. Convergence will be dealt with in Chapter 5.

Associated with each singular value σ i(s) are two vectors, U i(s) and
Y i(s), such that, if the input to the system is U(s) = U i(s)α , for some
scalar α , then the resulting output is

H (s)U i(s)α = σ i(s)Y i(s)α .

This can be used to determine what combinations of frequencies are am-
plified the most.

Poles and Zeros

Poles and zeros of an HTF can be defined following the definitions for
multi-input multi-output (MIMO) systems in [Maciejowski, 1989]. The
poles of an HTF H (s) are those s ∈ C for which H (s) is not analytic.
From 4.6 it is clear that the poles correspond to the poles of the LTI
transfer functions, Hk(s). Furthermore, if s is a poles, so is s+ jkω 0, for
k = ±1,±2, . . .. Note that, as Hk(t) is generally complex valued, the poles
of Hk(s) do not come in conjugate pairs. However, the symmetry property
(Theorem 4.1) implies that the poles of H (s) do come in conjugate pairs.
Also note that analysis of the LTI transfer functions Hk(s) separately,
cannot give answers to questions of multiplicity of poles.

For a system on state space form, the poles are the eigenvalues of the
Floquet transformed systems matrix Â. In [Wereley, 1991] the poles are
obtained from the infinite dimensional eigenvalue problem

{sI − (A −N )}V = 0.

This results in infinitely many poles. If s solves the eigenvalue problem,
so does s+ jkω 0 for any k = ±1,±2, . . .. Choosing the poles in the funda-
mental strip of the complex plane, given by

Im(s) ∈
(
−ω 0

2
,
ω 0

2

]
,
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gives n unique poles corresponding to the eigenvalues of Â, folded into the
fundamental strip. A problem with this definition is that the determinant
det(sI −(A−N )) is hard to define. Convergence is obtained for the related
eigenvalue problem

{I − (sI +N )−1A}X = 0.

Following the MIMO theory in [Maciejowski, 1989], for each transmis-
sion zero zo of H (s), there exist a non-zero vector U0 such that H (zo)U0 =
0. It is clear that, just as for poles, if s is a transmission zero, so is s+ jkω 0.
A problem with this definition is that transmission zeros of MIMO sys-
tems can in general not be solved using truncated matrices. For proper
pole zero analysis, it would be convenient with a Smith-McMillan form of
the harmonic transfer function.

In [Wereley, 1991] the transmission zeros of an LTP system are defined
by the infinite dimensional eigenvalue problem[

sI − (Â −N ) −B̂
−Ĉ −D

][V0

U0

]
= 0.

Also here, the convergence is problematic.

Steady State Gain and Harmonic Balance

If all signals are periodic, they can be represented by their Fourier series.
The relation between the Fourier coefficients of the input and the output
is then described by

Y (0) = H (0)U(0).
The complex matrix H (0) can be used to obtain the steady state solution
of a network, and can be seen as the steady state gain of an LTP sys-
tem. The matrix is called the admittance matrix in the Harmonic Norton
Equivalent described in Paper III and is the Jacobian in harmonic bal-
ancing of electrical networks, see [Arrillaga et al., 1994], [Kundert and
Sangiovanni-Vincentelli, 1986]. The steady-state response matrix H (0)
has recently been developed for several electric components, for instance,
transformers with nonlinear saturation curves [Acha et al., 1989], [Sem-
lyen et al., 1988], [Semlyen and Rajakovic, 1989], HVDC converters [Ar-
rillaga and Callaghan, 1991], [Song et al., 1984], [Xu et al., 1994], and
static var compensators [Xu et al., 1991]. For identification of H (0) from
measurements, see [Thunberg, 1998] and [Möllerstedt, 1998]. However,
the information in H (0) is not sufficient to describe stability properties
of the system under aperiodic perturbations.
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-
H 1(s)

H 2(s)

R (s) Y (s)
+

Figure 4.8 A feedback connection of two HTFs H 1 and H 2 results in the closed
loop HTF H cl(s) = (I +H 1(s)H 2(s))−1H 1(s).

-
H

−kI

r y

+

Figure 4.9 The feedback system studied in the Nyquist criterion. Here H repre-
sents a linear time periodic (LTP) system.

Analysis of Feedback Systems

Feedback stability is also preserved under lifting [Bamieh and Pearson,
1992], that is, the feedback connection of two LTP systems H1 and H2 is
L2-stable if and only if the feedback connection of H̃1 and H̃2 is l2-stable.
This implies that feedback connections of complex LTP systems can be
analyzed using the HTFs of the subsystems. The input-output relation of
the feedback system in Fig. 4.8 is given by Y (s) = H cl(s)R (s), where the
closed loop HTF is given by

H cl(s) = (I +H 1(s)H 2(s))−1H 1(s).
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j!0=2
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Figure 4.10 The integration contour in the Nyquist criterion for harmonic transfer
functions.

The HTF Nyquist Criterion The well known Nyquist criterion can be
used to analyze the stability of the closed loop system in Fig. 4.9, using
information of the open loop system, H. For LTI systems, stability can be
investigated by plotting the Nyquist contour H0( jω ) for −∞ < ω < ∞ and
counting encirclements of the point −1/k. In [Wereley, 1991], the Nyquist
criterion for LTP systems was stated, based on the open loop HTF, and
the generalized Nyquist criterion for MIMO systems [Maciejowski, 1989].

THEOREM 4.2
Assume a linear, periodic, causal input-output relation between y and
u is given by (4.4). Denote by {λ i(s)}∞i=−∞ the eigenvalues of the doubly
infinite matrix H (s) in (4.6), for s varying through the contour in Fig. 4.10.
The eigenvalues produce a number of closed curves in the complex plane,
called the eigen-loci of the HTF. The closed-loop system in Fig. 4.9 is L2

stable from r to y if and only if the total number of counterclockwise
encirclements of the −1/k point of these curves equals the number of
open-loop right half plane poles of the H (s) in (4.4) (hence zero if H is
stable).

Passivity of LTP Systems

The concept of passivity is very important in electric networks. It is a well
known fact that the feedback connection of one passive system and one
strictly passive system is input-output stable. This implies that a circuit
of passive elements, like resistors, inductors and capacitors is stable. The
symmetry property can be used to derive a condition for passivity of LTP
systems. A relation y = Hu is said to be passive if for all inputs u it holds
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that ∫ ∞

−∞
u(t)y(t) dt ≥ 0.

Using Parseval’s formula, this is equivalent to∫ ∞

−∞
U∗( jω )Y( jω ) dω

=
∫ ω 0/2

−ω 0/2

∑
n

U∗( jω + jnω 0)Y( jω + jnω 0) dω

=
∫ ω 0/2

−ω 0/2

∑
m,n

U∗
n( jω )Hn−m( jω + jmω 0)Um( jω ) dω

=
∫ ω 0/2

−ω 0/2
U∗( jω )H ( jω )U( jω ) dω ≥ 0,

where ∗ denotes complex conjugate transposed, and Un( jω ) = U( jω +
jnω 0). The symmetry impose that

U∗(− jω )H (− jω )U(− jω )
=
∑
m,n

U∗
n(− jω )Hn−m(− jω + jmω 0)Um(− jω )

=
∑
m,n

U−n( jω )T H−(n−m)( jω − jmω 0)U−m( jω )[−m → n

−n → m

]
=
∑
m,n

U∗
n( jω )H∗

m−n( jω + jnω 0)Um( jω )

=U∗( jω )H ∗( jω )U( jω )

This shows that passivity for stable LTP systems is equivalent to the
condition

H ∗( jω ) +H ( jω ) ≥ 0, 0 ≤ ω < ω 0/2.

4.6 Conclusions

Using the harmonic transfer function, LTP system can be analyzed as a
multi-input multi-output (MIMO) LTI system. The results in this chapter
are just a few of the many results for LTI systems that can be generalized.
So far the convergence issues of the infinite dimensional matrix H (s) have
not been addressed. This is the topic of the next chapter.
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5

Convergence and
Computational Issues

When doing numerical computations with an infinite dimensional opera-
tor

y = Hu,

it has to be approximated by finite dimensional operators. For the lifting
approach, functions ũk(t) ∈ L2[0, T ] are approximated by finite dimen-
sional projections uN = PNu. In [Dullerud, 1996], a truncated Fourier
series is used, hence

uN = PNu =
N∑

k=−N

Uk(s)e(s+ jkω 0)t,

whereas for the fast sampling and lifting approach [Yamamoto et al.,
1997], u(t) is approximated by a discrete time signal

uN = PNu = {u(kT/N)}N−1
k=0 .

The mapping from uN to yN can be described by the finite dimensional
operator HN = PN H PN

yN = PN H PNu = HNuN .

It is therefore of interest to study what happens with the induced L2 norm

iH − PN H PNi∞

for large N when PN is a sequence of projection operators for which PN →
I. A problem is that it is not possible to find finite rank operators PN for
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5.1 Roll-off for LTP Systems

which iPN − Ii tends to zero. One therefore has to live with a weaker
convergence. To get norm convergence of PN H PN to H one has to use
extra conditions on H.

Truncation of the infinite dimensional harmonic transfer matrix H (s)
implies the use of the projection operator PΩ that maps a signal y in L2

to its low frequency part yΩ = PΩ y given in the frequency domain by

ŷΩ( jω ) = P̂Ω ŷ( jω ) =
{

ŷ( jω ) hω h ≤ Ω,
0 hω h > Ω,

where ŷ is the Fourier transform of y. Notice that PΩ is not a causal
operator. The triangle inequality gives

iH − PΩ H PΩi ≤ i(I − PΩ)Hi + iH(I − PΩ)i

5.1 Roll-off for LTP Systems

The finite dimensional operator, HN , can be assumed to be a good ap-
proximation of the infinite dimensional operator, H, if the system has low
gain for high frequencies. For LTI systems, such a property is denoted
as roll-off. For LTP systems there is coupling between frequencies, which
means that low frequency inputs can result in high frequency output. To
justify the truncation, two conditions must be fulfilled; the system gain
for high input frequencies must be low, and the high frequency output
must be low. This leads to the following definitions.

DEFINITION 5.1
An LTP system H is said to have input roll off k if there exists a constant
C such that

iH(I − PΩ)i ≤ CΩ−k,

and to have output roll off k if there exists a constant C such that

i(I − PΩ)Hi ≤ CΩ−k.

An LTP system is said to have roll off k if it has both input and output
roll off k. It then follows that there exists a constant C such that

i(I − PΩ)H(I − PΩ)i ≤ CΩ−k.

It is clear that a sufficient condition for norm convergence is that the LTP
system has a roll-off k > 0. Note that in the LTI case PΩ and H commute,
which implies that input and output roll off are equal.
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Chapter 5. Convergence and Computational Issues

Conditions for Roll-off

The goal is now to find simple conditions in the time domain, that is, on
the impulse response h(t,τ ) for a system to have roll off k. Before attacking
the LTP case let us revisit the LTI case. For simplicity we consider only
the scalar case. For an LTI system the input-output behavior is defined
by the convolution

y(t) =
∫ ∞

−∞
h(t− τ )u(τ )dτ ,

with absolute convergence if h(⋅) ∈ L1, and u(⋅) ∈ L2. The frequency
response ĥ( jω ) is defined as

ĥ( jω ) =
∫ ∞

−∞
e− jω th(t)dt.

One then has
iHi = sup

ω
hĥ( jω )h ≤ ihiL1

The Riemann-Lebesgue lemma also says that ĥ( jω ) → 0 as ω → ∞. By
integration by parts one sees that if h is causal (h(t) = 0 for t < 0), and
h, h′, . . . , h(k) ∈ L1, then

ĥ( jω ) =
∫ ∞

0
h(t)e− jω tdt

=
[
h(t) e− jω t

(− jω )
]∞

0
+ 1

jω

∫ ∞

0
h′(t)e− jω tdt.

Here h(t) → 0 as t →∞ since h, h′ ∈ L1. Successive integration by parts
gives

ĥ( jω ) = h(0)
jω

+ . . .+ h(k−1)(0)
( jω )k + 1

( jω )k
∫ ∞

0
h(k)(t)e− jω tdt.

If h(0) = . . . = h(k−2)(0) = 0 and h, h′, . . . , h(k) ∈ L1 it follows that

hĥ( jω )h ≤ 1
ω k (hh(k−1)(0)h + ih(k)iL1)

Using the definition of roll off for LTP systems above we can conclude
that h has roll off k. For an LTI system with finite dimensional state
space representation (A, B, C) with stable A matrix one sees that the
condition is equivalent to CB = . . . = CAk−2 B = 0. This shows that the
definition above coincides with the standard definition of roll-off as the
relative degree for LTI finite dimensional systems.
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5.1 Roll-off for LTP Systems

For LTP systems we would first like to obtain a similar sufficient con-
dition in the time domain for the operator H to be a bounded operator on
L2(−∞,∞). One condition is given by the Hilbert-Schmidt norm defined
by

iHiHS := ihi =
(∫ ∞

−∞

∫ ∞

−∞
hh(t,τ )h2dt dτ

)1/2
< ∞.

This condition is however very restrictive. The double integral is for in-
stance infinite if h(t,τ ) is a (nonzero) function of t − τ , that is, for LTI
systems. The condition also implies that the operator H is compact [Young,
1988], which is a severe restriction.

A less restrictive condition can be obtained by using the lifting tech-
nique described in Chapter 3. Recall that using lifting a causal LTP sys-
tem H could be represented as acting on l2-sequences of L2[0, T ] signals
ũk(t) = u(t+ kT). In fact

ỹn =
∞∑

k=0

H[k]ũn−k,

where the operator H[k] : L2([0, T ]) → L2([0, T ]) is defined via

(H[k]v)(t) =
∫ T

0
h(t+ kT ,τ )v(τ )dτ , t ∈ [0, T ].

Assume now that for any k = 0, 1, . . . one has that∫ T

0

∫ T

0
hh(t+ kT ,τ )h2dt dτ < ∞

(true automatically for LTI systems with h(⋅) ∈ L∞. From this it follows
that H[k] is bounded on L2[0, T ], compact, and

iH[k]i ≤
(∫ T

0

∫ T

0
hh(t+ kT ,τ )h2dt dτ

)1/2
.

Assume furthermore that

ihiB :=
∞∑

k=0

(∫ T

0

∫ T

0
hh(t+ kT ,τ )h2dt dτ

)1/2
< ∞

That h satisfies this inequality will be denoted with h ∈ B. For such
systems we have

∑∞
k=0 iH[k]i < ∞. Then, for a fixed z ∈ C with hzh ≥ 1, the
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z-transform operator Ĥ(z) =∑∞
k=−∞ z−kH[k], is an operator on L2([0, T ])

with norm bounded by

iĤi = sup
hzh>1

∥∥∥∥∥
∞∑

k=0

z−kH[k]

∥∥∥∥∥ ≤
∞∑

k=0

iH[k]i

≤
∞∑

k=0

(∫ T

0

∫ T

0
hh(kT + t,τ )h2dt dτ

)1/2
< ∞.

This condition is much less restrictive than the Hilbert-Schmidt con-
dition mentioned earlier. It is for instance satisfied for impulse responses
of the form h(t,τ ) = CeA(t−τ )B with A Hurwitz.

Let us now study the roll-off by studying the behavior of an LTP system
H on high-frequency signals. Let h(i)τ (t,τ ) denote the ith derivative of
h(t,τ ) with respect to the second variable, that is,

h(i)τ (t,τ ) = V i

Vτ i h(t,τ ).

We then have the following result

THEOREM 5.1
Assume that h(i)τ (t,τ ) ∈ B for i = 0, 1, . . . , k and that

h(i)τ (t, t) = 0, i = 0, . . . , k− 2,

ess. sup
0≤t≤T

hh(k−1)
τ (t, t)h < ∞

then H has input roll-off k, in fact

iH(I − PΩ)i ≤
(

ess. sup
0≤t≤T

hh(k−1)
τ (t, t)h + ih(k)τ (t,τ )iB

)
/Ωk, Ω > 0.

PROOF 5.1

iH(I − PΩ)i = sup
iuiL2 (−∞,∞)=1

iH(I − PΩ)uiL2 = sup
iviL2(−∞,∞)=1, PΩv=0

iHviL2

so we should study the behavior of H on high-frequency signals v. Inte-
gration by parts gives

y(t) =
∫ t

−∞
h(t,τ )v(τ )dτ

=
[
h(t,τ )v(−1)(τ )

]t

−∞
−
∫ t

−∞
hτ (t,τ )v(−1)(τ )dτ ,
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5.1 Roll-off for LTP Systems

where v(−1)(t) = ∫ t
−∞ v(r)dr denotes integration. Since h(m)τ (t,−∞) =

0, m = 0, . . . , k− 1, Successive integration by parts gives

y(t) = (−1)k−1h(k−1)
τ (t, t)v(−k)(t) + (−1)k ∫ t

−∞ h(k)τ (t,τ )v(−k)(τ )dτ

From the fact that v ∈ L2 and PΩv = 0 it follows that the function v(−k)

belongs to L2, and has Fourier transform v̂( jω )/( jω )k. It follows that

iyiL2 ≤
(

ess. sup
0≤t≤T

hh(k−1)
τ (t, t)h + ih(k)τ (t,τ )iB

)
iv(−k)iL2

The result now follows from Parseval’s formula and the fact that v̂( jω ) = 0
for hω h < Ω.

