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Simulqtorcr för pñÐcessindustrin
Inom området informationstekno-
logins tillämpningar arberar STU
med ett insatsområde benämnt
"Driftutveckl ingssystem för pro-
cessindustrin, DUP ". Program-
mets h^uvud-sakli ga inriktñin g
framgår av faktarutan. Inom DUp
liksom inom processtyrningsområ-
det som helhét förväntas siäulato-
rer komma att spela en viktis roll i
framtiden. Inom ramen för iisats-
området bedrivs därför simuta-
torprojekt som har koppling både
till basstudier och fallitì¡dier.

Nu är inte användning av simulato-
rer något som är uniki för processin-
dusrrin. Simuleringar har sþelat och
kommer att spela ä viktig^roll för
en mãngd av informationsieknolo-
gins tillämpningsområden.

De första simulatorerna
Hisroriskt serr urvecklades de första
simularorerne som ett hjälpmedel
för att lösa dynamiska pro-blem be-
skrivna med ãifferentiaiekrarioner.
Vid lösningen av ekvationerna an-
vände man sig av analoga elektriska
kretsar som efterliknadã eller simu-
lerade det ursprungliga problemet
genom att kretsarnas elektriska sam-
band beskre\¡s av semma differenrial-
ekvationer. Med hjälp av elekrronis-
ka försrärkar. kuíde man b¡,gga ma-
skiner - s k analoqimaskiner-l som
på etr bekvämr o.ñ flexibelt särr
kunde användas för arr lösa dynami-
ska problem av mycket sto.a ôrd-
ningstal.. Genom att analogimaski-
nerna arbetar ridskontinuerligr och
genom parallellbearbetni ng ar: pro-
blemet är den möjliga pro6l.m'-
komplexireten helr och håller kopp-
lad rill hårdvarans omfatrning.

Digitala datorer
När de digitala darorerna blev van-
ligare borjade man använda dessa för
att lösa differentialekvationer.
Arbetssärrer blev då tidsdiskrer och
sekvensiellt, r'ilker medförde art det
var först med den ökade beräknings-
och minneskapacireren som de dic:i-
tala darorerna blev der kraftfulla -
hjälpmedei för simulering som de är
i dag. För da¡orerna urr.eðklades ri-
digt en mängd olika rvper ar. beräk-
ningsprogram för r ex konsrrukiion
och dimensioncring al processer.

Inom en del områden har begreppet
simulering därför kommir .ti .n"an-
das även för program för olika typer
av statiska beräkningar av arberi--
punkter och optimeringar. När man
i dessa sammanhang sruderar de dy-
namiska problemen ralar man då om
dynamisk simulering, vilket kan
vara något förvirrande för den som
har det klassiska simuleringsbegrep-
pet i tankarna.

Värdefullt hjälpmedel
Under flera ånionden har simulato-
rer varir ett värdefullt hjälpmedel för
att prova och urvärdera hur en pro-
cess-eller en systemlösnin g kommer
att fungera urân arr sysremet behö-
ver byggas eller byggas om rill stora
kostnader. Simularorernas inbyggda
möjlighet rill ¡idsskalning, så atì-
man kan arbeta i reel tid ãllèr bear-
beta problemet långsammare eller
snabbarg har varir èn ."t.r f¿rdel.
På ett tidigt stadium kom simulato-
rerna även till användning för urbild-
ning och tráning av personal vid
verksamheter där farliga situarioner
kunde uppsrå vid felakìiga ingrepp.
Exempel på sådana tidiga tillämp-
ningar är flyg- och kärnkrafrsimula-
torer.

Olika aspekter
Principielh kan man ur processin-
dustrins synvinkel dela in simularor-
området på flera olika särr. Föliande
figur kankteriserar simularorerna ur
två olika aspekrer. Horisonrellr i fi-
guren har man en indelning efter

den hårdvarumässiga uppbvggnaden
och likheten med den verkliga pro-
cessen och processtyrningen- I i'erti-
kal led finru en ;ndälning"efrer simu-
latorns uppgifrer och anrdndnings-
områden.

