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Simulatorer for processindustrin

Inom omradet informationstekno-
logins tillimpningar arbetar STU
med ett insatsomride benimnt
"Driftutvecklingssystem for pro-
cessindustrin, DUP”, Program-
mets huvudsakliga inriktning
framgér av faktarutan. Inom DUP
liksom inom processtyrningsomr3-
det som helhet forvintas simulato-
rer komma att spela en viktig roll i
framtiden. Inom ramen fér insats-
omradet bedrivs dirfér simula-
torprojekt som har koppling bade
till basstudier och fallstudier.

Nu dr inte anvindning av simulato-
rer nagot som ir unikt f6r processin-
dustrin. Simuleringar har spelat och
kommer att spela en viktig roll fér
en mingd av informationsteknolo-
gins tillimpningsomriden.

De {6rsta simulatorerna
Historiske sett utvecklades de {érsta
simulatorerna som ett hjilpmedel
for att 16sa dynamiska problem be-
skrivna med differentialekvationer.
Vid lésningen av ekvationerna an-
vinde man sig av analoga elektriska
kretsar som efterliknade eller simu-
lerade det ursprungliga problemet
genom att kretsarnas elektriska sam-
band beskrevs av samma differential-
ekvationer. Med hjilp av elektronis-
ka forstarkare kunde man bygga ma-
‘skiner — sk analogimaskiner — som
pa ett bekvimt och flexibelt sitt
kunde anvindas f6r att 16sa dynami-
ska problem av mycket stora ord-
ningstal. Genom att analogimaski-
nerna arbetar tidskontinuerligt och
genom parallellbearbetning av pro-
blemet ir den méjliga problem-
komplexiteten helt och héllet kopp-
lad ull hrdvarans omfattning.

Digitala datorer

Nir de digitala datorerna blev van-
ligare bérjade man anvinda dessa fér
att |6sa differentialekvationer.
Arbetssittet blev di tidsdiskret och
sekvensiellt, vilket medforde att det
var forst med den Skade beriknings-
och minneskapaciteten som de dig;-
tala datorerna blev det kraftfulla
hjilpmedel for simulering som de ir
i dag. For datorerna utvecklades ti-
digt en mingd olika tvper av berik-
ningsprogram f{ér t ex konstruktion
och dimensionering av processer.

Inom en del omriden har begreppet
simulering dirfér kommit att anvin-
das dven for program for olika typer
av statiska berikningar av arbers-
punkter och optimeringar. Nir man
1 dessa sammanhang studerar de dy-
namiska problemen talar man di om
dynamisk simulering, vilket kan
vara nagot forvirrande for den som
har det klassiska simuleringsbegrep-
pet 1 tankarna.

Virdefullt hjilpmedel

Under flera drtionden har simulato-
rer varit ett virdefullt hjilpmedel for
att prova och utvirdera hur en pro-
cess eller en systeml6sning kommer
att fungera utan att systemet beho-
ver byggas eller byggas om till stora
kostnader. Simulatorernas inbyggda
mdjligher tll tidsskalning, s att
man kan arbeta i reel tid eller bear-
beta problemet langsammare eller
snabbare, har varit en extra férdel.
Pa ert tidigt stadium kom simularo-
rerna dven till anvindning f6r utbild-
ning och trining av personal vid
verksamheter dir farliga situationer
kunde uppst vid felaktiga ingrepp.
Exempel pad sidana tidiga tillimp-
ningar ar flyg- och kirnkraftsimula-
torer.

Olika aspekter

Principiellt kan man ur processin-
dustrins synvinkel dela in simulator-
omradet pa flera olika sitt. Féljande
figur karakteriserar simulatorerna ur
tva olika aspekter. Horisontellt i fi-
guren har man en indelning efter

den hirdvarumissiga uppbyggnaden
och likheten med den verkliga pro-
cessen och processtyrningen. I veru-
kal led finns en indelning efter simu-
latorns uppgifter och anvindnings-
omraden.

Val av simulator

De vanligaste kombinationerna, som
har markerats i figuren, kan karakte-
riseras av f6ljande beskrivningar.
Fullskalesimulatorerna, som oftast
anvinds for olika typer av trining,
kidnnetecknas av en fullstindig in-
strumentering men kan ha en ligre
precision 1 modellerna n tex simu-
latorer for konstruktions- och ut-
vecklingsarbete. Dessa saknar i gen-
gild oftast den verkliga processtyr-
ningens instrumentering, och hela
simulatorn kan bestd av programvara
och eventuell datorgrafik som ersir-
ter instrumenteringen (mjukvarusi-
mulator). Andra varianter ir dock
tankbara, 53 bér tex en simulator for
utveckling av minniska-maskin-
systemet ha en omfattande instru-
mentering. Hir kan fullskalesimula-
torer beh6vas. En annan anvindning
av fullskalesimulatorer 4r f6r tester
av Argirdsprocedurer samt start- och
stopprocedurer. For grundliggande
utbildning kan fullskalesimulatorer
vara anvindbara men hir 4r funk-
tions- och kompaktsimulatorer, som
har en forenklad instrumentering
och simuleringsmodeller som mera
tar fasta pa de principiella samban-
den, vanligare. Ofta kan man i en
funktionssimulator ocks3 ha anled-

Hardvaru-

B ic Fullskale-
niva

simulatorer

Uppgifter

Funktions-
och kompakt-
simulatorer

Mjukvaru
simulatorer

Konstruktions-
och utveck-
lingsstod

Utbildnings-
st6d

Trinings-
stod

Stdd for
procedur-
test

Besluts-
stod




ning att visa mellanstorheter, som
inte dr direkt dtkomliga f6r mitning.
Detta f6r att 6ka forstdelsen.

Beslutsstdd till operatdren
Aterstdr att kommentera den sista ra-
den i figuren, nimligen simulatorer
for beslutsstod till operatérerna. Hir
handlar det ofta om konsekvenssi-
mulering, varvid operatéren i en
svargenomskadlig situation prévar
olika tinkbara dtgirder mot simula-
torn och fir veta konsekvenserna av
drgirderna, innan han genomfér
dem i verkligheten. Hir 4r en upp-
snabbad simulering som sker snab-
bare dn verklig tid en nddvindighet.
Precisionen i simuleringsmode]tferna
mdste vara hg och det ir viktigr att
dessa uppdateras vid forindringar i
processen och styrsystemet s att de
dverensstimmer vil med verklighe-
ten. Kombineras simuleringsmodel-
lerna 1 beslutsstéder med kunskaps-
baserade system eller expertsystem
Oppnar sig intressanta méjligheter.
De arbetsvetenskapliga aspekterna ir
dock dnnu oklara.

Som tidigare nimnts har flera pro-
jekt inom DUP-programmert kopp-
ling till anvindning av simulatorer.
Vid sidan av Korsnissimulatorn som
beskrevs i foregdende nummer av
ITAKTUELLT har en utvirdering
av simulatoranvindning inom pro-
cessindustrin utférts av SSPA Mariti-

me Consulting AB pd STUs upp-
drag. Projektet innefattade f&rutom
en Oversiktlig genomgang av simula-
toranvindningen dven studier av fyra
simulatorer {&r olika indamal. Dir-
utéver har simulatorer och erfaren-
heter av sadana diskuterats vid olika
seminarier som anordnats inom pro-
grammet.

Féljande citat ur SSPA:s referat av
en diskussion av beslutsstédssimula-
torer kan ytterligare belysa kraven
pa dessa simulatorer:

"Anviandaren mdste dirvekt mdrka att
det gdr att gora ett battre jobb och att
det lonar sig att anvinda besluts-
stodet’

“En uthdllig permanent anvindning
dar viktig. Det mdste vara latt att vi-
dareutveckla, bygga ut och kompletre-
ra beslutsstodet s att operatéren hela
tiden kan ha nytta av att anvinda

det”

VEtt beslutsstéd mdste anvindas rela-
tizt frekvent for att inte glommas
bort den dag det verkligen behus.”

Kompetensomrade

Av ovanstiende kommentarer till
olika simulatoranvindningar fram-
gar att dessa stiller olika krav pd pre-
cision eller noggrannher, pa likhet
med verklighetens instrumentering

och pd simuleringens tidsskala. En
ytterligare vikuig faktor som inte har
namnts uttryckligen, dr simulatorns
kompetensomrade, dvs inom vilket
arbetsomride som den ger riktigt re-
sultat med tillfredsstillande preci-
sion. Alla dessa aspekter gor att det
ar nédvindigt att man infér en si-
mulatorutveckling klarlagger simula-
torns tankta anviandningsomride s3
att den urvecklas med limpliga prest-
anda. Det kan vara direkt olimpligt
att férsoka anvinda en triningssimu-
lator for beslutsstod.

Metodutveckling
Simulatoranvindningen ir starke
kopplad ull lattheten att framstilla
simuleringsmodeller och att uppda-
tera dessa. Hir kan forbittringar
uppnas genom den metodutveckling
rorande modellering och simulering
som institutionen for reglerteknik
vid Lunds tekniska hégskola bedri-
ver inom ett av STUs ramprogram
CACE (Computer Aided Control
Engineering; Datorbaserade hjilpme-
del for utveckling av styrsystem). De
fragor som bearbetas ir bland annat
modellsystematik och programsprik
for modellerna. Genom limplig mo-
dularisering och standardisering bor
man kunna underlitta dteranvind-
ningen av utvecklade modeller.

DUPs programledning
Avrne Otteblad

papper.

DUP — Drifturvecklingssystem for processindustrin — syftar till att till-
varata och utveckla processoperatirens yrkesskicklighet. Malet gr ocksd att
forbittra kualiteten och produktjimnbeten pa produkterna, att bittre ut-
nyttja rdvaror och energi samt minska belastningen pa miljon. I program-
met bedrivs basstudier inom informationsteknologi och arbetsvetenskap
samt fallstudier inom branscherna kemi, livsmedel samt massa och
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En objektorienterad miljo

for modellutveckling

Sven Erik Mattsson och Mats Andersson

Institutionen for reglerteknik

Lunds Tekniska Hogskola

Innehall

* Inledning

* Modeller ar viktiga.

* En integrerad miljo.

x Modellkomponenter.
* Ekvationer.

* Omola.

Prototypen.

*

* Sammanfattning och planer.

Varfor behovs modeller?

For att uppfylla
o [onsamhetskrav
o kvalitets- och prestandakrav
o sakerhetskrav

behovs kunskap.

Modeller ar formaliserad kunskap

Kunskap

e "Gora som man alltid gjort”

e Experimentera och prova sig fram
o prototyper
o fullskala

e Matematiska modeller och metoder
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Modelleringsprocess

-————

Fér-
fining

Verl-
fiering

| Implementering I
Medi-

tlering

Underhall

Anvandningsomraden

Projektering:

GA W e

Analys

Design

Validering

Utbildnings- och traningssimulatorer
Dokumentation

Drift:

o S NS e

Produktionsplanering
Styrning och reglering
Driftsoptimering
Operatorsstod
Overvakning och diagnos
Felanalys

Underhall

Alla matematiska metoder behdver modeller.

Drivande krafter

Konkurrens kraver kvalitet och prestanda
o Testa manga Idsningar
e Svirt att stalla in mer an 3 parametrar
manuellt

Spara energi, raimaterial och miljé
= Kopplade och dterkopplade system
= Komplexare system

Sakerhet
o Experiment kan vara farliga
o Validera beteende i extrema situationer
e Trana extrema situationer
o Overvakning och felanalys
Myndighetskrav

Kostnader

e Dyrt med experiment och misslyckanden
e Inte stora driften

*

>

*

*

*

En integrerad miljo

Traditionell modellering

En integrerad modelleringsmiljo
Arkitektur

Ateranvindning
Modellabstraktion

Representation / presentation
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Traditionell modellering

Vart mal

e Enhetlig, generell representation av
modeller.

e Programmeringssprik (t.ex FORTRAN) e Integrerad miljo for modellutveckling,
) simulering och design.
— Lag niva, fjarran fran fysik och verklig-
het ¢ Modelldatabas.
— Modell och simulator blandade e Anpassningsbara anviandargranssnitt.
— Svirt att underhilla modellen.
grénssnltt
e Verktygsberoende modeller. e
e Slutna moduler. e
Tilldmpningsspeciflka verktyg
Arkitektur
Ateranvindning
Interaktivt
anvindargranssnitt
[\
! Modeller kan dteranvandas
) | Model- . e som delar i andra modeller
Bibliotek - datagﬂs I il tolk/%':r?el?alor
I e av andra personer
¥ e for andra syften
— Juce
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Ateranvindning stiller krav

o Modelleringsspriket
o generalitet
o strukturering
o modularitet
e Modellbyggaren maste
o strukturera
o dokumentera
o Verktygen
o hantera strukturerade modeller
o bibliotek

o konsistenskontroll

Modellabstraktion

Inkapsling for att hantera komplexa system.
En modell beskrivs av

e Granssnitt

e Realisering

Representation — presentation

Gemensam representation, olika presentation.

(Tanksystem ((input FlowTerminal)
(output FlowTerminal))
((regulator PID) (pump Pumpmodel)
(tank Tankmodel))

((input (regulator r) ...
M

TankSysiem

[ Regutatar Pumg Tank

Modellkomponenter

En modell bestir av
1. Terminaler

2. Parametrar

3. Realiseringar

Modell: Tank

parametrar;

Area

Area dt =In-Ut

Ut
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Hierarkisk modularisering

Realiseringar kan vara
e Strukturerade
ihopkopplade delmodeller
o Primitiva
ekvationer

En modell kan ha flera realiseringar
o Versioner
e Tillstandsmoder

Terminaler

Terminaler kan vara strukturerade:
e Enkla — en storhet
e Strukturerade
o elektrisk ledning: spanning och strém
o hal: massflode, tryck, temperatur
axel: lage, kraft, moment
kablar har flera tradar
floden kan bestd av flera komponenter

(o}

o}

(o]

Modellering av vaxelverkan

Gores genom att koppla terminaler:
o Likhet eller nollsumma
o Delmodeller for komplex vaxelverkan
o Blockdiagram

TankSystem

| %Regulalor H Pump W

Modellmodularisering

Komponentbaserade modeller ar en méjlighet:

e Bygga modellen som systemet

e Gemensam bas

o Modeller frin komponenttillverkarna
Mojligt att forutse fysiska kopplingar
Terminalbibliotek
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Konsistenskontroll av kopplingar

En enkel terminal har attributen
e Riktning: odefinierat, in, ut
e Storhet —1S0O 31

o Enhet
e Undre och dvre grans
e Variabilitet:

tidsvariabel, parameter, konstant
Kausalitet: okand, las, skriv

Om ej tidsvariabel
o Propagering av parametervarden
e VVirden maéste vara konsistenta

Ett exempel

Hal och rorandar

B
17
Storhet Enhet

Diameter langd mm parameter
Medium
Flode massflode  ml/s in
Tryck tryck Pa
Temp temperatur K

Vektorer for att beskriva multimediafloden.

Terminaler

Kan var delvis ospecificerade:
1. Typ av komponenter

2. Antal komponenter

3. Storhet, enhet mm.

for att tillata

1. Generiska modeller

2. Abstraktion — Top-down

3. Automatisk deklaration — Bottom-up

Terminaltypbegrepp

Vilka terminaler kan kopplas samman?

Klassiska typbegrepp

1. Strukturekvivalens
for svag

2. Namnekvivalens
for snav

Vart terminalbegrepp tilldter
explicit, redundant information.
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Ekvationer

Ekvationer ar en naturlig form:
e mass- och energibalanser
o rorelseekvationer mm

e DAE: g(t,2,2) =0

Idag

Dagens simuleringsprogram loser
de
d_t = f(t, :B), Ii(to) = Zg.
om anvandaren definierar en procedur
som beraknar derivatorna, f(t,z).

Nackdelar
e anvandaren maste manipulera ekvationerna
e In/Utsignaler — Berakningskausalitet

In- eller Utsignaler?

Gor en delmodell for ett motstand

i—>—» " }—"

1 Parameter: R

3 Variabler: v;, V3, I

1 Ekvation: V; — V, = RI (Ohms lag)
= Modellen maste ha 2 insignaler

Fall 1: Kopplad till en spanningskalla

Insignaler: Vi =V och ¥, =0 GD
Utsignal: I=(V; — V;)/R

Fall 2: Kopplad till en stromkalla

Insignaler: I=1I,och V, =0 o
Utsignal: V; = V3 + RI

Vi kan inte i forvag saga vad som skall vara
insignaler.

Tyvarr ar situationen annu virre.

Fall 3: Tva motstind i serie

e
1
j:t‘l
—
O, 2
R o)
wmm

Oberoende av hur vi viljer in/utsignaler
for motstandsmodellerna maiste ett
ekvationssystem losas;

M+ R I=V
Vi—RI=0
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Deklarativa modeller

En modell skall
o beskriva fakta och relationer
o inte vara en berakningsprocedur

Fordelar:
o Narmre fysiken
e Ger battre dokumentation
o Tillater konsistenstest
o Stoder ateranvandning
o delmodeller
o olika berakningar

Modeller pa ekvationsform

Mojliggor automatisk generering av:

Effektiv simuleringskod

Kod for att berakna arbetspunkter
Linjara modeller

Beskrivningar till andra program
Regulatorkod

Omola

* Allmant om Omola
* Klasser och drvning
* Modeller, terminaler, mm
* Omola ar generellt

* Utvidgningar

Omola = Object-oriented MOdelling Language

Ett sprak for att beskriva modellers

e struktur

e beteende

e granssnitt

e relationer

Omola ar ett textformat fér modelldatabasen:

Omolakod < Modelldatabas

Idéer och begrepp fran objektorienterad
programmering.
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Klasser

En klass beskriver en grupp objekt med
liknande egenskaper.

Modellobjekt (modeller, terminaler, realiser-
ingar ...) representeras av klasser med attribut.

Attribut kan vara variabler eller klasser.

Tank

area
level

Arvning

Relation mellan klasser:
superklass — subklass

En subklass arver superklassens attribut.

En subklass ar en specialisering av sin
superklass.

Tank

area
level

““‘L \ "*““L Heater
Tank-1 Tank-2 Tank-3 T temp
Klassrelationer

En modelli Omola

Tank ISA Model WITH
parameters:
area TYPE real;
terminals:
Inflow ISA FlowTerminal;
Outflow ISA FlowTerminal
END

En klass bestar av attribut uppdelade i
kategorier.

Det finns tva slags relationer mellan klasser:
o subklass — superklass (isa)

e komponent — dgare (has)

Class
Model Terminal
Tank FlowTerminal

Inflow Outfiow
has . 4
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Realiseringar

Exempel pa primitiv realisering:

Tank ISA Model WITH

realization:
TankBehaviour ISA SetOfDAE WITH
equations:
outflow = k*sqrt(level);
area*dot(level) = inflow - outflow;
END;
END;

Exempel pa strukturerad realisering:

TankSystem ISA Model WITH

realization:
TankStruct ISA Structure WITH
submodels:
Tankl ISA Tank;
Tank2 ISA Tank;
connections:
Tankl.Outflow AT Tank2.Inflow;
END;
END;

Terminaler

Enkla terminaler:

SimpleTerminal ISA Terminal WITH
attributes:

value TYPE Real;

quantity TYPE Quantity;

unit TYPE String;

direction TYPE (Across, In, Out);

END;

FlowTerminal ISA SimpleTerminal WITH
quantity = MassFlow;

unit = "kg/s";

direction = In;

END;

Strukturerad terminal:

Pipe ISA RecordTerminal WITH
components:

FlowRate ISA FlowTerminal;
Pressure ISA PressureTerm;
Temp ISA TempTerminal;

END;

Pump Tank

Outflow Inflow
isa Plpe E—l i isa Pipe

—1

Q 1

10
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Parametrar och bivillkor

Parametrar ska kunna lisas
o till ett konstant varde,

o till andra parametrar.

Specialisering:

Tank ISA Model WITH
parameters:

density TYPE Real;
END;

WaterTank ISA Tank WITH
density = 1;
END;

Bivillkor:

TankSystem

Parameter: density;
Constraint:
Pump.density :- Tank.density :- density;

Pump Tank

denslty +‘ ] density

Omola ar generellt

Omola ar konstruerat for att ha
e enkel syntax,
o fa koncept,

o flexibel semantik.

Enkelt att anpassa Omola for nya verktyg och
nya typer av modeller genom:

e nya attribut,

e nya kategorier.

Utvidgningar

o Samplade system
o Diskreta handelser

e Procedurer

Handelser kan byta realisering:

l":__'

WHEN temp > highlimit SELECT high_temp_model;
WHEN temp < lowlimit SELECT low_temp_model;

Exekvera en procedur:

WHEN level > alarm_level DO

END

11
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Prototypen: SEE

SEE ar baserad pa KEE och CommonlLisp.

Interaktivt
anviindargrinesnitt
I
Y
Bibllotek - = Modell- | 2 Omola
T . databas s tolk/generator

!

Y
Konsistens- Andra
Simulatar kontrolt verktyg u

12




s The CACE group
Autowatic Contral. Lund

Loadad Libraries

tlggﬂdbj t:  DRIVE e
& act: |

In library:  SERVOLIB fBASICS
Subclass of: MODELS I SERYOLIB

Terminals:
OUTPUT
INPUT
Eystem KB’z
Parameters: MINUS
D value: B {
J2 value: B -
J1 value: B
= 1 a AN
[——Tm SIMPLE, TERMINAL RECORD. TERMINAL |
=FIL
Model: Servo Realization: Ri | Exit | [ Abort |
LP\
Hp-FILTER
/ HP
ani-1
I TRIVE b | I~
=1 -ﬂ
THIECRATOR
DRIVE-0B5-1 -I"
ém>

S The CACE graup
Automatic Contrel, Lund

SEE Object: DRIVE
In library:  SERVOLIE
ubclass of: MODELS

erminals:
ouTPUT
INPUT

J2 value: 8
J1 value: 8
0

NI 1

SEE EDLTON

DRIVE-0BS
GRAPH SIMPLE. TERMINAL RECORD. TERMIMAL
Model: DRIYE, Realization: R1 I Exit | [ Abort | -
Equaticns: |'lr'i'llll!'!tﬂh'f'|
Jivdot(wl) = -KFx(Fil-fi2) -Dtwl +KM*IMPUT; ks

J2xdot(w2) = KF*(Fil-fi2) -Dww2;
OUTPUT = wl;

Ed: =SE

E-EDITEOR*

(Furitami

rvlaf‘k set.
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Resultat

Karna for modellrepresentation
o Designforslag
e Prototyp i Common Lisp och KEE
o Central modelldatabas i en miljé med
ingenjorsverktyg.
o Integrerade och anvindaranpassade grinss-
nitt och verktyg.

Tillampningsprojekt:
Modellering av kemiska processer.

Ny standard for modellrepresentation behovs.

Karnans modellrepresentation

Deklarativa och ekvationsbaserade
beteendebeskrivningar gor modellerna
anvandbara for olika uppgifter.

Hierarkiska modeller med vildefinierade
granssnitt: terminaler och parametrar.

Terminalattribut for automatisk
konsistenskontroll av kopplingar.

Multipla beteendebeskrivningar;
modellvarianter och alternativt beteende.

Objektorienterad representation:
klasser med arvning

underlattar dteranviandning och
inkrementell modellutveckling.

Den interna representationen bevarar
modellstrukturen.

Utveckling och teknikdverforing

e Konferensbidrag och artiklar
Programkomponenter
Tillampningsprojekt
Standarder

Programkomponenter

e bra satt att sprida idéer och metoder
e behovsi tillampningsprojekten
e prototyp i Common Lisp och KEE
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Karna for

modellutveckling och simulering

Implementera en kidrna for modellutveckling
och simulering i C4+.

STU-projekt 1989 — 1981,

Inte ett universitets uppgift att utveckla och
marknadsfora kommersiella programkompo-
nenter.

Tjana som en bas for ndgon annan att utveckla
kommersiella produkter.

Nya verktyg for anvandargranssnitt pa vig.

Tillampningsprojekt

sprida resultaten

lagga grunden for en bred anvandning

fa aterkoppling fran anvandare

utveckla modellbibliotek

utveckla tillampningsspecifika verktyg och
anvandargranssnitt

e © © 9o o

Beslutade projekt
o IT4: steritherm-process
e DUP: sockerkristallisation

Projektforslag valkomnas!

Standardisering av modellsprak

IMACS
International Association for Mathematics
and Computers in Simulation

SCS

The Society for Computer Simulation

ISO

e Standardforslag till datarepresentation

IFAC
International Federation of
Automatic Control
e WG on “Guidelines for CACSD-software”
o Forslag for linjara system

IBPSA
International Building Performance
Simulation Association
o Forslag till neutralt format

Mojliga fortsattningar

o Diskreta hindelser i kontinuerliga modeller

e Presentationsformer for reglersystem och
dess struktur

e Bibliotekshjalpmedel

° Parameterskattningsverktyg

e Symbolisk manipulering och analys av
modeller
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1. Introduction

This is a final report for the project “Tools for model development and simu-
lation” (STU projects 87-02503, 87-02425) carried out in the period July 1987
to June 1989. The project is the last part of the STU supported research
program “Datorbaserade hjalpmedel fr utveckling av styrsystem (Computer
Aided Control Engineering, CACE)”, which started in the end of 1984.

Automation and advanced control are of strategic importance for the
Swedish industry. There are examples in the whole range from traditional
process industry and power generation to aero- and astronautics. To be able
to develop and operate high performance systems, computer based tools for
model development, simulation, analysis, design, validation, operator training,
production planning, operator support, supervision, fault diagnosis etc. are
needed.