For output roll off we have the following similar result. The difference
is that the direction of derivatives changes from τ to t.

THEOREM 5.2
Assume that h(i)t (t,τ ) ∈ B for i = 0, 1, . . . , k, where h(i)t (t,τ ) denotes the
ith derivative of h(t,τ ) with respect to the first variable, and that

h(i)t (t, t) = 0, i = 0, . . . , k− 2,

ess. sup
0≤t≤T

hh(k−1)
t (t, t)h < ∞

then

i(I − PΩ)Hi ≤
(

ess. sup
0≤t≤T

hh(k−1)
t (t, t)h + ih(k)t (t,τ )iB

)
/Ωk, Ω > 0,

and hence H has output roll-off k.

PROOF 5.2
The result follows from successive differentiation of the relation y(t) =∫ t
−∞ h(t,τ )u(τ )dτ with respect to t and a similar technique as before. The

details are left to the reader.

Roll-off for LTP systems on State Space Form

Consider the system with input and output modulation

dx(t)
dt

= Ax(t) + B(t)u(t),
y(t) = C(t)x(t),

(5.1)
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Chapter 5. Convergence and Computational Issues

with B(t), C(t) ∈ L∞ and T-periodic. This means that

hB(t)h ≤ Bmax < ∞,
hC(t)h ≤ Cmax < ∞.

for almost all t. The impulse response is h(t,τ ) = C(t)eA(t−τ )B(τ ), which
gives for almost all t and τ

hh(t,τ )h ≤ hCmaxh ⋅ heA(t−τ )h ⋅ hBmaxh.

As Cmax eA(t−τ )Bmax is LTI with no direct term, it has a roll off of at least
one. As the theorems for input and output roll-off only have conditions
on absolute values on the impulse response and its derivatives, it is clear
that any system on the form (5.1) has roll off of at least 1. In fact, using
the Floquet decomposition, any LTP system on state space form with finite
valued A(t), B(t), and C(t), and D(t) = 0, has roll off 1.

To show higher roll off, the impulse response needs to be differentiated.
For input roll off differentiation should be with respect to τ . This gives

hτ (t, t) = C(B ′(t) − AB(t)).

If B(t) is not continuous, for instance a square wave, then B ′(t) will be
unlimited, and Theorem 5.1 cannot be used to show higher input roll off.

For output roll off differentiation should be with respect to t. This gives

ht(t, t) = (C′(t) + C(t)A)B(t).

The same line of reasoning shows that for a discontinuous C(t), Theo-
rem 5.2 cannot be used to show higher output roll off.

Example

Consider the linear system H = G0 B where G0(s) = 1/(s+ 10)3, that is,
has roll-off 3, and B(t) is a square wave with period T = 2π . Since B(t) is
discontinuous, we expect the system to have input roll-off 1, Since there
is no output roll-off, the system will have output roll-off 3, just like G0.
In Fig. 5.1 the norms hhH(I − PΩ)hh and h(I − PΩ)Hhh are plotted against
Ω. The plot indicates that our assumptions were correct.

5.2 Roll-off and Power System Modeling

A problem when analyzing electric systems using transfer function mod-
els is the direction of flows. Should the voltage be chosen as input and the
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Figure 5.1 The norms hhH(I − PΩ)hh (solid) and h(I − PΩ)Hhh (dashed) plotted
against Ω. The plot shows that the system has input roll-off 1 and output roll-off 3.
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Figure 5.2 A simple electric circuit with a voltage source, an inductor, and a
resistor.

current as output or should it be the other way around? This does not de-
pend on the sub-model alone, but on the network to which it is connected.
This makes an object oriented approach to modeling difficult.

Consider a simple resistor with resistance R. This can be modeled in
two ways

u(t) = Ri(t), or i(t) = 1
R

u(t).
Which one should be chosen? A simple circuit with a voltage source, an
inductor, and a resistor, is shown in Fig. 5.2. The circuit can be described
by

u0(t) = L
d
dt

i(t) + Ri(t).

The circuit can also be written as a feedback connection of the inductor
and the resistor, as in Fig. 5.3(a). The closed loop transfer function from
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Figure 5.3 The electric network in Fig. 5.2 seen as a feedback connection.

U0 to I becomes

Gcl(s) =
1

sL

1+ 1
sL

R
= 1

sL + R
.

However, the feedback connection is not unique. Another possible feedback
connection is shown in Fig. 5.3(b), which gives the same closed loop system

Gcl(s) =
1
R

1+ sL
1
R

= 1
sL + R

.

To limit the errors when analyzing the system using truncated HTFs
for the resistor and the inductor, the representation which gives the high-
est roll-off should be chosen. The problem is related to numerical problems
in simulations. As integration is more numerically stable than differen-
tiation, the inductor should be modeled as an integrator, which gives the
resistor model u = Ri. However, in another application, it might be better
to model the resistor in the opposite way. This makes an object oriented
approach to modeling of electric networks hard. The direction of flows is
not clear, but depends on the topology of the network, that is, how the
components are connected. This is called the causality assignment prob-
lem [Cellier and Elmqvist, 1993]

Most simulation tools for electric networks, like EMTP and Spice, have
a fixed causality. In EMTP all dynamic components are modeled as voltage
dependent current sources, that is, with voltage as input and current as
output. The models are thus independent of network topology. This makes
it possible to make models of subcomponents for reuse in other applica-
tions. As a drawback, the integration routine might require extremely
small time steps, leading to inefficient simulation.
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Figure 5.4 A Simulink block diagram of a micro-turbine unit, compare with
Fig. 5.5.

For signal based tools like Simulink, the causality has to be determined
when designing the sub-models. Component modeling requires a lot of
insight in the dynamics of the complete system. This leads to application
specific models, which complicates the reuse of the models. As the inputs
and the outputs of the sub-models have to be connected, model diagrams
tend to be messy, and will not mirror the physical model. A Simulink
model of the micro-turbine unit in Paper IV is shown in Fig. 5.4.

Clearly, it would be desirable to be able to model the system with-
out thinking of causality. A resistor should be described by the equation
u = Ri, without specifying what is input and output. These ideas where
introduced in the so called behavioral framework of system theory by
Willems [Willems, 1971]. This approach is also taken in the equation-
based modeling language Modelica[Elmqvist et al., 1999]. In Modelica,
the equations describing the physics of a system are written down as
they are, thus not as assignments. The models just give relations between
voltages and currents. Sub-models are connected via so called cuts. For
electric components the cuts contain current and voltage, and connecting
two cuts implies that the voltages are the same in the two cuts, whereas
the current out of the first cut equals the current into the other cut. When
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Figure 5.5 A block diagram of the micro-turbine unit in Modelica. The diagram
clearly images the physical system, compare with Fig. 5.4.

the Modelica code is translated to simulation code, the causality is checked
using sophisticated algorithms.

A Modelica model of the micro-turbine unit is shown in Fig 5.5. The ad-
vantage compared to Simulink is clear. The diagram resembles the phys-
ical system. Sub-models are connected via cuts, electrical (with voltage
and current) and mechanical (with speed and torque).
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6

Concluding Remarks

Stable operation of networks with power electronic devices is highly de-
pendent on good control. The Harmonic Transfer Function (HTF) has been
presented as a means to analyze modern power systems with switching
power electronics. The HTF transforms a linear time periodic system to
a time invariant equivalent, and makes it possible to take advantage of
the many frequency domain tools, which are developed for analysis of and
control design for linear time invariant systems.

Four different power system applications, where the HTF has been
used to analyze the system, are presented in the four papers, which are
included in the thesis.

Future Work

The work in this thesis opens new possibilities for a lot of interesting
research problems in power system analysis. The presented framework
gives valuable insight in system dynamics. These include modeling as-
pects to facilitate improved analysis, robust model reduction, which is
essential for analysis of complex power systems, and efficient simulation.
This is a great help when formulating control objectives for, for instance,
converter controllers, and when developing norms and standard for the
connection of power electronic components to the grid.

The framework opens possibilities to use the well-developed theory
for linear time invariant systems to achieve robust control design and
harmonic filtering. It also facilities a way to dynamically analyze the per-
formance of, for example, solutions for pulse width modulation, and phase
locked loops.
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Paper I

Harmonic Analysis of Distribution
Networks

Erik Möllerstedt and Bo Bernhardsson

Abstract
Harmonic analysis of power systems is often performed in frequency do-
main. Iterative methods are used to find the steady state solution. For
components with nonlinear and switching dynamics, the current spectrum
is derived from the node voltages, and used to update the node voltages in
the next iteration. Newton iterations can be used to improve convergence.
The local behavior of a component is then characterized by the Jacobian.
The current spectrum and the Jacobian represent the component and are
often referred to as the Harmonic Norton Equivalent.

For distribution networks, the approximate voltage is known in ad-
vance. As only small distortions are allowed, models that are derived for
the nominal voltage are valid for any network under normal operation.
The result is a model that is linear in the Fourier coefficients. The lin-
ear structure is validated for a dimmer, and shown to be accurate for
distortions within the prescribed limits for total harmonic distortion.

The models can be precalculated, which supports an object oriented
approach to network modeling and the use of model libraries for reuse of
models. Network solving is done using linear algebra, avoiding iterative
methods. A procedure for obtaining the Harmonic Norton Equivalents
from measurements or time domain simulation is presented and shows
good agreement with the validation data.
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1. Introduction

When analyzing and simulating networks that include power electronic
devices, a mix of time domain and frequency domain methods are often
required[Mohan et al., 1994]. For proper handling of the switchings of the
power electronics, time domain simulation is most appropriate. Stability
analysis and control design, on the other hand, is conveniently performed
in frequency domain, by means of the transfer function of the linearized
system. Linear analysis does not take the effects of the switchings into
account, and the performance of the resulting system must therefore be
validated in time domain.

The primary goal of the analysis is often to derive a steady state solu-
tion. This is desired for harmonic distortion analysis, but is also used to
get proper initial values for time domain simulations and as the operating
point around which a linearization should be performed.

To obtain the steady state solution via time domain simulation is very
time consuming. If the system has slowly varying states, it has to be sim-
ulated for a long time before steady state is reached. The switchings also
require a very small time step. For this reason, many frequency domain
methods for steady state analysis of this class of systems has been devel-
oped. Most of these are based on the method of harmonic balance, [Kun-
dert and Sangiovanni-Vincentelli, 1986; Gilmore and Steer, 1991]. This
is an iterative method, and depending on the numerical method used in
the iterations, it has been given many various names; Newton’s method
of harmonic balance is called Harmonic Power Flow Study in [Xia and
Heydt, 1982], Unified Solution of Newton Type in [Acha et al., 1989], and
Harmonic Domain Algorithm in [Arrillaga et al., 1994]. Harmonic bal-
ance with relaxation is called Iterative Harmonic Analysis in [Arrillaga
et al., 1987], and Newton’s method with a diagonal Jacobian is called A
Multiphase Harmonic Load Flow Solution Technique in [Xu et al., 1991].

A problem with these frequency domain methods is that proper mod-
eling of the switching dynamics is cumbersome in frequency domain.
Numerous papers have been written on frequency domain modeling of
various components, for instance, transformers with nonlinear saturation
curves [Semlyen et al., 1988; Semlyen and Rajakovic, 1989; Acha et al.,
1989], HVDC converters [Song et al., 1984; Arrillaga and Callaghan,
1991; Xu et al., 1994] and static var compensators [Xu et al., 1991].

For a distribution network, the approximate operating point for all
components is well known in advance. In Europe we have 230 V RMS and
50 Hz. Furthermore, there are standards and regulations that limit the
amount of distortion. This means that a model that is linearized around
the nominal operating point is valid under normal operation of a network,
that is, when the distortions are within the limits.
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2. A Linearized Approach

The model structure described in this paper is based on linearization
around the nominal voltage of the system. The linearization implies that
aggregation of models and network solving is a non-iterative procedure,
using linear algebra. The models, called Harmonic Norton Equivalents,
can be interpreted as an extension of the Norton equivalent for linear
subnetworks. It facilitates a compact way to represent the behavior of a
large nonlinear and switching networks and it can be obtained through
simple experiments avoiding detailed modeling.

The structure of the Harmonic Norton Equivalents has been developed
for the purpose of analyzing nonlinear and switching networks, with re-
spect to harmonic contents, periodic stability, and robustness. They can
also be used for improved load representation in time domain simula-
tion programs. Furthermore, existing model libraries from time domain
simulation programs can be used to obtain the equivalents, which means
that frequency domain modeling of nonlinear and switching loads is not
necessary.

2. A Linearized Approach

Power networks with nonlinear and switching components are time vary-
ing systems, with a periodic excitation due to the applied sinusoidal volt-
age. Linearizing around the nominal 50 or 60 Hz voltage results in linear
time periodic models:

dx(t)
dt

= A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)u(t),

where A(t), B(t), C(t), and D(t) are T-periodic matrices.
A linear model approximates the system well at limited voltage dis-

tortions. In steady state, signals are periodic and can be represented ap-
proximately by truncated Fourier series

i(t) =
N∑

k=−N

Ckejkω 0 t,

v(t) =
N∑

k=−N

ckejkω 0t,

71



Paper I. Harmonic Analysis of Distribution Networks

with spectra

I = [ C−N C−N+1 . . . CN−1 CN ]T ,

V = [ c−N c−N+1 . . . cN−1 cN ]T .

The linearization implies that there is a linear relationship between
the voltage distortion and the current distortion

I = I0 + Y(V − V0). (1)
The model is thus defined by an admittance matrix, Y, and a nominal
current spectrum, I0, which describes the current at nominal voltage,
with spectrum V0.

The admittance matrix Y describes how the current spectrum is af-
fected by deviations from the nominal voltage. Each column in Y describes
the change in the current spectrum when a small cosine or sine component
of a certain harmonic frequency is added to the nominal voltage,

Y = V I
VV

=



VC−N
Vc−N

VC−N
Vc−N+1

. . . VC−N
VcN

VC−N+1
Vc−N

VC−N+1
Vc−N+1

. . . VC−N+1
VcN

...
...

. . .
...

VCN
Vc−N

VCN
Vc−N+1

. . . VCN
VcN

 .

A Harmonic Balance Interpretation

Solving a network using these linearized models can be seen as one itera-
tion of Newton’s method of Harmonic Balance [Kundert and Sangiovanni-
Vincentelli, 1986; Gilmore and Steer, 1991], with a natural choice of ini-
tial values. The Jacobian is built up by admittance matrices, like Y in
Equation 1. The admittance matrices are fixed and do not, for reasonable
harmonic levels, depend on the network configuration. They can thus be
precalculated or measured. This results in fast solving without conver-
gence problems. The network is solved by successively aggregating the
components. This supports an object oriented approach to network anal-
ysis, where model libraries can be composed for reuse of aggregated load
models.

A Norton Equivalent Interpretation

In Figure 1 it is shown how the models can be interpreted as Norton
Equivalents, that is, an admittance in parallel with a current source. The
admittance is replaced by an admittance matrix, Y, and the harmonic
current source, IE, is defined as

IE = YV0 − I0.
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I

V Y IE

Figure 1 The model can be interpreted as a Norton equivalent, with an admit-
tance matrix, Y, and a current source, IE.

The current I through the component is given as an affine function of the
voltage

I = YV − IE.

Representing nonlinear and switching loads with their Harmonic Norton
Equivalent, all calculations from traditional linear network theory still
apply. As the models are linear, aggregation of loads and network solving
are non-iterative procedures using linear algebra.

Because of the structure, frequency domain models used with Newton’s
method of harmonic balance have often been referred to as Harmonic
Norton Equivalents, [Xu et al., 1991; Acha et al., 1989].

The powerful property of the traditional Norton equivalent, however,
is not its structure, but the fact that a simple model can equivalently
describe the performance of a large linear network. The proposed model
structure facilitates a simple way to aggregate components for model re-
duction, which allows large networks at steady state to be equivalently
described by simple models, that is, an admittance matrix, Y, and a har-
monic current source, IE. The models can be estimated by means of simple
experiments with measurements or by time domain simulation. This way,
detailed modeling of large networks is avoided. The name Harmonic Nor-
ton Equivalent is thus motivated.

3. Validation of the Model Structure

For the Harmonic Norton Equivalent, modeling errors occur both due to
the linearization and the truncation of the Fourier series. Here, a dimmer
is investigated to get an indication of the accuracy of the model structure.
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Rlamp

R

C

triac

diac

Figure 2 A circuit diagram of a dimmer.
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Figure 3 Measured current through a dimmer.

A Model for a Dimmer

The dimmer is a power electronic device used to limit the power and thus
dim the light from a light bulb. A circuit diagram of a dimmer is shown in
Figure 2. The dimmer works as an open circuit for a part of each period,
and thus blocks the current through the lamp. The rest of the period, it
works as a short circuit. The turn on delay depends on the value of the
variable resistor, R.

The current through the dimmer is shown in Figure 3. The switch-
ing nature of the dimmer implies that there is a sharp discontinuity in
the current, which results in high distortion also at high frequencies. The
dimmer constitutes a good test device. It is simple, but still has the prob-
lems associated with modeling and simulation of power electronics. The
Harmonic Norton Equivalent for the dimmer is derived in [Möllerstedt,
1998].
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Figure 4 The plots show the deviation of the first six complex Fourier coefficients,
C1, ..., C11, of the current through the dimmer, due to a third harmonic voltage dis-
turbance. Each plot shows the result of a cosine disturbance and a sine disturbance.
As the dimmer is linear with respect to a cosine disturbance, there is a perfect fit
between the linear model (○), and the nonlinear time domain model (+). For a
sine disturbance, however, the result of the linearization is obvious. The larger the
disturbance, the larger the misfit of the model.