Val av simulator
De vanligasre kombinationerna, som
har markerats i figuren, kan karakre-
riseras av följande beskrivningar.
Fullskalesimularorerna, som õftasr
anr'änds för olika ryper av träning,
kännerecknas av en fullständig in-
strumentering men kan ha en lägre
precision i modellerna än r ex simu-
larorer för konstruktions- och ur-
vecklingsarbete Dessa saknar i gen-
gäld oftasr den verkliga processryr-
ningeris insrrumenterin[, och héla
simulatorn kan besrå av Dro[ramvanr
och. eventuell datorgrafik soir ersär-
ter rnstru menteringen (m jukvarusi-
muiator). Andra varianter är dock
tänkbara, så bör r ex en simularor för
utveckling av människa-maskin-
systemet ha en omfa¡rande instru-
mentering. Här kan fullskalesimula-
torer behövas. En annan användninc
av fuilskalesimularorer är för tester "
ar' åtgärdsprocedurer samt s¡arr- och
stopprocedurer. För gru ndläggande
utbildning kan fullskalesimulãtorer
vara anr'ändbara men här är funk-
tions- och kompakrsimularorer, som
har en förenklad instrumenterins
och simuleringsmodeller ro. rnãr,
tar fasra på de principiella samban-
den, r'anligare Ofra kan man i en
funkrionssimulator också ha anled-

Hårdvaru
n¡va

Uppgifter

Fullskale-
simulatorer

Funlltions.
cch kompakt-
simulatoier

Miuklaru
simulatorer

Konstruktions-
och utveck-
lingsstöd

Utbildnings-
stöd

...:.:::::::.:.:':.:':':::::'::::

Tränings.
stöd

Stöd för
procedu r-
test

' .:..'.'.:'.:',':',.i,ii,:iliiliil
-.:...,.'."'.'.'.1'

Besluts-
stöd
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ning art visa mellansrorheter, som
inte är direkt åtkomliea för märnins
Detta för arr öka försiåelsen.

me Consulting AB på STUs upp-
drag. Projekret innefartade förutom
en ör'ersiktlig genomgång av simula-
toranvändningen även srudier av fyra
simulatorer för olika ändamåI. Där-
utöver har simulatorer och erfaren-
heter av sådana diskuterars vid olika
seminarier som anordnats inom pro-
grammet.

Följande citat ur SSPA:s referar av
en diskussion av beslutsstödssimula-
torer kan ¡terligare belysa kraven
på dessa simulatorer:

'Anuàndaren må,ste direþt märþa att
det g,år att göra ett bättre jobb ocb att
det lönar sig att anaånd¿ besluts-
stódet'!

"En utb,å I I ig permanent anaändnin g
àr z,iþtig. Det måste rJara làtt att ti.
d¿reutpecþla, b,ggo ut och Þomplette-
ra beslutsstödet så dtt operatören hela
tide,n þan ba n1'¡¡a aL'att anacinda
det"

"Ett beslutsstöd m,åste an¡;àndas rela.
tiv-t frek.oent för dtt inte glömmas
bort den dag det aerÞligen bebö-¿s."

Kompetensområde
Ar- ovansrående kommentarer rill
olika simularoranvändningar fram-
går att dessa ställer olika krav på pre-
cision eller noggrannher, på likher
med verklighetens instrumentering

och på simuleringens ridsskala. En
ytterligare viktig fakror som inte har
nämnts urtryckligen, är simulatorns
kompetensområde dvs inom vilket
arbetsområde som den ger riktigt re-
sultat med tillfredsställande preci-
sion. Alla dessa aspekter gör arr der
är nödr'ändigr err man inför en si-
mularorutveckling klarlägger simula-
torns tänkra användningsområde så

att den urvecklas med lämpliea Drcsr-
anda. Der kan vara direkt àtfrnit;g,
atr försöka använda en träningslinìu-
laror för beslutssröd.