Today’s CACE tools have proved to be useful. However, they were de-
signed 10~20 years ago. The computers had then moderate computing capacity
and primitive hardware for graphical input and output. The main function of
the tools is to perform extensive numeric calculations and present the results
in the form of simple plots. The users want to have tools that better support
their needs: user interfaces which support their way of thinking, integrated
environments supporting all phases from specification and design to operation
and maintenance etc. The enormous development of the information technol-
ogy (workstations, object-oriented programming, computer graphics, artificial
intelligence, expert system techniques, computer algebra etc.) has opened
possibilities to improve the CACE tools significantly. The goal of the CACE
project has been to

1. investigate how the CACE tools can be improved
2. develop prototype tools
3. establish international contacts

In the first phase of the CACE project a number of pilot projects investigated
some ideas and the potential of computer graphics, computer algebra and
expert system techniques. Prototype tools, which can demonstrate ideas and
principles were also developed. These projects showed that it indeed is possible
to improve the tools. A summary can be found in Mattsson (1987).

For the last phase of the CACE project it was decided to focus on tools
for model development and simulation (Mattsson, 1987). The motives were:

1. It is of importance for all kinds of engineering.

2. It contains most of the important issues for CACE.

3. It fitted well in the international collaboration.
An important conclusion from the pilot projects was that model representation
is a critical issue. The system concept is fundamental in control engineering,
but today’s tools have only primitive representations, which do not support

the users’ perception of systems. Furthermore, a common basic representation
is needed to make the CACE tools integrated.

The work in last phase of the CACE project has largely followed the
research program. A major result is a design proposal for a kernel for model
development and simulation. The proposal may be of interest for all users of
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models. A basic idea is to support reuse of models so that models can be used
for different tasks and so that it easy to modify a model to describe a similar
system, since it is difficult and laborious to develop new models. By a kernel
we mean the routines to manipulate the internal representation. In our design
there is a clear separation between user interface, internal representation of
data and models and processing tools. This separation makes the design more
flexible and allows customized user interfaces. The kernel can be viewed as a
central model data base in an integrated environment for model development,
simulation, analysis, design, documentation etc. A prototype implementation
of the kernel as well as a user interface has been written in Common Lisp
and KEE. The project has also comprised an application study focusing on
modelling of chemical processes to get some evaluation of the ideas.

This report is organized as follows. In Chapter 2 motives for supporting
model development are given. Chapter 3 outlines basic ideas and our ap-
proach to support model development. Chapters 4 and 5 describe the kernel
in some detail. Chapter 6 is about user interfaces and Chapter 7 is about
the application study. Chapter 8 contains the conclusions. Appendices A —
C list published papers, conference contributions, other reports and external
lectures given by CACE group members.

2. Models Are Essential

The reason for supporting model development is that
1. models are essential in all kinds of engineering and
2. model development is difficult and time consuming.

It is a well-known fact that it is difficult and time-consuming to develop a new
model and we will discuss approaches to support model development in the
next section. Let us now motivate why models are needed.

What are the uses of models?

Models are useful in all phases of a systems life from design to operation and
maintenance. The designer can use a model to simulate and to analyse the
behaviour to learn about the system and to get insight in its behaviour and to
validate his design. He can try various system architectures or configurations
to make the best choice. He can use optimization tools to tune system param-
eters. Models are needed in simulators for education and training. Computer
based tools for production planning, online optimization, operator support,
supervision and failure analysis need models of the system.

Note that modelling and simulation are closely connected to each other.
To simulate you need a model. Realistic models are typically non-linear, which
implies that it is difficult to analyse a behaviour in other ways than through
simulations. However, with a modelling language clearly separated from cal-
culation and simulation issues, models can be used in a more general context
for process documentation and to preserve design knowledge.
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Why are models needed?

All mathematical methods need some kind of model of the system under con-
sideration. If we do not want to use mathematical methods and models when
making a new design we have to make trial-and-error experiments on real
equipment. It may be unfeasible to make experiments on real equipment for
complexity, performance, safety and economic reasons. First, the system to be
designed may have to be so complex that it is impossible to come up with any
reasonable design from trial-and-error experiments. Second, to achieve high
performance the system must be optimized, but it is in practice impossible
to tune more than three coupled parameters by trial-and-error. Third, safety
regulations may forbid real experiments, or require validation of the design for
extreme and emergency conditions and it may be dangerous or impossible to
perform this validation by real experiments. Fourth, real experiments are of-
ten expensive and time consuming to perform. Furthermore, when redesigning
a plant, it may not be allowed to disturb the operation of the existing plant.

Power generation, aero- and astronautics are typical areas where advanced
mathematical methods have been used for a long time to handle complexity,
performance and safety issues.

Fierce competition is an important force to use advanced mathematical
methods to make better and cheaper designs, and to use computer based tools
for production planning, online optimization, operator support, supervision
and failure analysis to increase productivity and quality and to decrease pro-
duction and maintenance costs.

Requirements on saving energy and raw material as well as avoiding en-
vironmental pollution make the designs more complex, since the system must
contain recirculation loops to win back energy and material. Recirculation
loops introduce interactions between various parts of the process implying
that it is impossible to design and to operate them independently of of each
other.

More specific motives for using advanced mathematical methods for de-
sign and in particular control design can be found in Anon (1987) and Fleming
(1988). The US Department of Defense has picked simulation and modelling
technology as one of 22 critical technologies, since it can reduce design and pro-
duction costs, improve performance and maintenance, train personnel. Sim-
ulators for education and training have been used for a long time in power
generation, aero- and astronautics. The interest from other industry areas
to use simulators for education, training and operator support is large today.
STU has a special research program DUP to investigate how process opera-
tors’ tasks can be supported by computer based tools. A large part of this
program is devoted to simulators.



3. Support of Model Development

In this chapter we will first indicate requirements on concepts and tools for
model development and then outline our approach.

3.1 Requirements

Since models are important and since it is difficult to develop new models, a
basic question is how computer based tools can support model development?

Reuse

The best way is of course to be able to provide the user with the desired model
directly and automatically. This implies model libraries and reuse of models.
There are three facets of reuse:

1. Various purposes or calculations.
Models are needed in all mathematical methods and it should be possible
to use a model for various purposes without having to recode it manually.

2. Similar systems.
It should be easy to adapt a model to describe a similar system.

3. Diflerent users.
The user interface should preferable be customized and adapted to un-
derstand and use the user’s concepts and terminology.

New models

A model can be developed using first principles or by analysing measured data.
Our project have mainly focused on the first approach.

When developing a new model, decomposition is needed to handle com-
plexity. It should also be possible to extract and reuse parts of existing models.
There should be tools that tune model parameters from measured data.

3.2 Basic ideas

Our proposal is based on four main ideas
1. declarative models
2. structured models
3. automatic consistency checking
4

. customized user interfaces

Declarative models

Models developed to be used in one package today cannot be used in another
package without additional work. Unfortunately, much “model development”
work of today consists of manual recoding or implementation of adapters.
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An obvious reason is of course that there is no common agreement on the
representation of models.

Another maybe less obvious reason is that the representations used in
most of today’s CACSD and simulation tools are too specialized and of too low
a level to allow reuse of models for other tasks than simulation. Today’s most
used languages for continuous simulation (ACSL, CSMP, CSSL IV, EASY5
etc., for overviews see Kreutzer (1986) and Kheir (1988)) follow the CSSL
definition (Strauss, 1967). These tools solve problems of the type dz/dt =
f(t,z) if the user defines a Fortran-like procedure which calculates f(t,=z).

To allow a model to be used for different purposes, it should be declarative
and not procedural. It should describe facts and relations (equations) and not
be a calculation procedure. A declarative model is multipurpose, since it can
be manipulated automatically to generate efficient code for simulation, code for
calculation of stationary points, linear representations, descriptions which are
accepted by other existing packages etc. Models of controllers can be used for
automatic generation of the control software or to generate layouts for special
purpose analog or digital VLSI circuits which implement the controller.

A declarative model is usually also closer to the model developer’s percep-
tion of the physical reality, and therefore, development of new models is easier.
When developing a model from first principles for a physical system one uses
fundamental laws as mass balances, energy balances and phenomenological
equations. Model development as well as documentation are facilitated if the
user can enter these equations as they are without having to transform them
into a computational procedure. The risk of introducing errors during manual
transformation is reduced. The natural declarative form for continuous time
models are Differential-Algebraic Equation (DAE) systems, g(t,2,2) = 0. An
overview of important properties can be found in Mattsson (1989a).

The kernel can allow any logical and mathematical framework such as
differential-algebraic equations or difference equations to describe behaviour,
but a basic idea is that behaviour descriptions should be declarative and equa-
tion based.

Structured models

To understand large models and to be able to reuse parts of models, good
structuring facilities must be supported. A powerful modularization concept
supports model development by beating complexity as well as it allows reuse
of parts and building of models by putting together existing components.

Block diagrams is a common structuring tool. A block represents a sub-
model. The connections between the blocks show cause-and-effect relation-
ships between inputs and outputs of the submodel. A connection is unidirec-
tional saying that the value of an output should be calculated from the input
connected. It means that the model developer must deduce the computational
causality to define what are inputs and outputs to a submodel.

When making a model library, it is very inconvenient to define which
of the terminals of a submodel that are outputs, because what are inputs
and outputs of a submodel is not only a property of the submodel itself, but
also of how it is used. As motivated above a model should not be a com-
putational procedure. It should not be a procedure which can calculate the
outputs when the values of the inputs and the internal state are given. The
model development and simulation tools must be able to handle interactions
with unspecified computational causality (non-directional interaction). A con-
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nection should only define a relation saying that two terminals A and B are
equal, not define a compute statement 4 := B or B := A. Ideas like this have
been developed in connection with special purpose simulators. An example is
SPICE (Nagel, 1975) for electrical circuits where the basic building blocks are
four poles.

In a simulation language like CSSL (Strauss, 1967) model decomposition
is handled by macros, which require specification of the causality of the inter-
action. Another drawback with the macro concept is that the model structure
is not preserved at compilation. The macros are expanded at compilation and
at simulation the model has no structure. The names of the states and the
variables of the submodels are replaced by names like QQQQ1, QQQQ2 etc that
are generated automatically resolve potential name conflicts. In the simula-
tion language Simnon (Elmgqvist, 1975) blocks are included in the language,
but it is necessary to specify causality.

Bond graphs (Karnopp and Rosenberg, 1971) is another way of describing
a model. It works well if the components are coupled via energy exchange only.

Our proposal for model structuring is object-oriented and introduces a
small, basic, common set of concepts; A collection of basic objects like mod-
els and terminals with specified properties and operations. The proposal is
described further in the next chapter.

Automatic consistency checking

It is important to make the use of library models safe and reliable. A model
component is an encapsulated entity with well defined interfaces. This pre-
vents to a large extent unintended abuse. It would be nice if the user could
get automatic warnings when making improper connections when putting to-
gether a model. To allow automatic consistency checks, the model developer
must “supply” redundant information. Qur concepts allow a model developer
to supply such information as described in next chapter. However, it is not
our aim to force a user who, for example, is in an exploratory phase, to specify
things that the computer itself can deduce from the context. A model devel-
oper is hopefully better motivated to supply redundant information when he
has tested the model and is going to include it in a public model library. Such
information can be seen as a part of the model documentation.

Customized user interfaces

We believe that various users could agree upon the objects proposed, but
that they want to have customized user interfaces with various textual and
graphical presentations. The proposal focuses on the basic objects and their
properties and allows integration of different customized user interfaces.

The concepts proposed are basic and are mainly intended for researchers
and modelling and simulation specialists. Other user categories can be sup-
ported by building new user interfaces and new layers of tools. Such tools can
allow an architect or a chemical engineer to describe his building or chemical
plant and the assumptions in his own language. The tools should then gen-
erate the desired model in an explicit form as outlined below. It means that
the generated model is readable and can be modified by the user. Today’s
“high-level” tools of this kind are too rigid. They produce canned, black box
models which cannot be modified. The user is in trouble if some component
is missing, since it is very difficult or even impossible for him to add new
components.
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4. Model Structures

An important conclusion from computer science is that modules should be
encapsulated with well-defined interfaces. The idea is to support abstraction
by separating the internal details of a model from its interface. It means also
that internal details can be changed without affecting the way the module is
used as a component.

The model is the kernel’s basic structuring unit. It is an abstraction of
some dynamic behaviour. A model consists of three parts: terminals, pa-
rameters and realizations. The terminals are variables which constitute a
well-defined interface to describe interaction with the environment. Parame-
ters are interface variables defined by the model designer to allow the user to
adapt the description of behaviour.

Realizations

A realization is a description of model behaviour. A model user can use a
model without having to bother about how its behaviour is defined internally
and the model designer can and must define its behaviour without any as-
sumptions about the environment.

One reason for treating a realization as a separate part within the model is
that we want to have multiple realizations. Different realizations can give more
or less refined descriptions of the behaviour or they can define the behaviour
for different working conditions or phases of a batch process. The user can
choose the appropriate realization for each particular use.

We distinguish between primitive realizations and structured realizations.
A structured realization is decomposed into submodels and its behaviour is
described by the submodels and their interaction. The submodels can in turn
have structured realizations which means that the model concept is hierar-
chical. A primitive realization is not decomposed into submodels, but its be-
haviour is described in some mathematical or logical framework as differential
equations, difference equations etc.

Parameters

A parameter is a time invariant variable that can be set from outside to modify
a realization. The burden of a user to set parameters can be relieved by letting
the model developer provide default values. If a good default alternative is
provided, the casual user could be left unaware about the flexibility and no
extra burden is put on him. To support reparameterizations and alternative
parameters, it is possible to define relations between parameters.

Terminals

Terminals can be viewed as variables which are shared by the internal descrip-
tion of the model and its environment.

It is natural to aggregate terminal variables, since the description of an
interaction often involves several quantities. We propose two types of compos-
ite terminals: record and vector terminals. Their subterminals can be simple,
record or vector terminals.
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EXAMPLE 4.1—A pipe terminal
A terminal to describe the ends of a pipe or the inlets and outlets of pumps,
valves and tanks can be defined as a record terminal

PipeTerminal IS A RecordTerminal WITH
components :
P IS A PressureTerminal;
q IS A MassFlowTerminal;
d IS A DiameterTerminal;

END;
having three components, which are simple terminals. The component d de-
fines the diameter of the pipe or hole. O
Connections

Interactions between submodels of a structured realization are described by
terminal connections. The term “connection” reflects what we are doing in the
block diagram when describing an interaction. We will not discuss user inter-
faces here, but just point out that a block diagram is a good way of describing
model structure. Elmqvist and Mattsson (1989) have developed a prototype
simulator, where hierarchical block diagrams with information zooming are
used to visualize the model structure. Information zooming means that the
amount of information displayed in a block changes dynamically depending on
its size on the screen.

A connection between two structured terminals means that their first
components are connected to each other and so on recursively down to the
level of simple terminals. There are two sorts of simple terminals: across
and through. A connection between two across terminals means that they
are equal. Examples of physical quantities are position, pressure, temperature
and voltage. Through terminals have an associated direction (in or out) and
connected terminals should sum to zero. Examples of through quantities are
mass flow, energy flow, force, torque and current.

A simple terminal has an attribute defining the unit of measure with
the SI unit as default. It is used for automatic introduction of proper scale
factors in the connection equations, thus eliminating the need of user defined
adapters.

It is important to note that generally the causality of a terminal (input
or output) is not defined by the model designer but is inferred from the use of
the model.

The semantics of a connection is kept simple, since we do not want to
provide two different ways of describing complex behaviors. It is possible to
describe complex interaction by introducing new submodels. It is also desirable
to make the means to describe interactions independent of the frameworks used
to describe the behaviour of primitive models.

EXAMPLE 4.2—Pipe terminals cont.

Assume that we want to model a system where a tank has a valve at the
outlet. We then just connect the outlet terminal of the tank model to the
inlet terminal of the valve model. The equations for the interaction saying
that the pressures as well as the diameters should be equal and that the mass
flows should sum to zero are deduced automatically from the connection. 0
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Consistency of connections

It is important to make the use of library models safe and reliable. The
encapsulation of the models prevents to a large extent unintended abuse, but
the terminals are dangerous holes in the wall. To allow automatic checks of
connections, the model developer may add extra information, which also is
useful for documentation.

Simple terminals have the attributes name of quantity and value range.
The name of quantity is used used to check the consistency of connections.
There is an international standard (ISO 31) for naming of quantities in differ-
ent national languages like English or Swedish. Information about ranges of
validity is used to test for unintended abuse during simulations.

A terminal component may be declared as time-invariant. Such a ter-
minal is similar to a parameter. This has two complementary uses. First, a
connection implies automatic propagation of parameter values from one sub-
model to another. Second, if the two connected parameter terminals have
defined values, they must be equal for the connection to be consistent.

EXAMPLE 4.3—Pipe terminals cont.
Consider PipeTerminal in Example 4.1. The pressure component p can be

defined by

PressureTerminal IS A SimpleTerminal

WITH
attributes:

value := UNKNOWN;
quantity {= pressure;
unit := kPa;
direction != across;
variability := time_varying;
causality := UNKNOWN;

END;

The mass flow component q and the diameter component d are defined in
analogous ways. An important difference is that mass flow is a through variable
and the direction attribute should be set to in or out.

The variability of d ought to be set to time_invariant if the model does
not allow the size of the pipe or hole to vary with time. It also allows automatic
check of that two connected pipes are of the same diameter.

The terminal could also have a component indicating medium, which can
be used for consistency checking or parameter propagation. For example, we
can check that water pipes are connected to water pipes. O

Unspecified terminal attributes

To allow exploratory model development and prototyping, a declaration of
a terminal may leave attributes unspecified as long as necessary information
can be deduced from the context. Unspecified attributes make it possible
to develop generic models. To support consistency checks of generic models,
the model developer can specify relations between unspecified attributes. See
Mattsson (1989b).
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5. Object-Oriented Representation

In this chapter we will outline the conceptual design of a kernel for model
representation. The basic entities, relations between entities and operations
on them are discussed.

Object-oriented programming has been an increasingly popular method-
ology for software development. Increased programmer productivity, increased
software quality and easier program maintenance are the objectives for this
new methodology. Object-oriented programming supports these ob jectives by
facilitating modularization and reuse of code. We will here show that ideas
from object-oriented programming are useful also for model Tepresentation.
For a brief introduction to object-oriented programming see Stefik and Bo-
brow (1986).

Basic model objects

Models and model components are objects in the kernel for model represen-
tation. An object has a unique identity within the system and it contains a
collection of attributes. There is a number of important types of objects rec-
ognized in the kernel. They are representations of model structuring entities
discussed in the previous section:

e models,

e terminals,

o parameters and
e realizations.

The last three object types can be used as components of models.

Class objects and relations

In our proposal, all model objects are represented as classes. In object-oriented
programming a class describes the properties common to a set of similar ob-
jects ~ it defines an object type. For this reason, a model defines a component
type rather than a particular instance of a component; the same applies to
realizations, terminals, etc. A class can have a number of attributes which can
be simple variables or relations to other model objects.

There are a three important relations which can be established between
model objects. These are:

e has — part-of
¢ subclass — super class
e connection

The has-link is typically used between a model and its terminals, parameters
and realizations. Further, a structured realization has this kind of relation to
other models indicating the submodels. A has-link is stored as an attribute of
the owner. The inverse relation is called part-of.

One class can be defined to be a subclass of another class — the super
class. The subclass will inherit all properties of the super class in addition to
the locally defined properties. Inheritance is an important concept in object-
oriented programming and its use in this context will be discussed below.
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A connection is a symmetric relation between two terminals and it is
stored as an attribute of a structured realization.

ExAMPLE 5.1—Tank model

In this example we will show a model of a tank written in Omola (Object-
Oriented Modelling Language) (Andersson, 1989a,b). Omola is a declarative
language for model representation that has been designed to support our pro-
posed concepts.

Tank IS A Model WITH
terminals:
inlet IS A InPipeTerminal;
outlet IS A OutPipeTerminal;
level IS A OutTerminal;
parameters:
area TYPE real :
roh TYPE real :
realization:
normalBehaviour IS A SetOfDAE WITH
equations:
areaxdot(level) =
inlet.q - outlet.q;
inlet.p + level*roh*g =
outlet.p - rohxvxabs(v)/2;
outlet.q =
pi*(outlet.d/2) ~2%v*roh;
END;
END;

0;
0

1.
1.

This code represents a tank model with three terminals, two parameters and a
realization component stored as attributes. The inlet and outlet terminals are
both pipe terminals as in Example 1, but with directed flow components. For
inlet positive flow is into the tank and for outlet positive flow is out from
the tank. The realization has three equation attributes. The first equation
is a mass balance and the other two are derived from Bernoulli’s equation.
In Figure 5.1 we can see some of the objects involved and their relations
represented graphically. O

RecordTerminal

SimpleTerminal

MIpsTerminal ||OutPipeTermln;|| OutTerminal I

I I.r_'nlet I |out|et ' | level I

| Tank I
\"'::::--. ~voa.
\.‘_‘

Figure 5.1 Some of the objects and their relations in the tank model. Subclass
links are solid while has-links are dashed.
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Inheritance

Inheritance is an intricate but powerful concept in object-oriented program-
ming. When a class is defined to be a subclass of another class it will inherit
all attributes and properties from the super class. The subclass is then free to
add additional attributes or to redefine inherited attributes. Inheritance can
be used to separate out some general attributes from a set of similar classes
into a common super class.

Inheritance will facilitate reuse of models since carefully designed general
models can be saved in libraries. These models or model components can be
used as super classes of more specialized model objects. We have already seen
how terminals have been defined in this way. The inlet and outlet terminals
of the tank model are subclasses of InPipeTerminal and OutPipeTerminal
which are specializations of the same super class RecordTerminal.

As an example of how models can be defined by specializations we can
imagine a model of a regulator defining only the terminals: set-point, measure
value and control value. This model can be specialized into different types
of regulators by means of adding different realizations. We may then define
a structured model like in Figure 5.2, containing the most general regulator
model. The structured model can then be specialized to contain different
regulator models.

TankSystem

Regulator Pump H Tank
| |

Figure 5.2 A structured model

Interpretation of model objects

Model structures represented in the kernel or in Omola code can be accessed
and manipulated by different tools in a CACE environment. We may say that
a particular tool that extracts relevant properties of a model interprets the
model. Different tools may extract different properties and therefore, they
interpret the model differently.

Since all model objects discussed so far are classes, i.e., they represent
types rather than instances of model objects, one obvious interpretation is to
use a model as a template to create a model instance. A model instance is,
for example, needed when the model is going to be simulated. Then there
must be representations for each particular model object and state variable.
The instantiation procedure is recursive in the components and submeodels.
Typically when we want to simulate a model it is first instantiated then all
equations are extracted from the primitive models and equations are generated
from the connections. Second, the equations are sorted and turned into code
that can be used by the DAE-solver. Since the model structure is maintained
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in the simulation model (the model instance) the user can access it the normal
way, perhaps through its block diagram, and examine or change parameters
and initial values.

As examples of other possible interpretations of model objects we can
mention

e to generate a graphical picture of a system structure,
e to generate a text descriptions of a model for documentation,
¢ to generate a special purpose code, e.g., regulator code or

e to turn a model into a form accepted by a particular design package.

6. The User Interface

The user interface is a very important component in any computer based tool
and in particular it is important in our proposed environment. A simple user
interface has been implemented in our prototype in order to demonstrate the
basic concepts. In this chapter we will first give a very brief overview of the
current trends in design of interactive user interfaces. Then we will give a
short description of the interface of the implemented prototype.

Current trends in user interface design

Human — computer interaction is currently a very active research area. De-
velopments in computer hardware technology have made it possible to create
very advanced user interfaces to application programs. However, the methods
for designing such advanced interfaces are still rather primitive.

A current trend is to more and more separate the implementation of the
user interface from the application program. For simple applications this can
be done in a clean and natural way, but in many cases for more complicated
application programs this is not a clean cut. Often a good user interface needs
a substantial amount of “understanding” of the application. In other words,
the user interface needs a model of the application. In this case we have
the problem of keeping the application model consistent with changes in the
application.

Another trend in interface design is to use higher level specifications of the
user interaction. Commonly used are toolkits of various graphical objects and
interactors, such as dialogue boxes, push buttons and menus of different kinds.
They are often designed for a special computer or a special window manager.
The InterViews (Linton et al., 1989) is an example of such a toolkit based on
X Window System. A User Interface Management S ystem (UIMS) contains a
library of interactive objects like the toolkits but it also has a number of tools
that helps the interface designer to put the objects together into a complete
user interface. The interface designer may describe the interface on a more
abstract level, sometimes by a declarative language. This means that the
designer specifies what is to be done by the user interface rather than the exact
details of how to do it. The designer may also use some formalism to describe
dialogue such as transition graphs or BNF (push-down automaton). Some
more advanced tools allow the interface designer to build the user interface in
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an interactive or semi interactive way with immediate feedback showing the
current appearance of the interface. An introduction and survey of UIMS can
be found in Mayers (1989).

The ongoing standardization of windowing systems and graphic input
and output primitives makes it more attractive to develop and commercialize
advanced UIMS software. In a few year’s time such systems will probably be
more commonly available at reasonable prices.

The prototype interface

In our prototype we have realized the importance of a reasonable good user
interface. In the project we have not in particular studied user interface design
as such, since the project have been focusing on representation of models
rather than the presentation. However, in order to demonstrate the power
and appropriateness of the underlaying representation a reasonably advanced
interactive user interface had to be designed. We chose KEE! as the basic
implementation tool for the prototype. One reason was that it provided some
amount of support for building user interfaces. KEE uses object-oriented
representation of graphical entities. Predefined primitive graphical objects
can be specialized and combined into more advanced ones.