To validate the Harmonic Norton Equivalent for the dimmer, it is in-
vestigated how a distortion in the voltage affects the current. For the
dimmer model only odd harmonics up to order 11 are considered. The
turn on delay, d, for the dimmer is set to d = T/6, where T is the cycle
time. This means that the dimmer is off for one sixth of a period, every
half period. The lamp resistance is Rlamp = 600 Ω. For comparison, a
nonlinear time-domain model for an ideal dimmer is simulated to steady
state.

In Figure 4, a voltage distortion of the third harmonic frequency is
added to the fundamental frequency voltage. The plots show how the
Fourier coefficients of the current are affected when a cosine or sine dis-
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turbance is applied to the voltage, that is

v(t) = a0
1 cosω 0t+ â3 cos 3ω 0t, or

v(t) = a0
1 cosω 0t+ b̂3 sin 3ω 0t.

The Fourier coefficients of the current distortion is plotted in the complex
plane, for the first six odd harmonics. This way, both phase and amplitude
of the distortion is shown in one plot. The voltage distortion amplitude, â3

and b̂3, range in steps of 2% from –10% to +10% of the nominal voltage,
a0

1 = 230 ⋅
√

2 V. The fundamental frequency is ω 0 = 2π ⋅ 50 rad/s.
For the linear model, that is, the Harmonic Norton Equivalent, the

plots show equally spaced points on straight lines. A doubled voltage dis-
tortion amplitude results in a doubled amplitude for the current deviation,
whereas the phase is the same. The dimmer is exactly linear with respect
to a cosine disturbance. The reason for this is that a cosine disturbance
does not affect the zero-crossing of the current, which determines the
turn off time for the dimmer. This linear behavior is shown in the plots,
where there is a perfect fit for the linear model compared with a nonlinear
model. For a sine disturbance, however, the result of the linearization is
clearly seen. The larger the amplitude of the disturbance, the larger the
deviations from the linear model.

A disturbance with arbitrary phase can be seen as a superposition of a
cosine disturbance and a sine disturbance. Thus for a dimmer, the worst
case is a pure sine disturbance. It is shown that the linear model is a rea-
sonably good approximation for amplitudes of the distortion limited to 6 %
of the fundamental amplitude regardless of the phase of the disturbance.

Harmonic Norton Equivalents in Distribution Networks

The increasing use of power electronics has led to an increase in voltage
distortion. The result of this is a need for standards on allowed distortion
levels, to guarantee a good power quality and also to determine how the
responsibility for keeping the quality should be shared. In a typical stan-
dard, the maximum allowed distortion in a distribution networks is 4% for
each harmonic component, and 6% total harmonic distortion (THD), for
the voltage. The fact that only small deviations from the nominal voltage
are allowed, justifies the use of a linear relation, and indicates that the
Harmonic Norton Equivalents are valid for analysis of networks under
normal conditions.
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4. Solving a Small Network

The steady state solution of a network is conveniently derived using Har-
monic Norton Equivalents. The method is used to calculate the total cur-
rent, I1, in the small network in Figure 5, with two dimmers in parallel,
and small net impedances.

The two dimmers, with resistive loads of 20 Ω, are represented by
Harmonic Norton Equivalents, (Y1, I1 E) and (Y2, I2 E). The reason for
chosing Rlamp = 20 Ω instead of a Rlamp = 600 Ω as in Section 3 is to get
high enough currents, so that the voltage too gets distorted. The chosen
Rlamp can be interpreted as 30 normal dimmed light bulbs at the same
place in the network.

The net impedances, modelled as a resistor and an inductor in se-
ries, are represented by matrices, Ynet 1 and Ynet 2. The net resistances
are Rnet 1 = 0.75 Ω and Rnet 2 = 0.25 Ω, and the inductances are Lnet 1 =
0.0024 H and Lnet 2=0.0008 H, respectively. The voltage source is purely
sinusoidal, with RMS value 230 V and frequency 50 Hz.

The amount of distortion of the current through the dimmer depends
on the turn on delay, d, for the dimmer. If d = 0, the dimmer is always
on, and it is thus linear and there is no current distortion. The longer
the turn on time, the larger is the relative distortion. When the delay is
half a period, the dimmer is always off. To see if the accuracy depends on
the level of distortion, the dimmer was simulated with the turn on time
varying from zero to half a period. In Figure 6, Fourier coefficients of the
resulting current vector, I1, is compared with the current obtained in a
time domain simulation. The plots show that the method works well for
all delays, d.

Ynet 1 Ynet 2I1 I3

I2

(Y1, I1 E) (Y2, I2 E)

Figure 5 A small circuit with two dimmers, (Y1, I1 E) and (Y2, , I2 E), and line
losses, Ynet 1 and Ynet 2
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Figure 6 Plots showing the real and imaginary parts of the linearized and simu-
lated Fourier coefficients, C1, ..., C7, for the current, I1, in the circuit in Figure 5 as
a function of the turn on delay for the dimmers. When the relative delay is 0.5 the
dimmer is permanently turned off.

5. A Procedure for Parameter Estimation

For complex systems, it would be desirable to use different tools to ana-
lyze different parts of the network. For example use EMTP for the linear
network and the generators, SPICE for protective power electronic de-
vices, and some general purpose simulation tool to simulate the control
algorithms. To avoid impossible, detailed modelling of aggregated loads,
like office buildings, residential areas or even whole suburbs, it would be
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desirable to be able to obtain the models through real measurements.
Real measurements and time domain simulation generate sampled

time domain data. Harmonic Norton Equivalents for a subsystem can be
obtained from sampled time domain data by applying distorted signals to
the system. A procedure for this is presented in four steps:

1. Determine the nominal current, i0(t), by applying the nominal volt-
age, v0(t) = a0 cosω 0t, where a0 is the nominal amplitude, and ω 0

is the fundamental frequency.

2. Measure current and voltage for, at least, 2N different small periodic
distortions from the nominal wave shape of the voltage. For example

v(t) = v0(t) + âk cos kω 0t

v(t) = v0(t) + b̂k sin kω 0t
k = 1, 2, . . . , N . (2)

3. Use the Discrete Fourier Transform to calculate current and voltage
spectra from the sampled time domain signals. The nominal spectra
are called I0, and V0, respectively, and let Ik and Vk represent the
spectra from the kth distorted measurement.

4. The admittance matrix Y is obtained through the linear equation
system

YV̂ = Î, (3)
where

V̂ = [ V1 − V0 V2 − V0 . . . V2N − V0 ] ,
Î = [ I1 − I0 I2 − I0 . . . I2N − I0 ] .

Finally, the harmonic current source, IE, is derived

IE = YV0 − I0.

Estimating the Parameters of a Dimmer Model

The procedure was applied with good result on a dimmer. The experiment
setup is shown in Figure 7. The desired distorted voltage shape, see (2),
is obtained in the following way. A switched voltage converter is used to
produce a PWM waveform. The pulse width is proportional to a reference
signal, which is calculated and output from a PC. The converter switching
frequency is 4 kHz. To get rid of the high frequencies generated by the
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+
–

DC source

reference from PC

converter filter dimmer
Figure 7 A schematic of the experiment setup.

switching, a low pass LCL-filter with a bandwidth of 3 kHz is used to
smooth the voltage.

In order to check whether the procedure gives accurate models, the
estimated dimmer model was validated by comparing predicted current
spectra with measured spectra for arbitrary voltage distortions. For the
voltage distortion in Figure 8 the harmonic distortion in the first 13 har-
monics is 9% of the nominal voltage, which is much higher than what
is allowed in distribution networks. There is also a considerable amount
of distortion at higher frequencies. Still, the model predicts the resulting
current distortion really good. Predicted and measured current distortions
are shown in Figure 9.

At higher power levels it is, however, unrealistic to generate all power
internally, which is needed for the experiments. In [Thunberg, 1998] it is

0 0.01 0.02 0.03 0.04
−50

0

50

Figure 8 The voltage distortion used for validation. The total harmonic distortion
is over 9%.
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shown how a diagonal Y-matrix for a distribution network can be obtained
by switching in and out large capacitor banks, and thus changing the
supplied voltage. It is possible that the full Y-matrix can be obtained by
switching in and out other components than capacitors. In some cases, it
may be enough to use the natural variations in the supplying network.

Comparison with Estimation of Linear Loads

For linear systems, a single frequency input results at steady state in an
output of the same frequency. Different frequencies can be treated sep-
arately, and the resulting output is a superposition of all frequencies in
the input. For nonlinear systems, this is not the case. A sinusoidal input
will at steady state give an output with not only the same frequency, but
harmonic frequencies, and possibly sub-harmonic frequencies, too. When
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Figure 9 Validation of the model using the voltage in Figure 8. The upper plot
shows the deviation from the current due to the voltage distortion. The estimated
current is solid, whereas the measured current is dashed. The lower plots show
amplitude and phase of the Fourier coefficients of the current. Estimated values
are marked with circles, (o), and measured values with a plus, (+).
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linearizing the system around the nominal voltage, it is measured how a
small voltage superimposed to the nominal one affects the nominal cur-
rent spectrum. A small voltage distortion of a harmonic frequency affects
all current harmonics and not just the current component with the same
frequency as the added voltage. Furthermore, the current variations de-
pend on both frequency and phase of the superimposed voltage.

When sampling a continuous time signal, an anti-aliasing filter must
be used to avoid aliasing problems. The sensors used for the measure-
ments may also be low pass filtering. The filters affect the amplitude and
the phase of the signals. When estimating linear systems, this does not
cause any problems, because both inputs and outputs are affected in the
same way, as the different frequencies are considered separately. With
nonlinear loads, however, the signals contain many frequencies at the
same time. As the filter effects are different for different frequencies, the
dynamics of the filter must be known and compensated for.

6. Stability of the Periodic Solution

Linear time periodic (LTP) systems occur in many different applications,
where there is a periodic excitation, and a lot of work has been done on
stability and robustness analysis on this class of systems, see [Wereley,
1991] and the references therein. With the method described in this paper,
the existence of a periodic solution is presumed. However, the approach
can be used also for stability and robustness analysis, that is, to analyze
whether a periodic solution exists.

7. Conclusions

The proposed Harmonic Norton Equivalent is a linearized description of
the relation between the current and voltage spectra of nonlinear and
switching electrical components. The linearization implies that aggrega-
tion of loads and network solving is performed using linear algebra. Com-
mon iterative frequency domain methods are avoided, and thus any con-
vergence problems associated with the iteration. Representing nonlinear
and switching loads by HNEs, network solving can be performed using
traditional linear network methods.

A procedure for experimental estimation of models has been presented.
It can be used either for real measurements or for obtaining models using
time domain simulation.

To show the usefulness of the model structure, the light dimmer has
been used as an example. It is shown that, for the dimmer, the accuracy
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Paper II

A Harmonic Transfer Function Model
for a Diode Converter Train

Erik Möllerstedt and Bo Bernhardsson

Abstract
A method for analysis of electric networks with nonlinear and switching
components is presented. The method is based on linearization around the
nominal AC voltage, which results in linear time periodic (LTP) models.
For nonlinear and switching components, there is coupling between differ-
ent frequencies, which may cause stability and resonance problems. The
models capture this coupling and can thus be used for small signal sta-
bility and robustness analysis. A short introduction to transfer functions
for LTP systems is given.

To illustrate the method, an LTP model for the Adtranz locomotive
Re 4/4 is derived. The system consists of an AC-side with a transformer,
and a DC-side with a DC-motor and a smoothing choke. The AC-side and
the DC-side are connected by a diode bridge rectifier. The model clearly
shows the coupling between frequencies.
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1. Introduction

Modern trains use power electronic converters to shape the supplying
AC-voltage. These switching converters introduce harmonics in the sup-
plying network. Under unfortunate operating conditions, the introduced
harmonics may interact with other trains. This may trigger resonances
and cause instability. Known incidents have occurred in:

• Italy: Electrical line disturbances in 1993–95.

• Denmark: Several protective shutdowns of the net in 1994.

• Great Britain: Problem with the signaling system in 1994–95.

• Switzerland: Several modern converter locomotives shut down due
to network resonance in 1995.

• Germany: S-bahn in Berlin exceeded the limits for harmonic pertur-
bations in 1995.

This is not a problem for train networks alone, but for all power net-
works with components that modulate the frequency, for instance HVDC
systems [Hauer and Taylor, 1998].

When analyzing electric networks, one is often restricted to time do-
main simulation. Very accurate and thoroughly validated models have
been developed for use with, for instance, EMTP and EMTDC. However,
no matter how accurate the models are, there is no way that simulations
alone can guarantee that all critical parameter values and operating con-
ditions are found so that new incidents can be avoided in the future.
Simulations can only give a yes or no answer to stability, and do not say
anything about robustness to a set of uncertainties. Thus, no uncertainty
in model parameters is allowed, no unmodeled dynamics, and all possible
operating conditions must be analyzed.

In control design, robustness has been a main concern for a long time.
There now exist powerful tools for robustness analysis such as µ-analysis,
H∞-design and also nice methods for model aggregation, which make
modularized modeling and analysis easier. Most of these methods are only
available for linear systems. The use of power electronics, however, implies
that traditional linear analysis does not apply. The switching introduces
coupling between different frequencies. For proper analysis, the models
have to consider this coupling.

The supplied AC-voltage leads to a periodic excitation of the system. A
natural approach is to linearize around the nominal voltage. This results
in a linear model, however not time invariant but time periodic. These
linear time periodic (LTP) models capture the coupling between frequen-
cies and can thus be used for analysis of networks including nonlinear
and switching components.
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2. Analysis of LTP Systems

For periodic signals, an LTP model gives a linear relation between the
Fourier coefficients of the inputs and the outputs. This is the reason why
frequency domain methods are popular for steady state analysis of power
networks. LTP models for steady state analysis have been developed for
numerous electric components, for instance transformers with nonlinear
saturation curves [Semlyen et al., 1988; Semlyen and Rajakovic, 1989;
Acha et al., 1989], HVDC converters [Song et al., 1984; Arrillaga and
Callaghan, 1991; Xu et al., 1994] and static var compensators [Xu et al.,
1991].

When the harmonic balance solution for a network is obtained via New-
ton iterations [Kundert and Sangiovanni-Vincentelli, 1986], and [Gilmore
and Steer, 1991], the Jacobians are LTP models that improve the conver-
gence of the solution. Newton’s method of harmonic balance has been used
for analysis of power networks under various names, Harmonic Power
Flow Study in [Xia and Heydt, 1982], it is called Unified Solution of New-
ton Type in [Acha et al., 1989], and Harmonic Domain Algorithm in [Ar-
rillaga et al., 1994]. Harmonic balance with relaxation is called Iterative
Harmonic Analysis in [Arrillaga et al., 1987], and Newton’s method with
a diagonal Jacobian is called A Multiphase Harmonic Load Flow Solution
Technique in [Xu et al., 1991].

In [Wereley, 1991] and [Hwang, 1997] a transfer function for LTP sys-
tems is derived and used to analyze vibrations in helicopter rotors. Via
this transfer function many stability and robustness results for linear time
invariant systems can be generalized to hold also for LTP systems. These
references also give a nice historical background and relates the method
to Floquet theory, Lyapunov exponents and to so called lifting methods.

In this paper, a transfer function for a diode converter locomotive is
derived, and it is shown how the Nyquist criterion can be used to guar-
antee stability when the locomotive is connected to the power system.
For related work see also [Sandberg, 1999] where the harmonic transfer
function method is used to study harmonic interaction for a four-quadrant
converter locomotive.

2. Analysis of LTP Systems

For linear time invariant systems, many stability and robustness results
are based on the transfer function operator. To generalize these results to
LTP systems, we need a corresponding transfer function.

Let the input, u(t), be an exponentially modulated periodic (EMP)
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signal with period T

u(t) = est
∑

m

Um ejmω 0t =
∑

m

Um e(s+ jmω 0)t, (1)

where ω 0T = 2π . In Appendix A it is shown that an LTP system maps an
EMP input to an EMP output, that is, the output too is an EMP signal

y(t) = est
∑

n

Ynejnω 0 t =
∑

n

Yne(s+ jnω 0)t.

If the EMP input signal U and output signal Y are written on vector form

U(s) = [ . . . U−1 U0 U1 . . . ]T est,

Y(s) = [ . . . Y−1 Y0 Y1 . . . ]T est,

then their relation is described by a linear equation

Y(s) = H(s)U(s).

The transfer function matrix H(s) defines the coupling between different
frequencies and is called the harmonic transfer function (HTF) and can,
formally, be represented as a doubly-infinite matrix, see Appendix A.

H(s) =



. . . . . . . . . . . . . . .
... H−1,−1(s) H−1,0(s) H−1,1(s) . . .
... H0,−1(s) H0,0(s) H0,1(s) . . .
... H1,−1(s) H1,0(s) H1,1(s) . . .
...

...
...

...
. . .


.