Metodutveckling
Simulatoranr'ändningen är srarkr
kopplad rill lätrheten atr framställa
simuleringsmodeller och art uppda-
tera dessa. Här kan förbärtringar
uppnås genom den metodut'eckling
rorande modellering och simulering
som institutionen för regleneknik
vid Lunds tekniska högskola bedri-
ver inom ett av STUs ramprogram
CACE (Computer Aided Control
Engineering; Datorbaserade hjälpme-
del för utveckling av srvrsvsrem). De
frågor som bearbetas är bland annar
modellsystemat;k och programspråk
för modellerna. Genom lämpligmo-
dularisering och standardiseiinI bor
man kunna underlätra å¡eranr'änd-
ningen av u¡vecklade modeller.

oUn'0,;fä,3i!:;i:5

Beslutsstöd till operatören
.Aterstår arr kommenrera den sisra ra-
den i figuren, nämligen simulatorer
för beslutssröd till oþdratörerna. Här
handlar der ofra om^konsekvenssi-
mulering, varvid operatören i en
sr,å.rgenomskådli g iituat ion prövar
olika tänkbara åtgärder mot'simula-
torn och får veta konsekvenserna av
å-tgärderna, innan han genomför
dem.i verkligheten. Häi är en upp-
snabbad simulerins som sker snãb-
bare.än verklig tid'en nödvändighet.
Precisionen i simuleringsmodellerna
måsre vara hog och det ãr viktigt art
dessa uppdateras vid forandringãr i
processen och sryrsystemer så ãtr de
ör'erenssrämmer väl med verklishe-
ten. Kombineras simuleringsmõdel-
lerna i beslutssrödet med kunskaps-
baserade s)¡srem eller expe.rtsvsrem

Qppnq sig intressanta möjligheter.
De arbetsverenskapliga aspekterna är
dock ännu oklara.'

Som ridigare nämnrs har flera pro-
jekt inom ÓUP-progrr-met koip-
iing till användnìngät simularoier.
\¡id sidan al Korsnässimulatorn som
beskrevs i föregående nummer av
ITAKTUELLT har en utvärdering
av simularoranr'ändning inom pro-
cessindusrri n urföns ar; SSPA li{ari¡i-

DUP - Driftunecklingssystem för processindustrin - syftar till aft úll-
L:arlta och utpecþla pro:cessoperatörcns ykesskicÞlighet. Màlet rir ocþså att
förbittru þtaliteten'och proäuÞtjirnnheten på proãtktetna, att bàttrc ut-
q'ttja råt,aro.r ocb energi satnt minsþa belastningen på miljön. I program-
nt et bedri'¿s ba sstud i er I nom info rnt ationsteþno[o gi o ch arbetsrri eriÞop
samt fallstudier inom branscberna kemi, livsmedãl sartt tnassa ocb
paPper.
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CAC E-projektet

STU-ramprogram 1985 - lg8g

Da torbaserade hjä lpmedel
för utveckling av styrsystem

(Computer Aided Control Engineering)

H uvuda ktör

I nstitutionen för reglerteknik
Lunds Tekniska Högskola

Styrgrupp

Sven Gunnar Edlund, STFI (ordförande)

Arne Otteblad, STU

Karl Eklund, KEAB AB

Claes Källström, SSPA

Erik Sandewall, L|TH

Gustaf Söderlind, ITM

Karl Johan Äström, LTH

Projektledare

Sven Erik Mattsson, LTH

Bakgrund

Dagens CACE-verktyg är användbara
o utför numeriska räkningar
¡ ritar grafer

men användarna önskar
. bättre användargränssnitt
o stöd för tankeprocessen
o integrerad miljö

frãn specifikation till drift av en process.
o utvidgbarhet

Hypotes vid starten

Dagens verktyg designades för 10 - 20 ãr se-
da n.

Den enorma utvecklingen inom informations-
teknologin

¡ Arbetsstationer
. Objekt-orienterad programmering
¡ Da ta ba ser
¡ Grafik och användargränssnitt
o Expertsystemteknik
r Datoralgebra

borde tillãta bättre CACE-verktyg.