A graphical interface in our suggested modelling environment can not be
clearly separated from the application — the model representation data base
— because it is too much involved in the used data model. The approach
taken instead, is to let the user interface operate directly on the model data
base. The models represented in the data base may then contain additional
information manipulated only by the user interface. For example, a model
contains information about how it is presented on the screen, graphically or
as text, menus of possible operations, etc.

Direct manipulation of models

The style of interaction in the prototype user interface is based on direct
manipulation. Most objects, attributes and relations in the model data base
can be represented on the screen. The screen representation can be a graphical
icon, a diagram or a textual representation. In general every ob ject is mouse
sensitive and has an associated menu of operations.

The model data base in our prototype is divided into a set of libraries.
A library is a collection of model objects and their attributes, and it can be
saved and loaded from external memory. Objects in different libraries may
have relations. The screen is separated into four important areas:

e an access window for loaded libraries,
e a library display window,

¢ an editor area and

e one or more general display windows.

The access window for loaded libraries displays a list of all loaded libraries
where each entry is mouse sensitive and has an associated menu of library
actions. The library display window shows the content of a selected library.
For example, it may show the graphical icon of every model object in the
library. Two important operations are implemented for most model objects;
these are display and edit. These operations can of course be called from

! Knowledge Engineering Environment, KEE is a trademark of IntelliCorp, Inc.
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the object’s menu which is accessible through its icon but since they are very
commonly used there is an alternative short cut. An object can be picked
from the library display and an icon contour image can be dragged into an
appropriate area of the screen. If an object is dragged into a display window
the object will be displayed in that window. If an object is dragged into the
editor area of the screen, the object can be edited.

In the editor area of the screen, one of a number of different editors may
appear. The type of the object to edit determines which editor that will be
invoked. There is a text editor for primitive realizations (equations) and other
text definitions. A structure editor is invoked for block diagram editing of
structured models and a form is invoked for editing the attributes of simple
terminals.
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7. An Application Study

The project has also included an application study which focused on modelling
of chemical processes. The aim was to get some evaluation of the ideas and
feedback from a real example. The application study has been performed by
Bernt Nilsson, who is a chemical engineer interested in modelling. He has
played the role of a user who wants to model a medium sized, typical chemical
process plant that contains a reaction part with a tank reactor and two tubular
reactors, and a separation part with three distillation columns in series.

The modelling work is described and discussed in Nilsson (1989), where
also the model can be found. Since the application is a typical chemical plant,
he presents an object-oriented modelling approach for chemical plants.

Chemical processes are often complex plants that are composed of a large
number of components. However, chemical processes are often built as a num-
ber of subprocesses. In the application there are the reaction part and separa-
tion part. These subprocesses can be decomposed further into process compo-
nents or unit operations. This decomposition is easily and neatly described by
our hierarchical model decomposition concept. The process components are
often standard process equipments such as pipes, pumps, valves, reactors, heat
exchangers, distillation columns etc. that are used in different configurations
in different processes. A model class allows reuse of a description in several
instances and the inheritance mechanism allows adaptation of a model.

Nilsson (1989) describes ways of further decomposing chemical models.
One interesting example is the medium and machine decomposition. It is
of interest to separate the description of the process components from the
descriptions of the chemical media. In today’s simulation systems a model of
for example a chemical reactor contains a reaction model which can only be
modified by setting parameter values. A specification of a chemical reactor
should contain the equations describing its thermodynamic and hydrodynamic
properties, while the equations describing the reaction should be associated
with the chemical media. Nilsson shows that the submodel concept allows a
nice medium and machine decomposition.

Regular structures are common in chemical processes. For example, a
distillation column may contain a few hundred trays connected in series. To
handle this conveniently, Nilsson proposes matrices of submodels and a ma-
trix notation to describe how they are connected. Finite element approaches
to distributed parameter systems (partial differential equations) create also
regular structures.

Parameterization and generic models are important to increase the flexi-
bility and the reusability of models. The concepts proposed support Nilsson’s
basic needs of parameterizations. He states that it important to be able to
parameterize structural properties like the number of chemical components
flowing in a pipe. With matrices of submodels it is possible to let the number
of trays in a distillation column be a parameter. He illustrates in several ways
that inheritance allows powerful parameterizations. For example, it makes it
simple to change the model of the medium in the distillation column.

Nilsson concludes that the proposed model representation is superior to
existing ones, but it requires also a good model/user interface and number of
tools to make a good modelling environment.
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8. Conclusions

First, the results of the project is summed up. Then technology transfer is
considered. Third, some more general experiences of software techniques and
tools are discussed.

8.1 Results

Most of today’s languages for continuous simulation follow the CSSL defini-
tion (Strauss, 1967). It has served well for over 20 years. We think it is time
to capitalize on the enormous development of information technology and re-
consider the foundations of model representation. Qur proposal is a modest
effort in that direction.

The major contribution of the project is that experience in model struc-
turing, progress in numerical analysis and new ideas in object-oriented design
are collected and turned into a coherent scheme for model representation. Qur
proposed model representation scheme is general, powerful, clean and easy to
understand. The result is presented as a design proposal of a kernel for model
representation. The kernel is intended as central model representation data
base in an environment of tools for system engineering. The basic features of
the kernel are:

o Declarative and equation based behaviour descriptions to make the mod-
els versatile and useful for various applications.

e Hierarchical models with well defined interfaces based on terminals and
parameters.

¢ Terminal attributes for automatic check of connection consistency.

e A model may have several behaviour descriptions to support model ver-
sions and alternative behaviour.

® Object-oriented representation where classes with inheritance facilitates
reuse and incremental model development.

e An internal representation which preserves the structure of models.

e The kernel allows integration of customized user interfaces and various
tools.

A prototype implementation has been written in Common Lisp and KEE. To
get some feedback and evaluation of the ideas, the project has also comprised
an application study focusing on modelling of chemical processes. Experiences
from the prototype and from the application study indicate that the ideas are
sound and that the kernel proposal may indeed serve as a basis for a new
generation of modelling, design and simulation tools.

The proposed kernel ought to be of interest in all areas of engineering
and for all who use models and simulation. The ideas have been presented at
conferences and the prototype has been demonstrated for a number visitors
from industry and universities. People from many different areas of engineering
who have struggled with similar problems of model representation, have found
our solutions very interesting.
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8.2 Development and technology transfer

The scientific results of the project are and will be made public through articles
in international magazines and as conference contributions (see Appendix A).
Some of the results have and will be published as licentiate and doctoral theses.

The contact net with Swedish and foreign universities and companies that
develop CACE tools is extensive and functioning. We are now extending it
to include also researchers and developers working with model development
tools and simulation in general. The international conferences give good op-
portunities to exchange ideas and information and to make acquaintance with
new people. Besides control engineering conferences we have also participated
in conferences aimed at modelling and simulation in general as well as con-
ferences aimed at special applications as chemical engineering and building
simulation.

Implementation of the kernel

A very good way of transfering results like that of our project is of course
to make the tools available to many people. The experiences from Simnon
show that useful program components are a very good way of spreading new
ideas and methods. Our prototype is written in Common Lisp and KEE. The
advantage for us of using KEE was that the prototype could be implemented
with a modest effort. However, since KEE is very expensive, we do not expect
the prototype to be widespread.

To make our tools generally available, it is necessary to implement them
using cheaper and more commonly available languages and software compo-
nents. We think that it is not the task of a university to develop, market
and maintain commercial and professional software. But we realize that we
have a responsibility of transfer the results of our project and making them
generally available. A project supported by STU (STU project 89-01837 “A
kernel for modelling and simulation”) has just been started to implement a
kernel for model development and simulation, which someone else can develop
further into a commercial product of the prototype kernel. C++ is used as the
basic implementation language. An economic reality is that it is expensive to
develop professional software and the market for CACE-products is relatively
small. However, our kernel may be of interest in most areas of engineering and
ought to have a much larger market. There are companies and groups that
have expressed interest in making a commercial product. However, it is too
early to make any predictions now and we welcome all proposals.

Application projects

Another good way of spreading new ideas and methods is to have joint ap-
plication projects with developers and users. However, to be able to transfer
the results in application projects, implementation of the tools are needed. In
application projects the developers get feedback and can modify and improve
the tools. For a special application they can develop customized tools and
user interfaces. Model libraries can be built which can be of use not only for
the participating part, but also for a whole line of business.

We are planning to run a number of application projects. However, as
pointed out above, we need implemented tools and the implementation pro ject
has therefore been given priority. A proposal for an application project to-
gether with Sockerbolaget has been submitted to STU’s research program
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DUP. The application is modelling of sugar crystallization. Simulation and
simulators have a central role in DUP, which aim is to investigate how process
operators’ tasks can be supported by computer based tools. It is natural to set
up and finance application projects in DUP. STU’s program “Applications of
the information technology” is another possible source of financing application
projects.

Standardization

Much could be gained if we could agree upon a common set of ideas. It is time
to lay the foundation for a new standard for model representation. IFAC has
a working group on standards for CACSD Software. We are participating in
this work. It has not addressed non-linear systems yet, but it has focused on
linear systems.

It may be remarked that to build flexible model libraries we must also
agree on common principles for model development. This is a hard task, but
it might be possible to achieve in certain application areas.

There is an international association IBPSA (the International Building
Performance Association), which promotes the science of building performance
simulation in order to improve the design, construction, operation and main-
tenance of all types of buildings. IBPSA’s international membership includes
architects, engineers, building managers, academics, software developers, and
government representatives concerned with building performance. IBPSA or-
ganized a conference Building Simulation ’89 on June 23-24, 1989 in Vancou-
ver, Canada. At this conference Per Sahlin, The Swedish Institute of Applied
Mathematics, ITM, Stockholm and Edward Sowell, California State Univer-
sity, Fullerton, California presented a proposal for a neutral format for building
simulation models to allow users to share models (Sahlin and Sowell, 1989).
This proposal is inspired and influenced by the results of our project.

8.3 Experiences of software techniques and tools

The project has dealt with design of tools for model development and simu-
lation and to do this we have exploited ideas, approaches, methods and tech-
niques from computer science as well as used existing software. Hence we may
also ask what we have learned that can be of more general interest.

Object oriented programming

Object oriented programming (for overview see e.g. Stefik and Bobrow, 1986)
is a technique for structuring programs and to support reuse. The basic ideas
are data abstraction and inheritance.

Objects and abstraction is natural in engineering. Block diagrams and
and other kinds of schematics and flow graphs are common. Blocks have
often well defined interfaces. In control engineering it is common to talk
about input/output models, where only the relations between the inputs and
outputs are known. Nothing is then said about the internal structure or the
implementation of it. When the model also defines internal structure, we speak
about internal models.

Although the ideas of object oriented programming are or at least seem
to be natural, it is not self evident how to use them in a special application.
Zobel and Cummings (1989) discuss use of object orientation for digital signal
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applications. They had found that it is many cases not obvious whether oper-
ations should be implemented as methods or as special processing objects. For
example, should FFT be a method of signals or a special object (machine)?
They were going to carry through both approaches to get a deeper insight and
experiences.

In discrete event simulation the models can perform the simulation them-
selves by sending messages to each other. This is not possible in continuous
time. The differential-algebraic equations must be solved simultaneously. It
could be done in an object oriented fashion by having a Solver object that
collects the equations from all the models, solves them and returns the result
to the models.

We have used object orientation on several levels. First, for the architec-
ture of the system to get an flexible and extendible integrated environment
which allows customized user interfaces. Second, the modelling concepts are
object oriented. Third, the internal model representation is also object ori-
ented.

A kernel for model development must allow interactive definition and cre-
ation of new model classes (types). Interactive languages like KEE, CLOS,
Smalltalk allow interactive definition of new classes and a model class can
basically be implemented as a class in the implementation language. In com-
piled languages like Simula and C++, it is not possible to define new classes
interactively. It means that it is not possible to represent model classes di-
rectly as classes in the implementation language. An extra layer to handle
definition of new model classes and inheritance between model classes must
be implemented.

Databases

Databases are central. We need them to store models, parameter data, mea-
surements, results of calculations etc. Common representations are needed to
make the tools integrated.

Today’s databases can handle a large set of independent data efficiently,
but in CACE the amount of data are moderate, but the relations are complex.
For example, a model may be a linear version of another model at a certain
operating point for some given parameter values. Object oriented databases
is a promising approach.

Graphics and user interfaces

Computer graphics gives good possibilities to improve the user interface. It
can be used to make concepts, properties, structures and other information
more concrete. Direct manipulation is an interesting technique which allows
the user to operate on visual objects and get immediate visual feedback. Visual
metaphors must be selected carefully to give the user a correct conception,

Graphics must be designed carefully to be useful and endurable in the
daily use. The primary use of graphics should not be spectacular demonstra-
tions.

Unfortunately, it is laborious to implement graphics. First, portability is
a major concern. As a user you want to have a homogeneous environment.
The advantages of having a standard window system for all CACE programs
are quite obvious and uncontroversial, but it should be noted that CACE
programs are not the only use of a workstation. The user will use the native,
vendor-supplied window system, and would therefore prefer that one also in
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CACE programs. The same also applies for text editors. The situation seems
to improve and X Window System is today a de facto standard. Second, there
are today very few tools available for definition and implementation of user
interfaces, but it is an active area. Hopefully there will be commercial user
interface management systems (UIMS) available within a few years.

Al and expert system techniques

The complexity of AI has speeded up and influenced the development of pow-
erful workstations, high interactivity, computer graphics, animation, object
orientation, direct manipulation etc.

We consider the expert system technique as a useful and powerful pro-
gramming technique. The kernel does not itself contain any expert system,
but we have exploited ideas on information representation and declarative
programming; equations to describe behaviour. Rules can be used to define
events. Deduction of unspecified model attributes and consistency checking
can be implemented by rule based systems.

Some people claim that they have knowledge based simmulation when they
provide simple model libraries. Knowledge based simulation is, however, in
our opinion more than providing a model library. There should be facilities
that assist the user to select the proper models and model versions as well as
to evaluate the results.

Symbolic manipulation and computer algebra

The increasing computing capacity makes it possible to perform symbolic ma-
nipulation. The user can give his problem on for him a suitable form. Symbolic
manipulation can then be used to simplify the problem and to generate de-
scriptions that the numerical tools need. Analytic expressions may give better
insight than tables of numerical values.

Existing commercial packages for computer algebra such as MACSYMA,
REDUCE, Scratchpad, Maple and Mathematica are powerful. Unfortunately,
it is not easy to use exisiting packages for computer algebra in other tools.
They are interactive and assume that they are run by human beings. The
results returned from the packages are on a format intended for human beings.
They are not built to be run or called by other programs. They can of course be
run as separate processes and comunication can be done via pipes, mailboxes
etc. depending on the operating system. The difficulty is to decode the text
strings returned by the package. The reference manuals do not give any formal
specification of the format. So if we want to write a program to decode it,
we have first to investigate what is returned. All this is laborious to do but
the situation is even worse. Since the format is not formally specified, a new
release of the package may change (improve) the format.

Libraries of routines for symbolic manipulation, like the numerics libraries
would be very useful.
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Simulator for Dynamical Systems Using
Graphics and Equations for Modeling

Hilding EImqvist and Sven Erik Mattsson

ABSTRACT: New workstations with high-
performance graphics offer new possibilities
for man-machine interaction. This paper pre-
sents a prototype simulator for dynamical
systems, called Hibliz (Hlerarchical BLock
diagrams with Information Zooming), which
explores some features of modern computer
graphics. Hibliz supports hierarchical block
diagrams to describe the model decomposi-
tion and interconnection structure. The user
can scroll, pan, and zoom the block diagram
continuously in real time. Zooming controls
the amount of information displayed. When
zooming in on a block, it changes from an
annotated box to a representation showing
internal structure with increasing detail.
Since the block diagrams can be hierarchi-
cal, it is possible to make the description at
each level simple and clear. Hibliz also sim-
plifies model development by allowing sub-
models in the form of ordinary differential
and algebraic equations rather than assign-
ment statements for derivatives and algebraic
variables.

Introduction

It is difficult for a human to develop and
handle models of large and complex sys-
tems, because most humans are unable to
deal with many entities simultaneously.
Consequently, a system for model develop-
ment and simulation ought to have structur-
ing facilities so that the user can view a
model from different viewpoints, each hav-
ing only a small number of entities. Up to
now, it has been difficult to design and im-
plement such facilities, because structural
properties are not easy to represent textually.
The decomposition of a model into sub-
models with interconnections is more easily
described graphically. The current trends in
scientific personal computers will make
graphical displays commonly available. This
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will revolutionize the man-machine interac-
tion. Apple’s Macintosh is a clear indication
of what we could expect. Such machines will
offer great opportunities to invent more ef-
ficient problem-solving tools.

This paper presents a prototype system for
model development and simulation. The
simulator explores some of the possibilities
of new workstations with high-performance,
real-time graphics. Special attention has been
given to the use of graphics to describe struc-
tural properties. Hierarchical block diagrams
are used to describe the model decomposi-
tion and the interconnection structure. By
moving a mouse and pressing its buttons, the
user can scroll, pan, and zoom the block
diagram continuously in real time. Infor-
mation zooming is used to control the amount
of information displayed. When zooming in
on a block, it changes from an annotated box
to a representation showing the internal
structure with increasing detail. The concept
of information zooming was introduced by
Elmgvist [1]. The prototype simulator is
called Hibliz (HIerarchical BLock diagrams
with Information Zooming).

Hibliz is a simulator for dynamical sys-
tems, described by sets of ordinary differ-
ential equations and algebraic equations. The
structuring concepts proposed also can be
used for more general systems with both
continuous-time and discrete-time submod-
els; however, the algorithm presently in-
cluded for simulation can handle only con-
tinuous-time models. Hibliz allows the sub-
models to be described in the form of
equations instead of assignment statements
to facilitate modeling and use of model li-
braries.

The model description concepts of Hibliz
are discussed in the following section. The
operation of Hibliz is described in the next
section and then implementation is ex-
plained.

Model Description Concepts

Two basic principles can be used to struc-
ture a model: abstraction and modulariza-
tion. The essence of abstraction is to extract
important properties while omitting insignif-
icant details. Different levels of abstraction
are defined, allowing the system to be viewed

0272-1708/89/0100-0053 $01.00 © 1989 IEEE

with increasing detail. The first abstraction
level for a model might be just its name or
icon. The next level might describe usage
and external behavior, and a third level might
detail its internal behavior. The amount of
information increases at lower abstraction
levels. Modularization can be used to main-
tain useful views with a limited number of
related concepts. Modularization means that
the information at a certain abstraction level
is decomposed into smaller entities.

The concept of this paper is that a graph-
ical description of the structure is easier to
understand than a textual description. Mod-
ularization is achieved by use of block dia-
grams. To support abstraction, information
zooming and hierarchical block diagrams are
proposed. Multiple windows are used to sup-
port further multiple views of the model.

The use of hierarchical block diagrams and
information zooming will be illustrated by
an example. Please remember that when sit-
ting at the terminal one can scroll, pan, and
zoom in the windows, but that the dynamical
aspects are lost in a paper that can show only
snapshots of the screen.

An Example

As an example, consider a model of a ther-
mal power plant. The block diagram in Fig.
1 shows the major components and their in-
teraction. The annotated boxes represent
submodels, and the lines between the boxes
indicate interaction between the submodels.
To the left in Fig. 1, we find the model for
the combustion chamber. It delivers energy
to the boiler, heaters, and reheaters in the
turbine part. The boiler produces steam,
which is heated in the superheaters. The
steam then goes to the turbines via the steam
valve. From the turbine system, the steam
enters the feed water system. Extract steam
from the turbines is used to preheat the feed
water. The feed water goes to the boiler, and
to sprayers in the heater as well. The equa-
tions describing the system are typically mass
and energy balances. External functions for
interpolating in steam tables are also re-
quired. The model has 470 variables; in its
textual form, it is 1200 lines long, including
layout information.

By pressing the right mouse button when
moving the mouse, one can scroll and pan
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Powersystem: SYSTEM;
I
Steamvalvef— Turbines
— Heaters
Combustion__
__ moiler _]_E‘eedvalvel— FeedWater
Fig. 1. Power system model.

the picture continuously. If both the right
and middle buttons are pressed, one zooms.
When one zooms in on the diagram, the
blocks open up and show their internal de-
tails. Zooming further (Fig. 2), the internal
description of the boiler can be seen. It is a
new block diagram.

Model Decomposition

Hibliz supports the use of hierarchical
block diagrams as a tool to handle complex-
ity. A basic rule is that a block diagram
should be simple and contain only a small
number of blocks. The selection of module

small compared with the internal complex-
ity. There should not be crisscross lines be-
tween the blocks. Furthermore, the entities
in a module should be related (cohesion).

Modularization gives many advantages. It
simplifies the modeling. It makes the model
more flexible and easier to adapt and man-
age. One can also build and use libraries of
models. Technical systems are often built in
a modular way and composed of standard
components. The behavior of these standard
components may be well known, and good,
generally accepted models already may
exist.

boundaries is guided by one’s perception of

the problem space. If a first attempt at struc-
turing results in too many blocks, it is ad-
visable to introduce a new hierarchy. There
is almost always interaction (coupling) be-
tween modules. In order to be useful, a de-
composition must be chosen in such a way
that the external interaction complexity is

Multiple Windows

The user can create new windows for
viewing a model. One of these windows is
the current interaction window for scrolling,
panning, and zooming. To help the user keep
track, rectangles outline the parts of a win-
dow that are also shown in other windows.

sebhetll

Boller: OBJECT; I

Drum

—Economlzer

Q1
Q2

i I
1_|

Ewactar

1]

Riser Down
|
Fig. 2. Power system zoomed in at Boiler.
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The user can point at an object in any win-
dow and ask for automatic scrolling, pan-
ning, and zooming to this object in the in-
teraction window.

Interaction Structure

Now consider the interaction between the
models. In the first level, the block diagram
(Fig. 1) shows which models interact. The
next level (Fig. 2) is concerned with how
models interact, i.e., which variables are in-
volved. The graphical representation for a
submodel consists of two rectangles; one in-
side the other. The descriptions of interfaces
are placed at the border of the submodel be-
tween the inner and outer rectangles. At the
most detailed level, the effect of interaction
can be seen in the equations containing in-
teraction variables.

A model is an encapsulated entity, and the
interaction variables are the only variables
visible from the outside. The interaction
variables are associated with submodels.
They cannot be associated with connections,
because it should be possible to develop a
submodel without knowing in what environ-
ment it will be used. This is necessary to
allow for model types and model libraries.
A model often interacts with several other
models, implying that the formal interaction
variables should be grouped corresponding
to the different possible connections. Such
groups are called interfaces. Interfaces may
have a hierarchical structure.

For example, consider the model Boiler in
Fig. 2. To the right, the interface Iwater of
Boiler can be seen. It models the incoming
feed water to the Boiler. This interface is
connected to the right interface of Econo-
mizer to model that the feed water goes to
the Economizer. The feed water is heated in
the Economizer. It then leaves the Econo-
mizer and flows into the Drum. This is mod-
eled by the connection between the left in-
terface of Economizer and the right interface
of Drum. In Fig. 3, we can see that the in-
terfaces of Economizer have three compo-
nents: flow rate, enthalpy, and steam pres-
sure.

A connection between two structured in-
terfaces means that their corresponding com-
ponents are connected. The number of com-
ponents must be the same in the two
interfaces. Primitive interface components
also may be used to pass through a structured
connection to submodels. The user needs
only to specify the interfaces of nonprimitive
models to the degree of detail necessary to
draw the block diagram within the actual
block. The connection between the interface
Iwater of Boiler and the right interface of
Economizer illustrates this.
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Economizer: OBJECT;

PAR
k =0.0; £=0.0; Cm = 0.0;
m= 0.0; Ve = 0.0;

VAR

W2 Tm, T2, R2, T2H, TmH:real;

EQUATIONS

P2 = Pl - f£*W1*Wl;

(Cm*m*TmH + Ve*R2) *H2’DER =
Q + W1*H1 - W2*H2;

R2 = RHP(H2, P2);
T2 = THP (H2, P2);
T2H = THPH(H2, P2);
Tm = T2 + k*Q;

TmH = T2H;

W2 = W1;

63

Wl
H1
Pl

Q

Heat

Behavior

Before discussing the semantics of con-
nected variables, consider a primitive sub-
model. The model Economizer is one ex-
ample. As before, zoom manually, but there
is also a facility for quick automatic zoom-
ing. Pointing with the cursor at the outer
rectangle of a model and pressing the middle
button, Hibliz automatically zooms in on the
mode! (Fig. 3).

The behavior of models at the lowest hi-
erarchical level is described by equations in
textual form. An equation should have the
form

expression = expression

We will not describe the syntax and seman-
tics of expressions in full detail (see [1D).
Expressions have the usual syntax with arith-
metic, relational and Boolean operators.
Conditional parts (if-then-else expressions)
as in, for example, Algol 60 are also al-
lowed. Common mathematical functions
such as sin, cos, and exp are available. The
language supports simple integer, real, and
Boolean variables. Hibliz also provides a
mechanism for incorporating additional
functions written in Pascal. These functions
can be used directly in the model. For ex-
ample, RHP, THP, and THPH used in the
model Economizer (see Fig. 3) are such ex-
temal functions implementing steam tables.