3. A Diode Converter Train

An LTP model for the Adtranz locomotive Re 4/4 is derived. A Simulink
model for the locomotive, which consists of a transformer, a diode bridge
rectifier, a smoothing choke and a DC motor, is shown in Fig. 1.
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+

iDCiline iAC

vDCvAC
vline

> > >

Trafo
Diode

bridge

DC motor

Choke

Figure 1 A Simulink model for the diode converter locomotive. The harmonic
transfer function derived in Section III describes the harmonic interaction between
the variable iAC , vAC , iDC and vDC, see Fig. 7

A Diode Bridge Rectifier Model

The diode bridge rectifier ensures that the AC-side and the DC-side are
related by a time varying modulation

vDC(t) = B(t)vAC(t),
iAC(t) = C(t)iDC(t).

(2)

The current and voltage on both sides of the rectifier are shown in Fig. 2.
The diodes in the diode bridge are not ideal, which means that it

takes some time for the AC-current to change sign. During this period
current flows through all diodes. This is called commutation. The result
is that the commutation functions, B(t) and C(t), are not square waves.
Typical shapes are shown in Fig. 3. To avoid detailed modeling of the
converter, these modulation functions can be obtained via simulation or
measurement. We have used data from time domain simulation using
Simulink’s Power System Blockset toolbox. For a diode bridge rectifier,
the switching instants are determined by the zero-crossings of the AC-
voltage. A voltage distortion will hence affect the switching instants and
thus the periodicity.

Linearizing (2) around the periodic functions, B0(t) and C0(t) and the
nominal signals, v0

AC(t) and i0
DC(t), gives

∆vDC(t) = B0(t)∆vAC(t) + ∆B(t)v0
AC(t), (3)

∆iAC(t) = C0(t)∆iDC(t) + ∆C(t)i0
DC(t). (4)

The deviations from the periodicity, ∆B(t) and ∆C(t), are due to distortion
of vAC. The effect of ∆B(t) is neglectable since v0

AC(t) is small around the
zero crossing. The effect of ∆C(t) is analyzed in the next section, see (9).
The analysis will show that an HTF for the diode bridge has the following

89



Paper II. A HTF Model for a Diode Converter Train

0.2 0.25 0.3 0.35 0.4
−3000

−2000

−1000

0

1000

2000

3000

0.2 0.25 0.3 0.35 0.4
−1

−0.5

0

0.5

1
x 10

4vAC iAC

0.2 0.25 0.3 0.35 0.4
−3000

−2000

−1000

0

1000

2000

3000

0.2 0.25 0.3 0.35 0.4
−1

−0.5

0

0.5

1
x 10

4vDC iDC

Figure 2 Simulation of AC- and DC-voltages and currents for the diode converter
locomotive, see also (2). Small-signal linearization around these nominal trajectories
leads to the model in Fig. 7.
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Figure 3 Modulation functions, B0(t) and C0(t). Changes in vAC change the switch
instances but not the form of the modulation functions.

structure

∆VDC(s) = B0(s)∆VAC(s), (5)
∆ IAC(s) =C0(s)∆ IDC(s)+D(s)∆VAC(s), (6)
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where D(s) is due to non-periodic switching. The rectifier can hence be
described by the block diagram in Fig. 7.

0 B0(s)
C0(s) D(s) ∆VAC

∆ IDC

∆ IAC

∆VDC

Figure 4 A block diagram of the linearized diode rectifier. The HTF models B0(s),
C0(s) and D(s) are derived in the text and have been verified by time domain
simulations. The diode rectifier model is connected with the DC dynamics in Fig. 5.

Deriving the HTF for the Rectifier

The periodic functions B0(t) and C0(t) can be expressed by their Fourier
series B0(t) =

∑∞
k=−∞ Bkejkω 0t. With ∆vAC(t) being an EMP signal we get

∆vDC(t) = B0(t)∆vAC(t) = est
∑

m

∑
k

BkVAC,m ej(m+k)ω 0 t

= est
∑

n

∑
m

Bn−mVAC,m ejnω 0 t.

Thus, the HTF is a static Toeplitz matrix

B0(s) =



. . .
. . .

. . .
. . .

. . .
. . .

. . . B0 B−1 B−2
. . .

. . .

. . . B1 B0 B−1 B−2
. . .

. . . B2 B1 B0 B−1
. . .

. . .
. . . B2 B1 B0

. . .

. . .
. . .

. . .
. . .

. . .
. . .


,

and similarly for C0(s).
We will now analyze the part of iAC that is due to changes in switching

instants, ∆C(t)i0
DC(t). A good approximation is that a change in switching

instant does not affect the shape of the modulation function, but only
shifts it in time.

C(t) = C0(t− ∆t) � C0(t) − dC0(t)
dt

∆t,
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The change in switching at time tk only affects the current until the
next switch occurs around tk+1 = tk + T/2. A switch change ∆tk at time
tk gives

∆C(t) = −Π(t− tk)dC0(t)
dt

∆tk =
−

dC0(t)
dt

∆tk t ∈ [tk, tk+1),
0 otherwise,

(7)

where Π(t) is a unit pulse with width T/2.
We must now relate the zero crossing change, ∆t, with the voltage

distortion. Let the nominal voltage be

v0
AC(t) = V0 sinω 0t,

with zero-crossings at tk = kT/2 = kπ/ω 0. A distortion ∆vAC(t) gives a
change in switching time, ∆t. This change is approximately given by the
voltage distortion at the nominal switching time, tk

∆vAC(tk) � −
dv0

AC(tk)
dt

∆tk = −(−1)kV0ω 0 (8)

Using (7) and (8) and assuming a constant i0
DC(t) = i0

DC(t0) now gives

∆C(t)i0
DC(t) = −Π(t− tk)dC0(t)

dt
∆tki0

DC(t0)

= (−1)k i0
dc(t0)
V0ω 0

dC0(t)
dt

Π(t− tk)∆vAC(tk)

=
∫

h(t,τ )∆vAC(τ )dτ , (9)

where h(t,τ ) is the impulse response. If all zero-crossings are considered,
the impulse response is hence given by

h(t,τ ) = i0
dc(t0)
V0ω 0

dC0(t)
dt

∑
k

(−1)kΠ(t− tk)δ (τ − tk). (10)

The time periodic transfer function becomes

H(s, t) = e−st
∫

h(t,τ )esτ dτ

= e−st i0
dc(t0)
V0ω 0

dC0(t)
dt

∑
k

(−1)kΠ(t− tk)estk ,
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which gives

Ĥk(s) = 1
T

∫ T

0
H(s, t)e− jkω 0tdt

= i0
dc(t0)
V02π

(∫ T/2

0

dC0(t)
dt

e−(s+ jkω 0)tdt

−
∫ T

T/2

dC0(t)
dt

esT/2 e−(s+ jkω 0)tdt

)

= i0
dc(t)

V02π

∫ T/2

0

∑
l

(1− ej(l−k)ω 0T/2) jlω 0cl e−(s+ j(k−l)ω 0)tdt

=− i0
dc(t)

V02π
∑

l

(1− (−1)k−l) jlω 0cl
e−(s+ j(k−l)ω 0)T/2 − 1

s+ j(k− l)ω 0
.

The HTF D(s) is then obtained as in Appendix A.

The DC-Side

A DC motor consists of two windings, the rotating armature winding and
the field winding. Due to the rotation an electro-magnetic force, ea, is
induced in the armature winding, ea = k1Φs(is)ω , the flux Φs is a function
of the stator current and ω is the rotor speed.

For a series excited DC-motor is = ia. Assuming the speed of the train
to be constant, a linearized model for the DC motor can be seen as a
resistor, ∆ea = Rind∆ia, where Rind depends on i0

s and ω 0. The transfer
function from DC-voltage to DC-current is hence given by

∆ IDC(s) = 1
R + sL

∆VDC(s) = G(s)∆VDC(s),

where, L = Lc + La + Le is the sum of the choke inductance and the
inductances in the armature and field windings, and similarly R = Rc +
Ra + Re + Rind.

Assemblying the Locomotive

The model for the diode converter including the DC side dynamics is
shown in Fig. 5. The HTF, Hdb(s), for the diode bridge rectifier and the
DC side dynamics is hence given by

∆ IAC(s) = Hdb(s)∆VAC(s)
= (C0(s)G̃(s)B0(s) + D(s))∆VAC(s),
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0 B0(s)
C0(s) D(s) ∆VAC

∆ IDC

∆ IAC

∆VDC

G̃(s)

Figure 5 The diode converter with the DC dynamics G̃(s) connected. The resulting
HTF, Hdb(s), is then connected with a model of the transformer Z̃tra f (s), see Fig. 6.

Hdb(s)

−Z̃tra f (s)

∆Vline ∆VAC ∆ IAC

+

Figure 6 The electrical network described by a feedback connection. The rela-
tion between harmonic disturbances on the line and in the AC-current is given by
Hloco(s), see 12.

where

G̃(s) = diag ( . . . G(s− jω 0) G(s) G(s+ jω 0) . . . ) . (11)

The transformer is modeled as an ideal transformer plus an equivalent
impedance on the low voltage side. The effect of the impedance is shown
in Fig. 6 and gives ∆ IAC(s) = Hloco(s)∆Vline(s), where

Hloco(s) = (I + Hdb(s)Z̃tra f (s))−1 Hdb(s). (12)

The amplitude of Hloco is plotted in Fig. 7. The diagonal structure
shows that there is only coupling between frequencies separated by 33 1

3 Hz.
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Figure 7 The amplitude plot of the HTF Hloco. Notice the large out-diagonal
bands, illustrating the nonlinear coupling between different frequencies in Vline
and IAC .

4. A Nyquist Criterion for LTP Systems

On matrix form it is clear that an LTP system formally can be treated
as a LTI system with infinitely many inputs and outputs. Transmission
zeros and poles can thus be derived from theory for multi-input multi-
output (MIMO) systems, see for instance [Maciejowski, 1989]. These poles
determine the stability of the system.

A Nyquist criterion for LTP systems based on HTFs was presented
in [Wereley, 1991]. It is based on the generalized Nyquist criterion for
MIMO systems. It states that stability of the closed loop system can be
determined by plotting the eigenvalue curves of the open loop HTF, H( jω )
for −ω 0/2 < ω < ω 0/2. If the open loop system is stable, and the Nyquist
curve does not enclose the point −1, then the closed loop system is stable.

Consider the locomotive connected to a fictive (non-passive) line envi-
ronment, modeled as an impedance given by Znrid(s) = 5000K/(s2 + 5s+
5000). The open loop system is given by Z̃nrid(s)Hloco(s) where Z̃nrid(s) is
defined as in (11).

In Fig. 8, the Nyquist plot for the HTF of the locomotive and the grid is
plotted for K = 1. The curve crosses the negative real axis at s � −0.2. The
Nyquist criterion states that the system is stable for K < Am = 1/0.2 = 5.
A time domain simulation shows that the system is stable for K = 4 but
not for K = 6. This indicates that the Nyquist criterion does a good job in
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Figure 8 The Harmonic Nyquist plot, i.e. the eigenvalues of Z̃nrid Hloco( jω ) for
−ω 0/2 ≤ ω ≤ ω/2, for the locomotive attached to the line. Notice that the curve
indicates a harmonic amplitude margin of Am = 5. This corresponds well with the
results from time domain simulations.

predicting harmonic stability of the full nonlinear locomotive. The derived
model can now be used for analysis, such as harmonic interaction with
other trains on the same line.

5. Conclusions

The Harmonic transfer function method of modeling linear time periodic
systems has been described. A HTF model has been derived for a diode
converter locomotive. The model has been verified with time domain sim-
ulations and is a good starting point for further analysis of resonance
risks and harmonic interaction.
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Appendix A. Analysis of LTP Systems

The transfer function plays a central role in stability and robustness anal-
ysis as well as control design. For LTI-systems, the transfer function is a
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linear operator on the class of exponentially modulated sinusoids

u(t) = U0est, y(t) = H0(s)U0est = Y0est.

To get a transfer function for LTP systems, we need a corresponding
class of test signals. For an LTP system on state space form, Floquet de-
composition reveals that a suitable test signal is the class of exponentially
modulated periodic (EMP) signals, see [Wereley, 1991]

u(t) = est
∑

m

Um ejmω 0t =
∑

m

Um e(s+ jmω 0)t. (13)

Not all systems have a state space representation. A general LTP sys-
tem can be defined by its impulse response, h(t,τ ). The periodicity of the
system implies that

h(t+ T ,τ + T) = h(t,τ ), (14)
where T is the period time. Assume the input, U(s), is given in Laplace
domain. The corresponding time domain signal is

u(t) = L−1(U)(t) = 1
2π j

∫ σ+ j∞

σ− j∞
estU(s)ds.

This gives the following output

y(t) =
∫ ∞

−∞
h(t,τ )u(τ )dτ

=
∫ ∞

−∞
h(t,τ ) 1

2π j

∫ σ+ j∞

σ− j∞
esτ U(s)dsdτ

= 1
2π j

∫ σ+ j∞

σ− j∞
est H(s, t)U(s)ds.

Here, H(s, t) is a time periodic transfer function

H(s, t) = e−st
∫ ∞

−∞
esτ h(t,τ )dτ

which is periodic in t. The periodicity implies that H(s, t) can be written
as a Fourier series with the fundamental frequency ω 0 = 2π/T

H(s, t) =
∑

k

Ĥk(s)ejkω 0 t,

Ĥk(s) = 1
T

∫ T

0
H(s, t)e− jkω 0 tdt.
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The output can now be written

y(t) = 1
2π j

∫ σ+ j∞

σ− j∞

∑
k

Ĥk(s)e(s+ jkω 0)tU(s)ds

= 1
2π j

∫ σ+ j∞

σ− j∞

∑
k

Ĥk(s− jkω 0)estU(s− jkω 0)ds.

Here, we recognize the definition of the inverse Laplace transform. In
Laplace domain, the output is hence

Y(s) =
∑

k

Ĥk(s− jkω 0)U(s− jkω 0). (15)

From this we conclude that for LTP-systems there is coupling between
frequencies that are separated by a multiple of the fundamental frequency
of the system, ω 0. Laplace transformation of the EMP signal defined by
(13) gives

U = 2π
∑

m

Umδ s+ jmω 0

Equation (15) gives that the output too is an EMP signal

Y = 2π
∑

n

Ynδ s+ jnω 0 ,

where
Yn =

∑
m

Ĥn−m(s0 + jmω 0)Um.

The doubly-infinite matrix in Section II is hence given by

Hn,m(s) = Ĥn−m(s+ jmω 0). (16)
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Introduction

On Sunday April 9, 1995, a large number of the regional trains stopped
in Zürich, Switzerland.1 The locomotives were automatically shut down
by protective equipment because of excessively high harmonic currents.
The Swiss railway had recently replaced many of their old locomotives
with the new generation of locomotives, which use high-frequency con-
verters to improve performance and reduce losses. Such converters in-
herently generate harmonics, but by proper design and control, the level
of harmonics was believed to be kept low. However, these converters can
interact with each other via the supplying network, causing unpredicted
instability problems.

Evidence supporting this explanation was that the incident occurred
on a Sunday, during low traffic, when only modern locomotives were used.
With a few of the old trains running on the system, the losses in these old
trains were enough to damp the oscillations. By adjusting the algorithm
for zero-crossing detection of the grid voltage, the problem was believed
to be solved, but a new incident occurred in September of the same year,
also on a weekend (i.e. at low-load conditions with mainly new locomo-
tives running). After adjustments to the software for converter control,
the Swiss network now seems to be stable, but as other countries begin
replacing old locomotives with new ones, the problems are likely to occur
elsewhere.

The result of the Swiss incidents is that very high demands are placed
on locomotive manufacturers. To sell a locomotive, you must be able to
guarantee that it is compatible with the rest of the system. If an incident
occurs, the manufacturer of the last locomotives added to the system is
likely to come under scrutiny. The United Kingdom has imposed especially
tough constraints, making it hard to sell new locomotives there. The abil-
ity to guarantee performance of converter trains and to formulate reason-
able performance requirements, will require methods for proper analysis
of these systems.

Modern converters serve as very powerful actuators. Directions of
power flows can be changed in fractions of a second. The time-varying com-
ponents introduce couplings between different frequencies. Energy can be
moved between different frequency regions, creating instability loops that
involve many different frequencies. If the dominating loads are fed by
such converters, this harmonic interaction must be taken into account.
In traditional analysis, however, electric networks are treated as linear,
and nonlinear loads are modelled as current sources, possibly behind a

1The Swiss incidents and more technical background are described in detail in [Meyer,
1999].
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linear impedance to increase the validity region of the model. Stability
analysis is performed with linear time-invariant methods, frequency by
frequency, supported by extensive time domain simulations. With the new
generation of high-frequency converters, such analysis is not sufficient.

Analysis of the complete railway system is, of course, difficult (see
[Meyer, 1999] for a discussion). Several locomotives can be moving along
the power distribution line at the same time, and depending on the dis-
tance between the locomotives, the interaction changes. The power con-
sumption also changes, depending on operating modes. During normal
operation, energy is consumed from the net, but as modern locomotives
use electrical breaking, the power flow changes direction during deceler-
ation, and energy is delivered back to the grid. The inverter trains are
no passive elements. The converters are controlled with only limited sys-
tem knowledge (local measurements of currents and voltages), making
analysis and control design an even bigger challenge.

Linear Time Periodic (LTP) Control Systems

Since the locomotive system is driven by a periodic electrical signal, we
want to study local stability around a periodic system trajectory. Denote
the system states in the locomotive by x(t) and the nominal trajectory
by x0(t), where x0(t + T) = x0(t) with ω 0T = 2π . In Switzerland, ω 0 =
100π/3, since the line frequency is 16-2/3 Hz.