1
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MåI

. Undersöka hur de nya landvinningarna
inom informationsteknologien kan förbättra
CACE-verktygen.

. Utveckla nãgra prototypsystem.

. Etablera internationella kontakter.

Projekt

-

Nya former av MMI

Expertsystem in terfa ce

Formelbehandling och numerik

-

Högn ivåsprã k för reglerproblem

Expertreglering

-

Representation av system

E
lmplementeringssprå k

-

M odellutveckling
och simulering

1985 1986 1987 1988 1989

Publikationer

l doktorsavhandling
¡ Karl-Erik Arzén

3 licentiatavhandlingar
o Jan Erik Larsson
. Per Persson
o Bernt Nilsson
o Mats Andersson

I examensarbeten

5 artiklar
23 konferensbidrag

8 slutrapporter t¡ll STU
2 STU-seminarier

I nternationella konta kter

5 gästforskare

Den internationella kontaktnätet är stort.
Några exempel:
DK DTH
N L Delft, Eindhoven
F INRIA
GB SERC, UMIST, Cambridge, Swansea,

CEGB, lmperial College
USA Maryland, RPl, LLNL, Berkeley,

Santa Barbara, GE, Mathworks,
AT&T Bell Labs

2
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The CACE Project l-989-L0-12
Department of Automatic Control
Lund Institute of Technolog¡ Lund, Sweden

Published Papers, conference contributions and Reports

ANonnssoN, M. (19s0): "An object-oriented Modening Environment,,' in G.
razeolla, A. Lehman, H.J. van den Herik (Eds.): simulation Methodologies,
Languages and Architectures and Ar and Gtaphics fot Simulation, l-ggg
European simulation Multiconference, Rome, June z-g, 1-g8g, The society
for Computer Simulation International, pp. ?Z-82.

AropnssoN, M. (1989): "omola - An object-oriented Modelling Language,,'
Report TFRT-74L7, Department of Automatic control, Lund Institutã of
Technology, Lr:nd, Sweden.

ANonRssoN, M. (1989): "An object-oriented Language for Model Represen-
tation," IEEE CACSD'89, Tampa, Florida, December 16, Lggg.

AttoN (1987): "Ramprogram Datorbaserade hjälpmedel for utveckling av
styrsystem r" IT-aktuellt, 2:Lg8T, 5-6.

ÅnzÉr, I{-E. (1g86): "LIsp-A one-week cou'se," Report TFRT-?gj-0,
Department of Automatic control, Lund Institute of rechnolog¡ Lund,
Sweden.

.Â'nzÉrt, K-E. (1g86): "Expert systems for process control,,, in sriram, D.
lnd R. Adey (Eds.): Applícations of Artifrcial Intelligence ín Engineeiring
Problems, Proc. of l-st Int. Conf. on Applications of AI in Enlineerin!
Practice, southampton university, u.K., April 1gg6, springer-vertagl
pp. 1L27-11-38, Also available as report TFRT-T315, Department or
Automatic control, Lund Institute of rechnology Lund, sweden.

.A.n_zróu, K-E. (1g86): "use of Expert systems in closed Loop Feedback
control," Proc. ACC, seattle, usA, j.986, pp. 140-L45, Also available as
report TFRT-7320, Department of Automatic Control, Lund Institute of
Technology Lund, Sweden.

-A.n_zÉN, K-E. (1986): "Kunskapsbaserade Regulatorer,,, (Knowledge Based
controllers), sLrs '86, The swedish AI society,s Annual wbrkshop,
Linköping, April 24-2b, 1986.

ÅLTIa K-E (1986): ,,Reserapporr-AAIEp 19g6,,, Travel Report
TFRT-8044, Department of Automatic Control, Lund Institute of ràch-
nolog¡ Lund, Sweden.

Å12-É1, T-E !t98?): Realizatíon of Expett system Based Feedback control,
Ph.D-thesis TFRT-102g, Department of Automatic Control, Lund Institutá
of Technolog¡ Lund, Sweden.