There are four kinds of variables: con-
stants, parameters, interface variables, and
internal variables. Constants and parameters
are considered to be constant during a sim-
ulation, but the user can change the values
of parameters on-line between simulations.
The values of interface variables and internal
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Fig. 3. Economizer model.
variables may, of course, vary with time.
The time derivative x of a variable x is writ-
ten as ‘‘x’der.’’ The scope rules for variables
are very simple because of the powerful con-
nection concept. Variables can be referenced
only from equations in the submodel where
they are declared.

It should be noted that the basic concept
is mot assignment statements but general
equations. Thus, a model can be represented
as f(t, x, x, p) = 0. Many integration al-
gorithms and simulation packages require
that the derivatives are solved explicitly by
the user: X = F(t, x, p). The support of gen-
eral equations simplifies the model devel-
opment, and the documentation becomes
better since equations are closer to first prin-
ciples. When developing a model for a phys-
ical system, one uses fundamental laws such
as mass balances, energy balances, and phe-
nomenological equations. These are either
algebraic equations or ordinary differential
equations that relate certain variables. Com-
pared with the assignment form, it is easier
to check that the model is entered correctly.
The risk of introducing errors during manual
transformation into assignment statements is
reduced.

Furthermore, as thoroughly motivated by
Elmgqvist [2], the equation form is the only
reasonable representation for model librar-
ies. With models in assignment form, for
each submodel, it must be decided which of
its variables are inputs (in other words, are
known) and which of its variables are out-
puts (defined by the model). As a simple
example, consider a resistor. Ohm’s law
states V| — V, = RI, where V, and V, are
the voltages at the ends of the resistor, / the
current through the resistor, and R the resis-

tance. The model has three variables: V,, V,,
and /. In this model, the resistance R is a
given parameter. If we should write the
model in assignment form, there are three
possibilities:

I:=(V, — Vy)/IR
Vi:i=V, + RI
V,:=V, —RI

The first variant assumes that ¥, and V, are
inputs and defines /. This model is appro-
priate if, for example, one end of the resistor
is connected to a voltage source and the other
end is connected to the ground. The second
and third variants assume that the current and
the voltage at one end are known. These
models are appropriate if the resistor is con-
nected to a current source and the ground.
Consequently, for models in assignment
form, several different models are required
for a resistor, depending on how it is con-
nected to the environment. This makes both
use and maintenance of a model library
messy. Furthermore, other environments
may result in algebraic loops so that equation
systems with equations from several sub-
models must be solved to transform the
model into assignment form. Two resistors
connected in series betweep a voltage source
and ground is a simple example of this. Sub-
models cannot be transformed into assign-
ment form individually, since the transfor-
mation is a global problem.

A more sophisticated connection mecha-
nism can be introduced when equations are
allowed. Hibliz supports two types of con-
nection semantics, depending on the char-
acter of the interaction variable. Consider,
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for example, three connected electrical wires.
Each wire is represented by a voltage and a
current. The constraints at the junctions are
that the voltages are equal and the sum of
the currents is zero. These two types of cut
variables are sometimes called across vari-
ables or through variables. Other examples
of across variables are pressure and temper-
ature. Mass and energy flow, thrust, and
torque are examples of through variables. It
is natural to associate a direction with a
through variable. The directions are impor-
tant when putting up the equation for con-
nected variables so that the terms in the
‘‘zero-sum equation’’ are given correct signs.
The interfaces are presently declared tex-
tually; for example, the interfaces of a re-
sistor may be declared as

Wirel: (VI1: real, I1: IN real)

Wire2: (V2: real, I2: OUT real)

An interface variable is defined to be a
through variable by the keyword IN or OUT
as indicated above for I1 and I2.

Hibliz interprets the connections drawn by
the user and generates appropriate equations
automatically.

How Hibliz Is Operated

The user operates Hibliz via a keyboard
and a mouse with three buttons. He can cre-
ate and edit hierarchical block diagrams, in-
spect the model, and simulate it.

Scrolling, Panning, and Zooming

The mouse is used for pointing at the
screen; a cursor follows the movements of
the mouse. As indicated earlier, the mouse
is used when scrolling, panning, and zoom-
ing. In order to scroll and pan, press the right
button and move the mouse. To zoom, first
press the right button and then the middle
button. Now, moving the cursor up means
zooming in;. down means zooming out. An
object (model, interface, curve, or text) can
be zoomed in by pointing at it and pressing
the middle button only. Zooming is done
smoothly, and the final size of the object is
chosen as large as possible while still being
contained in the window. Text objects are
treated specially. Their final sizes are chosen
so that the longest line of the text matches
the width of the zoom window. The text line
pointed at is scrolled to the center of the
zoom window. This allows convenient
scrolling within a window. A connection is
considered to belong to the enclosing model.
Therefore, pointing at a connection is a con-
venient way of zooming out to a higher hi-
erarchical level. If the middle button is
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pressed without pointing at anything, a
zoom-out to 70 percent is performed. Note
that it is possible to point at an object in a
windaw other than the current zoom win-
dow. Pointing in an overview window thus
allows rapid inspection of different objects.
A new window is selected to be the current
zoom window by pointing at it and pressing
the left and right buttons.

Two-Button Stretching

To lay out objects such as windows,
models, and interfaces on the screen is a
common operation. The layout with respect
to position and size is done with ‘‘two-button
stretching.”” The lower left corner and the
upper right comer of the objects follow the
mouse in different ways depending on which
of the left and middle buttons are pressed. If
the left button is pressed, the cursor points
at the lower left comer, which follows the
movement of the mouse. The same applies
for the upper right corner when the middle
button is pressed. If both buttons are pressed,
the cursor points at the center of the object,
and the whole object moves. The stretching
is finished when both buttons are released.
It should be noted that the objects are com-
pletely redrawn, even in the two-button-
stretching mode.

Commands

Commands are chosen from a pop-up
menu. The menu is shown when the left but-
ton is pressed. The desired command is se-
lected by pointing at the corresponding menu
entry. Hibliz highlights the selected entry and
performs the command when the button is
released. If no entry is selected when re-
leasing the button, the menu disappears.
Command actions sometimes require addi-
tional input from the keyboard or mouse.
Hibliz then prompts in the command area at
the bottom of the screen.

The Model command creates a model and
its graphical representation (two rectangles
and the name). Hibliz prompts for name,
which the user should type on the keyboard,
and the enclosing model, which the user
should select by pointing at it with the mouse
and pressing the left button. The layout is
done with two-button stretching as described
earlier.

The Interface command is used to declare
and position an interface. An interface is
presently declared textually, and its graphi-
cal layout is done automatically. The user
positions and stretches it using two-button
stretching.

The Connect command makes it possible
to draw connections between interfaces by
using the mouse and the left button to input

a sequence of line segments. The start inter-
face is first selected by pressing the left but-
ton. Intermediate points are given by releas-
ing and pressing the button. The last line
segment is refreshed while the mouse is
moved (rubber-band drawing), and the in-
terface structure is searched for the destina-
tion interface.

The Text command is used to edit the tex-
tual parts of models. The editing is per-
formed using a simple screen-oriented edi-
tor. When the user leaves the editor, the text
description is parsed. Error messages are
currently given as text in the command win-
dow. Here there are many possibilities to use
graphics and color to explain the error to the
user.

The Remove command allows deletion of
models, interfaces, and connections. The
Copy command copies a model and all its
submodels, interfaces, connections, and the
text. The Save command stores the current
model hierarchy as a text file. Such a file can
be read by the Get command to recreate the
model. If a model has been defined earlier,
the hierarchical position and layout are given
as for the Model command. The Copy, Save,
and Get commands make it possible to build
simple model libraries.

The Layout command is used for changing
the position and size of windows and models.
There is no facility to change the layout of
interfaces and connections. The View com-
mand creates a new window for viewing the
model.

The Compile command analyzes the model
and prepares for simulation. The Simulate
command prompts for start and stop time and
then starts the simulation.

The Display command creates a display
for presentation of simulation results of any
variable. The presentation of simulation re-
sults is very primitive at present. Only sim-
ple trend curves are implemented.

The Hardcopy command creates a descrip-
tion of the current content of the screen in
the form of a PostScript program. The pro-
gram can then be used to create hard copies
on, for example, Apple’s LaserWriter.

The Exit command stops Hibliz and re-
turns to the operating system.

Implementation

The code for Hibliz consists of some
28,000 lines of Pascal. The software is
highly modular. Related types, variables, and
procedures are grouped together. Machine-
dependent parts such as file and string han-
dling are isolated to improve portability. A
preprocessor, which we call Packman, is
used to produce a standard Pascal program
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from module files, since Pascal does not al-
low mixed declarations of global constants,
types, variables, and procedures.

Packman

Packman accepts files consisting of sec-
tions of code preceded by headings such as
.PROGRAM, .LABEL, .CONST, .TYPE,
.VAR, .FORWARD, .PROCEDURE,
JINIT, and .MAIN. Packman outputs the
contents of all sections labeled .CONST on
a file named CONST.SEC, and so on.

Typically, the file issued to Packman is a
short file containing a number of commands
to include files. Inclusions may be nested.
Hibliz is built similar to a transparent onion
consisting of six layers. Outer layers can use
elements of inner layers. Packman is de-
signed to promote separate compilation. By
the commands .DEFINITION or .IMPLE-
MENTATION it is possible to specify what
should be visible outside the compilation unit
and what should be hidden. Portability with
respect to separate compilation facilities of
different Pascal compilers can be handled by
modifying Packman.

Data Structure

A model is represented as a record con-
taining lists of submodels, variable declara-
tions, connections, and equations. A general
list package for doubly linked lists with
headers is used. It has operations such as
NewList, Into, First, and SuccElem. A node
is a Pascal record with variants. The com-
mon area contains information such as for-
ward and backward pointers for list manip-
ulation; the variant part contains a pointer to
a record describing models, interfaces, con-
nections, etc. Note that this method of im-
plementing lists makes it possible for a model
description, etc., to be a member of several
lists at the same time. The list package makes
it easy to handle and manipulate lists.

Compiler

The model descriptions at the lowest level
are parsed at exit from the editor or when
read from a file by the Get command. The
parser builds a syntax tree for each equation.
The Compile command links the identifiers
to their declarations. Interface variables con-
nected to each other are put into a list. These
lists of connected interface variables are then
analyzed to generate the proper equations,
their syntax trees, and the links to declara-
tions. It also checks that across and through
variables are not connected to each other.
The type consistency of all expressions is
checked.

When Hibliz has collected all equations,
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it has a differential/algebraic system of the
form

g, x, x,v,p,c) =0

where ¢ is the time, x and v vectors of un-
known variables, p a vector of known pa-
rameters, and ¢ a vector of known constants.
The vector v contains those unknown vari-
ables that do not appear differentiated in the
equations. Hibliz uses the differential/alge-
braic system solver (DASSL) [3]. DASSL
has a reputation of being one of the best and
most robust numerical solvers for differen-
tial/algebraic systems. DASSL accepts prob-
lems of the above form if it is provided with
a routine for calculating the residual A =
g(t, x, x, v, p, ¢) when the arguments are
known. However, to decrease the order and
complexity of the problem, simple symbolic
formula manipulation is performed as fol-
lows. Connections of across variables lead
to simple identities of the form A = B. It is
easy to explore these entities and eliminate
variables. The record describing a variable
has an element called alias, with an initial
value implying that it is its own alias. When
simple equations are found, Hibliz modifies
the alias elements accordingly and removes
the equation from the list of interesting equa-
tions.

After the elimination of simple equations,
Hibliz assumes that x and v are unknown and
sorts the equations and variables so that the
problem becomes block lower triangular with
minimal diagonal blocks. If a block is scalar
and the variable to be solved from the equa-
tion is a component v; of the vector v, and
the equation is of the form v; = (expression
independent of v;), the variable v, is elimi-
nated from the vector of unknown variables
passed to DASSL. The routine for evaluat-
ing the residual A can, in this case, calculate
v; itself. The partition to lower block trian-
gular form may fail. An error message is
then given listing unassigned variables and
redundant equations. The problem is then
either singular or has algebraic relations be-
tween the components of the vector x.

To make the calculation of the residual
vector A more efficient, Hibliz generates
code for a virtual stack machine. The code
is interpreted by a Pascal procedure. The
values of constants, parameters, and vari-
ables are storcd in a global array.

The Run command sets the initial values
of states as given by the initial section of the
models and then uses DASSL to solve the
system.

Graphics

Routines for handling graphics are an es-
sential part of Hibliz. A local coordinate sys-
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tem is assigned to each model such that the
lower left comer of the rectangle has the co-
ordinates (0,0) and the upper right corner has
the coordinates (1,1). The positions of its
interfaces, submodels, equations, etc., are
expressed in this coordinate system. When
moving and scaling a model, this hierarchy
of coordinate systems makes it almost trivial
to scale and move its submodels properly.
All coordinates are stored as real numbers
since continuous zooming requires high-res-
olution coordinates.

Hibliz currently runs on an IRIS 2400 from
Silicon Graphics, Inc. [4]. The IRIS is a
high-performance engineering workstation
designed for interactive color graphics and
computing applications. The program inter-
face to the graphics is the IRIS Graphics Li-
brary. It has routines for definition and ma-
nipulation of objects in (local) world
coordinate systems and projection of these
objects onto the screen. The IRIS has special
graphics hardware for transformations from
local world coordinates into screen coordi-
nates. Clipping and scan conversion also are
done in hardware.

Fonts

A block diagram contains text, and to make
continuous zooming possible it is necessary
to display characters of different sizes: The
IRIS Graphics Library supports one fixed-
pitch raster font of height 16 and width 9
pivels. New raster fonts can be defined;
however, because of memory constraints,
larger characters have to be viewed as graph-
ical objects consisting of straight and curved
lines.

The authors have developed a support pro-
gram to generate new fonts. This program is
based on ideas given in [5]. The user defines
the shape of a character as a number of line
segments and the size and form (rectangular,
circular, oval, etc.) of the pen to be used. A
line segment is defined by its start and end
points and its tangents in these points. In-
termediate points on the line segment are de-
fined by a cubic spline function ([5], pp. 24—
26).

Hibliz uses both raster and graphical fonts;
for characters up to 16 x 20 pixels, raster
fonts are used. The use of both raster and
graphical fonts makes outputting of text
somcwhat more complex. There are, how-
ever, two good reasons for using raster fonts
and not only graphical fonts. First, when
drawing a small character, the quantization
may deform the character so that it looks
distorted and is difficult to recognize. If a
character is moved over the screen, its form
changes due to the quantization, and, for ex-
ample, an “‘0’’ looks like an amoeba. Sec-
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ond, it is important to make the graphics as
fast as possible. When the characters are
small there may be many of them on the
screen. If the characters are defined as
graphical objects, this implies drawing of
many line segments. For example, to draw
a nice-looking Q, at least 20 line segments
are needed. The IRIS can draw a maximum
of 65,000 line segments per second; whereas,
it can display up to 150,000 raster characters
per second.

Conclusions

Some of the ideas on graphics presentation
and interaction have been further carried
through by the first author at SattControl.
That has resulted in a product called Satt-
graph 1000 [6], which is a presentation sys-
tem for plant operators. Sattgraph 1000 uses
the concept of information zooming to deal
with hierarchical structuring and has an ob-
ject-oriented approach to interaction during
creation of pictures and for operating a plant.

The structural properties of a model are
very important, particularly when working
with large, complex systems. It is the au-
thors’ belief that it is easier to describe struc-
tural properties when graphics are used than
when a purely textual description must be
used. In this paper, the authors propose the
use of hierarchical block diagrams, which
can be scrolled, panned, and zoomed con-
tinuously. The block diagram describes the
model decomposition and the interconnec-
tion structure. The zooming controls the
amount of information displayed. When
zooming in on a block, the block changes
from an annotated box into a representation
showing the internal structure with increas-
ing detail. Since the block diagram can be
made hierarchical, it is possible to make the
description at each level simple and clear.

The new workstations with fast, high-per-
formance graphics make it possible to im-
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plement the man-machine interface pro-
posed. To demonstrate the feasibility of the
proposal, a prototype system, called Hibliz,
has been implemented. Hibliz also simplifies
model development by allowing submodels
in the form of ordinary differential and al-
gebraic equations rather than assignment
statements for derivatives and algebraic
variables.
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Abstract

This paper describes an expert system interface for a program for system identification.
It works as an intelligent help system for the interactive program Idpac, using the
command spy strategy. This means that the system is completely non-invasive and
uses the previous command history to understand what the user is doing and gives
help according to this. Scripts are used for representing procedural knowledge and
production rules for diagnostic knowledge. The system has been implemented and a
knowledge database developed. An example run with the system is shown.

Introduction

A modern CAD program usually is quite complex and demands the user to have a lot
of knowledge, about the program as well as about the problem domain. For this reason,
there is a need for help systems with knowledge about both these areas. We believe
that an expert system is well suited for the implementation of such a help system. In
order to use expert system techniques in a CAD program, several problems must be
solved.

o CAD programs usually have a flexible command dialog. This way of communication
should be retained when the expert system is added to the program.

o 'T'he expert system should he totally non-invasive, allowing the user to fall back on
the plain CAD program in case it is not able to give the user any help.

e An inexperienced user often has a general idea of what he wants to do, but does
not know exactly how to do it. The expert system should be able to guide the user
from general ideas to specific commands, i.e., il should give goal related help.

e An intelligent help system should have facilities to teach the user about the target
program and to transfer knowledge from the knowledge database to the user.

e An expert system used as an intelligent help system interface must be able to handle
both procedural and diagnostic knowledge. We propose to represent procedural
knowledge with scripts, and diagnostic knowledge with production rules.

According to these design criteria an expert system interface has been developed.
It contains a command parser, a script matching device with a database for scripts and
rules, a query module, a file system, an on-line dictionary, and interfaces to the user
and Idpac.

We have focussed the project on the idea of a non-invasive, goal related help system
in general, and not in any special kind of man-machine communication. Thus, the
decision was made to use almost the same command language in the interface as in
Idpac. An alternalive would have been to equip the system with, e.g., a graphics
interface, but as this was not necessary for the development, we abstained from the
effort.

Idpac is a command driven program for system identification, see [1,2,3]. This
project was originally outlined in [4,5]. A previous system was described in [6]. A
thorough description of this project is given in [7,8,9]. There are some other projects
in the area of intelligent help systems, see [10,11].

System Identification
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System identification is the process of finding a mathematical model of a real world
process. The models can be differential or difference equations, relating input signals to
output signals. System identification involves experiments in which input and output
signals of a physical process are measured, choice of a suitable model, validation of
data, numerical fitling of model parameters to these data, and several validation tests
for verification of the results. System identification demands skill and experience and
the validity of the results strongly depends on the user’s knowledge. For thorough
readings on system identification, see [12,13]. An overview is found in [14].

Scripts

Running Idpac requires a lot of procedural knowledge, i.e., knowledge about sequences
of commands, and, on a higher level, knowledge of sequences of subtasks of Idpac
sessions. In order to represent sequences, the concept of scripts was introduced. We
were inspired by a data structure used in natural language understanding, [15, 16]. It
should be noticed that our script concept is different from Shank’s. We use scripts to
describe the possible order of a number of commands, where the commands must have
certain attributes, e.g., parameters, in order to match. Scripts may be implemented in
several ways, e.g., with production rules or as Lisp lists. The latter approach was taken
in this project. Here is an example of a script.
((commend plot (infile INSI) (infile OUTSI))
(repeat
((command mlid (outfile SYST) (infile INSI)
(infile DUTSI) (number N))
(kscall (Estimation of order (parsmeter N) performed))
(or
((command residu (outfile RES) (infile SYST)
(infile INSI) (infile OUTSI)))
((command sptrf (outfile FREQ) (infile SYST)) :
(kscell (Recommend multi-Bode plot with (parameter FREQ)))
(command bode (infile FREQ))))))
(kscall (Give advice on most probeble order)))

This script describes a way to perform a parameter estimation with increasing order of
the fitted model. First the user should look at the signals with the pLOT command. The
input files corresponding to 1NsT and ourst should already exist. A model is produced
with MLID. The output file sYST is created and N, the order of the model, is associated
with the actual argument used. Next, a fact stating that a parameter estimation has
taken place is sent to the production rule database. This is done with the kscaLL clause.
Kscall stands for Knowledge Source Call and puts a fact in the fact database of the
production rule system, which is associated with each script. After this, the user may
either look at the residuals with the RESIDU command, or produce data for a Bode plot
with SPTRF and plot it with BopE. This is expressed with the or clause. The REPEAT clause
means that this whole procedure may be repeated, and every time the rule system gives
advice on whether the order is sufficiently high. During the process it may use facts
put into the database by previous kscalls. This script is of course far too small to be
i'e]a,lisl,ic, but it shows what a script may look like. For a script of reasonable size, see
9].

Other clauses in the script language are the ALL clause, which expresses that all
the following commands must match, but the order of them is not essential, and the
SCRIPTMACRO clause, which is a kind of subroutine.

The Knowledge Based Command Spy

How does one combine a CAD program with an expert system while keeping the good
features of both? The solution proposed in this paper is the command spy sirategy.

The expert system is used as an interface to Idpac. In our solution it is placed
before the command decoder of Idpac, but an alternative would be to build it into the
outermost level of Idpac.

We keep the command language of Idpac. In this way a cumbersome Q/A dialog
is avoided. The expert system traces the user without asking any questions, and gives
help only on demand. Thus the expert system never forces a user to do anything.
A user that does not need or want any help is not bothered and there is always the



possibility of falling back on plain Idpac in case the help system does not have enough
knowledge to work properly. The expert system may also use a Q/A dialog to find out
facts about the experiment and expected results, but only if the user initiates it.

The command spy uses scripts in order to understand what the user is doing. By
matching scripts against the actual command history, the expert interface is able to
guess what the user wants to do. The scripts also provide information on the next step
for reaching a desired goal.

Diagnostic reasoning is needed at certain points in an identification, notably when
things go wrong or unexpected results arise. This is taken care of by production rules
associated with each script. The rules also allow for automatic documentation by
writing script based information to a text file.

Several scripts may be active at the same time, as long as they match the commands
typed by the user. This is typically the case when the system is started. At any time
the user may ask for the next sensible command. The command spy then looks at
the next possible commands in all the active scripts, and gives these commands as the
answer. If, however, the user does not follow this advice, some error recovery actions
are taken. One possibility is to assume that the user wants to start all over again, so the
initial scripts are tried once more. If one of them should match, the current script gets
suspended and the new script becomes the current script. If the user’s command does
not match any of the initial scripts, the command spy checks whether the command
matches any previously suspended scripts. If so, the current script geis suspended and
the script which matched the command becomes the current script. If none of this is
the case, the command spy stays in its current state, sends the, for the command spy
unintelligible, command to Idpac, and from the next command on it tries to restart
again.

Implementation

The expert interface is made up from several independent parts. Most of the parts
work on a common database.

- PARSER =] MATCHER |-~ QUERY -~

USER IDPAC
INTERFACE t !, { 1 I' INTERFACE

- DATABASE

Figure 1. Layout of the system.

The user interface module reads a command from the user and transforms it into a
Lisp list. It provides all input and output functions used in other parts of the interface.
In this way, all of the system’s dependence on terminal types, graphics, etc., is collected
in one place.

The command parser module checks the command for syntax and supplies defaults
in the same way that the parser of Idpac does. In this process it transforms the
command into a more convenient form. This parser accepts commands with the
arguments lefl out, as the other routines will fill information in, by defaulting from
scripts and asking the user.

The script matcher module keeps track of the scripts incrementally and updates
them as it gets commands from the parser. The commands once again are transformed,
and files may be defaulted using knowledge from the scripts.

The query module works through the command description and tries to fill in the
remaining unknown entries by asking the user about them. In this way the user may
give only the command name. If necessary, he will then be prompted for any parameters
left out. The query module also sends messages to the file system about created files.

The database contains the command grammar used by the parser, the scripts and
rules used by the script matcher, the file tree of the file system, and state variables for
keeping track of the user state, set a debug mode, etc.
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The file system keeps track of all the data files created and used during an Idpac
session. It does {his by storing data about the files in a directed graph structure. This
enables the file system to show, e.g., the ‘ancestors’ or ‘descendants’ of a file.

The expert interface and Idpac reside in two different VMS processes. The Idpac
interface sends the processed command to Idpac via a VMS mailbox. In this way no
changes had to be done to the Idpac program itself. The interprocess communication
routines are written in C.

The system is written in Franz Lisp extended with Flavors [17], and YAPS [18]. It
consists of about 6000 lines of code and runs under VMS on a VAX 11/780.

The Knowledge Database

A knowledge database has been constructed during the project. It only deals with
parameter estimation using the maximum-likelihood method, and thus, it does not
cover everything that Idpac may be used for. Still, we believe that this small database
shows that our solution will indeed work. The system is used for demonstrations and
has also been used in an undergraduate level course on system identification. The
database is thoroughly described in [9]. The script is about 300 lines long, and the rule
base conlains about 200 rules. This script and these rules can reasonably well handle
the the interactive session of a student.

An Example Run

This is an example of a run with the system. The script used is the one shown in the
script seclion of this paper. Approximately 10 rules are needed to handle this script.
A ‘7’ asks for rule based information and ‘77’ for the next command according to the
script. Texts appearing afler a ‘1’ are comments.

il

>plot in / out

[y

=

0 200 300 400
4
0
=14
1] 100 200 300 400
>?7
Next command: mlid
>mlid syst2 < in out 2 ! Create a second order model.
A-POLYNOMIAL
1. - 1.71073Q"-1 + 0.747169Q"-2
B-POLYNOMIAL
Q°-1 * (8,1016B6E-3 + 2.73368E-20Q"-1 )
C-POLYNOMIAL
1. - 0.926366Q"-1 + 0.303477Q"-2
>?
Look at the residuals of in and out, using the system systi.
>residu ! The user gives no arguments.
residu ... < syst2 in out ! Some are defaulted.