For a nonlinear system of the form ẋ = f (x, u), where u is the input
signals and x the states, the linearization near the trajectory x0(t) is given
by

d
dt

∆x(t) = A(t)∆x(t) + B(t)∆u(t),

where A(t) = fx(x0(t)) and B(t) = fu(x0(t)). (Here, and in the rest of the
article, ∆ denotes deviation from the nominal trajectory, so ∆x = x − x0.)
Since much of the design engineer’s intuition is in the frequency domain,
we turn to analysis of linear time periodic (LTP) systems in the frequency
domain.

An LTP system H, with period T > 0, is a relation y = Hu that
commutes with the time shift operator ST (i.e., HST = ST H, where
ST( f )(t) = f (t + T)). Analysis of this class of systems has a long his-
tory, going back to the work of Floquet and Hill (see [Floquet, 1883],
[Hill, 1886]). Periodic control systems have been widely studied since the
1950s when computer-controlled systems were introduced. The motivation
comes from the use of periodic sample and hold circuits (see [Bamieh and
Pearson, 1992], [Chen and Francis, 1995]). In other areas, the periodicity

103



Paper III. Out of Control Because of Harmonics

arises because of the controlled process; one example is in helicopter vi-
bration control (see [Hwang, 1997], [Wereley, 1991]). Many system theory
questions, such as controllability, observability, and linear quadratic con-
trol, have been studied for LTP systems (see, for example, [Kamen and
Sills, 1993], [Kano and Nishimura, 1985], [Richards, 1983], and [Wereley
and Hall, 1991]). Very little of this powerful control theory seems to have
been used for analysis of electrical power systems and networks. Two well
established techniques for analysis of LTP systems are Floquet analysis
and lifting.

Floquet Analysis

Causal, finite-dimensional, proper LTP systems also have state-space rep-
resentations

dx
dt
= A(t)x + B(t)u

y = C(t)x + D(t)u,
(1)

where A(t) ∈ Rn�n, B(t) ∈ Rn�m, C(t) ∈ Rp�n, and D(t) ∈ Rp,m are
T-periodic matrix functions of appropriate dimensions. The stability of
such systems can be determined via Floquet decomposition, which is a
T-periodic state transformation z(t) = P(t)x(t) that transfers the system
to a similar state-space form with a constant (generally complex-valued)
system matrix, Â = log Φ(T , 0), where Φ(T , 0) denotes the so-called mon-
odromy matrix of the system and Φ(t,τ ) is the fundamental matrix of the
system defined via the differential equation

d
dt

Φ(t,τ ) = A(t)Φ(t,τ ), Φ(t, t) = I.

The transformed system

dz
dt
= Âz(t) + B̂(t)u(t)

y(t) = Ĉ(t)z(t) + D(t)u(t)
(2)

is asymptotically stable if the eigenvalues of Â are in the open left half
plane. The complex-valued state transformation P(t) ∈ Cn�n can be de-
termined by solving the matrix differential equation Ṗ(t) = A(t)P(t) −
P(t)Â, P(0) = I.

Lifting Techniques

Another way of analyzing periodic linear systems using theory for the
time-invariant case is to rewrite (1) into the integral operator state-space
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model
x̃k+1 = Ãx̃k + B̃ũk

ỹk = C̃kx̃k + D̃kuk.
(3)

Here x̃k ∈ Rn, the functions ũk ∈ Lm
2 [0, T ] and ỹk ∈ Lp

2[0, T ] are defined
as ũk = u(t + kT) and ỹk = y(t + kT) for k ∈ Z, and t ∈ [0, T ]. The
operators Ã : Cn → Cn, B̃ : Lm

2 [0, T ] → Cn, C̃ : Cn → Lp
2[0, T ], and

D̃ : Lm
2 [0, T ] → Lp

2[0, T ] are given by

Ã = Φ(0, T)

B̃ũk =
∫ T

0
Φ(T ,τ )B(τ )ũk dτ

C̃ = C(t)Φ(t, 0)

D̃ũk =
∫ t

0
(C(t)Φ(t,τ )B(τ ) + D(t)δ (t− τ ))ũk dτ .

The time-invariant system (3), which maps sequences of Lm
2 (0, T) func-

tions into sequences of Lp
2(0, T) functions, can now be analyzed using

time-invariants techniques.

Harmonic Analysis by Harmonic Transfer Functions (HTFs)

In this article, we will pursue a third direction for analysis, which can
also be used for systems lacking a state-space representation. Assume
the input-output relation is given by

y(t) =
∫ ∞

−∞
h(t,τ )u(τ ) dτ ,

where h(t,τ ) is the so-called impulse response of the system. This repre-
sents a T-periodic input-output relation if h(t+ T ,τ + T) = h(t,τ ).

The Laplace transform of a signal u(t) is defined as

U(s) =
∫ ∞

−∞
e−stu(t)dt

with absolute convergence for s belonging to a strip in the complex plane.
For linear T-periodic systems with impulse response h(t,τ ), a direct com-
putation shows that

Y(s) =
∞∑

k=−∞
Hk(s− jkω 0)U(s− jkω 0), (4)
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where the transfer functions Hk are defined by

Hk(s) = L(hk(t)) =
∫ ∞

−∞
e−sthk(t)dt, with

hk(t) = 1
T

∫ T

0
h(r, r − t)e− jkω or dr.

The impulse responses, hk(t), are the Fourier coefficients of h(r, r − t),
which is periodic in r. The mapping in (4) shows that there is coupling
between frequencies separated by a multiple of the system frequency ω 0.

By restricting ourself to a strip in the complex plane, given by −ω 0/2 <
Im(s) ≤ ω 0/2, and defining

U(s) = [ . . . U(s− jω 0) U(s) U(s+ jω 0) . . . ]T
= [ . . . U−1(s) U0(s) U1(s) . . . ]T , (5)

and Y (s) analogously, (4) can be written in a more compact way:

Y (s) = H (s)U(s),

where H (s) is a doubly infinite matrix defined as

H (s) =



. . . . . . . . . . . . . . .
... H−1,−1(s) H−1,0(s) H−1,1(s) . . .
... H0,−1(s) H0,0(s) H0,1(s) . . .
... H1,−1(s) H1,0(s) H1,1(s) . . .
...

...
...

...
. . .


, (6)

with Hn,m(s) = Hn−m(s+ jmω 0).
Using (5), a signal with Laplace transform U(s) can be written

u(t) =
∫ σ+ j∞

σ− j∞
estU(s)ds =

∫ σ+ jω 0/2

σ− jω 0/2
estus(t)ds, (7)

where for each s, us(t) =
∑

m ejmω 0tUm(s) is a periodic function.
From (4) and (7) it can be concluded that, just as linear time-invariant

(LTI) systems can be studied by analyzing the response to signals of the
form est, so-called characters, and then using superposition, one can study
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LTP systems by superposition of characters called exponentially modu-
lated periodic (EMP) signals with period T . These have the form

u(t) = est
∑

m

Um ejmω 0t, −ω 0/2 < s ≤ ω 0/2, Um ∈ C.

EMP signals with base frequency s are mapped to EMP signals with the
same base frequency:

y(t) = est
∑

n

Ynejnω 0t =
∑

n

Yne(s+ jnω 0)t.

The transfer function matrix H (s) defines the coupling between differ-
ent frequencies and is called the harmonic transfer function (HTF) (see
[Wereley, 1991]). An LTP system can thus be treated as an LTI system
with infinitely many inputs and outputs. Transmission zeros and poles
can be derived from multi-variable time-invariant theory.

If all signals are periodic, they can be represented by their Fourier
series. The relation between the Fourier coefficients of the input and the
output is then described by

Y (0) = H (0)U(0).
The complex matrix H (0) can be used to obtain the steady state solution
of a network. The matrix is called the admittance matrix in the Harmonic
Norton Equivalent described in [Möllerstedt, 1998] and is the Jacobian in
harmonic balancing of electrical networks (see [Arrillaga et al., 1994],
[Kundert and Sangiovanni-Vincentelli, 1986]). The steady-state response
matrix H (0) has recently been developed for several electric components,
for instance, transformers with nonlinear saturation curves [Acha et al.,
1989], [Semlyen et al., 1988], [Semlyen and Rajakovic, 1989], HVDC con-
verters [Arrillaga and Callaghan, 1991], [Song et al., 1984], [Xu et al.,
1994], and static var compensators [Xu et al., 1991]. For identification of
H (0) from experimental data, see [Möllerstedt, 1998]. However, the in-
formation in H (0) is not sufficient to describe stability properties of the
system under aperiodic perturbations. This information is contained in
H ( jω ), −ω 0/2 ≤ ω < ω 0/2.

Example 1: LTI Systems For an LTI system, the matrix in (4) has the
standard transfer function H0(s) on the diagonal and all other Hk(s) are
zero.

Example 2: Multiplication Operators If the relation between inputs
and outputs is given by the static time-varying map

y(t) = h(t)u(t)
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H
r yu

�kI

+

Figure 1 The feedback system studied in the Nyquist criterion. Here H represents
a linear time periodic (LTP) system.

with a T-periodic function h(t), for instance a sinusoid or a periodic switch
signal, then H (s) is a Toeplitz matrix independent of the complex fre-
quency s

H (s) =



. . .
. . .

. . .
. . .

. . .
. . .

. . . H0 H−1 H−2
. . .

. . .
. . . H1 H0 H−1 H−2

. . .
. . . H2 H1 H0 H−1

. . .
. . .

. . . H2 H1 H0
. . .

. . .
. . .

. . .
. . .

. . .
. . .


,

where Hk are the Fourier coefficients of h(t).

Example 3: LTP Systems on State Space Form The harmonic trans-
fer function of an LTP system on state space form (2) is, neglecting the
direct term, the product of three matrices, the Toeplitz matrix correspond-
ing to the periodic function, Ĉ(t), the diagonal matrix for the transfer
function, H0(s) = (sI − Â)−1, and the Toeplitz matrix of B(t). Explicitly,
this gives

Hk(s) =
∑

l

Ĉk−l((s+ jlω 0)I − Â)−1 B̂l + Dk,

where B̂k, Ĉk, and Dk, are the Fourier coefficients of the periodic functions,
B̂(t), Ĉ(t), and D(t), respectively.

The Nyquist Criterion for Harmonic Transfer Functions

It is often interesting to analyze the stability properties of the feedback
system in Fig. 1, where H represents the mapping in (4). For LTI systems,
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j!0=2

�j!0=2

1

Figure 2 The integration contour in the Nyquist criterion for harmonic transfer
functions.

stability can be investigated by plotting the Nyquist contour H0( jω ) for
−∞ < ω < ∞ and counting encirclements of the point −1/k. For LTP
systems of the form (4), the following generalized Nyquist criterion holds.
Theorem [Wereley, 1991] Assume a linear, periodic, causal input-output
relation between y and u is given by (4). Denote by {λ i(s)}∞i=−∞ the eigen-
values of the doubly infinite matrix H (s) in (6), for s varying through the
contour in Fig. 2. The eigenvalues produce a number of closed curves in
the complex plane, called the eigen-loci of the HTF. The closed-loop sys-
tem in Fig. 1 is L2 stable from r to y if and only if the total number of
counterclockwise encirclements of the −1/k point of these curves equals
the number of open-loop right half plane poles of the H (s) in (4) (hence
zero if H is stable).

Analysis by Finite Projection Methods

For computation, the doubly infinite matrix must be approximated by a
finite truncated matrix. The best way to do this is an open issue. If we
simply choose a truncation number N and a frequency grid size M and
calculate the eigenvalues of the finite matrix with matrix elements

Hn,m(sk) = Hn−m(sk + jnω 0), −N ≤ m, n ≤ N

for a grid sk = iω k with ω k+1 −ω k = ω 0/2M , we get 2M + 1 matrices of
size (2N + 1) � (2N + 1), hence a total of (2N + 1)(2M + 1) eigenvalues.

Although convergence issues of the infinite matrices have not been
considered,the roll off of the system normally assures correct results using
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truncated matrices. To get an appropriate value for N, this is increased
until the result does not change, and the additional eigenvalues end up
in the origin.

Passivity

The concept of passivity is very important in electrical networks. A rela-
tion y = Hu is said to be passive if for all inputs u it holds that∫ ∞

−∞
u(t)y(t) dt ≥ 0.

Parseval’s formula and the relation∫ ∞

−∞
U∗( jω )Y( jω ) dω

=
∫ ω 0/2

−ω 0/2

∑
m,n

U∗( jω + jnω 0)Hn−m( jω + jmω 0)U( jω + jmω 0) dω

=
∫ ω 0/2

−ω 0/2
U∗( jω )H ( jω )U( jω ) dω

=
∫ ω 0/2

0
U∗( jω )(H ∗( jω ) +H ( jω ))U( jω ) dω .

show that passivity for stable LTP systems is equivalent to the condition

H ∗( jω ) +H ( jω ) ≥ 0, 0 ≤ ω < ω 0/2,

where H is the matrix in (6).
Robustness of LTP Systems to Model Errors

Robustness under unmodeled dynamics is an important issue for success-
ful controller design. A large set of frequency domain analysis tools is
available where an LTI system is connected in feedback with a possibly
nonlinear perturbation operator ∆. Many of these tools can be used also
for LTP system; for example, the small gain criterion, which can be stated
in the following way.

Theorem Given a stable LTP system H with iHi∞ = γ 1, the closed-loop
system in Fig. 3 is stable for all nonlinear perturbations ∆ with i∆i∞ ≤ γ 2

if γ 1γ 2 < 1.

The induced L2-norm (i.e., the H∞ norm) of a possibly nonlinear op-
erator N is given by

iNi∞ = sup
L2#u�=0

iNuiL2

iuiL2

.
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Figure 3 The feedback system in the small gain criterion. Here H is a stable
LTP system and ∆ is a general stable nonlinear operator, which can describe, for
instance, unmodeled dynamics. The norm iH i∞ of the LTP system can be calculated
from (8).

For a stable LTP system H , the H∞ norm can be calculated by

iH i∞ = sup
Re s ≥ 0

hIm sh < ω 0/2

σ max(H (s)), (8)

where σ max denotes the maximum singular value (which is well defined
for the doubly infinite matrix H (s) and can be calculated as the limit of
finite matrices using finite projection methods, under appropriate conver-
gence conditions).

For more background on frequency response analysis of time-varying
systems see [Ball et al., 1995] or [Wereley, 1991].

Analysis of an Inverter Locomotive Using HTFs

We will now discuss the use HTFs for analyzing an inverter locomotive in
the frequency domain. Tuning the controller for the converter switching
is problematic, as the effect of the converters cannot be captured well us-
ing common LTI models. Instead, one must rely on ad hoc tuning rules,
and validation is done with time domain simulations. With this approach,
it is impossible to guarantee controller robustness. Time domain simu-
lation can only give a yes or no answer to stability, and it is impossible
to simulate every possible operating condition. HTFs provide a way to
take stability and robustness into account. Note, however, that the valid-
ity of the linearization is restricted to the neighborhood of the nominal
trajectory; hence only local stability is studied. Different HTFs must be
obtained for different nominal load cases.
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Figure 4 A schematic of an inverter locomotive. The locomotive consists of a trans-
former, a line converter, a DC link, and the motor side. The construction opens new
possibilities for control, and for operating the same locomotive on different power
grids, which simplifies border crossing.

An inverter locomotive is shown in Fig. 4. The locomotive consists of
a transformer, a line converter, a DC link, and the motor side. The motor
side consists of a motor converter (or possibly many), similar to the line
converter but with 3 phase AC, and asynchronous motors. This topology
with two controlled converters connected by a DC link, often called a back-
to-back converter, is common in variable-speed drives in many different
applications. It is a flexible structure that allows fast control of the power
flow. By controlling the power flow from the grid, the DC link voltage can
be kept constant at a high level. This facilitates that the motor power
can be increased and ensures that the size of the stabilizing DC link
capacitor can be reduced. This capacitor is expensive and very heavy,
adding considerable weight to the locomotive. Among other advantages of
the back-to-back converter are possibilities for active filtering and reactive
power compensation, and to feed braking energy back into the power grid.
In Europe, there are five different electrical railroad systems, both DC and
AC of different amplitude and frequency. The back-to-back converter offers
the possibility of operating the same locomotive in all systems, which
simplifies border crossing.

The harmonic transfer functions gives a model description that facil-
itates reuse of sub-models. This is a key issue for handling complexity
and improving system understanding. For a discussion of modern trends
in continuous-time object-oriented modeling and simulation, see [Åström
et al., 1998].

The idea is here to derive the HTF for each subsystem. A subsystem
can later be replaced by more detailed descriptions without recalculating
the whole system, as long as the nominal periodic trajectory used for the
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linearization is not affected. For example, the goal could be to compare
different control strategies, to include saturation in the transformer, or to
improve the modeling of the motor side, which in the following is simply
modeled as a constant (or very slowly varying) current sink. From the
HTFs of the different sub-models, the HTF for the whole locomotive is
obtained by simple matrix manipulations. A common controller structure
for the line converter controller is investigated, and stability margins are
obtained via the generalized Nyquist criterion.

The harmonic transfer functions gives a model description that facil-
itates reuse of sub-models. This is a key issue for handling complexity
and improving system understanding. For a discussion of modern trends
in continuous-time object-oriented modeling and simulation, see [Åström
et al., 1998].