ÄnzÉw, K-8. (1988): "An Architecture for expert system based. feedback con-
trol," Prepúnts of the LFAC Workshop Aúifrcial rntelligence ín Real-Time
Conttol, Swansea, September 20 - 2gr 1ggg, pp. 15-20.

-Ä'nzóN, K-8. (1989): "An Architecture for Expert system Based Feedback
Control," Automatica, Scheduled to appear in November l-ggg.

1
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-A'stnöI't, I{.J. (1985): "computer Aided rools for control system Design-A
perspective," in Jamshidi M. and c.J. Herget (Eds.): computer-aided
Conttol Sysúems Engineeting, Norih-Holland, pp. B-40.

Ä'srnöu, K.J. (1g86): "Auto-Tuning, Adaptation and smart control,,' in
Morari and Mc Avoy (Eds.): Proc chemical p¡ocess contrcI-cpcru,
CACHE, Elsevier, pp. 427-466.

Á.srnöu, K.J, J.J. Anrou and K-8. ÅnzÉN (1g86): ,,Expert Control,,,
Automatica, 22, No. 3, 277-286.

Åsrnöru, K.J. and w. Knourzpn (1gg6): "system Representations,,,
Prcceedings of the rEEE contrcl systems society Thitd symposium on
computet-Aided contrcl sysúems Design (cacsD), Arlington, virginia,
september 24-26, L986, Also available as report TFRT-?33O, Department
of Automatic control, Lund Institute of rechnolog¡ Lund, swed.en.

Åstnöu, K.J., and S.E. M,urssox (1g8?): ,,High-Level problem Solv-
ing Languages for computer Aided control Engineering," Final Report
1-987-03-31-, sru project 85-4808, sru program: Computer Aided control
Engineering, CACE, Report TFRT-BIB?, Department of Automatic con-
trol, Lund Institute of Technolog¡ Lund, Sweden.

Bnücx, D.M. (1g86): "Implementation of Graphics for Hibliz,,, Report
TFRT-7328, Department of Automatic Control, Lr¡nd rnstitute of rech-
nolog¡ Lund, Sweden.

Bnücx, D.M. (1g87): "simplification of Expressions using prolog,,, Report
TFRT-7364, Department of Automatic Control, Lund Institute of Technol-
og¡ Lund, Sweden.

Bnücr, D.M. (1g8?): "Design and rmplementation of a Graphical
Fhont-End," Report TFRT-7367, Department of Automatic control, Lund
Institute of Technolog¡ Lund, Sweden.

B1ücr-, D.M. (1g8z): "Implementation Languages for CACE software,,,
Final Report l-987-09-30, sTU project 86-4047, sru program: computer
Aided control Engineering, CACE, Report TFRT-8195, Department of
Automatic control, Lund Institute of rechnolog¡ L'nd, sweden.

BnÚcx, D.M. (1g88): "Modelling of control systems with c*-f and pHIGS,,,
Prcceedings of the usE/vrx c++ Technical conference, Denver, colorado,
october L7-20, 1988, pp. L83-192, Also available as report TFRT-2400;
Department of Automatic control, Lund Institute of rechnolog¡ Lund,
Sweden.

BnÜcx, D.M. (198g): "Experiences of object-oriented. Development in c*f
and Interviews," Prcc. TooLS'Bg, Paris, France, Novernber l-B-15, Lggg,
Also available as report TFRT-2418, Department of Automatic Control,
Lund Institute of Technolog¡ Lund, Sweden.

Bnücr, D.M. (1989): "scones - An Interactive Brock Diagram Editor for
simnon," Report TFRT-7423, Department of Automatic control, Lurrd
Institute of Technolog¡ Lund, Sweden.
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En objektorienterad miljö
för modellutveckling

Sven Erik Mattsson och Mats Andersson

lnstitutionen för reglerteknik
Lunds Tekniska Högskola

Varför behövs modeller?

För att uppfylla
.lönsamhetskrav
. kvalitets- och prestandakrav
. säkerhetskrav

behövs kunskap.