Residuals outfile? > res2 ! The system prompts for the rest.



0.5

0 4 8
>?7?
Next command: mlid or sptrf
>sptrf freq2 ! Compute a transfer function.
>bode ! Plot it.
1
0.1-
0.01 -
T T
0.01 0.1 1
0
-100
=200
=300
0.01 0.1 1
>ml syst3 ! Create a new model,
mlid syst3 < in out ...! No default for model orxder.
Hodel order? > 7 ! The user vants a further explanation.

The order of the tranafer function to be fitted to the indata,
Model ordexr? > 3

A-POLYNOMIAL
1. - 1.02007Q"-1 - 0.43999Q"-2 + 0.521126Q"-3

B-POLYNOMIAL
Q-1 » (5.14744E-3 + 4.01447E-2Q"-1 + 1.38089E-20Q--2 )

C-POLYNOMIAL
1. - 0,221032Q"-1 - 0.3758856Q"-2 + 0,245745Q"-3

>res res3 ]
0.3
o |
g —

0 4 8
>?7
Next command: mlid or sptrf
>sptrf freq3 < syst3 b / a ! Compute m transfer function.

>7
Perform the command BODE freq3 freg2.
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>bode freq3 freq2

14 —
™
0.1 ] \
\
0.01 - Nf
0.01 ’ 0. 1 -
0—
T
~100
200
~300 5
0.01 0.1 1

>7
The model order is probably high enough when the Bode plots
start to coincide in the medium freguencies.

Conclusions

The main conclusion of the project is that if one wants to combine an expert system
with a CAD program, the expert system should be used as an intelligent and non-
invasive help system. This retains the advantages of both the CAD program and the
expert system. It may be accomplished by implementing a command spy, as outlined
in this paper. Secondly, not all knowledge need be imnplemented with production rules.
Scripts may be a better way of representing sequences, especially in problems where
both methods and goals are well known. A good rule is to use as much as possible of
the structure of the problem in its solution. The use of scripts will also reduce the size
of the knowledge databases considerably.
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1. Introduction

Symbolic manipulation will play an important role in future CACE tools. Unfortu-
nately, today’s systems for Computer Aided Control Engineering (CACE) allow basi-
cally the user to perform numerical calculations. They do not support symbolic calcu-
lations. One important reason for this is that the tools were designed for computers
with what is today considered as moderate computing power and symbolic manipula-
tion calls for computing power. The increasing capacity of computers and workstations
makes it now worthwhile to introduce symbolic calculations in CACE systems.

[Pavelle et al., 1981] give a popular scientific introduction to computer algebra.
There are commercial general-purpose systems for symbolic systems available:

MACSYMA  developed at the MIT Laboratory for Computer Science, USA

REDUCE developed at Stanford University, the University of Utah and the Rand
Corporation, USA

Scratchpad developed by IBM

SMP developed at the California Institute of Technology, USA
Maple developed at the University of Waterloo, Canada
muMATH developed by the Soft Warehouse, Honolulu

The main purpose of the project “Combination of Symbolic Manipulation and
Numerics” was to experiment with and gain experiences of using a program for symbolic
manipulation. As the tool we used MACSYMA and as the application analysis of
multivariable systems was selected. There is a framework for analysis and design of
multivariable systems using polynomial matrices. A standard text book is [Kailath,
1980]. Unfortunately, these methods have poor numerical properties. Methods based
on state space representations have better numerical properties. However, in many
cases it is desirable to be able to work in the frequency domain. It may be easier to
formulate and analyse properties of interest in the frequency domain than in the state
space. MACSYMA is good at polynomials and rational functions.

Motives for supporting symbolic calculations are presented in Chapter 2. The pack-
age developed in MACSYMA for analysis of multivariable linear systems is described
in Chapter 3. A Lisp function in MACSYMA can be used to establish interaction
with other programs, such as Simnon and CTRL-C. This is presented in Chapter 4. In
Chapter 5 a new method for calculating root loci is demonstrated. This serves as an
example of the idea to combine symbolic and numerical computation and thereby solve
more complex and composite problems. Conclusions are given in Chapter 6.



2. Motives

There are several good reasons for including symbolic manipulation in CACE tools.
First, structure is important and an analytic answer may give a better insight. Second,
the user interface could be improved, since the user’s original formulation is usually
not a computational procedure but rather equations and relations on symbolic form.
Third, models could be multi-purpose and reusable independent of what is known and
what should be computed. Forth, symbolic manipulation could be used to facilitate
numerical solution. Below we will discuss these motives in more detail.

Insight is Desirable

You may think that the ultimate CACE program is an automatic procedure which
outputs a VLSI chip that implements the optimal controller. Life is not that easy. You
must at least specify your desires and requirements; a specification of what you think is
optimal. Unfortunately, this may be a laborious and demanding task. Many problems
are not that well-defined. If it is a new type of plant, it might be difficult to know which
are the decisive requirements and which that are easy to fulfil. A given constraint may
be totally decisive for the outcome of the control design. A designer may be willing to
adjust the requirements to achieve other benefits, but he is not willing to consider every
case or combination. He wants to work in an iterative way and be able to eliminate
bad approaches early. He also wants to know why a certain approach fails. He wants
to get insight. For example, it may be easy and favourable to remove a constraint by
redesigning the plant. It is in most cases favourable to take the interaction between
process design and control design into account and consider them simultaneously.

A designer is happy when he has a profound understanding of the system dy-
namics. He then knows the possibilities and the limitations and can make the proper
compromises during the design. He can justify why it is not possible to make a better
design according to the circumstances. In many cases insight is the key to design. If
you can pinpoint the critical parts and if you understand the difficulties, you can often
solve or avoid the problems and make a good design.

In real life most plants have significant non-linear behavior, while most available
software for analysis and synthesis assumes linear models. It is difficult to analyse non-
linear systems. The simulation model could be used for empirical studies concurrently
with a mathematical analysis. Possibilities to include and exclude different features in
the model by changing the model for one part or by making parameter changes are
useful when studying their importance. To have some success with the analysis we
are more or less forced to work mainly with linear models and to estimate the effects
of nonlinearities. Linearization is tedious to do with paper and pen. A good formula
manipulation program which takes the nonlinear equations and outputs the linearized
ones would be a real time-saver. If there also was a program that took the linear model
and intervals for the parameters and made proper approximations, the analysis would
be even simpler to carry out. A nice thing with linear models is that they can be
transformed into the frequency domain where many dynamical properties are easier
to understand. When analysing a system it is useful to have different viewpoints and
possibilities to transform back and forth between different representations.
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Support Users’ Concepts

It is important that a user can describe his problems on a for him natural form. The
user interface of a CACE system could be viewed as consisting of a language and
environment. The language should be more than just a means for instructing the
computer to perform tasks. It should also serve as a framework within which we
organize our ideas. It should be a high level problem solving language.

It is important that the user can give the mathematical description of a submodel
on a natural form. When deriving models from first principles the result is often a
system of differential algebraic equations (DAE):

9(t, &, z,v,p, c)=0

where ¢ is the time, 2 and v vectors of unknown variables, p a vector of known pa-
rameters and ¢ a vector of known constants. It is natural to require that interactive
software for model development and simulation supports DAE systems. The proto-
type simulator Hibliz ([Elmqvist and Mattsson, 1986]; [Mattsson, Elmqvist and Briick,
1986]) which was developed in another CACE project (STU project 84-5069) accepts
mathematical descriptions given as DAE systems. However, most simulation packages
of today do not allow models given as DAE systems, but require assignment statements
for derivatives and algebraic variables. The user must solve for the derivatives and put
the model on the form

T = f(tam)pac)

He is often allowed to introduce sequences of auxiliary variables and to give the assign-
ment statements in any order:

T = fl(t,d.:,:l},’v,p,C)

v = fz(t,:i:,:c,'v,p,c)

as long as it possible to sort them so that all derivatives and auxiliary variables are
calculated before use. This means that the user has to manipulate his model manually.
This is a non-trivial task. Errors may be introduced.

When DAE systems are supported, the model becomes more readable since the
user can recognize fundamental relations as mass and energy balances and other phe-
nomenological equations. It is easier to check that the model is entered correctly and
the risk of introducing errors during manual transformation is reduced.

Multi-Purpose and Reusable Descriptions

It is a laborious and time-consuming task to develop good models of plants and various
phenomena. Consequently, it is important that the investments in model development
can be reused. A model can be used for different purposes as simulation, analysis and
design. The status of a variable may vary. Sometimes it is considered to be known, while
in other situations we want to solve for it. For example, when solving for a stationary
operating point the derivatives are set to zero and the states are to be solved for. When
a numerical ODE solver is used, the states are considered to be known and we should
solve for the derivatives. When designing the plant or the control system, some of the
parameters are considered to be unknown by the designer.
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Furthermore, as thoroughly motivated by [Elmqvist, 1978], the equation form is the
only reasonable representation for model libraries. With models on assignment form,
it must be decided for each submodel which of its variables that are inputs (in other
words are known) and which of its variables that are outputs (defined by the model).
As a simple example consider a resistor. Ohm’s law states V; — Vo = RI, where V; and
V, are the voltages at the ends of the resistor, I is the current through the resistor and
R is the resistance. The model has three variables V;, V3 and I. The resistance R is in
this model a given parameter. If we should write the model on assignment form there
are three possibilities

I'=(Vi-V;)/R
Vi:=Va+RI
Vo:=V; — RI

The first variant assumes that V; and V, are inputs and defines I. This model is
appropriate if for example one end of the resistor is connected to a voltage source
and the other to ground. The second and third variants assume that the current
and the voltage at one end is known. These models are appropriate if the resistor is
connected to a current source and ground. Consequently, for models on assignment
form we need several different models for a resistor, depending on how it is connected
to the environment. This makes both use and maintenance of a model library messy.
Furthermore, other environments may result in algebraic loops so that equation systems
with equations from several submodels must be solved to transform the model into
assignment form. Two resistors connected in series between a voltage source and ground
is a simple example of this. Submodels cannot be transformed into assignment form
individually, but the transformation is a global problem.

Improve the Numerical Properties

It is favourable if a CACE system accepts problems on forms preferred by users. By
exploring symbolic manipulation the problems can in many cases be simplified and
transformed to a form more suitable for numeric solution.

As an example consider the problem of finding the optimum of a function. The
numerical solution procedure could be made faster and more robust if analytic proce-
dures for calculating the gradient and the Hessian are given. However, in many cases
it is laborious for the user to provide these procedures. It is much more convenient for
him if they are generated automatically.

You may say that a problem is ill-conditioned if a small perturbation in the equa-
tions can lead to a large deviation in the solution. The main question is, however,
what perturbations we have to consider in a particular case. If we have a fully param-
eterized model, where all explicit numbers are exact (structural omes, zeros etc), the
perturbations of interest are those described by perturbations in the parameters. If we
want to perform a numerical calculation and substitute the parameters with numbers,
then it is of interest to consider unstructured and random perturbations to model for
example quantization. Then a larger class of problems becomes ill-conditioned. For
a fully parametrized problem the condition number is not a problem invariant, but it
depends on the formulation and may be decreased by symbolic manipulation.

It is important to consider the structural properties of a problem when deciding
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whether it is well-posed or not. For example the problem ej+y = 1 where we know that
the system is stable, is well-posed. The only perturbations that we have to consider are
perturbations in € which lead to an ¢ greater or equal zero. Even from a numerical view,
it must be considered to be well-posed. It is a minimum demand that a non-negative
number is represented by the computer as a non-negative number.

Possibilities to use symbolic manipulation to handle DAE systems are discussed in
[Mattsson, 1986].



3. An Analysis Package in MACSYMA

The framework of polynomial matrices is useful for analysis of multivariable linear
systems, see [Kailath, 1980]. However, polynomial matrices are not easily manipulated
by hand. It is thus very important that good analysis tools for polynomial matrices are
available. We have tried to fill the gap between theory and practice by implementing a
package for analysis of multivariable linear systems in MACSYMA. The functions of this
package is listed below. Then a MACSYMA demo with matrix fraction decompositions,
co-prime factorizations, multivariable realizations, etc., will illustrate the beauty of
symbolic manipulations. The examples are taken from [Kailath, 1980]. For further

examples and details on the implementation including listings of the functions we refer
to [Holmberg, 1986].

Available Functions

The following functions for analysis of multivariable linear systems have been imple-

mented in MACSYMA.

Linearization
LINEARIZE Linearizes the dynamical system ¢ = f(z,u), y = g(z,u)
Stability analysis
ROUTH Generates the stability conditions for a continuous time system
JURY Gives the stability conditions of discrete time systems and the steady
state output variance
Sampling
SAMP Sampling from transfer function to pulse-transfer function
SAMPSTATE Sampling from state space to state space
Geometry functions — state space
HERMITE Gaussian elimination when applied to a constant matrix
KER Computes the Kernel {X|4X = 0}

INVERSE_IMAGE  Calculates the inverse image {X|4X = B} (4 possibly singular)
INTERSECTION Computes the intersection of two subspaces
GRAM_SCHMIDT Calculates an orthogonal base for a subspace

AINV Computes the maximal 4-invariant subspace in a given subspace
ABINV Computes the maximal (A, B)-invariant subspace in a given sub-
space

Factorization — Frequency domain

SMITH Calculates the Smith form together with transformation matrices
SMITH McMILLAN Calculates the Smith-McMillan form with transformation
HERMITE Calculates the Hermite form

COLUMNREDUCE Makes a denominator polynomial matrix column reduced
ROWREDUCE Makes a denominator polynomial matrix row reduced

RMFD Right Matrix Fraction Decomposition (MFD) of a transfer matrix
LMFD Left MFD of a transfer matrix

RIGHTCOPRIME Gives a right coprime MFD from a noncoprime MFD
LEFTCOPRIME Gives a left coprime MFD from a noncoprime MFD

6
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SS2TF State space to transfer function conversion

MAKESYS Makes a list of the A, B,C, D matrices to represent a system
Multivariable Realizations

CONTROLLER Calculates a controller form realization

OBSERVER Calculates an observer form realization

CONTROLLABILITY Calculates a controllability form realization
OBSERVABILITY Calculates an observability form realization

TOMIMO

Generation of the §(4, B, C, D)-file
Generates the file ABCD.MIM from A, B, C, and D.

Example—Polynomial Matrix Manipulations

The following example is a MACSYMA Demo that illustrate the use of polynomial
matrices for analysis of multivariable linear systems. The cumbersome manipulations
are done by the above functions. The Demo starts with a transfer function matrix,
describing a multivariable linear system. The description is transfered into a matrix
fraction decomposition, MFD, i.e. a polynomial matrix description. Extraction of
different polynomial matrix factors of the MFD are made. Also, different multivariable
realizations are presented. For terminology and a background the reader is refered to
[Kailath], especially Chapter 6.

The file shown is a MACSYMA log file, output with the typeset switch true.
The resulting Troff/EQN typesetting code has automatically translated to TEX by the
program MacEQ2TEX (see [Martensson, 1986]).

(c1) load("login.mac")$
(c2) demo("realizations.dem");

/* This
Example
Example
Example
Example

demo describes a couple of examples in Kailath, chapter 6.

6.2-1. Alternative MFDs for a Transfer Functionm. p. 368-9.

6.4-1. Controller-Form Realization of a Right MFD. p. 407-8.
6.4-2. Observer-Form Realization of a Left MFD. p. 416

6.4-6. Constructing Canonical Controllability Forms. p. 433-4. */

(c3) g:matrix([s/((s+1)*(s+2))"2,s/(s+2)"21,[-s/(s+2)"2,-5/(s+2)"21);

(d3)

L’+1>’s(a+2)’ (a‘:”)z]
“@T TG

/* Example 6.2-1. Alternative MFDs for a Transfer Function. p. 368-9. x/
(c4) rmfd(g);

(d4)

_ (s 4+1)° (s +2)° 0 . 3 8
[dr—[ 0 (s+2)2}’n _[—s(s+1)2 —3]]

(c5) ev(rightcoprime(dr,nr),%);
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(d5) \ , \ .
[drz[(s+1)0(s+2) —(3+313-2(s+2) ’""=[_s(:+1)2 32]’

=[(1) 512“

(c6) ev(columnreduce(dr,nr),%);

B 0 —(8+1)2(s+2) e | ° 0 "
(d6) [dr_[(s+2)2 812 ]’ —[ 2]’ =

-8 &

|

/* Example 6.4-1. Controller-Form Realization of a Right MFD. p. 407-8. */
(c7) ev(real:controller(dr,nr),%);

-4 -4 0 -1 —27 0 17 .
1 0 0 0 o0 0 0 L 0000
d7 =0 0 -4 =5 —2|,b=|-1 0,c=
(7 |a ; “Tl-1 010 0
0 0 1 0 o0 0 0
. lo o o 1 ol L0 ol s

/* Example 6.4-6. Constructing Canonical Controllability Forms. p. 433-4.
*/

/* Search by Crate 2 */

(c8) ev(controllability(a,b,c),%);

B 0 0 -2 0 0 7 "1 07 .
1 0 -5 0 0 0 0
0 0 1 1 -4
(d8) a=10 1 -4 0 0 |,b= |0 €=
-1 4 -12 -1 4
0 0 2 0 -4 0 1
! 0 0 1 1 -4 L0 0 .
/* Search by Crate 1 */
(c9) cratenr:1;
(d9) 1

(c10) ev(controllability(a,b,c),real);

T [0 0 0 -4 27 107 ;
100 -12 5 0 0
(d10) fa=|0 1 0 —13 4 |,b=[0 0],e=|" ° 1 “6 1
. = T 4 —12 32
01 -6 1 0 0
L looo o -2l L0 14 |
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/* Example 6.4-2. Observer-Form Realization of a Left MFD. p. 416 */
(c11) 1mfd(g);

(d11) [dl:[(s+1)2("+2)2 0 ]m:[’ 5(8+1)2H
0 (s+2)7]|’ —s —s

(c12) ev(leftcoprime(dl,nl),%);

(d12) dl=[(8+1)2(8+2)2 0 nlz[s s(3+1)2] rl:[l 0 ]
(s+1)2(s+2) s+2|° 0 s? ’ -1 s+42

(c13) ev(rowreduce(dl,nl),%);

(d13) [dg=l(s+1)£(s+2) _(58:22)2]’nl=[; ;2],u=[(1) ‘(31+2)H

(c14) ev(observer(dl,nl),%);

i —4 1 0 0 07 1l 17 )
-4 0 0 0 O 00 0 010 0
(d14) a=|0 0 -4 1 =10 1 ,c=[ ]
-1 0 0 0 O
1 0 -5 0 1 0 0
l L2 0 -2 0 Ol L0 0 J




4. Generation of a MIMO System Text File

It will now be demonstrated how a MIMO system in MACSYMA can be transfered
into a text file of a special form. The special form of the text file is chosen to be
the same as the print format from CTRL-C. This makes it possible to load results
form MACSYMA into CTRL-C. It should also be mentioned that there is a Pascal
program written by [Martensson, 1986] that generates Simnon code from this text file
representation. The generation of the text file from MACSYMA is made by the function
TOMIMO. This is a LISP program and consequently we have to enter the LISP mode
before we apply it to our MIMO system.

(c1) load("login.mac")$

(c2) a:matrix([1,2],[3,4]1)$
(c3) b:matrix([5,6],[7,8])%
(c4) c:matrix([9,10]1,[11,12]1)¢
(c5) d:matrix([13,14],[15,16]1)$
(c6) sys:makesys(a,b,c,d);

(d6) [“Z [;1:, Z]’b= [i 2]’c= [191 12]’01: [1? 12“

(c7)

Break Entering Lisp:

<1>: (load "tomimo.1l")

t

<1>: (tomimo $sys ’abcd.mim)
t

The MIMO system has now been written in the file ABCD.mim. This file looks as
follows:

nmp =

222
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9 10
11 12

13 14
15 16

11



5. Root Locus

In this section we will demonstrate a method for computing root loci by combining
symbolic and numerical computations. Only a very brief description will be given. A
fuller description is given in [Holmberg, Lilja, Martensson, 1986].

The naive way of plotting root loci of the type

A(s)+kB(s)=0

where A and B are polynomials and k real, is to solve the equation for a number of
equi-distant k-values and then mark the roots by an ‘x’ for each k. This method has
severe disadvantages: Firstly it is rather time consuming and secondly it gives a very
bad resolution near multiple roots. To be presentable, the plots also need heavy manual
paste-up. In the following subsection, a method based on the implicit function theorem
is suggested. A non-linear differential equation, that describes the root locus locally,
is obtained by some manipulations of the transfer function (done in MACSYMA for
example) and a package for solving the differential equation (e.g. Simnon) can then be
utilized to compute and plot the root locus. This method is both faster and gives a
better performance near multiple roots than the method mentioned above.

A general problem

This subsection proposes a method for plotting the locus of points s in the complex
plane satisfying the equation

f(svk)=01 s,keC (b)

where f is analytic in s and k and where k is restricted to the real axis. Several common
control theory problems are covered in this formulation: Ordinary root loci, LQG root
loci (k = control weighting), zeros of sampled systems (k = the sampling interval), etc.

The method is based on the implicit function theorem applied to (b). The idea is
the following: The problem is to compute {s|f(s,k) = 0, k € [a,b] C IR}. For this,
compute the k’s such that (b) has multiple roots in s. Away from these, the branches

si(k) satisfies
of

d ok
5 oilk) = T3 (#)

8s

Implementation

The transfer function G(s) is specified in MACSYMA and the closed loop characteristic
polynomial p(s, k) is calculated. The real and imaginary part of the right hand side
of (§) are then computed and written to a file using the function print_ode. To avoid
divide overflow in Simnon when a multiple root is encountered one has to stop the
integration before the multiple root. For each multiple root, one therefore has to find
the local behavior of s with respect to k. A graphical method to do this is to plot a
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Newton diagram. This is equivalent to making the substitution s := bk® in the charac-
teristic polynomial and then finding pairs of dominating terms. The function newton
implements this and returns two lists. The first list contains the possible k%-alternatives
and the second list gives the corresponding coefficients (expressed as a polynomial in
b). The function near_multiple_roots uses newton for calculating the values of & for
which ld}.'s (k)| = dmaz- The function print_kxy uses near_multiple.roots to print
out these k values and the corresponding solutions in s.

The differential equation for the real and imaginary parts of the root locus is writ-
ten into the file ode.rl. The k-values specifying the intervals for which the root locus
is to be plotted for are written (together with the corresponding initial values for the
branches of the root locus) into the file rootloc.rl. These two files are then processed
by a procedure written in the “editor language” TPU (Text Processing Utility) in VMS
generating one Simnon system description file ode.t (the “dynamics” file) and one file
rootloc.t containing the commands for setting initial values and integrating.

An Example

The following MACSYMA dialogue shows an example where the functions print_ode
and print_kxy are used. In the example the interval for the gain & is chosen to —2 <
k < 2 and the maximum derivative to dy,; = 100.

(c1) load("rootloc.mac'")$

(c2) g:matrix([1/s~2,1/s],[-1/5"2,0]);

11
d2 3 k)
(42) [—;1; .
(c3) print_ode(g);
(d3) ode.rl
(c4) print kxy(g,-2,2,100);
(d4) rootloc.rl

The resulting files ode.rl and rootloc.rl are then processed by the TPU file
rootloc.tpu to get the Simnon system description file ode .t and the Simnon command
file (“macro” file) rootloc.t. The Simnon commands required to plot the root locus
are:

> syst ode
> axes h -2 2 v -2 2

> rootloc

The result is shown in Figure.
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Figure: The root locus plot.

6. Conclusions

As motivated and illustrated symbolic manipulation could be very useful. The user
interface could be improved by allowing the user to work on a higher level. He can
present his problem on a for him suitable form. Results on analytic or symbolic form
could give a better insight into structural properties than numerical tables. Even when
it is not possible to carry the symbolic calculations all the way through, symbolic
manipulation could be useful. Symbolic manipulation could simplify the problem and
transform it to a form better suited for numerical solution. Symbolic manipulation
could also be used for automatic generation of procedures for calculating gradients,
Jacobians, Hessians etc. thereby relieving the user’s burdon and hopefully decreasing
the possibilities of introducing errors.

Our experiences of MACSYMA are that it is a powerful tool and can do a lot
with proper guidance from the user. One advantage with with MACSYMA is that it
is written in Lisp. This makes it possible to extend the program with Lisp functions.
As you remember from Chapter 4, this enabled us to establish an interaction between
MACSYMA and other programs, like Simnon and CTRL-C. The drawbacks are that
it is a large program and that it consumes a lot of computer power. Unfortunately,
MACSYMA is not modularized. For use in CACE systems it should be desirable to
have modularized tools for symbolic calculation so that a user could select for him a
proper set. We are eagerly searching for such a toolkit. ‘
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It is important to consider that there is a user in the loop. He can in many cases
improve the manipulation by proposing substitutions and by informing the system on
what kind of forms he want the answer. In many cases an equation system can be
simplified considerably if it can be assumed that a parameter or a certain expression
is zero. It is difficult for the user to anticipate all such cases in advance, but he may
well be able to answer those questions interactively. Also, if the model is modified
there should be facilities to take care of assumptions made before so he doesn’t need
to consider them once more when the manipulations are redone. To speed up the
manipulation it is advisable to store the successful path and try it when the user has
modified his model. The logging facility is also necessary for the explanation facility.
If the numerical solution procedure fails, the error message should relate to the user’s
original formulation and not to the manipulated expressions.
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INDUSTRIAL PROCESS CONTROL

Many control loops are badly tuned or run in manual
mode

Adaptive controllers:
Commissioning difficult
Requires prior process information
Poor operator understanding

Heuristic safety-jackets important but difficult to
develop

Auto-tuners:

Limited tuning and control design methods

WHAT IS LACKING?