The idea is here to derive the HTF for each subsystem. A subsystem
can later be replaced by more detailed descriptions without recalculating
the whole system, as long as the nominal periodic trajectory used for the
linearization is not affected. For example, the goal could be to compare
different control strategies, to include saturation in the transformer, or to
improve the modeling of the motor side, which in the following is simply
modeled as a constant (or very slowly varying) current sink. From the
HTFs of the different sub-models, the HTF for the whole locomotive is
obtained by simple matrix manipulations. A common controller structure
for the line converter controller is investigated, and stability margins are
obtained via the generalized Nyquist criterion.

The Transformer

In this example, the transformer is simply modeled as a linear impedance
on the low-voltage side. If a more accurate model is required, a steady-
state frequency domain model (i.e., H (0)) of a transformer with saturation
is derived in [Semlyen et al., 1987]. This can be extended to a full HTF
model H (s).

The transformer is described by the transfer function

Itr(s) = Gtraf o(s)Vtr(s) = 1
sLtr + Rtr

Vtr(s),

where Itr = IAC describes the current through the transformer and Vtr =
Vline − VAC describes the voltage.

The actual transformation is ignored, as only local analysis is consid-
ered. This means that the line voltage in the following is a low-voltage
equivalent to the actual line voltage. When connecting the locomotive to
a network, its transfer function must be divided by the transformer ratio
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vAC = vDC

iDC = iAC

vAC = �vDC

iDC = �iAC

vAC = 0

iDC = 0

vAC = 0

iDC = 0

Figure 5 The four possible states for the converter. The first state gives m = 1, the
second gives m = −1, and the last two states correspond to m = 0. For a loss-free
converter, the relations (9) and (10) hold at all times.

squared; that is,

H HV
loco =

1
n2 H LV

loco ,

where n is the transformer ratio (unless per-unit quantities are used).

The Line Converter

The converters complicate analysis of inverter locomotives. They describe
the coupling between the AC side and the DC side, and cannot be well
approximated by LTI models. A modern converter has no energy storage
and is practically lossless. This means that a power balance must always
be fulfilled

vAC(t)iAC(t) = vDC(t)iDC(t)
for all t. The power that flows into the converter from the AC side equals
the power that flows out on the DC side. The directions of flow correspond
to the definitions of voltages and current directions in Fig. 4. The converter
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implies a modulation of the voltage and the current:

vAC(t) = m(t)vDC(t), (9)
iDC(t) = m(t)iAC(t). (10)

If the switching is considered ideal, the modulation function, m(t), can
take three different values: +1, -1, and 0, according to the switching
schemes shown in Fig. 5. In older trains with line-commutated convert-
ers, m(t) is determined by the line voltage and current. Modern converters
are implemented using very fast gate turn-off (GTO) thyristors or insu-
lated gate bipolar transistors (IGBTs), which allow switching frequencies
of several kHz. Using pulse width modulation (PWM), for instance, m(t)
can, after low-pass filtering, approximate any function with amplitude
less than, or just above, 1. As the DC voltage is kept approximately con-
stant and the AC voltage is nearly sinusoidal, m(t) is typically shaped as
a sine wave of fundamental frequency.

The DC Link

The DC link is meant to provide the motor side with a constant DC voltage
and thus separate the motor side from the line side. This way, the mo-
tor control can hopefully be treated without taking into account line-side
variations and disturbances. The DC link has a large capacitor to stabi-
lize the DC voltage, a resistor, and a passive filter, tuned at twice the line
frequency (see Fig. 4). As the DC current is the product of two sinusoidal
functions (10), it will inherently have a strong component at twice the
fundamental frequency. The filter is meant to reduce the influence on the
DC voltage.

Consequently, the DC link is described by a fourth-order transfer func-
tion from current to voltage

VDC(s) = Glink(s)(Iload(s) − IDC(s))

GDC−link(s) = − Cf Lf s2 + Cf Rf s+ 1
(Cf Lf s2 + Cf Rf s+ 1)(Cs+ 1/R) + Cf s

,

where C is the capacitance of the large DC link capacitor, R is the resistor,
and Cf , Lf , and Rf belong to the filter.

The Motor Dynamics

A detailed model of how the load current depends on DC link voltage,
mechanical torque, and torque set point is derived in [Sandberg, 1999].
To simplify the analysis here, the motor and the motor converter are
replaced by a current sink, Iload.
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vline

iAC iDC
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�
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Figure 6 A circuit diagram of the inverter locomotive. The supporting line pro-
duces a driving electrical voltage vline, which might contain harmonics (created by
other locomotives, for instance). The voltage is transformed to the line converter,
which by proper control of m(t) in (9) and (10) supplies the DC link with energy.
The voltage vDC should be kept close to constant, since electrical ripples create me-
chanical ripples on the motor side. The motor side is modeled as a constant current
sink iload.
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0
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�IAC

�M
�IDC

�VAC

Figure 7 Block diagram of the line converter. The HTFs M0, V 0
DC, and I0

AC are
Toeplitz matrices. The line converter is connected to the transformer and DC link
in Fig. 9.

A Harmonic Transfer Function for the Inverter Locomotive

A circuit diagram of the low-voltage side of the inverter locomotive is
shown in Fig. 6. To get a model for the entire locomotive, we will derive
HTFs for each subsystem and connect them to form the closed-loop HTF.

Linearizing the Line Converter For small distortions around a pe-
riodic solution, the converter is approximated well by linearizing (9) and
(10)

∆vAC(t) = m0(t)∆vDC(t) + v0
DC(t)∆m(t)

∆iDC(t) = m0(t)∆iAC(t) + i0
AC(t)∆m(t),

where m0(t), v0
DC(t), and i0

AC(t) are periodic signals according to the nomi-
nal periodic solution. The converter is thus modeled as an LTP model with
three inputs and two outputs, as shown in Fig. 7. The nominal periodic

116



Analysis of an Inverter Locomotive Using HTFs

0 0.05 0.1 0.15 0.2
−2000

−1000

0

1000

2000

0 0.05 0.1 0.15 0.2
0

500

1000

1500

2000

2500

3000

0 0.05 0.1 0.15 0.2
−1

−0.5

0

0.5

1

Figure 8 The periodic solution used for the linearization. Iload = 500 A. From the
left: iAC(t), vDC(t), and m(t). The DC link filter and proper converter control keeps
the ripple in DC voltage small.

operating trajectory used for the linearization can be derived analytically,
but is conveniently obtained via one time domain simulation. With more
complex models, simulation is the only reasonable approach.

The nominal solution is illustrated in Fig. 8.

HTFs for the Subsystems As the converter implies only multiplication
with periodic signals, its HTF is given by

[ ∆VAC

∆ IDC

]
=
[

0 M0 V 0
DC

M0 0 I0
AC

] ∆ IAC

∆VDC

∆M

 ,

where the matrices M0, V 0
DC, and I0

AC are Toeplitz matrices with the
Fourier coefficients of the corresponding time domain signals as coeffi-
cients, as in the previous examples.

As the transformer and the DC link are linear, their HTFs are given
by diagonal matrices, according to Example 1,

H tra f o(s) =



. . .

Gtraf o(s− jω 0) 0

Gtraf o(s)
0 Gtraf o(s+ jω 0)

. . .


and similarly for H DC−link(s).

The transformer and the DC link define feedback connections between
the outputs and inputs of the converter (see the block diagram in Fig. 9).
The transfer function of the locomotive without converter control can now
be derived using the common rules for connecting LTI transfer functions.
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Figure 9 A block diagram of the linearized inverter locomotive without converter
controller. Also see Fig. 11 for the total controlled locomotive.
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Figure 10 A converter controller that generates a modulation function, m(t),
which leads to a sinusoidal line current with amplitude given by the input, Iref

AC (t).

The Line Converter Controller

The basic purpose of line converter switching is to supply the motor side
with its desired average power. With proper switching, the converter AC
voltage is shaped so that a sinusoidal current is drawn from the line, if we
neglect the influence of the pulse-width modulation (PWM). A sinusoidal
current, iAC, is desirable so that the locomotive does not give rise to any
voltage distortion in the supplying network. If the line current is in phase
with the line voltage, the locomotive will behave as a resistor. By allowing
a phase shift, the locomotive can be used for reactive power compensation.

A common switching strategy shaping the AC voltage is shown in
Fig. 10. The desired current amplitude, Iref

AC (t), can be slowly time vary-
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ing and can be obtained, for instance, via feedforward from the measured
load current. By multiplying with a sinusoid, the current is transformed
to AC and given a desired phase, φ , relative to the line voltage

iref
AC(t) = Iref

AC (t) sin(ω 0t+ φ).

The frequency and phase of the sinusoid is obtained from the line volt-
age by means of a phase locked loop (PLL). The dynamics of this is not
included in the analysis but could be done by deriving its HTF – an in-
teresting challenge for future research.

The AC current gives rise to a voltage drop vtr across the transformer.
In Fig. 10, Ztr is a low-pass approximation of the transformer impedance,
Rtr + sLtr. The desired AC voltage, vref

AC(t), is obtained by subtracting the
transformer voltage from the line voltage, as shown in Fig. 6.

Pulse Width Modulation (PWM)

From vref
AC(t), the switching pattern is obtained by means of pulse width

modulation. The HTF of a PWM is derived in [Sandberg, 1999], which
shows that for frequencies below the switching frequency of the converter
there is no frequency interaction, and the PWM can be approximated
by a time delay of half the switching period. A switching frequency of
250 Hz thus gives a time delay of 2 ms. This has negligible influence on
the stability and is therefore not included in the model. Instead, the PWM
is modeled as ideal; that is, the modulation function is obtained from (9)
as

m(t) = 1
vDC(t)v

ref
AC(t).

This expression is nonlinear due to the division by vDC(t). To carry through
the analysis, it is linearized:

∆m(t) = − vref 0
AC (t)

(v0
DC(t))2

∆vDC(t) + 1
v0

DC(t)
∆vref

AC(t).

Here vref 0
AC (t) is the periodic reference AC voltage corresponding to the

nominal periodic solution.

A DC Link PI Controller

If the reference current is based only on feedforward from the load current,
the system will not handle disturbances. Under line voltage fluctuations,
the converter controller will keep the desired line current, but there will
be fluctuations in the DC voltage. As the motor control relies on a constant
torque, this will lead to torque offset or torque pulsation.
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Locomotive

Converter
Controller

PI

to PWM

�I
ref

AC

�Iload

�Vline

�M

A

�IAC

�VDC

Figure 11 A block diagram of the locomotive including converter control and DC
link controller. Point A is where the loop is broken to plot the open-loop Nyquist
plot in Fig. 12. The admittance HTF, H cl , from ∆Vline to ∆ IAC is shown in Fig. 14.
The choice of the gain in the DC link PI controller is a tradeoff between small DC
ripple and small admittance H cl .

Using a DC link controller, the DC voltage is stabilized at a desired
reference value. In Fig. 11, the DC link is stabilized with a PI controller

∆ Iref
AC (s) = K (1+ 1

sTi
)∆VDC(s).

The output is used to adjust the AC current amplitude reference, Iref
AC .

Results

The linear frequency domain model obtained in the previous section can
be used in several ways to improve system knowledge. The main goal is
not only to obtain simulation results, which can be done using standard
time domain simulation, but also to understand system properties and
tradeoffs.
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Figure 12 A Nyquist plot for the inverter locomotive at point A, for Iload = 500A.
The diagram predicts a stability limit of K = 2.23. This agrees well with the time-
domain simulations in Fig. 13. Note that the Nyquist curve for an LTP system
consists of a number of disjoint curves. For stability, the total number of counter-
clockwise encirclements of the point −1/K of these curves must equal the number
of open-loop unstable poles.

An HTF Nyquist Plot

We first verify that the HTFs we have obtained give results that agree
with standard time domain simulation. If the loop is broken at point A
in Fig. 11, the Nyquist plot for the locomotive, including the controller,
can be plotted. Fig. 12 shows the Nyquist plot for the locomotive with
load current i0

load = 500 A and DC voltage reference v0
DC = 2800 V. The

controller parameters are K = 1 and Ti = 60. From the Nyquist theorem,
we conclude that the stability limit is K = 2.23. This agrees very well
with simulations (see Fig. 13, which shows that the system is stable for
a controller gain of K = 2.2 but unstable when K = 2.3). For the Nyquist
plot, the HTF is truncated at N = 5, which means that frequencies up
to the fifth harmonic are considered, hence the HTF is an 11x11 matrix.
Increasing N only leads to additional eigenvalues in the origin, due to the
roll-off of the system.

Amplitude Diagrams of HTFs

By determining the HTF-admittance H cl of the total locomotive, (i.e., the
closed-loop transfer function from disturbances in line voltage, ∆Vline, to
disturbances in line current, ∆ Iline = ∆ IAC), the model can be used as
a starting point to determine the stability of a larger system consisting
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Figure 13 The DC voltage for K = 2.2 (left) and K = 2.3 (right). The amplitude
margin is 2.23. The results agree well with the Nyquist plot in Fig. 12
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Figure 14 Plots showing the amplitude of the coupling between different frequen-
cies for the HTF from ∆vline to ∆iac for DC link controller gains K = 0, K = 1, and
K = 2.23. The load current is Iload = 500 A. The diagonal structure shows that for
LTP systems, there is interaction between frequencies separated by a multiple of
f0. For K = 0, the admittance is zero. By increasing K , it is obvious that the DC
link controller leads to cross-frequency interaction with the supplying network.

of several trains and a distribution network. The amplitude of the cou-
pling between input frequencies and output frequencies, H cl , is plotted
in Fig. 14 for DC link controller gains K = 0, K = 1, and K = 2.23.
Due to symmetry, there is only coupling between frequencies separated
by a multiple of double the fundamental frequency, 2 ⋅ f0 = 33 − 1/3 Hz.
It is easy to determine that the admittance is zero when K = 0, so the
interaction with the net arises from the DC voltage controller. There will
be a tradeoff between a small DC ripple, requiring large controller gains,
and small admittance, requiring small controller gains.

Fig. 15 shows the amplitude plot of the HTF-admittance for a negative
load current, Iload = −500 A. A negative load current occurs when the
locomotive is braking. The controller parameters are K = 1 and Ti = 60.
A comparison with the middle plot of Fig. 15 shows that the HTF is
considerably different.
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Figure 15 The amplitude plot for a negative load current, Iload = −500 A. The
controller parameters are K = 1 and Ti = 60. The plot is quite different that that
for a positive load current, shown in Fig. 14.

Conclusions

The Swiss incidents have shown that overall system stability is highly
dependent on good converter control. The time varying nature of the con-
verters implies that control theory for LTI systems cannot be used in a
straightforward way. This paper has shown how the Harmonic Transfer
Function facilitates a way to generalize many results to hold also for LTP
systems. Stability and robustness analysis and controller design can be
performed in a more systematic way. In this paper we have only presented
a few example of the theorems and results that can be useful when ana-
lyzing modern electric networks.

The model we have derived and analyzed should only be viewed as a
starting point for analysis of the complete train system. In the model, we
have neglected certain dynamics that have been thought to be of minor
importance, such as the dynamics introduced by the non-ideal pulse-width
modulation and the phase-locked loop adjusting the phase angle φ . A
related assumption is that we have no active control of reactive line power.
In addition, the motor dynamics have been left out.

The model of the inverter locomotive is of independent value due to
the object-oriented approach to modeling made possible by the method.
Different subcomponents can be modeled and verified by simulations and
measurements and then analyzed together, which is a significant advan-
tage.

Acknowledgment

The model of the inverter locomotive was kindly provided by Markus
Meyer at Adtranz, Zürich. The work was financially supported by Elforsk
AB under Elektra project 3320.

123



Paper III. Out of Control Because of Harmonics

References

Acha, E., J. Arrillaga, A. Medina, and A. Semlyen (1989): “General
frame of reference for analysis of harmonic distortion in systems
with multiple transformer nonlinearities.” IEE Proceedings, 136C:5,
pp. 271–278.

Arrillaga, J. and C. Callaghan (1991): “Three phase AC-DC load and
harmonic flows.” IEEE Trans. on Power Delivery, 6:1, pp. 238–244.

Arrillaga, J., A. Medina, M. Lisboa, M. A. Cavia, and P. Sánchez
(1994): “The harmonic domain. A frame of reference for power system
harmonic analysis.” IEEE Trans. on Power Systems, 10:1, pp. 433–440.

Åström, K., H. Elmqvist, and S. Mattsson (1998): “Evolution of
continuous-time modeling and simulation.” In Zobel and Moeller,
Eds., Proceedings of the 12th European Simulation Multiconference,
ESM’98, pp. 9–18. Society for Computer Simulation International,
Manchester, UK.

Ball, J., I. Gohberg, and M. Kaashoek (1995): “A frequency response
function for linear time-varying systems.” Math. Control Signals
Systems, 8:4, pp. 334–351.

Bamieh, B. and J. Pearson (1992): “A general framework for linear
periodic systems with applications to H∞ sampled-data control.” IEEE
Transactions on Automatic Control, 37, pp. 418–435.

Chen, T. and B. Francis (1995): Optimal Sampled-Data Control Systems.
Springer-Verlag.

Floquet, G. (1883): “Sur les équations différentielles linéaires a coef-
ficients périodiques.” Annales de L’Ecole Normale Supérieure, 12,
pp. 47–89.

Hill, G. (1886): “On the part of the lunar perigee which is a function of
the mean motions of the sun and the moon.” Acta Mathematica, 8,
pp. 1–36.