Modeller är formaliserad kunskap

lnnehåll

* lnledning

* Modeller är viktiga.

* En integrerad miljö.

* Modellkomponenter.

* Ekvationer.

* Omola.

* Prototypen.

* Sammanfattning och planer

Kunskap

. "Göra som man alltid gjort"
r Experimentera och pröva sig fram

o prototyper
o fullskala

o Matematiska modeller och metoder

1
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Fyrik

i/bdêllering

Analys
Simul€r¡ng

Synte3

Verl-
liering

lmplemenloring

Drllt

Undorhåll

Modelleringsprocess

Föþ
linlng

Modl.
ller¡ng

Användningsområden

Projektering:
1. Analys
2. Design
3. Validering
4. Utbildnings- och träningssimulatorer
5. Dokumentation

Dr
1.

2.

3.

4.

5.

6.

7.

ift:
Prod uktionspla nering
Styrning och reglering
Driftsoptimering
Operatörsstöd
övervakning och diagnos
Fela na lys
U nderhã ll

Alla matematiska metoder behöver modeller

Drivande krafter

Konkurrens kräver kvalitet och prestanda
o Testa många lösningar
o Svãrt att ställa in mer än 3 parametrar

ma n uellt

Spara energi, råmaterial och miljö
+ Kopplade och ãterkopplade system

=+ Komplexare system

Sä kerhet
. Experiment kan vara farliga
¡ Validera beteende i extrema situationer
r Träna extrema situationer
. övervakning och felanalys
r Myndighetskrav

Kostnader
o Dyrt med experiment och misslyckanden
¡ lnte störa driften

En integrerad m¡ljö

* Traditionell modellering

* En integrerad modelleringsmiljö

* Arkitektur

* Âteranvändning

* Modellabstraktion

* Representation / presentation

2
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Traditionell modellering

o Programmeringssprãk (t.ex FORTRAN)

- LãS nivã, fjärran frãn fysik och verklig-
het.

- Modell och simulator blandade.

- Svãrt att underhãlla modellen.

¡ CSSL,1967

e Verktygsberoende modeller.

¡ Slutna moduler.

Vårt mål

o Enhetlig, generell representation av
modeller.

r lntegrerad miljö för modellutveckling,
simulering och design.

. Modelldatabas.

r Anpassningsbara användargränssnitt.

gr¿in33nltt
Anv¿indar-

Modell-

databas
Design Simulering

lmplemenlering

Tillämpnlngaepecif lka verklyg

Arkitektur

lnterakllvt
anvåndargränsenllt

B¡bllotek Ornola
tolUgenerator

Modoll-
datåbas

Simulalor Konsiôtens.
kontroll vsrktyg

Andra

Återanvändning

Modeller kan återanvändas

. som delar i andra modeller

. av andra personer

. för andra syften

3
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Återa nvä ndning ställer krav

o Modelleringssprãket

o generalitet

o strukturering

o modularitet

. Modellbyggaren mãste

o strukturera

o dokumentera

. Verktygen

o hantera strukturerade modeller

o bibliotek

o konsistenskontroll

Modellabstraktion

lnkapsling för att hantera komplexa system
En modell beskrivs av

. Gränssnitt

o Realisering

Representation - presentation

Gemensam representation, olika presentation.

(Tantsyatem ( (input FlocTerrûinl1)
(output Flo¡Te¡qrinal) )

( (rogulator pID) (purnp prurprnodel)
(tank Tanlnodcl))

((input (regulator r) ...
)))

M odellkom ponenter

En modell bestãr av
1. Terminaler
2. Parametrar
3. Realiseringar

¡n

MOOeil: t anK

Area

Area$ =tn-ur

UI

4
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H ierarkisk mod ularisering

Realiseringar kan vara
o Strukturerade

ihopkoppla de del modeller
¡ Primitiva

ekvationer

En modell kan ha flera realiseringar
. Versioner
. Tillståndsmoder

Terminaler

Terminaler kan vara strukturerade:
. Enkla - en storhet
. Strukturerade

o elektrisk ledning: spänning och ström
o hãl: massflöde, tryck, temperatur
o axel: läge, kraft, moment
o kablar har flera trãdar
o flöden kan bestã av flera komponenter