Diagnosis functions, loop assessment, deeper control

theoretical knowledge, user query and interaction fa-
cilities
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VISIONARY GOAL

A controller

e that cansatisfactorily control arbitrary time-variabl
non-linear processes exposed to various distur-
bances.

e  which requires a minimal amount of prior process
knowledge.

e  which can make advantage of available prior pro-
cess knowledge.

e that performs diagnosis of the control performance
and the loop components.

e  which the user can “reason” with, i.e., ask ques-
tions and get information and explanations about,
e.g., process dynamics, actual control performance,
achievable preformance, specification trade-offs,
etc.

*  where the underlying control knowledge and heuris-
tics are transparently represented in a way that
easily allows for modifications and extensions.



L APPROACH

“Include an experienced control engineer in the closed
control loop and provide him with the necessary toolboz
of algorithms for control, identification, measurement,
monitoring, and control system design.”

Encode general control knowledge and heuristics about
auto-tuning and adaptation in a supervisory expert
system.

The controller consists of an “intelligent” combination
of dedicated algorithms.

KEY PROBLEMS

What process knowledge is needed and how can it be
automatically acquired?

No easy answer, several approaches

How does a suitable expert system architecture for
expert control look like?

Real-time, on-line application

Knowledge represented as rules and procedures

SYSTEM ARCHITECTURE

Communtcation
media (pipes,
maliboxes ...}

Numerical
algorithms

Knowledge sources
s s

Man-machine
Interface

Operator,
Process
engineer

PROSPECTS

Research areas:
Intelligent PID auto-tuners
Expert supervision of adaptive controllers
Combination of feedback control and diagnosis

Auditing of control loops

Possible short term results:
Smart single-loop controllers

Structuring of control ehgineering heuristics

Possible long term results:
A low-level system component in the future’s knowl-

edge based control systems.

Natural extensions:

Multiloop systems

REALIZATIONS

Single computer
Distributed, multi-loop system

VAX 11/780 system:

Knowledge-based system written in LISP, YAPS,
and FLAVORS.

Numerical algorithms written in Pascal.
MUSE:

Commercial blackboard system.

Allows for emmbedded systems

Development systera - Sun



STATIC CHARACTERISTICS

Can be determined from operational data
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Servo or regulator (feedforward?), plant non-linearities,
range and resolution of sensors and actuators

LEVELS OF PROCESS KNOWLEDGE

L0 Qualitative classification
L1 L0 and (a,L) or (k180)w180)
L2 L1 and &,

L3 L2 with more points on the step response or
Nyquist curve

L4 Mathematical modal with uncertainty estimates

HEURISTICS

wpr = wyo, WpIp = wigp

€maz =~ 0.4/k, PI

€maz ~ 0.6/k;  PID

0=L/T Rel. apparent dead-time
Kk = kp/kiso Max. loop gain
k0~ 1.3

PROCESS DYNAMICS =

Qualitative
e stable / unstable
* monotone / oscillatory

* minimum phase / SPR / low order

Step response characteristics

al ﬁ _\../| =
L "-'—T——

L
Frequence response characteristics

ImG(iw)

20, k10

© 180, "m\/—'T'

g‘l" Re G(iw)

©g0, kgo

LEVELS OF DISTURBANCE KNOWLEDGE

Zoad
Disturbances

3 RE G, E PROC
ST aNar m—en §
El= reae

LO0: Qualitative knowledge (transient,stationary,
reducible,measurable,predictable)

L1: LO + magnitude of measurement noise and load
disturbances
L2: L1 + time constants associated with disturbances

L3: Matematical disturbance model with amplitude
and frequency distribution

LOAD DISTURBANCES

€ran

Unit load disturbar:E:e and PID controller
e de
u(t) = ke(t) + k; e(s)ds + kdE
0

gives [ e(s)ds = (u(o0) — u(0))/k;



Y% ROCESS KNOWLEDGE ACQUISITION

The relay method:
Generates an oscillation by relay feedback.

Requires the process to be essentially monotonous.

=l
I T
0 10 - 20 30

Process knowledge obtzined:

Period and amplitude: = k50 and wygg
Y0, Y1, Y2 = discrete mode] = kp, L, T
T~ 0= SPR

Filters in the relay loop gives more points on the
Nyquist curve

REGULATOR TUNING
DOMINANT POLE DESIGN

Based on the complete process model

Works with the approximation,

G(s) = kye™E/(1 + sT)

Class of systems:

Systems with poles close to the negative real axis

w S o w eI(TT— @)
G(wei(”_“)) = r(w)e 4
The PI case

_ sin(¢(w) — a)
blw) = m(w) sin(a)
sin(g(w))

r(w)sin(a)

ki(w) =

€y

REGULATOR TUNING
ZIEGLER-NICHOLS DESIGN

Tuning requires kigg, wigg or a, L

Assessment requires k, in addition

Tight Control is Tight Control is Required
[ Not Required
High M Low Saturati Low M Noise
Noise Limit and High Saturation Limit
Class | < 0.15 P 14 Flor PID B oar P1
ClassI1 015 ~ 0.6 PI PI Plor PID PID
Class TI1 0.6 ~ 1 TorPI I+A PL+ A PlorPID+ A +C
Class IV > 1 1 I+B+C PI+B+C PI+B+D

A: Feedforward compensation recommended,
B: Feedforward compensation essential,

C: Dead-time compensation recommended,
D: Dead-time compensation essential.

Case II is the prime application for Ziegler-Nichols
tuning

EXAMPLE 1
e—sL
Gls) = 1+4sT

L=T=1

Crude assessment

Wgg = 0.9 Wiso = 2.0
kgg = 0.76 k180 = 0.44
Accurate assessment
I: w = 0.55
k; =0.36
PI: 055 <w<1.1
0.36 < k; <0.67
PD:

PID: 09<w<17




EXAMPLE 2

1

%) = T an om0 T 0.01s)

Crude assessment

wgp = 3 wigg = 32
kgo = 0.3 k150 = 0.03
k=33

Accurate assessment

I w = 0.62
PI: 062<w<25
04<k; <24
PD: 37T<w<11
19< k<97
PID: 22<w<T5
20<k; <27
Piecesa oulput and set point
F1° ,px o1
3 tho
os
% 10 20 )
Cantrel signal
1
% 0 0 30
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PIDWIZ - commercial control loop tuner
Step response and load disturbance
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Using Control Theory to Improve Stepsize
Selection in Numerical Integration of ODE

Kjell Gustafsson

Department of Automatic Control, Lund Institute of Technology
P.O. Box 118, S-221 00 LUND, Sweden, Email: kjell@control.lth.se

Abstract. Stepsize selection in numerical integration of ordinary differential equa-
tions can be regarded as a control problem. An estimate of the solution error is fed
back in order to choose the new stepsize. The standard stepsize controller used today
does not give satisfactory performance. It is based on a static asymptotic relation
between the stepsize and the error. A dynamic model that better describes this re-
lation is derived. It is then used to analyze and to explain the problems with the
standard controller. A new controller is designed using the model. It is of PI type
and gives superior performance at little extra expense.

Keywords: Control applications, computer simulation, numerical analysis, numer-

ical integration, stepsize selection, ordinary differential equations

1. Introduction

When solving ordinary differential equations nu-
merically (e.g. simulating the time response of a
continuous time control system) it is often hard
to judge the quality of the produced solution.
Simulation programs are normally constructed
such that the user only supplies the differential
equation and an accuracy requirement, while the
program takes care of everything regarding the
numerical integration. The user trusts the pro-
gram to efficiently produce a solution within the
required accuracy. Normally the program suc-
ceeds in doing this, but for some, remarkably sim-
ple, equations even the best algorithms known
today fail. An example from a simulation of a
control system is shown in Fig. 1. The oscillating
component in the signal to the left is not a part
of the true solution of the equations. The simula-
tion program does not succeed in detecting this,
even though the errors are much larger than the
accuracy requirement.

The artifact in Fig. 1 is caused by the
algorithm for stepsize control in the integration
method. Consider the initial value problem

:'):f(t:y): 0<t<T, y,ferR?
¥(0) = o

(1)

13 incorrect i correct
1.2 12
11 1.1
1 1
09 T T 1 0.9 T T 1
0 5 10 15 0 5 10 15

Figure 1. A simulation of the control signal
during & step response of & simple control sys-
tem. The oscillatory component, in the signal to
the left, is caused by an irregular stepsize se-
quence. The correct signal, to the right, is ob-
tained by improving the stepsize control algo-

rithm.

with the exact solution y(t). An integration
method forms the numerical solution {y,}&_,
at discrete time points 2, using a discretization
of (1). The (time)distance between two solution
points is called the stepsize h,, h, = tnt1 ~ tp.
It controls the quality of the numerical solution,
and the goal is to choose it such that the
difference between y(¢,,) and v, is small.

The appropriate stepsize h, varies along
the solution of the differential equation. It is
hard for the user to relate a given stepsize to
a specific accuracy and therefore the choice is
normally left to the simulation program. The
choice is a matter of both accuracy and efficiency.
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selection.

Control system view of stepsize

Small steps make the solution accurate, but
require more computation due to the increase
in the number of steps needed. Therefore, the
strategy is to choose the stepsize as large as
possible within the accuracy requirements, since
that gives an acceptable solution with the least
amount of computation.

The stepsize selection can be regarded as a
control problem (see Fig. 2). An estimate of the
solution error is compared with the user-specified
accuracy requirement, and the result is fed back
and used to determine the new stepsize. The
controller should keep r close to tol, and when
doing so preferably use a smooth control signal.
A smooth stepsize sequence improves the quality
of the error estimate, and then it is more likely
that r really reflects the difference between y,
and y(t,).

The standard rule for stepsize selection is
derived from a static asymptotic relation be-
tween the stepsize and the estimated error. In
reality the relation is dynamic and depends on
the operating conditions. Often the static rela-
tion is a good approximation, but in some cases
a dynamic model has to be used. The standard
controller can not handle these dynamics, and
the result is an unstable control system mani-
fested as in Fig 1. The problems in Fig 1 is easily
detected, but often the discrepancies are more
subtle, and for the user hard to detect.

In this paper we will derive a model that
captures the process behavior. The model is then
used to derive a new controller, which solves the
stepsize control problem. Finally, the properties
of the new controller are demonstrated using a
numerical example.

2. Standard Stepsize Control

To gain insight and to introduce notations, we
will start by deriving the standard stepsize con-
troller. As will be seen it can be viewed as a pure
integrating controller, which explains some of its
properties.

An explicit m-stage Runge-Kutta method
(Hairer, Ngrsett, and Wanner, 1987) applied to

the initial-value problem (1) takes the following

form
i—1 .
Y'- = f(tn + Cihn,, Yn + hn Z a‘i.’in)’
j=1
i=1...m
b .
Ynt1 = Yn + hﬂz b;Y;
Jj=1 (2)
tn+1 = tﬂ + hn
i -
é,,,+1 = h'n. Z(b.‘l = bJ)YJ
Jj=1
Tn4l = ||én+1||

The coefficients {a;}, {b:}, {5}, and {c;} are
chosen such that the Taylor expansion of the
numeric solution y, matches as many terms as
possible of the Taylor expansion of the true
solution y(¢,). The exponent of the matched
term with the highest order is referred to as
the method order. The method supports two
formulae of orders k—1 and k, respectively. They
are represented by the two coefficient sets {b;}
and {ﬁj}. One coefficient set is used to advance
the integration while the other is used for the
error estimate é.

For robustness, a mixed absolute-relative
“norm” is used to form r. A common choice is

L) @

lléll =

where 7; is a scaling factor for the i:th component
of y.

The nonlinear difference equations in (2)
constitute the true process. Its behavior is com-
plicated, but the main properties can normally
be captured using a simple linear model.

The error é is formed using the difference
between the two coefficient sets {b;} and {;},
and asymptotically it is proportional to h*, i.e

Tt1 = [|BallR). (4)

The coefficient vector ¢ consists of elementary
differentials of f of order £k — 1 and higher
(Gustafsson, 1988), and is O(1) as A — 0.
The standard stepsize control algorithm is based
on assuming ¢ constant or slowly varying. The
control objective is to make r equal tol, and that
may be achieved in the next step by choosing
hn = tol/||¢ul|. Here ¢,, is unknown, but since ¢
is constant, ¢,_1 can be calculated from r, and
hn—1 and used instead. Then

1/k
b = (ﬂ) bt (5)

Tn
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Augmented with some safety factors, this is
the stepsize controller found in most production
codes used today (Gear, 1971; Hairer, Ngrsett,
and Wanner, 1987).

Using logarithms makes (5) read

log by = loghn_1 + k™ (logtol — logr,), (6)

which can be recognized as an integrating con-
troller with logtol as set point and 1/k as inte-
gration gain. Since the process model (4) can be
written

logr, = kloghpn_1 + log||¢|l, (7

the closed loop from logtol to logr, will be
of first order. Choosing the integration gain as
1/k makes it deadbeat. Moreover, the constant
load disturbance log||¢|| is eliminated by the
integrator in the controller.

Although assumed constant, the distur-
bance ¢ varies along the solution of the differen-
tial equation. Sometimes the variations are very
large, and the controller does not manage to keep
r & tol. A large increase in ¢ will result in a sim-
ilar increase in r. An error r substantially larger
than tol cannot be tolerated. The step has to be
rejected, and a new try is made with a smaller
stepsize. At times when ¢ increases drastically
there may be long sequences of alternating re-
jected and accepted steps.

A more severe problem is that the model (4)
is not adequate. The process changes behavior
between different operating conditions. The con-
troller (5) fails to handle this changing behavior,
and the stepsize control loop becomes unstable,
causing a highly irregular stepsize sequence. The
phenomenon has been studied before, but almost
all studies have focused on characterizing and
describing the behavior (Shampine, 1975; Hall,
1985, 1986; Hall and Higham, 1987). Here the
goal is instead to solve the problem, and in order
to do that a better process model is needed.

3. A Process Model

Consider the test problem

y= Ay t>0, A<0
¥(0) = wo.

(8)

Applied to (8), the Runge-Kutta algorithm can
be expressed as the exact process

Ynt1 = P(hnA)yn
éni1 = E(hpX)yn

where P(hpA) and E(h,)) are polynomials in
hnA.

(9)
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Figure 8. Stability region for DOPRI45 with

locel extrapolation.

ExamprLE 1—DOPRI45

DOPRI45 (Hairer, Ngrsett, and Wanner, 1987)
is a fifth order explicit Runge-Kutta method. Its
error estimator is also of fifth order, and

23 2t 25 28

2
Z
P)=1l+2+ 5+ 5+ 50 500
9728 132 z7

E(2) = — 135600 T 20000 ~ 34000"

Up to and including the fifth order term, P(z) is
a correct Taylor expansion of e* (the solution of
(8). The region defined by § = {kA : |P(h})| <
1} (see Fig. 3) is referred to as the stability region
of the method. a

When h,) is small and well inside the
stability region & of the Runge-Kutta method,
the process is well described by the process model
(4). To verify, observe that E(h,)) takes the
form E(h,)) = lcg(h,,}\)k+lc1(h,,)\)k+1 +...,and
hence the error estimate

Tns1 = [|gnllhs,

* (10)

n = YnA (K.() + KihpA + .. .).
Here ¢, is measured with the same norm as é.
The coefficient vector ¢,, is varying along the
solution y,. It is also dependent on Ay, but the
dependence is weak since |ko| > |k1hn) +...|
when h,A is small, which is the case when A,
is well inside S.

For the linear problem (8), ¢ — 0 as ¢t — oo,
and to keep r equal to tol, the stepsize controller
will increase the stepsize. As h, increases, it
will eventually equal h, where h, puts A, on
08, the border of the stability region S of the
integration method (for DOPRI45 h,A = —3.31,
see Fig. 3). Further increasing the stepsize makes
the nonlinear difference equation system (9)
unstable, and the stepsize is said to be limited by
numerical stability. The behavior of (9) changes



when h, A approaches 88, and the process model
(4) no longer holds. Instead a new model has to
be derived.

The constant stepsize h, leads to the sta-
tionary solution |yn41| = |yn|, since |P(h,))| =
1. Consider small perturbations, i.e. h, ~ k,.
Then the process may be written (Gustafsson,
1988)

ha C, B -C1+C>
Tyl = (E) ( h,1> Tn (11)

with

E'(h,})

E(h,X)’

P’(h,A) (12)
P(h,A)’

Again using logarithms, the process model reads

Ci(h,A) = h,A

Ca(hs)) = by

logrn = Gp(q) (log hn — logh,),

_Cu+C -0 (13)
GP(Q) s q(q =— 1)

where ¢ is the shift operator.

Although (13) was derived for the simple
test problem (8) it is valid also for other differ-
ential equations. In (Gustafsson, 1988) the result
is generalized to general linear differential equa-
tions, and also experimentally verified for non-
linear f.

4. A New Controller

The standard integrating controller (5) gives un-
satisfactorily performance for the process model
(13). For many commonly used Runge-Kutta
methods, e.g. RKF23, RKF45, DOPRI45, the
values of C) and C; are such that the closed loop
system is unstable or close to instability (Hall
and Higham, 1987).

In numerical analysis one does not normally
regard the stepsize control system as dynamic.
The relation (4) is assumed static with ¢ con-
stant, and any discrepancy between » and tol
should (and could) be fully compensated for in
the next step. Therefore, the stepsize selection
rule (5) is never questioned, and all attempts to
solve the problem have concentrated on the pro-
cess. This shows up in (Hall and Higham, 1987)
where the process (the integration method) is
modified to make the closed loop stable. When
constructing an explicit Runge-Kutta method
there is some freedom in the choice of param-
eters. Normally this freedom is used to minimize
error coefficients or to maximize the stability re-
gion of the method, but Higham and Hall exploit

it to change C; and C;. Hence, the numerical
properties of the integration method are traded
for a stable closed loop system. From a control
theory point of view, it seems more appropriate
to change the controller, and reserve the free pa-
rameters to optimize the numerical properties of
the integration method.

The operating conditions giving rise to the
model (4) are by far the most common. There-
fore, the new controller should give good perfor-
mance for the case (13) without sacrificing per-
formance for (4). For the values of Cy and C; ap-
pearing in practice it is sufficient to replace the
standard controller by a controller of PI type, i.e.

Gela) = ki 4 -+ ke (14)

to achieve this end.

It is hard to give general formulae for how
to choose the controller parameters k; and kp.
Their values are a compromise between stabil-
ity and response time. The coefficients C; and
C: vary for different integration methods, and
one cannot expect to find values that will be ac-
ceptable for all integration methods. Still, for a
given method it is quite straight forward to de-
termine controller parameters using methods like
root locus plots and Nyquist plots. A fairly de-
tailed description of the derivation of parameters
for DOPRI45 is included in (Gustafsson, 1988).
For DOPRI45 the parameters where chosen as
kr = 0.06 and kp = 0.13, which should be com-
pared with the integration gain 1/k = 0.2 (the
error estimator in DOPRI45 is of order 5) in the
standard controller.

The new Pl-controller both stabilizes (13),
and improves the performance for the normal
process model (4). The closed loop is no longer
deadbeat, and as a result the control signal
(the stepsize sequence) is smoother. This is an
important improvement, since a smooth stepsize
sequence makes the error estimate better, and
consequently r will more accurately reflect the
difference between y(t,) and y,.

The Pl-controller can be written on a form
resembling the standard controller (5). Some
manipulations applied to log h,, = G.(q)(logtol—
log r,) using (14) yield

tol \** (r._1 \*7
h,,:(i) (’" 1) hacy  (15)
Tn Tn
| —

new factor

From this expression it is clear that the new
factor corresponds to taking the most recent
development of r into account when deciding
upon the next stepsize. It is also clear that
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this type of controller is trivial to implement in
existing ODE codes.

Rejected Steps

Also with the new controller, r will occasionally
be too large, and the step has to be rejected.
The closed loop is no longer unstable for the
case (13), and the most likely reason for the large
error is an increase in ¢. After the rejected step,
the next step is a retry and from the previous
attempt it is known what to expect ahead. The
disturbance ¢ can be calculated from the rejected
step and the value is then used to determine a
new stepsize. The formula is identical to the one
in the standard controller (5).

It does not suffice to determine a new
stepsize to restart the controller. Also its internal
state has to be updated. The disturbance ¢
exhibits a lot of structure, and since it increased
in the last step it is likely that it will increase
in the next step too. In order not to get another
rejected step, the stepsize should be decreased
in the next step as well. The internal controller
state can be used to achieve this end. In other
words, after a rejected step, a new stepsize is
calculated from (5). If it leads to an accepted
step, the controller state is updated such that if
the accepted step is perfect (r = tol), there will
still be a stepsize decrease of the same factor as
the one in the last step. If, on the other hand,
the step is rejected, (5) is used again.

In a way this strategy for rejected steps
is an ad hoc solution. Still, it works very well
in practice (Gustafsson, 1988), and it has the
advantage of being easy to implement.

To summarize this section, an outline of the
code needed to implement the new controller is
presented in Listing 1. The controller is called
after each step in the integration routine, and
it calculates the stepsize to be used in the next
step. The variable z is the controller state, and as
before, h is the stepsize and r the corresponding
error estimate.

5. Numerical Test

To demonstrate some of the properties of both
the old standard controller as well as the new
one, they will be used to simulate the step
response of a small control system (A more
extensive set of numerical tests can be found
in (Gustafsson, 1988) and (Gustafsson and co-
workers, 1988)). The integration method is DO-
PRI45 with local extrapolation.

The control system is the one used in Fig. 1,
and comnsists of a standard PID-controller with

if current_step_accepeted then

if previous_step_rejected then

z:=h-h/z
endif
(tol)k’ (oldr)k"
z:=|— —_ z
T T
h:==z
oldr:=1r
else
Yk
h = (ﬂ) h
r
endif

Listing 1. An outline of the code needed
to implement the new controller including the
restart strategy after rejected steps.

filtered D-part

1 8Ty
GPID—K(1+T;+3‘——Td/N+1):

and the plant 1/(s + 1)*. The parameters K =
0.87, T; = 2.7, T; = 0.69, and N = 30 yields a
well tuned controller.

Figure 4 shows some signals originating from
a simulation of the step response of the system.
The figure consists of six small plots, with all
signals plotted as function of time. The upper
left plot shows a correct simulation (using the
new stepsize controller) of the control signal
(u) and the plant output (y). The upper right
plot shows two curves corresponding to the work
needed to solve the problem. It is the total
number of integration routine calls for both the
old standard controller (solid line) and the new
controller (dashed line). Rejected steps are also
included to properly reflect the total work. The
two plots in the middle show the estimated
error v (normalized with tol) for the old (left)
and the new (right) controller. The two lower
plots compare the stepsizes used by the two
controllers.

The PID-controller and the plant form a
sixth order system with four complex eigenvalues
and two real. Five of the eigenvalues have a
magnitude approximately equal to 1, while the
sixth eigenvalue Ag ~ —40. The eigenvalue Ag
is related to the filtering of the D-part in the
controller.

When simulating the step response the tran-
sient corresponding to Ag dies out very fast. Con-
sequently the stepsize controller increases the
stepsize and soon h)g is placed on 3S. For the
standard controller this leads to instability, re-
sulting in an irregular stepsize sequence which
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Figure 4. Simulation with tol = 10~2,

excites the fast mode corresponding to Ag. The
error estimator fails to recover this mode prop-
erly and the produced solution is erroneous (see
Fig. 1).

In contrast to the standard controller, the
new controller quickly finds the correct stepsize
and manages to control the error almost per-
fectly. Moreover, the new controller drastically
decreases the number of rejected steps, and the
step response is simulated with 20 % less work.

6. Conclusions

Over the years automatic control has benefited
by the progress in numerical analysis. This paper
has presented a problem where instead control
theory is used to understand and solve a prob-
lem in numerical analysis. Viewing stepsize se-
lection as a control problem separates an inte-
gration routine into two parts: the process (inte-
gration method, differential equation and error
estimator) and the stepsize controller. Hence an
integration method can be constructed for opti-
mal numerical behavior, and then a fitting step-
size controller is designed.

To design the stepsize controller a process
model is needed. Normally, a static asymptotic
relation between the stepsize and the estimated
error is assumed, but the relation is better
described by a dynamic model when numerical
stability limits the stepsize. Such a model was
derived for explicit Runge-Kutta methods.

Using the dynamic model, it is straightfor-
ward to analyze the standard stepsize controller.
The analysis gives insight and clearly points out
that there are operating conditions where the
standard stepsize controller fails to stabilize the
process.

The standard stepsize controller can be rec-
ognized as a pure integrating controller. The gen-
eralization to a Pl-controller is then natural, and

using root loci plots or similar techniques its pa-
rameters can be tuned such that good control
is achieved. The new Pl-controller gives better
overall performance at little extra expense.

Here only explicit Runge-Kutta methods
were considered, but the same problems show up
also for other types of integration methods. Sim-
ilar analytical models can probably be derived
for these methods as well, and once a model is
obtained it can be used to analyze and improve
the stepsize control.
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Abstract

This paper describes an interactive tool for modelling of control systems. The
focus is on practical experiences with C++ as a development tool, and the need
for multiple inheritance, parameterized types, and exception handling, in this
application. Experiences with a new graphics standard, PHIGS, using an object-
oriented programming style, are briefly covered.