Hwang, S. (1997): Frequency Domain System Identification of Helicopter
Rotor Dynamics incorporationg Models with Time Periodic Coeffi-
cients. PhD thesis, Dept. of Aerospace Engineering, University of
Maryland.

Kamen, E. and J. Sills (1993): “The frequency response function of a
linear time varying system.” In IFAC 12th Triennal World Congress,
pp. 315–318. Sydney.

124



References

Kano, H. and T. Nishimura (1985): “Controllability, stabilizability, and
matrix Riccati equations for periodic systems.” IEEE Transactions on
Automatic Control, 30:11, pp. 1129–1131.

Kundert, K. and A. Sangiovanni-Vincentelli (1986): “Simulation of nonlin-
ear circuits in the frequency domain.” IEEE Trans. on Computer-Aided
Design, 5:4, pp. 521–535.

Meyer, M. (1999): “Netzstabilität in grossen Bahnnetzen.” Eisenbahn-
Revue, No 7-8, pp. 312–317.

Möllerstedt, E. (1998): An Aggregated Approach to Harmonic Modelling
of Loads in Power Distribution Networks. Lic Tech thesis, Department
of Automatic Control, Lund Institute of Technology, Lund, Sweden.

Richards, J. (1983): Analysis of Periodically Time Varying Systems.
Communications and Control Engineering Series. Springer-Verlag,
Berlin.

Sandberg, H. (1999): “Nonlinear Modeling of Locomotive Propulsion
System and Control.” Master’s thesis ISRN LUTFD2/TFRT--5625--
SE, Department of Automatic Control, Lund Institute of Technology,
Sweden.

Semlyen, A., E. Acha, and J. Arrillaga (1987): “Harmonic Norton Equiv-
alent for the magnetisation branch of a transformer.” Proc. IEE Pt. C,
134:2, pp. 162–169.

Semlyen, A., E. Acha, and J. Arrillaga (1988): “Newton-type algorithms
for the harmonic phasor analysis of non-linear power circuits in peri-
odical steady state with special reference to magnetic non-linearities.”
IEEE Trans. on Power Delivery, 3:3, pp. 1090–1098.

Semlyen, A. and N. Rajakovic (1989): “Harmonic domain modeling of
laminated iron core.” IEEE Trans. on Power Delivery, 4:1, pp. 382–
390.

Song, W., G. Heydt, and W. Grady (1984): “The integration of HVDC
subsystems into the harmonic power flow algorithm.” IEEE Trans. on
Power Apparatus and Systems, PAS-103:8, pp. 1953–1961.

Wereley, N. (1991): Analysis and Control of Linear Periodically Time
Varying Systems. PhD thesis, Dept. of Aeronautics and Astronautics,
MIT.

Wereley, N. and S. Hall (1991): “Linear time periodic systems: Transfer
function, poles, transmission zeros and directional properties.” In
Proceedings of the American Control Conference. Boston, MA.

125



Paper III. Out of Control Because of Harmonics

Xu, W., J. Drakos, Y. Mansour, and A. Chang (1994): “A three-phase
converter model for harmonic analysis of HVDC systems.” IEEE Trans.
on Power Delivery, 9:3, pp. 1724–1731.

Xu, W., J. Marti, and H. Dommel (1991): “A multiphase harmonic load
flow solution technique.” IEEE Trans. on Power Systems, 6:1, pp. 174–
182.

126



Paper IV

Robust Control of Power Converters

Erik Möllerstedt, Alec Stothert, and Henrik Sandberg

Abstract
The paper presents a systematic approach to power converter modeling,
applied to a micro-turbine line side converter. For a three-phase system,
transformation to rotating coordinates results under ideal conditions in a
time invariant model. This means that linearization of the system results
in a linear time invariant (LTI) model. A controller structure is proposed,
which simplified converter control design and analysis of the resulting
closed loop system. It is shown that the common objectives for converter
control make linear quadratic optimal (LQ) control design suitable, and an
LQ controller is derived from the nominal LTI model. The control design
is evaluated with time domain simulation.

Harmonics, unbalanced ac systems, and switching dynamics of the
converter implies that transformation to rotating coordinates results in
a time-varying model. This means that stability cannot be guaranteed
using LTI analysis only. Such non-ideal conditions are easily incorporated
in the derived model, and the result is an LTP model. The model structure
makes it straightforward to get the system on the so called standard form
for robustness analysis. Integral Quadratic Constraints are then used to
evaluate the control design under non-ideal conditions.
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1. Introduction

Regulatory changes, increased competition, new business models, and
technological advances in electrical power generation have combined to
create an alternative framework for electricity generation – distributed
power generation (DPG). The distributed power generation framework
moves away from traditional large-scale power generation plants (several
hundred MW) located near the natural resource converted to electricity,
to small power generators (a few kW to 10 MW) sited at the load. Typi-
cally installation of a large power station/unit is proceeded by extensive
analysis and simulations. To assure proper operation, controllers and fil-
ters are tuned manually on site. To make distributed power generation
competitive, these initial investments must be reduced — cost effective-
ness relies on mass production and plug and play solutions. A DPG unit
has to be able to operate satisfactorily without extensive on-site analysis
and with factory tuned controllers.

Typical DPG sources include micro turbines (see Fig. 1), fuel cells,
wind mills, and solar cells. For physical and efficiency reasons, these

Figure 1 Alec is taking measurements on the micro-turbine unit.

128



2. Converter Modeling

power sources normally do not operate at grid frequency, and must be
connected to the distribution grid via power electronics. Introduction of
power electronic converters, which are very powerful actuators where
power flows can be changed in a fraction of a second, implies that the
influence and behavior of DPG units is highly dependent on good control.
Additionally the switching nature of converters implies that harmonics
are introduced into the grid. These harmonics can propagate through the
grid and in worst case scenarios cause the grid to oscillate. The oscil-
lations can trip protection systems causing wide spread electricity loss.
Such a scenario is not unheard of; the Swiss national railway power grid
suffered two such events during 1995 [Meyer, 1999]. The introduction of
distributed power generation thus leads to a change in perspective where
numerous technical business and regulatory questions [Schweer, 1999],
[Hadjsaid et al., 1999] arise. Primary among these questions is the im-
pact of DPG units on the distribution system to which the unit is attached.
Questions such as the effect of the unit on frequency and voltage stabil-
ity, the effect on grid current and voltage harmonics, and the effect of the
unit on grid power flows and grid protection need to be analyzed. To over-
come these problems design and control of these systems must focus on
robustness. The performance of the DPG unit has to be guaranteed under
uncertain and distorted conditions — simulation alone cannot guarantee
stable operation.

This paper provides a foundation for future work in this area by pre-
senting a modeling approach of modern power systems that facilitates
efficient simulation, systematic control design, and robustness analysis.
In particular the focus is on replacing the traditional controller by a con-
troller with clearly structured feedback and feedforward loops. This sim-
plifies analysis and opens possibilities to take advantage of modern opti-
mization and robust design techniques.

2. Converter Modeling

A power converter is a nonlinear coupling between two electric systems.
Most common is that the converter is used to connect an ac system to
a dc system. Linear models of the ac side and dc side dynamics respec-
tively, are generally straightforward to derive, the problem is to get a good
description of the coupling between the two sides, that facilitates analy-
sis and design of the complete system. It is common practice to consider
only the coupling between the fundamental signals, that is, to assume
that dc signals are constant and ac signals are sinusoidal and symmet-
ric [Kundur, 1994]. These assumptions may be appropriate for converters
connected to a high voltage transmission network, but for small convert-

129



Paper IV. Robust Control of Power Converters

vp

vn

ip

in

sa

sb

sc

ia

ib

ic

va

vb

vc

dc side ac side

Figure 2 An ideal converter. The switch functions sa, sb, and sc are used to control
the power flow through the converter, and the reactive power generated on the ac
side.

ers, connecting DPG units directly to a low voltage distribution system,
it is not reasonable to assume that systems are balanced and free from
harmonic distortion. We will therefore take an approach to modeling of
the converter that facilitates a way to take such non-ideal conditions into
account.

An Ideal Converter

An ideal three phase converter is shown in Fig. 2. The ideal converter has
no losses and no energy storage. The converter has five terminals, two on
the dc side and three on the ac side. It is normally assumed that in = −ip.
This property is not inherent to the converter, but depends on the rest of
the system, so in order to get a general model, this cannot be assumed.
To simplify the analysis, the dc signals are transformed as

vdc = vp − vn,
vm = (vp + vn)/2,
idc = (ip − in)/2,
∆i = ip + in.

(1)

Note that in = −ip is equivalent to ∆i = 0.
The basic goal of the converter control is to shape the ac voltage so that

the generated power is fed into the grid. This is done by proper switching
of the converter. From Fig. 2 and (1) it can be concluded that va(t)

vb(t)
vc(t)

 =
 sa(t)

sb(t)
sc(t)

 vdc(t) +
 1

1

1

 vm(t), (2)
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where the switch functions, sa(t), sb(t), and sc(t) can be assigned the val-
ues ±1/2 if we assume infinately fast switching. This means that we do
not consider the commutation of the switches. Since the ac voltages only
can be assigned discrete values, smooth voltages must be approximated.
Using for instance pulse width modulation, the phase voltages can ap-
proximate any signal with amplitude less that 1/2.

The switch functions also gives a relation between ac current and dc
current:

idc(t) = sa(t)ia(t) + sb(t)ib(t) + sc(t)ic(t),
∆i(t) = ia(t) + ib(t) + ic(t).

(3)

Since an ideal converter has no losses and no energy storage, the instan-
taneous power on the dc side and the ac side must be equal, that is,

Pdc = vpip + vnin = vdcidc + vm∆i

= vaia + vbib + vcic = Pac.
(4)

The current relation (3) can also be derived from this power balance.

The dq0-frame

Ac systems are conveniently analyzed in the rotating dq0 reference frame.
Three phase ac currents, ac voltages, and switch signals are transformed
to the dq0 by a linear time periodic state transformation, which for the
current becomes id

iq

i0

 =√2
3


cosω 0t cos(ω 0t− 2π

3 ) cos(ω 0t+ 2π
3 )

− sinω 0t − sin(ω 0t− 2π
3 ) − sin(ω 0t+ 2π

3 )√
1
2

√
1
2

√
1
2


 ia

ib

ic

 ,

where ω 0 is the grid frequency, which has to be estimated by, for instance,
a phase locked loop.

For balanced steady-state operation, id and iq are constant. Hence, si-
nusoidal signals in the abc reference frame appears as constants in the
dq0 reference frame [Kundur, 1994]. If on the other hand the phase signals
are not symmetric, or contain harmonics, the transformed signals becomes
time-varying. Therefore, for linear analysis of converter systems, the com-
mon approach is to assume symmetric ac signals, free from harmonics.
The model developed here is not restricted to such conditions.

By proper grounding, it can be assured that ∆i = 0. This will be as-
sumed in the rest of the paper. Then (3) implies that i0 = 0, and the
converter equations (2) and (3) simplify to

Vac(t) = S(t)vdc(t),
idc(t) = S(t)T Iac(t),

(5)
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Figure 3 The seven possible values for the switch function in the dq reference
frame. All values inside the inner circle can be approximated with pulse width
modulation.

where

Vac(t) = [ vd(t) vq(t) ]T ,

Iac(t) = [ id(t) iq(t) ]T ,

S(t) = [ sd(t) sq(t) ]T .

Note that even though there is no zero component in the current, both
the ac voltage and the switch function, as well as the dc voltage can
have non-zero zero components, v0(t) =

√
3vm(t). However, this does not

affect the power balance of the converter as in dq0 reference frame pac =
vdid + vqiq + v0i0, and i0 = 0.

The switch function S = [sd sq]T can in each instant be assigned 7
different values, as shown in Fig. 3. Hence, S(t) can approximate, at least,
any function with

hS(t)h =
√

s2
d + s2

q ≤
√

3
2

⋅
√

2
3
= 1√

2
� 0.7.

If the switch signal is derived in the dq reference frame, it must be trans-
formed back to phase values sa

sb

sc

 =√2
3

 cosω 0t − sinω 0t

cos(ω 0t− 2π
3 ) − sin(ω 0t− 2π

3 )
cos(ω 0t+ 2π

3 ) − sin(ω 0t+ 2π
3 )

[ sd

sq

]
.
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Linearizing the Converter

The local behavior of the converter in the neighborhood of a periodic so-
lution {vdc nom(t), Iac nom(t), Snom(t)} is well described by a linear approxi-
mation:

∆Vac(t) = Snom(t)∆vdc(t) + ∆S(t)vdc nom(t),
∆idc(t) = Snom(t)T ∆ Iac(t) + ∆S(t)T Iac nom(t),

(6)

By defining the vectors

z =
[ ∆Vac

∆idc

]
∈ R3, x =

[ ∆ Iac

∆vdc

]
∈ R3, (7)

this can be written

z(t) = S0(t)x(t) + X0(t)∆S(t), (8)

where

S0 =
 0 0 snom

d

0 0 snom
q

snom
d snom

q 0

 , X0 =
 vnom

dc 0

0 vnom
dc

inom
d inom

q

 .

If the ac phase currents are sinusoidal and symmetric, the dc voltage is
constant, and Snom(t) is constant in the dq reference frame, then the nom-
inal solution {vnom

dc (t), Inom
ac (t), Snom(t)} becomes constant in the dq refer-

ence frame. The linearized converter (6) is then described by the constant
gain matrices, S0 and X0. If the rest of the system is linear, analysis can
be performed using standard methods for linear time invariant (LTI) sys-
tems. The case where the ac currents are not sinusoidal and symmetric,
and the dc voltage is not constant is discussed in Section 5 below.

A State Space Model of the DPG System

The linearized converter is now used to derive a state space model of
the DPG unit. This can be used for linear control design and analysis.
A simplified model of the DPG unit is shown in Fig. 4. The converter
is connected to the grid via a smoothing inductor. This can in the dq
reference frame be written (neglecting the zero components)

dIac

dt
=
[

0 ω 0

−ω 0 0

]
Iac +

[
1/L 0

0 1/L

]
(Vac − Vnrid). (9)

The dc side is just a current source and the dc link capacitor.

dvdc

dt
= 1

C
(inen − idc). (10)
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=

~
~inen VnridC

L

idc

Iac

S

+
vdc

−

Figure 4 A simplified DPG system. The generator dynamics and the grid dynam-
ics are neglected. A model is developed for the simplified system, treating variations
in generator current and grid voltage as disturbances.

This simple description of the dc side dynamics is motivated by the fact
that the dc link capacitor is chosen large to obtain decoupling of the ac
side and the dc side. Following the notation in (7) with x = [∆ IT

ac ∆vdc]T
and z = [∆V T

ac ∆idc]T , the dynamic equations (9) and (10) can be written

dx
dt
= Aox + Bo(z− l),

where

Ao =
 0 ω 0 0

−ω 0 0 0

0 0 0

 , Bo =


1
L 0 0

0 1
L 0

0 0 − 1
C

 , l =
[ ∆Vnrid

∆inen

]
.

Combining this with the linearized converter model (8) gives the total
linearized system

dx
dt
= Ax + B∆S+ Bll, (11)

with
A = Ao + BoS0, B = Bo X0, Bl = −Bo.

We thus have a state space description of the system linearized around
the nominal solution. This will be used to design a feedback controller for
the converter.

The disturbance, l = [∆V T
nrid inen]T , is often measurable, and can be

compensated for by feedforward, but with more information about the
system, it is straightforward to extend the model with states lx, that
depend on x. This gives the possibility to include the impact of a weak
grid, where a deviation in current, Iac, affects the grid voltage, Vnrid, and
that the generated current, inen, depends on the dc link voltage, vdc.
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Figure 5 A controller structure with well defined feedback and feedforward paths.
The nominal block determines a nominal solution based on reference values for ac-
tive power P, which is the desired output power of the generator, and reactive
power Q, which is determined by the grid operator. The feedback controller ad-
justs the nominal switch signal, Snom, if the states x = [∆ IT

ac ∆vdc]T deviates from
their nominal values, and the feedforward controller compensates for measurable
disturbances l = [∆V T

nrid ∆inen]T .

3. A Suggested Structure for DPG-controllers

The primary goal of the converter controller is to switch the converter
so that the power generated by the micro turbine, Pnen, is injected into
the grid in a stable manner. The converter can also be used for power
conditioning, with both active and reactive power injected into the grid.
Hence, the converter should be switched so that

Pnrid = Pnen,
Qnrid = Qref .

(12)

Traditionally, converter controllers are very complex, and include a
number of cascaded proportional–integral (PI) controllers and numerous
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feedback and feedforward paths. Controller tuning is based on ad hoc
tuning rules and experience, verified by simulation and linear analysis.
However, it is not certain that traditional tuning rules are well suited for
new applications, like distributed power generation. The complexity of the
controllers makes proper analysis extremely complicated. Furthermore, as
DPG units are to be connected anywhere in the system using pretuned
controllers, a robust approach has to be taken.

To simplify design and analysis, the controller must be clearly struc-
tured, with a clear definition of feedforward and feedback loops. A pro-
posed structure is shown in Fig. 5. The controller consists of three parts,
a nominal block, a feedback controller, and a feedforward block.

The nominal block derives nominal signals based on the nonlinear
model and reference values for active and reactive power. The nominal
switch signal corresponding to the nominal solution is also derived.