Modellering av växelverka n

Göres genom att koppla terminaler:
¡ Likhet eller nollsumma
¡ Delmodeller för komplex växelverkan
r Blockdiagram

TankSyslem

Regulator Pump Tank

Modellmod ularisering

Komponentbaserade modeller är en möjlighet
o Bygga modellen som systemet
. Gemensam bas
¡ Modeller frãn komponenttillverkarna
o Möjligt att förutse fysiska kopplingar
. Terminalbibliotek

ð
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Konsistenskontroll av kopplingar

En enkel terminal har attributen
. Riktning: odefinierat, in, ut
r Storhet - ISO 31
o Enhet
. Undre och övre gräns
. Variabilitet:

tidsvariabel, parameter, konstant
. Kausalitet: okänd, läs, skriv

Om ej tidsvariabel
o Propagering av parametervärden
¡ Värden mãste vara konsistenta

Ett exempel

Hål och rörändar

Storhet Enhet

Diameter
Medium
Flöde
Tryck
Temp

lä ngd mm parameter

massflöde
tryck
temperatur

ml/s
Pa

K

tn

Vektorer för att beskriva multimediaflöden

Terminaler

Kan var delvis ospecificerade:
1. Typ av komponenter
2. Antal komponenter
3. Storhet, enhet mm.

för att tillãta
1. Generiska modeller
2. Abstraktion - Top-down
3. Automatisk deklaration - Bottom-up

Terminaltypbegrepp

Vilka terminaler kan kopplas samman?

Klassiska typbegrepp
1. Strukturekvivalens

för svag
2. Namnekvivalens

för snäv

Vãrt terminalbegrepp tillåter
explicit, redu ndant information.

6
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Ekvationer

Ekvationer är en naturlig form
o rnâss- och energibalanser
. rörelseekvationer mm
. DAE: g(t,it,æ) - 0

ldag

Dagens simuleringsprogra m löser

ff = 10,ù, æ(rs) - æs.

om användaren definierar en procedur
som beräknar derivatorna, /(t,æ).

Nackdelar
. användaren mãste manipulera ekvationerna
. ln/Utsignaler - Beräkningskausalitet

ln- eller Utsignaler?

Gör en delmodell för ett motstãnd

v1 v2

1 Parameter: B
3 Variabler: V¡, V2, f
1 Ekvation: V¡-V2 = i?I (Ohms lag)
+ Modellen mãste ha 2 insignaler

Fall 1: Kopplad till en spänningskälla
vl

lnsignaler: Vt=V och % - 0

Utsignal: I - (Vy-Vr)lR

Fall 2: Kopplad till en strömkälla
vl

lnsignaler: , - Io och I¡z - 0

Utsignal: Vt = Vz * RI

Vi kan inte i förväg säga vad som skall vara
insigna ler.

Tyvärr är situationen ännu värre.

Fall 3: Tvã motstãnd i serie
v

v1

Oberoende av hur vi väljer in/utsignaler
för motstãndsmodellerna mãste ett
ekvationssystem lösas;

Vt*RtI-V
V1 -R2I=0

I
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Deklarativa modeller

En modell skall
. beskriva fakta och relationer
o inte vara en beräkningsprocedur

Fördelar:
. Närmre fysiken
. Ger bättre dokumentation
. Tillãter konsistenstest
. Stöder ãteranvändning

o delmodeller

" olika beräkningar

Modeller på ekvationsform

Möjliggör a utomatisk generering av:
. Effektiv simuleringskod
. Kod för att beräkna arbetspunkter
. Linjära modeller
. Beskrivningar till andra program
o Regulatorkod

* Allmänt om Omola

* Klasser och ärvning

* Modeller, terminaler, mm

* Omola är generellt

* Utvidgningar

Omola

Omola = Object-oriented MOdelling Language

Ett språk för att beskriva modellers

o struktur

o beteende

. gränssnitt

¡ relationer

Omola är ett textformat för modelldatabasen

Omola kod <=+ Modelldata bas

ldéer och begrepp från objektorienterad
progra mmering.