1. Introduction

Modelling has traditionally been one of the main topics in control engineering. Control
systems are complex and require careful design and analysis, in particular, as errors in
control system design can become expensive. There exists today a great need for computer
aided design of control systems.

Our research is centered around tools for model development and simulation. The
objective is to design the basic concepts needed for structuring models, and to design
the internal computer representation of control system models. An experimental tool for
modelling and simulation has been developed in KEE, an expert system shell.

The experimental tool will form the basis of an engineering tool for the designer of
control systems. In such a product, flexible, efficient and affordable system software must
be used. We have therefore evaluated C++ as the future implementation language, and
PHIGS as the main graphics system. A simplified experimental tool has been implemented
in C++. Whereas the KEE version supports all essential parts of an engineering tool, the
C++ version only provides graphical interaction; the internal structure is quite similar, in
order to meet future needs.

2. Modelling of control systems

The model of a control system can be regarded as a hierarchy of components. One of
the fundamental ideas is to build libraries of component models, ranging from basic items
(for example, a pump) to more complex objects (for example, a distillation column). The
designer has the option of working bottom-up, putting predefined components together to
form a new component, or top-down, decomposing a complex object into manageable pieces,



or most likely, a combination of bottom-up and top-down design [Nilsson, 1987]. The key
word is reuseability — of earlier designs and of standard components.

A single component can be described in many ways: graphically, textually, using
block diagrams (describing its structure), or mathematically (for example, in state-space
or transfer-function form). It is also necessary to use models with different degrees of
detail and complexity, for example, an efficient simulation model for normal operation, and
an extended model for analyzing error conditions. All these models are needed in different
stages of the design, and should be available in a model development tool. It should be noted
that the common “machine” view may be replaced by a “materials” view. For example, a
chemical compound may carry all knowledge in the model, while the stations in the refinery
only signal changes of state.

With our set of basic concepts, a model has three properties: it has terminals which
provide an interface to the outside world, parameters for adapting its behaviour, and at
least one realization that defines its behaviour. Only data in the terminals are available to
other components; there are no global data, except a time reference for simulation.

We currently support two types of realizations: primitive realizations using ordinary
differential equations, and structured realizations using block diagrams. A structured real-
ization consists of submodels and connections (between submodels, and between submodels
and the terminals of the enclosing model). Interaction between components is defined only
by connections.

Simulation is often used to analyze control systems, and the designer should be able
to simulate his/her model using this tool. Simulation introduces a number of interesting
mathematical problems, which will not be covered further in this paper [Mattsson, 1988b)].
The connection concept also raises interesting questions: for example, what is a legal
connection, and how do you define compatibility between terminals [Mattsson, 1988a].

According to current trends, it is also necessary to throw in an expert system and a
couple of knowledge bases.

3. Direct model representation

Modelling of control systems maps nicely to the ideas in object-oriented programming.
It is natural to represent a model with a class in the programming language used for
implementing the design tool. It is then possible to develop new models using inheritance
and specialization of classes.

Inheritance is not suitable for describing all kinds of relationships between models.
Multiple representations of a single model (textual or mathematical), and specialization (a
car is a special kind of vehicle), can be described with inheritance. Decomposition of a
model into its components is different. For example, that a car has tyres does not mean
that the car can be inflated, so inheritance is not the right mechanism; components are
represented by class members (Listing 1).

The direct way of representing models with classes is used in the experimental tool
developed in KEE. Instantiation is used, for example, to create objects that contain
simulation data. A necessary key feature of KEE (and object-oriented systems like Loops)
is the possibility to dynamically define new classes while the program is running.

103



104

class vehicle {
char* owner;

};

class car : public vehicle {
tyre f1l, fr, rl, rr;
engine e;

};

Listing 1. Direct representation of a car model, derived from vehicle.

4. Model representation in C+4++

If interactive model development is presumed, direct representation is not possible in C++,
simply because classes cannot be defined at runtime. Consequently, components cannot
be represented directly with class members, and inheritance cannot be used to derive new
models. To be able to interactively create models, we must implement a dynamic framework
for representing models, realizations, etc. This framework is similar to the class systems
commonly based on Lisp, but the implementation task is simplified by the structure of
control systems.

It should be noted that the engineer developing control systems will see an interactive
modelling tool; C++ is used only to implement the dynamic framework, not as a control
system description language. One can also say that the object-oriented aspects of model
representation have been separated from the object-oriented aspects of C++. Still, object-
oriented programming effectively supports the design and implementation of the framework.

Internal data structures

Now, let’s plunge straight into the internal data structures of the C++ program. The code
listed below is slightly simplified; constructors and destructors are not listed, and most
general purpose routines have been omitted. An example will be given below.

All objects are components; they have a name, and they can be inserted into lists
(Listing 2).

class component {
char* name;
link mnext;

public:
virtual void menuaction();
virtual void redraw();

};

Listing 2. Definition of the basic component class.

Method redraw is a schoolbook virtual function in C++: every component has a
graphical representation, so all components must implement redraw in some way. Graphics
will be described further in Section 5.

When the user points at a component and presses a mouse button, some components
(e. g, models and realizations) will respond by displaying a menu. Other components
(e. g., terminals and connections) are not associated with a menu. In C++, which in its
present shape only supports single inheritance, method menuaction must be declared as a



virtual function in the base class, component. When multiple inheritance becomes available
in C++, menuaction would more naturally be the property of a class associated purely
with the user interface; models and realizations would be derived from this class, but not
terminals and connections [Stroustrup, 1987a).

Generally speaking, multiple inheritance enables us to separate the user interface and
the modelling structure more effectively. There will be one “thread” of inheritance for
the user interface (drawing block diagrams, and menu actions when applicable), and one
thread of inheritance for the modelling of control systems (components, models, etc.). The
development of class libraries, in particular, will benefit from multiple inheritance. For
example, functions provided by the operating system and the window manager, will be
easier to describe and use in an object-oriented fashion with multiple inheritance.

The model contains terminals and realizations, in C++ represented with linked lists
(Listing 3). General purpose lists of components are used, which effectively corrupts the
type security in C++. In addition, the programmer must bother about explicit type
conversions. Alternatively, generic lists could be faked with macros. Future versions of
C++ may incorporate true generics, also called parameterized types [Stroustrup, 1987b).
The need is evident, even in this small example.

class model : public component {
list terminals;
list realizatiomns;

void new_terminal();
void new_realization();

public:
void menuaction();
void redraw();

};

Listing 3. Definition of the model class.

There are two different kinds of model realizations: primitive realizations based on
equations, and structured realizations based on hierarchical block diagrams (Listing 5).
There is no “one-of” concept (for example, allowing a pointer to a set of classes) in C++,
so an additional class realization is needed (Listing 4). In this case, there are no real
problems; in other cases, an awkward data structure might be forced upon the programmer.
The one-of concept is available with full type checking in KEE, and has reduced the need
for common base classes.

class realization : public component {
};

Listing 4. The common part of all realizations.

A submodel establishes a relation between two models, one fully enclosed in the other
(Listing 6). With a structured realization, a model is described by the behaviour of its
submodels and by its connections. The submodel also has a graphical meaning. When
a model is simulated, the submodel must be “instantiated” by the model representation
framework. Although many submodels may refer to a single model (e. g., a pump), every
submodel requires a private data area to hold simulation variables.
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class eqn_realization : public realization {
list equations;

void new_equation();

public:
void menuaction();
void redraw();

j A

class struct_realization : public realization {
list submodels;
list connections;

void new_submodel();
void new_connection();

public:
void menuaction();
void redraw();

K;

Listing 5. Primitive and structured model realizations.

class submodel : public component {
point position, size;
model* parent;
model* sub;
void* data;

public:
void move();
void scale();
void instantiate();
void redraw();
};
Listing 6. Definition of the submodel class.

An example

A small example will demonstrate the data structures above: a servo built from a regulator
and a motor. On the screen, the engineer will see a block diagram as in Figure 1. Input to
the servo is the reference value, also called the setpoint. Qutput from the servo is the actual
position of the actuator. The regulator controls the motor, but the common feedback loop
has been left out to simplify the example.

The textual representation in Figure 2 reveals the most important C++ objects
needed for the servo. The servo object has two terminals and a realization (terminals and
connections will not be described in more detail). The realization is of course structured, and
contains two submodels. It also contains three connections: the reference value imported
to the regulator, the control signal from regulator to motor (shown in Figure 2), and the
exported actuator position.



Servo

Regulator Motor

Figure 1. A servo with two submodels.

The submodel objects (for example, MotorSub) serve two purposes in this example.
Firstly, the graphical appearance of a structured realization is determined mainly by the
position and size of the submodels. This information cannot be stored in the model object;
a certain kind of motor can be used as a submodel in many different models. Secondly,
the submodels establish a relationship between the enclosing model (the servo), and the
model objects used as components (e.g., the motor). The two pointers in the submodel
object are used, for example, when defining connections. The references between models,
realizations and submodels are shown graphically in Figure 3. The role of the submodel
when simulating the control system is not discussed here.

The C++ objects used for representing the regulator and the motor are similar to
the servo objects. The main difference is that the regulator and the motor have primitive
realizations, probably expressed with differential equations.

Exception handling

Handling of exceptions (errors and similar uncommon events) is a problem in all software
systems. Ordinary programming techniques, using status flags and if-statements, lead either
to bad program structure and cluttered code, or to programs that take proper behaviour
for granted. A well designed exception handling mechanism (as in Ada), is an invaluable
asset in practical software development. Exceptions increase the readability of the program
and indicates the programmer’s assumptions about expected and unexpected events [Ghezzi
and Jazayeri, 1982, page 22].

The model development tool is quite complex, and many inconsistencies must be
checked step-by-step, at different times. Exception handling is useful for restoring the
internal data structures to a previous well-defined state. Storing as little redundant
information as possible makes this task easier, but may increase complexity in other areas.

The absence of exception handling is a serious flaw of C++. Ada style exception
handling, which is also available in C [Lee, 1983], is very effective, but a more flexible
scheme may be called for in C++. Some people say that exception handling is needed for
developing good class libraries.

Finally, it should be noted that friend functions have been used sparingly (for example,
a connection needs free access to terminals and submodels), and proved to be extremely
useful. By bending the rules a little, a natural data structure has been maintained; ever-

expanding modules because of too strict encapsulation is often a problem with Modula-2
and Ada.
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Model: Servo
Terminals: [Ref, Pos]
Realizations: [ServoRealiz]

Struct-realization: ServoRealiz
Submodels: [RegSub, MotorSub]
Connections: [RegSub.u — MotorSub.u, ...]

Submodel: RegSub
Position: (—0.6,0)
Size: (0.5,0.5)
Parent: —Servo
Sub: —Regulator

Submodel: MotorSub
Position: (0.6,0)
Size: (0.5,0.5)
Parent: —Servo
Sub: —Motor

Model: Regulator
Terminals: [Ref, u]
Realizations: [RegRealiz]

Eqn-realization: RegRealiz
Equations: [---]

Model: Motor
Terminals: [u, Pos]
Realizations: [MotorRealiz]

Eqn-realization: MotorRealiz
Equations: [---]

Figure 2. Textual representation of the servo; terminals, connections and equations are not
shown. Square brackets denote a list, an arrow (—) a pointer reference.

5. Using PHIGS

PHIGS (Programmer’s Hierarchical Interactive Graphics Standard) is a new 3D graphics
standard, aimed at interactive CAE/CAD applications [Brown, 1985]. PHIGS should be
regarded as an extension and a complement to the Graphical Kernel Standard [Hopgood
et al., 1983], but not as a replacement.

The basic unit in PHIGS is the structure (cf. segment in GKS). A structure contains
elements for drawing, graphical attributes, and transformations. It is possible to build
hierarchies of structures (i. e., one structure may call another), and to edit the contents of
a structure; this is not possible in GKS. Application data may also be stored in a structure,
possibly a useful feature.



Parent
v |
Servo > ServoRealiz > RegSub MotorSub
Regulator > RegRealiz

Sub

Motor MotorRealiz

Y

Figure 3. References between models, realizations and submodels of the servo. Terminals,
connections and equations are not shown.

In order to take maximum advantage of the hierarchical structures in PHIGS, one
structure is associated with every object in the C++ program. This one-to-one correspon-
dence is very convenient; changes are normally localized to a single PHIGS structure, and
complete regeneration of the graphics can be avoided. As a typical example, consider chang-
ing a pump model: the structure associated with the pump must be changed, but models
using the pump as a submodel only refer to a structure identifier, and need no changes.
The fine granularity of the graphics hierarchy causes an extra overhead at redraw, which
is quite tolerable in this application, though. It can be noted that the model development
tool is not a typical PHIGS application, in the sense that it uses the hierarchical features
of PHIGS, but not the 3D capabilities.

The correspondence between the object hierarchy and the PHIGS structure hierarchy
is shown in Figure 4. The object structure on the left is the same as in Figure 3, but the
regulator objects are not shown. A PHIGS structure is associated with each object, as
indicated by dashed arrows. The PHIGS structures on the right form a parallel hierarchy,
logically connected with “execute structure” primitives. The graphical representation of a
model is determined by the realization and its associated structure. The PHIGS structures
are in reality more complex, for example, to control picking (see below).

The problem of associating a C++ object with a structure, was solved by some fancy
programming. A C++ object can easily refer to a structure by storing the structure
identifier, but a problem arises when control must go from a structure to the associated
C++ object (for example, when the object’s menu action should be invoked). The solution
is to use the object’s this pointer as pick identifier, after conversion to an integer. When
the PHIGS system returns a pick identifier, the identifier is converted back to a “pointer to
component.” The exact nature of the object is not known, but all components implement
method menuaction (Listing 2).

PHIGS can display graphics on multiple “workstations,” which in a workstation envi-
ronment corresponds to multiple windows. By using so called filters, different graphical rep-
resentations can be displayed with a single structure hierarchy. Regrettably, multiple work-
stations are not yet supported by some PHIGS implementations. Event mode input and rub-
berband lines may also be missing in current implementations. Window management is not
available in the PHIGS standard, and may therefore cause considerable practical problems.
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Servo == -----mm--a- = rectangle(...)

execute(ServoRealizStruct)

v

text(-1.1, 1, "Servo")
ServoRealiz [-=-=--====== = execute(RegSubStruct)

execute(MotorSubStruct)

y

scale(...)
MotorSub f==========-=-- > translate(...)
execute(MotorStruct)
Motor fp==—=——somom—e- = rectangle(...)

execute(MotorRealizStruct)

i
MotorRealiz @ [~========- > text(0, 0, "Motor")

Figure 4. Parallel hierarchies of C++ objects (left) and PHIGS structures (right).

6. Conclusions

In our experience, a dynamic environment like KEE is the best choice for research and rapid
prototyping. An engineering tool requires a less expensive and more efficient implementation
tool that is available on many computers; in this case, C++ is superior. We have not made
a detailed evaluation of KEE versus C++, but the current work shows that programs and
data structures using the object-oriented parts of KEE can be implemented in C++ with
reasonable effort.

The major difficulty is that C++ does not support dynamic creation of classes. For
this reason, models of control systems cannot be directly expressed as classes in C++,
so an object-oriented framework must be implemented. The data abstraction and ob ject-
oriented programming aspects of C++ provide good support for this framework, and a
good programming environment in general. Multiple inheritance, parameterized types and
exception handling are much needed extensions to C++.

PHIGS is a powerful new graphics standard, but current implementations need im-
provement. Window management remains a problem area.
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Abstract.

This paper describes our experiences with InterViews, an object-oriented

package for implementing user interfaces written in C++. A comparison is made
with PHIGS, a more conventional graphics standard. A strong interaction between
base classes and derived classes is observed, notably base classes depending on the
behaviour of the derived classes. The application is an interactive block diagram
editor. It is used as a stand-alone graphical tool which generates equations for
Simnon, a simulator for non-linear systems.

Keywords: Object-oriented programming, User interfaces, C+-, InterViews, Com-

puter Aided Control Engineering

1. Background

Developing real control systems is always a difficult task.
Mathematical models and simulations are often used in
the design and analysis of control systems. The use of
computers for this purpose is called Computer Aided
Control Engineering (CACE). The development of new
CACE tools requires research on the basic concepts of
modelling control systems, and the computer represen-
tation of control system models [Mattsson, 1988][Ander-
sson, 1989]. Equally important is the choice of tools for
developing these tools.

For research and prototyping, a combination of
KEE and Common Lisp has proved effective. KEE pro-
vides a dynamic and interactive object-oriented devel-
opment environment, including simple graphical output
[IntelliCorp, 1986). A practical engineering tool for de-
signing control systems must be more economical than
an expert system like KEE, so a leaner implementation
is needed. C++ is a very good implementation language
in this case because of its efficiency and support for
object-oriented programming [Briick, 1987].

One of the remaining problem areas is the imple-
mentation of the user interface. The developer must
choose among a few window managers and several

graphics packages. In the on-going evaluation of different
alternatives, this paper describes our experiences with
InterViews [Linton and Calder, 1987], an object-oriented
library for implementing user interfaces, written in C+-+
[Stroustrup, 1986] and running on the X Window Sys-
tem [Poutain, 1989].

The evaluation of InterViews was conducted by de-
veloping a block diagram editor for Simnon, a simulator
for non-linear systems [Elmqvist et al., 1986]. Simnon
is an interactive, command driven simulation package
with its roots in the 1970’s; Simnon is still very much
state-of-the-art for continuous simulation, but has no
graphical input. The block diagram editor is not inte-
grated with Simnon, and therefore reasonably sized for
evaluation purposes. This paper also contains a compari-
son with an earlier evaluation of PHIGS (Programmer’s
Hierarchical Interactive Graphics Standard) in a simi-
lar application. A primitive block diagram editor was
developed, but without any relation to Simnon [Briick,
1988]. Previous work has also explored continuous pan-
ning, scrolling and zooming of block diagrams on a high-
performance workstation. The concept of information
zooming was introduced, meaning that the information
contents of a block changes depending on its size on the
screen [Elmqvist and Mattsson, 1989].



SCONEs

New system
Read system

Generntor

Sum :

Product Regul [— Motor
-1
Connection
-1}
Write
EXIT
Figure 1. Screen dump of a simple block diagram.

2. The application

A key concept in Simnon is the system, which corre-
sponds to a mathematical model of the reality being
studied. A system is described in a special modelling
language. There are continuous systems based on differ-
ential equations and discrete systems based on difference
equations. A third type is the connecting system, which
is used to form compound systems from enclosed contin-
uous or discrete systems. Every Simnon system is stored
as a separate text file.

The connecting system is often visualized (with
pencil and paper) by drawing a block diagram. Unfortu-
nately, the drawing must still be transformed into state-
ments of the modelling language. The block diagram ed-
itor can produce simple forms of Simnon’s CONnEcting
System, hence the name Scones.

Figure 1 shows a simple block diagram in Scones.
There is a fix command menu on the left side, and
a drawing area for the block diagram on the right.
Systems are represented by large annotated boxes.
Special symbols represent the sum (), product (II, not
shown in Figure 1) or negation (—1) of signals. General
expressions are represented by generator symbols (~).

When creating a block diagram, the user can either
create a new system in which case Scones will make a
template file, or read an existing file in which case Scones
will extract properties necessary for drawing the block
diagram. Scones knows the name of the system, and
maintains for each system a list of terminals (inputs and
outputs) which can be connected to terminals of other
systems. The connections define the interaction between
the systems enclosed by the connecting system. A
sequence of connected special symbols are transformed
into an arithmetic expression in the connecting system.
It should be noted that Scones completely ignores the
equations that define the behaviour of a continuous
or discrete system. Scones also defines a global time
variable ¢ in every connecting system.

The block diagram in Figure 1 represents a servo
constructed from a motor and a regulator. A generator
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CONTINUOUS SYSTEM Regul

“Filename pid.t

"Created Fri Feb 10 14:14:51 1989
INPUT y_ref y

OUTPUT u

END

Listing 1. Simnon code for the regulator system.
Comment lines begin with a double quote (*).

CONNECTING SYSTEM Comnsys

"Filename consys.t

"Created Fri Feb 10 14:30:33 1989
TIME t

“System: Regul

y_ref[Regul] = if t > O then 1 else O
y[Regul] = -y[Motor]

"System: Motor

u[Motor] = ul[Regull] + sin(t)
"Generator: if t > O then 1 else 0
"Generator: sin(t)

END

Listing 2. Simnon code for the connecting system.
provides a step in the regulator’s reference value y,;.
The control signal from the regulator y is influenced
by a load disturbance from another gemerator. The
measured value from the motor u is negated. The
template system for the regulator (without equations)
is shown in Listing 1. The connecting system produced
by Scones is shown in Listing 2. The template code for
the motor is very similar to the code for the regulator
in Listing 1, and therefore not shown.

3. InterViews and PHIGS

InterViews is an object-oriented user interface package
[Linton and Calder, 1987]. It provides the basic building
blocks for implementing a wide variety of user interfaces.
Basic objects derived from the base class Interactor
can display a graphical image and accept input events.
Composite objects derived from class Scene can display
a complex image by combining other objects (including
scenes).

Scenes defined in InterViews can arrange interac-
tors in many ways: side-by-side horizontally (an HBox)
or vertically (a VBox), one stacked above the other (a
Deck), or framing an interactor (a Frame). Every inter-
actor has a predefined natural size, but may stretch or
shrink within specified limits. This means that a scene
can adapt to available space by stretching or shrinking
its components. Glue objects can be inserted to improve
the layout. Other “high-level” user interface objects are
scrollers and panners that change the view of a scene,
different types of buttons, pop-up menus, and a string
editor.
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Comparing InterViews with an established graph-
ics standard such as PHIGS [Brown, 1985] is like com-
paring apples and oranges; the comparison is interest-
ing though, as either InterViews or PHIGS may be the
best alternative in a particular application. Superficially,
the similarities are striking: both InterViews and PHIGS
provide

e Hierarchical structure of graphics. Complex images
are constructed by combining simpler objects.

e Reuse of a graphical object in different contexts,
and multiple views of a single object.

o Event mode input.

The main difference is in the degree of “object-orien-
tedness.” InterViews is fully object-oriented, whereas
PHIGS can be classified as object-based [Wegner, 1987].
Graphical objects in PHIGS (called structures) are
manipulated by a fixed set of operations, contain only
graphical information, and their storage is managed by
the PHIGS runtime system. With InterViews, classes
derived from class Interactor add behaviour to graphical
objects, and can directly represent the real-world object;
no separate graphical object hierarchy is needed.

Interactor objects in InterViews are more “live”
than structures in PHIGS. When a graphical object
changes, it sends a Change message to its parent (enclos-
ing scene). InterViews will then send Redraw messages
to all affected interactors, including the one that was
changed; the interactors draw images that reflect their
internal state. Redraw messages are also sent on demand
from the window manager, for example, when hidden in-
teractors become visible. With PHIGS, the application
program must edit the contents of separate structures.
The PHIGS system will generate the image by traversing
its internal data structures, either on command from the
application program, or “when necessary.” It is proba-
bly easier to use specialized graphics processors or to
distribute processing to intelligent graphics terminals in
PHIGS, than it is in InterViews.

Similarly, input events are sent directly to the tar-
get interactor in InterViews. In PHIGS, the application
program will get the identifier of the target structure
and of all ancestor structures of the target. The ap-
plication program is responsible for identifying related
objects in its own world. InterViews also contains a
set of PHIGS-like graphical objects, derived from class
Graphic. Apparently, class Graphic does not handle in-
put events, so interactors were used in this project.

Another important difference is the positioning
of objects. PHIGS objects are positioned at (z,y);
multiple local coordinate systems may be used. In
InterViews, objects are typically positioned relative
another object, without bothering about the exact
coordinates; the object may in fact move around or be
reshaped as available space increases or decreases. The
InterViews approach is normally much more convenient,
and interacts better with the window manager. The

InterViews Scones

ConnactingScana ——~ ConnectingSystem

System
C t
amponen Genaralor

Sum

SpeclalSymbol
Product
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Figure 2. The class hierarchy in Scones.

strengths of PHIGS are its powerful 3D capabilities,
and its handling of different projections. Good PHIGS
implementations are also significantly more efficient in
drawing complex images. Filters are used in PHIGS
to control what objects should be visible, pickable, or
highlighted. Filters are hardly needed in InterViews, as
the graphical image is generated by user written routines
that easily adapt to the properties of the corresponding
objects. In PHIGS, filters are quite useful.

In short, PHIGS can be regarded as a powerful
standard for drawing graphics, and InterViews as a
powerful tool for building user interfaces.

4. System design

Scones was designed with simplicity and ease of imple-
mentation in mind. It has few features and the user in-
terface is simple. Interaction is mouse based, except for
input of text strings. The use of Scones is strongly in-
fluenced by the way you draw block diagrams manually,
the modelling concepts in Simnon, and the user inter-
faces of other drawing programs. Internal operation is
event driven, using the default event dispatcher of In-
terViews. Scones was implemented entirely with Inter-
Views and there are no direct calls to the underlying X
Window System.

An important objective was closeness to Inter-
Views. Most classes used for representing the block dia-
gram were designed as step-wise augmentations of pre-
defined InterViews classes. Mixing attributes related to
the real-world objects being modelled and the graphical
attributes is appropriate in this application; in other ap-
plications it may be desirable to separate the graphical
aspects, for example, to take advantage of distributed
graphics processors. The availability of multiple inheri-
tance would probably lead to a design with looser cou-
pling between graphical and modelling aspects. It would
then be possible to build a class hierarchy based on
the modelling aspects, inheriting graphical aspects as
needed from InterViews.