The feedback controller adjusts the nominal switch signal by means of
feedback of the deviations from the nominal measured states (dc voltage
and ac current). The need for a robust controller and the control objec-
tives to keep a constant dc voltage under desired reactive power injection,
makes linear quadratic (LQ) control suitable.

The feedforward block is used to quickly react to measurable distur-
bances, in this case disturbances in grid voltage, Vnrid, or generated cur-
rent, inen.

The Nominal Block

If all ac signals are symmetrical with nominal amplitude and frequency,
and all dc signals are constant at the nominal level, it is straightforward
to derive a switch signal which results in desired power injection into the
grid, see Fig. 6. The nominal switch signal is based on reference values for
injected active and reactive power and dc link voltage, and nominal val-
ues of grid voltage. The nominal solution is time-varying if, for instance,
Pref is varying, but we will treat the inputs to the nominal block as not
being time-varying. This is a good approximation if the time scales can
be separated.

In the dq reference frame, nominal sinusoidal ac signals are conve-
niently described by complex vectors, or phasors,

v = vd + jvq, i = id + jiq, s = sd + jsq, etc.

The active and reactive power injected into the grid is then given by

Pnrid + jQnrid = vnridi∗
ac, (13)

where * denotes complex conjugate. From this, the desired ac current
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=

~

Pref , Qref

vnridvac L

iac

Figure 6 The nominal switch signal results in a converter ac voltage that gives a
desired injection of active and reactive power into the grid under nominal conditions.

becomes

iac nom =
(

Pref + jQref

vnrid nom

)∗
.

According to Fig. 6, the nominal ac voltage should be chosen

vac nom = vnrid nom + jω 0 Liac nom,

since the nominal signals are assumed sinusoidal. This gives the nominal
switch signal

snom = 1
vdc ref

vac nom

= 1
vdc ref

(1+ jω 0 L)Pref − jQref

hvnrid nomh2 vnrid nom.

Note that if a high reactive power level is desired, the switch signal might
saturate, that is, hsh > 1/√2. One way to get around this is to increase
the dc link voltage vdc ref .

Linear Control Design

The nominal switch signal is derived for a system under ideal conditions.
For a real system, with fluctuations in generation, disturbances, varying
grid voltage, harmonics and unsymmetrical signals and switching con-
verter dynamics, this nominal signal cannot be guaranteed to result in
stable operation or acceptable performance. The performance and stabil-
ity of the system must be improved by means of feedback. If all states are
measurable, a linear state feedback controller can be used

∆S = ∆Sf b + ∆Sf f = −Lxx + Lll. (14)

The control objectives (12) can be used to derive the feedback gain Lx

and the feedforward gain Ll. A mismatch in active power, Pnrid �= Pnen,
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results in energy storage in the dc link capacitor, and thus affects the
capacitor voltage. The active power can thus be controller by controlling
the dc voltage, vdc.

To control the reactive power, the model is extended by an extra state

dxq

dt
= Qnrid − Qref . (15)

The reactive power is given by (13)

Qnrid = Im(vnridi∗
ac) = vq

nridid
ac − vd

nridiq
ac

= [ vd
nrid vq

nrid ]
[

0 −1

1 0

] [
id
ac

iq
ac

]
= V T

nrid j Iac

To avoid taking the imaginary part, the complex vectors are replaced by
vectors of the real and imaginary parts. Multiplication with j = √−1, is
then equivalent to multiplication with the matrix o = [ 0 −1

1 0

]
. Linearizing

(15) gives

dxq

dt
= ∆Qnrid � ∆V T

nridoIac nom + V T
nrid nomo∆ Iac

= [−(oVnrid nom)T 0 ] x + [ (oIac nom)T 0 ] l = Aqx + Blql.

The extended system is obtained from (11)

dxe

dt
= d

dt

[
x

xq

]
=
[

A 0

Aq 0

] [
x

xq

]
+
[

B

0

]
∆S+

[
Bl

Blq

]
l

= Aexe + Be∆S+ Blel.
(16)

The extended system has four states, and thus Ae ∈ R4�4, Be ∈ R4�2, and
Ble ∈ R4�3.

The control objectives are now to keep the state x3 (dc voltage de-
viation) and x4 (integrated reactive power error) close to their nominal
values. This can be formulated as a linear quadratic (LQ) design problem,
where the optimal feedback gain Lx minimizes the quadratic loss function

J =
∫

xT Rx x + ∆ST Rs∆S dt, (17)

with

Rx =


0

0

ρ1

ρ2

 , Rs =
[

1 0

0 1

]
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Figure 7 The closed loop poles when ρ1 is varied (left plot) and when ρ2 is varied
(right plot). There is a clear decoupling between the weights and the pole pairs. The
poles marked with stars (*) correspond to ρ1 = 100 and ρ2 = 1000.

The optimal feedback gain Lx, which minimizes the loss function (17) is
given by

Lx = R−1
s BS,

where S is the positive definite solution of the Riccati equation

0 = SAe + AT
e S− SBeR−1

s BT
e S+ Rx.

The positive weights ρ1 and ρ2 are tuning knobs to be chosen to give
suitable tradeoffs between small x3, x4, and ∆S.

Closed Loop Poles

The closed loop poles are given by the eigenvalues of Ae − BeL. The pole
locations depend on the choice of weights, ρ1 and ρ2. In left plot in Fig. 7,
ρ1 is varied between 10 and 1000, whereas ρ2 is kept constant (=1000).
In the right plot ρ1 is constant (=100), and ρ2 is varied between 0.1 and
10000. It is clear that there is a decoupling between the two weights and
the two pole pairs. The poles for ρ1 = 100 and ρ2 = 1000 are marked with
stars in the two plots.

A Kalman filter has been used to filter the measured signals. The poles
are chosen in order to make the Kalman filter 1.5 times faster but equally
damped as the closed loop system, see Fig. 8, which shows the poles of
Ae − BeL (*) and A− K C (o).

Feedforward Control

To get a faster response to disturbances, a feedforward path can be in-
troduced from a measurable disturbance, l. Ideally, this should totally
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Figure 8 Poles of Ae − Be L (*) and A − K C (o). The Kalman filter is made 1.5
times as fast and equally damped as the closed loop system.

compensate for the disturbance, but that generally leads to improper con-
trollers. A static feedforward gain Ll that gives x3 = x4 = 0 in steady
state is obtained from the equation

Ae


x1

x2

0

0

+ Be∆Sf f + Blel = 0,

which gives 
x1

x2

∆sf f
d

∆sf f
q

 = − [ Ae(1 : 2) Be ]−1 Blel,

where Ae(1 : 2) are the first two columns of Ae.
The closed loop system is shown in Fig. 9

4. Simulation Results

The nonlinear converter system including the controller is simulated us-
ing Simulink. The system is disturbed by a 10% increase in grid voltage
amplitude after 0.02 s, a grid voltage phase shift of 10 degrees after 0.04 s,
and a 10% increase in generated current after 0.06 s. In the simulations,
L = 0.12 p.u., C = 0.003 p.u. Pr ef = 1 p.u., Qref = 0, V nom

nrid = [1 0]T p.u.,
and vnom

dc = 1.925 p.u.. Fig. 10 shows the result of the simulation with the
nominal controller (ρ1 = 100 and ρ2 = 1000), but without feedforward.
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Figure 9 The closed loop system, linearized around the nominal solution.
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Figure 10 Simulation results of a controller with ρ1 = 100 and ρ2 = 1000, but
without a feedforward path. The plots show good performance. There is a small
error in dc voltage, because there is no integral action on the dc voltage error.

The plots show a good performance, Because there is no integral action on
the dc voltage error, there is a small stationary error, note that the dc volt-
age is normalized in the plot. The performance is improved significantly
using the proposed feedforward gain. This is shown is Fig. 11.

By changing ρ1, the dc voltage error is affected. This is shown in
Fig. 12, where ρ1 is reduced to 10. The design weight ρ2 affects the error
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in reactive power. By increasing this weight, the error will be damped out
faster. In Fig. 13 ρ2 = 10000. The reactive power is damped very quickly
and settles at its reference value.

In the design and analysis so far, the effects of measurement noise
has not been considered. In Fig. 14, the switch signal, S(t) = [Sd Sq]T is
plotted when the controller inputs are disturbed with band limited white
noise with standard deviation σ = 0.1%. The design weights are ρ1 = 100
and ρ2 = 1000. The result is terrible. It is clear that in the presence of
measurement noise, the controller has to be retuned. In Fig. 15 ρ1 = 0.1
and ρ2 = 10000. The plots clearly shown improvement. However, this
leads to larger deviations in dc voltage vdc.

5. Robustness Analysis of the Converter Controller

The final choice of converter controller depends on a lot of things. It must
quickly react to changed conditions and disturbances, but the bandwidth
of the controller is limited by hardware. Also too fast converter switching
results in too high losses. Furthermore, the controller should not be sen-
sitive to measurement noise. The approach taken in this paper facilitates
a way to perform systematic controller design and analysis of the closed
loop system.

In the above analysis, simple models and simplifying assumptions have
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Figure 11 With feedforward, the controller reacts quicker to disturbances. This
clearly affects the result, compare with Fig. 10.
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Figure 12 If the design weight ρ1 is reduced, the dc voltage error will be larger.
Here, ρ1 = 10 and ρ2 = 1000.

been used. The question now arises as to how to relax these assumptions,
that is, how can stability and performance be guaranteed in presence of

• grid dynamics in a weak net

• generator dynamics

• other power electronic devices

• harmonics

• unbalanced loads

• non-ideal converter switchings

The approach proposed is to treat these effects as uncertainties in the
system dynamics. The question can then be posed in a classical control
framework of investigating system robustness with respect to uncertain-
ties.

In robustness analysis, an uncertain system is often described as a
feedback connection of a nominal system, Hnom, and an uncertainty block,
∆, see Fig. 16. The nominal system contains everything that is known, for
instance all blocks in Fig. 9. Robust performance analysis can give the
maximum norm of the uncertainty for which performance and stability
are guaranteed. To view the stability conditions of the micro turbine as a
robustness problem can give ideas about what has to be fulfilled by the
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system to obtain stability and performance. This can give many useful
ideas on how to write norms and standards for connections of DPG units
to the grid. A good reference on robust analysis is [Zhou et al., 1995].

Effects of Disturbances in Linearizing Trajectory

There are at least two good reasons for making robustness analysis of
the model and controller constructed in the previous sections. First of
all we have assumed constant {vdc nom(t), Iac nom(t), Snom(t)} in Section 2.
The effect of harmonics, unbalance and converter switching is that this
assumption no longer holds, in particular the linearized converter model is
no longer constant but periodic, that is, the gain matrices S0(t) and X0(t)
in (8) varies periodically. The influence of this should be studied. The
second reason is that we constructed an LQG-controller. The guaranteed
stability margins with full state knowledge for LQ-controllers are not valid
for systems with output feedback, see [Doyle, 1978]. Thus a designer of
an LQG-controller should always check robustness afterwards.

In our example we choose an uncertainty block of the type ∆(t) ∈ R3�5,
see Fig. 17. When the trajectory we are linearizing along is perturbed, the
linear model will change. If we assume the perturbation is periodic ∆(t)
will be periodic. ∆(t) has five independent components: δ k(t), k = 1, . . . , 5.

It is interesting to see what happens when the nominal LQG-controller
is attached to the perturbed system. Questions we would like to answer
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Figure 13 If the design weight ρ2 is increased, the reactive power will faster go
back to its reference value after a disturbance Here, ρ1 = 100 and ρ2 = 10000.
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Figure 14 The switch signal for the design with ρ1 = 100 and ρ2 = 1000 in the
presence of measurement noise. The result is terrible.

are: Is the perturbed system stable? Is the performance still good? Often
the norm of disturbance attenuation is used as performance measure. This
is not ideal here as will be discussed later.

Robustness analysis is often made with H∞- and µ-analysis. Here we
will use a more general approach using Integral Quadratic Constraints
(IQC), see overview article [Megretski and Rantzer, 1997]. The methods
are implemented in the toolbox IQCβ , [Megretski et al., 2000] with a
Simulink interface.
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Figure 15 With measurement noise, the controller has to be retuned. Here ρ1 =
0.1 and ρ2 = 10000.
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w1

w2

v1

v2

∆

Hnom

Figure 16 The uncertain system is written as a feedback connection between a
nominal system and an uncertainty block. Robust performance is measured as the
gain from w2 to v2.
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S0 X0
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+
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Figure 17 The periodic part of the converter gain matrix is placed in an uncer-
tainty block ∆.

Definition 1.1 The stable and causal operator1 ∆ satisfies the IQC
defined by Π if and only if

1
2π

∫ +∞

−∞

[
ŷ( jω )
x̂( jω )

]∗

Π( jω )
[

ŷ( jω )
x̂( jω )

]
dω ≥ 0 (18)

for all x, y ∈ L2[0,∞) where x = ∆ y. Here x̂ represents the Fourier trans-
form of x.

By finding IQC:s that are fulfilled by the uncertainties we can turn
the robust performance problem into a finite dimensional Linear Matrix
Inequality, [Megretski and Rantzer, 1997]. These can be solved efficiently
in polynomial time, see [Nesterov and Nemirovski, 1993]. The more IQC:s

1Stable operator means here that it has finite L2-induced gain.
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Table 1 The upper bounds of the energy norm of disturbance attenuation for
different choices of the weights ρ1 and uncertainty bound D, ρ2 = 1000.

ρ1

D 10 100 1000

0.00 2.61 2.31 2.21

0.10 3.74 3.23 3.28

0.20 6.67 6.44 8.02

0.30 203.14 infeas. infeas.

0.33 infeas. infeas. infeas.

we can find that are satisfied by ∆, the less conservative the result be-
comes. The result is an upper bound of the energy norm of the disturbance
attenuation.

We will choose an IQC that is fulfilled by real periodic scalars −1 ≤
δ (t) ≤ 1, [Willems, 1971; Megretski and Rantzer, 1997], for which Π has
the structure

Π =
[

X ( jω ) Y( jω )
Y( jω )∗ −X ( jω )

]
with X , Y being bounded and measurable satisfying

X ( jω ) = X ( j(ω + 2π/T)) = X ( jω )∗ ≥ 0

Y( jω ) = Y( j(ω + 2π/T)) = −Y( jω )∗

where T is the period of the scalar. In our problem we will choose constant
real matrices X , Y. This adds conservatism to the problem because any
time-varying scalar −1 ≤ δ (t) ≤ 1 will satisfy this IQC. For algorithms
using the periodicity see [Jönsson et al., ]. Another approach is to lift the
entire system to a discrete time invariant system and then use constant
X , Y.

We will choose l = [∆V T
nrid ∆inen]T as input disturbance in this example.

The measured output is x = [∆ IT
ac ∆vdc]T . If we can get an upper bound

on the energy norm bound between these signals we know the system is
stable. Now let hδ k(t)h ≤ D for all t, k. With D = 0 we have the nominal
system without perturbation. By running the optimization program with
different values of D, we can find the largest perturbations, for which
stability can be guaranteed.

We can introduce another degree of freedom by varying the controller.
In Table 5 ρ1 is varied. Bounds of the energy bound for different D and
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Table 2 The upper bounds of the energy norm of disturbance attenuation for
different choices of the weights ρ2 and uncertainty bound D, ρ1 = 100.

ρ2

D 100 1000 10000 100000

0.00 2.34 2.31 2.25 2.20

0.10 3.69 3.23 3.06 2.96

0.20 15.04 6.44 4.87 4.60

0.30 infeas. infeas. 14.89 10.56

0.33 infeas. infeas. 47.40 17.81

0.35 infeas. infeas. infeas. 33.12

0.40 infeas. infeas. infeas. infeas.

ρ1 are shown. ’Infeasible’ means we cannot prove stability for this combi-
nation of controller and disturbance.

Not surprisingly we see that when the uncertainty is increased the
performance deteriorates until we cannot prove stability any more. It can
be seen that the best disturbance rejection is not achieved by keeping the
dc voltage as constant as possible.

In Table 5 ρ2 is varied instead. It is shown that the more integral
action, the better disturbance rejection. The choice of ρ2 is limited by the
controller hardware.

One could ask the fully justified question: Is it really the energy norm
from l to x we would like to minimize, and what is the interpretation?
What we really are interested in are particular frequencies and coupling.
For example, a constant rise in ∆Vnrid would ideally be followed by a
drop in ∆ Iac, as we would like the generator to deliver constant power.
A norm of 0 is thus not optimal. Instead we should compare to the case
D = 0, which is the one we get when we use linear time invariant methods
for analysis, and see how much the figures changes for different D. Small
changes in the bounds indicates that the performance is roughly the same.

To analyze the influence of some frequencies we can introduce input
and output filters on the signals w2 and v2. By letting through some fre-
quency bands we can study the important regions. For example a 50 Hz
disturbance should not spread out too much in other frequency regions.
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6. Conclusions

It is well documented that introduction of distributed power generation
poses challenging technical questions relating to power stability, protec-
tion and quality. To this end the paper has described the development
of a model of a line side converter of a micro-turbine that will facilitate
investigation of these issues. Additionally a generalized converter con-
trolled framework enabling generalization of different converter control
algorithms has also been introduced. Finally an approach to handling con-
verter non-linearities and harmonic effects based on robustness analysis
has been proposed, in particular it is noted that harmonic effects can be
modeled by introducing periodic uncertainties into the developed models.
Much of this work is ongoing and future research will show how these
results can be used to guarantee stable operation of distributed power
generation systems.
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