The major class hierarchy in Scones is shown in Fig-
ure 2. Interactor is the base class of all graphical objects.



Class Component represents the common behaviour of
all objects in a block diagram. Typical attributes are
terminals (the endpoints of a connection), operations
on all terminals of a component, and handling of events.
Component is an abstract base class (no objects can be
directly instantiated) and most operations are realized
in derived classes, for example, to generate the equa-
tions of the connecting system by following connections.
Class System represents a continuous or discrete system
in Simnon. One specialization is the ability to fire up
the editor on the corresponding Simnon text file. The
main purpose of all other components is to tie together
connections. These attributes are represented by class
SpecialSymbol, but geometrical shape and arithmetic
meaning are realized by derived classes. Class Genera-
tor has more features than other special symbols (e.g., it
can be edited), and should probably have been derived
directly from class Component.

A scene in InterViews is essentially an arranger of
other objects; this definition also applies to the connect-
ing system of Simnon. The properties most closely re-
lated to the operation of InterViews are collected in class
ConnectingScene. Additional properties related to con-
nections and the generation of equations were collected
in class ConnectingSystem. The division into two levels
of derivation was motivated by the problems in realizing
all the needed behaviour of an InterViews scene. Con-
nections are not regarded as objects like systems or sum-
mation symbols (and are therefore not interactors), but
rather as an attribute of the connecting system. This dis-
tinction is probably wrong; many operations (e.g., dele-
tion) would be easier to implement if connections were
represented by interactors. The user interface could also
be improved if connections responded to mouse clicks.

5. Experiences

The first question that arises when you start using a
new software package is “What can I do?” The second
is “How should I do it?” Graphics with InterViews can
be realized in three complementary ways:

1. InterViews provides a rich set of ready-to-use build-
ing blocks, for example, text messages, buttons, and a
string editor. These standard interactors are easy to use,
easy to integrate (e.g., to create an input form), and be-
have as expected. O

2. Simple user defined graphical objects are derived
from class Interactor. A few low-level methods must be
implemented, such as, Redraw. Certain attributes of the
interactor must be initialized by the user, for example,
the shape object and interest in input events.

The methods and attributes of the low-level objects
are not difficult to understand separately, but their use
should be better documented to the benefit of new users.
When no output at all is produced, it may not be

115

obvious that the real cause was forgetting to initialize
the shape member variable. Misuse of attributes, failure
to implement a method, or performing initializations in
the wrong method, may initially pass unnoticed; in some
other context, tried and “debugged” classes may fail for
some unexpected reason. a

8. Composite graphical objects that contain other
interactors are called scenes. InterViews provides many
useful types of scenes, but apparently not a scene that
simply puts an interactor at position (z,y) which was
needed in Scones.

Implementing a scene is considerably more complex
than just drawing some graphics. Firstly, the scene must
manage a collection of inserted interactors. A number
of operations may require interaction with the enclosed
objects, for example, shape calculations. Secondly, the
derived scene interacts intimately with its base class
and the low-level routines of InterViews. The user
written scene must provide a number of services for
insertion, deletion, changes, reconfigurations, reshaping,
etc. Furthermore, the scene must have a fairly complete
set of operations to be operable at all; few shortcuts are
possible. On the other hand, once done it is quite easy to
comprehend, and not too difficult to redo for a different
application. O

Object-oriented programming is apparently more com-
plicated than normally presented, i.e., as simply inher-
iting behaviour from the base class, or as the base class
providing a template for the interface of derived classes.
This application shows a strong coupling between base
class and derived class; in particular, the function of the
base class relies on a properly implemented derived class.
This is exactly why the keyword protected was intro-
duced into C++; to distinguish class members that must
be accessed by derived classes, but not by code outside
these classes.

The problems with strong coupling are common in
any application where code is reused, and obviously not
typical for object-oriented programming. The need for
high-quality design and documentation of generally used
base classes is pronounced. Object-oriented program-
ming does make it easier to reuse existing code but the
designer of a useful base class must anticipate future
needs, for example, by declaring methods virtual in
C++. One may say that object-oriented programming
will give you less trouble with the past, and more trouble
with the future.

InterViews is a well-designed package, and most
problems are due to lack of documentation (about the
average UNIX standard). A major improvement would
be a description of the internal operations of InterViews,
e.g., in the form of a data flow graph. This would give
more insight in the interaction between objects, and
the intended use of certain methods — what happens
when a window is resized? Currently, a major source
of documentation is the InterViews code. There are a
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number of overview papers related to InterViews [Linton
and Calder, 1987][Vlissides and Linton, 1988][Linton et
al., 1989}, and a lively mailing list on Internet.

Little effort was needed to learn how to use In-
terViews and implement an acceptable user interface,
compared to our previous experiences with PHIGS in a
similar application. The new user interface is also much
improved. Object-oriented programming is well suited
to implementing user interfaces, and this application is
close to the basic concepts in InterViews. The possibil-
ity to express objects directly in C++ and InterViews
is a significant advantage, and probably one reason why
InterViews is easier to use than PHIGS. Numerous revi-
sions of the program has shown that it is easy to extend
the user interface and to add new graphical objects. A
considerable amount of time was spent on restructuring
existing classes. Two features of InterViews have not
yet been evaluated: perspectives for changing the view
of a graphical object, and persistent graphics for saving
graphical objects on a file.

A reasonable block diagram editor has been im-
plemented in three months, including time to learn
InterViews. Scones contains 987 lines of header files
(mostly class declarations) and 2347 lines of other code.
Users find the program somewhat slow, but it is unclear
whether this is because of deficiencies in InterViews or
in the X server.

6. Conclusions

InterViews is a powerful object-oriented package for
implementing user interfaces. It provides a set of ready-
to-use building blocks (e.g., text messages, buttons, a
string editor), and simple graphical objects are relatively
straight-forward to implement. Non-standard composite
graphical objects are considerably more difficult, mainly
because of missing documentation.

PHIGS is more efficient and has powerful 3D
primitives, but PHIGS is not tailored at implementing
user interfaces. Comparing two similar applications,
InterViews is easier to use and yields a better user
interface.

A surprising experience was the strong interaction
between base classes defined in InterViews and derived
classes defined in the application. The derived classes
not only inherit behaviour, they must also provide ser-
vices to the base classes and the InterViews system. This
coupling stresses the need for good documentation, in
particular documentation aimed at the class developer.
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1. Introduction

In this paper we are going to discuss an object-
oriented approach to modelling of chemical pro-
cesses with control systems. Benefits of this ap-
proach are facilitated model development and
model reuse. It is also possible to adapt and refine
models to capture new conditions and demands.

Model structuring concepts are the key to
create a modelling environment with these bene-
fits. The models have a given internal structure of
model components. An object-oriented approach
to modelling represents both models and model
components as objects. Modularization, decom-
position, parameterization and inheritance are
the basic elements in this object-oriented mod-
elling methodology.

A new environment for system engineering
(SEE) has been designed with these model struc-
turing concepts. The basic design is composed of
a model database, model/user interface and tools
that operate on models. One tool, that is imple-
mented in a prototype, is a simulator for differ-

ential and algebraic equations. This architecture
allows an object-oriented approach to model de-
velopment and an equation-oriented approach to
the problem solving. SEE is presented in Matts-
son and Andersson (1989), Andersson (1989a)
and in Nilsson et al (1989).

This paper is organized as follows: An exam-
ple of a process model is discussed in Section 2.
Object-oriented modelling and model structur-
ing concepts are introduced in Section 3. Mod-
elling of controlled chemical process is discussed
in Section 4 and in Section 5 are some conclu-
sions.

2. The Tank Reactor Example

The main ideas are illustrated on a minor chem-
ical process part, namely an exothermic continu-
ous stirred tank reactor. The reactor is assumed
to be homogeneous in concentration and temper-
ature. A chemical reaction is assumed to occur,
A — B, and it produces heat. The reactor vessel
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Figure 1. The continuous stirred tank reac-

tor.

can now be modelled with a dynamic mass bal-
ance, dynamic component mass balances and an
energy balance. The feed to the reactor is con-
trolled by a valve. The outflow of the reactor is
set by the surrounding system. Heat is removed
by a cooling jacket. The cooling jacket can be as-
sumed to be homogeneous and modelled by a dy-
namic energy balance. The cooling medium flow
is also controlled by a valve.

The mathematical model of the reactor sys-
tem then becomes a set of nonlinear differential
equations:

dV — .
P di = Pqin PQout

d(Ve
(dt ) = QinCin — qoutC+ V'r
diVvT
PCyp (dt ) = pCpginTin — pCpoutT — Q
d(V;T;)

PiCoi =g = PiCp;0iT5i — PiCp0,T; + Q
Py = —rg = —kge~ giﬁ"cl Q =kA(T -1T;)
The concentration, ¢, and reaction velocity, r,
are column vectors with the length of two, to
describe the components A and B.

The out flow of the tank is described by a
static momentum balance, which means that the
flow is a function of the height in the tank and
the pressure drop over the tank:

( qD'ﬂ.u‘./ ﬂ.) y

Pl + Drank = 5 ~+ Poutlet

The pressure drop over the valves can be mod-
elled by a static momentum balance too. The
pressure drop is a function of the flow and the
valve position:

Ku
Apzmqsnlqml i 1>2u>0

The tank reactor model described above is
equation-oriented. Model representations, like
this, do not have any structure. The model is
hard to reuse in new applications. It is not easy
to change the model and it is hard to read and
understand the model for a unexperienced user.

3. Object-Oriented Modelling

In object-oriented modelling models are repre-
sented as objects. Object-oriented modelling is
based on the methodology from object-oriented
programming. A good introduction to object-
oriented programming is given in Stefik and Bo-
brow (1984).

An object-oriented model representation has
been design in the SEE-prototype (Andersson,
1989a). A textual language for the model repre-
sentation is called Omola, Object-oriented Mod-
elling Language (Andersson, 1989b).

In this section we are first discussing some
model structuring concepts and then the inheri-
tance concept.

Internal Model Structure

A model object has an internal structure of
model component objects. The internal structure
of a model is composed of three major component
types:

1. Terminal is a model component which can
be used to describe interaction with a con-
nected model.

2. Parameter is a model component that allows
the user to interact with the model, in order
to adapt its behaviour to new applications.

3. Behaviour description or realization is a
description of the model behaviour. The
behaviour can be primitive, expressing the
behaviour symbolically with equations, or
it can be composite and described by a
structure of connected submodels. Models
can have multiple realizations.

Model structuring concepts are disussed in more
detail by Mattsson (1988). Model structures are
also discussed in Astrém and Kreutzer (1986)
and in Astrém and Mattsson (1987).

An object-oriented model representation of
the reactor vessel can be seen in Figure 2.
It is composed of terminals, parameters and
primitive behaviour description. There are five
terminals and seven parameters. The behaviour
is described by dynamic mass, component and
energy balances, which are the same as the first
three differential equations in Section 2, one
static momentum balance.
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Figure 2. The internal structure of the reac-
tor vessel model.

Submodel Interaction

In Figure 3 the structure of the reactor system is
shown and it is described as a composite model
object. The different parts are modularized into
submodel objects. The connections between sub-
models represents submodel interactions. The in-
teraction between two submodels is given by the
terminal descriptions. If a connection is drawn
between two terminals then the system make a
consistency check. The two terminals on each
side of the connection must have the same in-
ternal structure.

Terminals with internal structures, that de-
scribe a pipe connection, are the LiquidIn and
LiquidOut in Figure 2. Connections can have
natural interpretations, like the one between
the tank reactor model, TankReactor, and the
Valvel model object. In a mathematical model
this connection represents a set of relations be-
tween variables. This means that flow (g), pres-
sure (p), temperature (T) and concentration (c)
in TankReactor and in Valvel are set equal or
summed to zero. This kind of submodel interac-
tion is well documented by Mattsson (1989). Ter-
minals are defined as objects. This means that an
process pipe terminal class can be a super-class
of every process pipe terminal object in the pro-
cess model. Terminal descriptions are therefore
easy and natural to reuse.

—
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:

[]——M_[] TankReactor

ReactorSystem

naori

[ nsor2 ]

naord ]

Figure 8. A block diagram showing the com-
posite model of the tank reactor system.

Hierarchical Submodel Decomposition

The tank reactor model can be decomposed
into three submodels, namely one reactor ves-
sel model (ReactorVessel), one cooling jacket
model (Jacket) and one heat transfer model
(BT-model). The reactor vessel model is a prim-
itive model and is seen in Figure 2. This means
that the tank reactor model is a composite
model, with three submodels, and we get a hier-
archy of models. This is a hierarchical submodel
description and it is shown in Figure 4.

Figure 4. The hierarchical submodel decom-
position in the tank reactor example.

This decomposition makes it possible to
reuse submodels that is not directly interpretated
as physical components. A heat transfer model
object is an example of this. It is possible to
change the heat transfer model without chang-
ing surrounding submodels or the super-model
structure.

Inheritance

Models are represented as objects, which are
subclasses of predefined super-classes. A sub-
class inherits properties from its super-class.
The model representation has single inheritance,
which means that a subclass only has one super-
class. The properties that are inherited are the
object attributes, which are definitions of compo-
nents. Model object inherits model component
definitions. A system defined super-class Model
is the root of the model class hierarchy tree and
a specialization means that attributes defining
model components are added to the subclass.

An example of how to use the inheritance
concept is shown in Figure 5. The class Valve
is a subclass of the system defined super-class
Model. It is specialized by getting two attributes
that define two model components. These model
components are two terminals describing the
inflow and the outflow of the valve object. Valve
is a super-class to ControlValve, which have
two additional attributes describing the control
signal terminal and a parameter. The two valves
used in the reactor system are specializations of
ControlValve. They contain specializations of
the parameter attribute Area.
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Figure 5. A part of model class hierarchy
tree describing the relation between some valve
models.
Parameterization

Parameterization of models and model compo-
nents are important in our attempt to reuse ob-
jects. Design variables are defined as parameters,
which can be changed by the user. Area and den-
sity are examples in the reactor vessel model in
Figure 2. Structure parameterization of the re-
actor vessel model means that the dimension of
vectors, like concentration, are being set by a pa-
rameter. The reactor vessel can be reused in a
new application with another number of chemi-
cal components by changing this parameter.

An important method of parameterization is
to decompose the reactor vessel model into one
vessel machine model and one chemical medium
model, a medium and machine decomposition.
The machine model contains the main behaviour
description (balance equations) and machine pa-
rameters (area). The medium model contains
the medium behaviour (reaction velocity) and
medium parameters (reaction heat and density).

ReactorVessel I

[H] MachineModel [H]

Ry |
balance_squations
I sl I/ gl
MediumModel
behaviour;
medium_equations
Figure 6. A medium and machine decom-

posed reactor vessel model.

The reactor vessel model can be decomposed
into two submodels, which are connected to each
other, which is seen in Figure 6. This can be
seen as a parameterization of the reactor vessel.
Another reactor vessel model can be created
through inheritance of the attributes from the

old one. The medium model can be change by
overwriting the medium model definition.

A Modelling Methodology

A modelling methodology can use decomposi-
tion, parameterization and inheritance to cre-
ate process models that are generic and easy to
reuse.

Decomposition of process models into smal-
lare submodels is important for abstraction of
the modelling problem. Different decomposition
methods are process structure decomposition
into process objects, see Figure 3, transport phe-
nomenon decomposition, like in the tank reactor
model in Figure 4, or the medium and machine
decomposition seen in Figure 6. The resulting
submodels are often basic descriptions of funda-
mental behaviours.

Inheritance can be used as a model type
concept and support reuse of similar models and
model components. Also by overwriting inherited
attributes can models be modified in order to
create new models.

Parameterization of models should be made
to suit the user and facilitate reused. Chang-
ing a parameter of a reused model is done by
overwriting the inherited parameter value with a
new value. The definition of a submodel can be
changed in a similar way by overwriting the old
submodel definition. One important application
of this is the overwriting of media model defini-
tions.

Decomposition and parameterization meth-
ods and the use of inheritance and discussed in
Nilsson (1989).

4. A Controlled Chemical Process

We have seen how one can use an object-oriented
approach to the modelling of the tank reactor
process. We are now focusing on the control
system description.

The Controlled Tank Reactor

The control system for the tank reactor process
can be described in a similar way. The reactor
has one structured terminal describing the con-
trol signal of the two valves. It has also one struc-
tured terminal describing the three sensors: level,
temperature and outflow. A model of the con-
trol system is connected to the reactor system
through the control signal terminal and the sen-
sor measurement terminal. This is seen in Figure
7. The control system is a composite model with
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ControlSystem

Figure 7. The tank reactor with control sys-
tem.

an internal structure of submodels that repre-
sents the different controllers.

The first control system design is based on
two PID-controllers, which is seen in Figure 6.
One controller (PID1) uses the inflow valve to
control the reactor level. The outflow measure-
ment is used for feed forward control of the level.
The other PID (PID2) controls the reactor tem-
perature through the cooling medium valve.

Modification of the Control System

A modification of the control system is easy
to do. A second control system design can be
a MIMO-controller based on a LQG-design on
state-space form. The state feedback and ob-
server submodels are subclasses of generic classes
with a parameterization that facilitates reuse. In
this case these are specialized to capture a system
with three inputs and two outputs. In an envi-
ronment with tools for symbolic and numeric ma-
nipulations we can first symbolically linerize the
model into a linear model and then use the nu-
merical tool to calculate a LQG-controller, which
automatically create a controller like the one in
Figure 8.

MIMOControlSystem

Figure 8. A state-space based MIMO control
system.

This MIMO controller can now be used in
the reactor part model. In a reactor part model
the old definition of the control system can be
overwritten by the definition of the new one. The
new control system model must have terminal
with the same internal structure as the old one.

PROCESS1
- ke
MixPart l B t‘:onlrn iSystem PRrationFat
—1 ReaclorSystem
—

Figure 0. A chemical plant model that reuse
the reactor process part model.

Plant Models

The resulting composite model, ReactorPart,
can be reused in its turn in a chemical process
plant model. One example is the Process1 shown
in Figure 9. It is now possible to study the the
control system on a complete plant model. If we
have models for other parts of the process then it
is easy to connect them together to create a plant
model. A study of the new control system design
can now be done based on realistic disturbances
from the surrounding equipment.

Multiple Presentations

Large processes with control systems can be seen
in a number of different ways. One way is the
process oriented view where the controllers are
distributed all over the process in order to fit
the process structure description. Another way is
the control system oriented block diagram view
where the feedback loop are the most important.
A third view is computer oriented where the
hardware and software are in focus. All these
views are different presentations of the same
model representations. It should be possible to
have different presentations of the same object.

et (e ]

[0 P+ S Temmman
¢ . 2

Figure 10. Two different presentations of a
controlled chemical process. Left: s process
oriented view. Right: a control system oriented
view.

User interfaces for simulation also needs
multiple presentations. A control engineer and
a process operator need different interfaces. It
is important to have interfaces that are natural
and convenient for the user. The user interface
presentations does not have to have the same
structure as the model representation.
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5. Conclusions

Model reuse, development, refinement and main-
tenance are facilitated through the concepts
of modularization, decomposition, parameteriza-
tion and inheritance.

Model Reuse

The strong modularization concept with encap-
sulated submodels with terminals supports easy
and safe reuse of models. Decomposition of mod-
els into submodels makes it possible to reuse
the structure and change the submodels in the
structure. Advanced parameterization of models
can increase the reusability of models. Inheri-
tance means that the model object description
can be distributed in a tree of super-classes and
can therefore be reused.

Model Development

Model development is facilitated in three ways.
One is the possibility to reuse submodels from
model libraries. Predefined submodels can be
reused in new composite models describing new
applications. This is possible due to the strong
modularization. One example is to use common
process equipments, like pumps, valves etc., to
create a complex process.

The possibility to decompose a process
model in a multiple level description facilitate
development of complex systems. The model de-
veloper can chose the amount of abstraction on
each level.

Another way to facilitate model develop-
ment is to use the inheritance and specialize pre-
defined objects to describe new models in new
applications. This way to develop models is of
major importance and has a great potential. This
is shown in the tank reactor example.

Model Refinement and Maintenance

To adapt and to modify model behaviour to real
plant data requires methods for model refine-
ment and long term use of process models re-
quires possibilities to change, reuse and refine
models. A model class can have multiple real-
izations and this can be used to refine the be-
haviour of models. A model can first get a simple
behaviour description. It can then easily be re-
fined by getting an additional behaviour descrip-
tion. The behaviour descriptions can be static,
dynamic, simple, complex, linear or nonlinear.
The user can choose a desired realization depend-
ing on the application. Model maintenance also
requires readable and easierly changeable mod-
els, which are facilitated by decomposition into
small objects and by inheritance.
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Framtida behov f8r modell-
utveckling och simulering i

massa- och pappersindustrin

Sven Gunnar Edlund

STFI

Rritiskt f¥r att nd 8kad
anvdndning av simulering:

BRA PROCESSMODELLER

Beh8vs Hven f8r styrning

Dagslidge betrdffande utnyttjande
av simulering

o Konstruktion/projektering
- etablerat

o Utbildning
- visst utnyttjande

o Tréning
- under introduktion

o Beslutsst&d
= visst utnyttjande

Processerna karakteriseras av:

- fysikaliska/kemiska samband
komplexa och delvis ok&nda

- bade langsam och snabb dynamik

- olinjdra, flervariabla

- stora brister i observerbarhet

= processambanden f8rdndras 8ver
tiden
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Exemplet: Beslutsst8d

o Anvinds uthdlligt

Behov av kraftfulla - kunna lita pA modellen

- efter 300 gingers anvindning

verktyg/metoder £8r kan svaret fdrutses:

—> detaljerad modell

ldtt att komplettera
= modellvalidering modellen

= modellutveckling

- modellunderhall o Smd skillnader mellan de
alternativ som simuleras

~ kréver noggrann modell

o Modellen miste hdllas uppdaterad

- automatisk/adaptiv bestimning
av parametrar/samband

- effektivt stdd fdr manuellt
modellunderhAll

—> behov av process-
analysverktyg

MMC-grdnssnitt och modeller
midste utformas utgldende fran
anvindarens behov, arbets-

situation och fBrutsittningar
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MARINTEKNISKA SIMULATORER

Claes Kallstrom, SSPA Systems

Exempel pé simulatorer vid Sjobefalskolor :

Radarsimulator

Manoversimulator

Ballastsimulator

Maskinrumssimulator
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- Stridsledningssimulator
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-
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Staffan Nordmark, VTI 1989-09-18

Forberedande inligg i paneldiskussion: Framtida behov for

modellutveckling och simulering

VII (Statens V&dg- och Trafikinstitut) bedriver forskning inom
végtrafikomraddet och simuleringsteknik och simulatorer har under
lang tid varit hjdlpmedel i denna forskning. Det har handlat om
allt fran rena digitalkérningar, ddr tidsfaktorn inte &r viktig,
till hybridsimuleringar i realtid dir verkliga komponenter anv-
dnds fo6r en del av systemet och resten beskrivs i ett dator-
program. Manga av de program som utvecklades pa skilda hall i
vérlden under 60- och 70-talen kunde kridva flera manar i utveck-
ling och man kunde i stort sett vara sidker pa att programkoden
innehdller flera felaktigheter pga de komplicerade ekvationerna.
Validering kan i de flesta fall sikerstdlla att felen atminstone
dr forsumbara. Sjdlvklart &r det en stor férdel om dessa fel-
funktioner kan elimineras och program kan konstrueras av andra

dn programmeringsspecialister.

Fér mekaniska problem finns en klar tendens att anvidnda stora
simuleringspaket (multi-body systems) sdsom ADAMS, MEDYNA, DADS
osv fdér att wunderlitta modellbyggandet och slippa tidsédande
hdrledningar av roérelseekvationer. Med dessa programpaket kan
den tid som atgdr f£for modellkonstruktion och programmering
drastiskt skdras ner men till priset av langa exekveringstider

och stor datakapacitet.

Det vore Onskvdrt om motsvarande utveckling &ven kan ske i real-
tidssammanhang. Det &r stdllt utom allt tvivel att anvindning i
en simulator av kérdynamiska program &r en utmidrkt validering i
sig. Som férare har man goda méjligheter att relatera till verk-
ligheten och avsléja felaktigheter i programkoden eller modell-
uppbyggnaden. Realtidsbegridnsningen gér emellertid att f£8r nir-
varande dr de generella programpaketen uteslutna &ven om vissa
ansatser at detta h&ll har gjorts av Daimler Benz och Evans &
Sutherland fo6r simulatortillimpningar. Generaliteten &r begréin-
sad och insatsen av datorer avsevdrd men detta kommer givetvis

att fordndras i framtiden.



KLASSISK SIMULERING

. Besvarliga hérledningar av ekvationer

Stort programmeringsarbete
* Stort antal felkéllor
Kort exekveringstid

* Mattliga datorkrav

SIMULATORER
REALTIDSKRAV

medfor

L]

tidsoptimerade program

s begransad storlek pa programmen sller
flera parallellkopplade datorer

d generella programpaket kan anvandas
enbart i begransad utstrackning

SIMULERINGSPAKET

ADAMS, DADS, MEDYNA m.fl.

B enkel anvandning

*

lang exekveringstid

-

stor datorkapacitet

REALTIDSKRAV medfor
historiskt

- 1975

* analogimaskiner ev. hybridmaskiner
med assemblerprogram

1975 - 1980

*

hybridmaskiner med digitalprogrammen
i hognivasprak (FORTRAN)

1980 - 1992

*

en eller flera parallella digitala datorer
med program i hognivasprak

1992 -

* generella programpaket for Multi-body
systems
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