8



24

Klasser

En klass beskriver en grupp objekt med
liknande egenskaper.

Modellobjekt (modeller, terminaler, realiser-
ingar ...) representeras av klasser med attribut

Attr¡but kan vara variabler eller klasser.

Tank

[t
Tank-l Tank.2 Tsnk.3

Arvning

Relation mellan klasser:
superklass - subklass

En subklass ärver superklassens attribut.

En subklass är en specialisering av sin
su perklass.

Tank

ar€a
level

Heater

temp

En modell ¡ Omola

Tantç ISA Model IíITE

paraneters:
area TYPE real;

terminal-s:
Inflow ISA FlowTerminal;
Outflow ISA FlowTerminal

END

En klass bestãr av attribut uppdelade i

kategorier.

Klassrelationer

Det finns tvã slags relationer mellan klasser

o subklass 
- superklass (isa)

r komponent 
- ägare (has)

Class

Model Termlnal

Tank inal

lnflow Outflow

I
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Realiseringar

Exempel pã primitiv realisering:

Tank ISA Ìfodel LIITE

realization¡
TankBehaviour ISA SetOfDAE IIITE
equations:
outflow = k*sqrt(Ieve1) ;

arêa*dot(level) = inflow - outftow;
END;

END;

Exempel pã stru kturerad realisering

TankSysten ISA Model IIITE

realízation:
Tarkstruct ISA Structure WITE

submodeLs:

TanJ<l ISA Tanh;

TanJ<2 ISA Tank;
corurections :

Tanl<l . Outflow AT Tank2. Inf low ;

END;

END;

Terminaler

Enkla terminaler:

SimpleTerminal ISA Terrninal TJITE

attributes:
val-ue TYPE Real;
quantity TYPE Quantity;
unit TYPE String;
dlrectíon TYPE (Across, In, Out) ;

EIID;

FlowTerminal ISA SimpleTerminal IdITE

quantity = MassFlo¡¡;

rurit = "kg/s',;
direction = In;

END;

Strukturerad terminal:

Pipe ISA RecordTerminal IIITE
components:

Flo¡rRate ISA FLowTerninal- ;

Pressure fSA PressureÏerm;
Temp ISA TempTerminal;

END;

Pump Tank

Oulllow
¡sa P¡po

lnflow
isa Pipe

10
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Parametrar och bivillkor

Parametrar ska kunna lãsas

o till ett konstant värde,

o till andra parametrar.

Specialisering:

Tan]r ISA ModeL trrlITE

parameters:

denslty TYPE Real;
END;

WaterTan} ISA Tank IdITE

density = !;
END;

Bivillkor:

Tanksystem

Parameter: den8ity;
Constra¡nt:

Pump.donslty þTankdens¡ty :. dens¡ty;

Tank

denslty d.n¡lty

Omola är generellt

Omola är konstruerat för att ha

o enkel syntax,

o fã koncept,

r flexibel semantik.

Enkelt att anpassa Omola för nya verktyg och
nya typer av modeller genom:

. nya attribut,

. nya kategorier.

Utvidgningar

¡ Sam plade system

. Diskreta händelser

. Procedurer

Händelser kan byta realisering:

IdEEN tenp > highLinit SELECT high_ternp_model;
IdEEN tenp < lowLimit SELECT low_temp_modeI;

Exekvera en procedur:

IdEEI{ level > alarm_leveI D0

ETID

11
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Prototypen: SEE

SEE är baserad pã KEE och CommonLisp.

lnteraktlvt
envåndergränssnltt

Blbllolek Omola
tolldgenerator

ñilodell-
databaa

S¡mulalor Kona¡elens.
kontroll

Andra
ved(lyg

t2
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Resultat

Kärna för modellrepresentation
. Designförslag
o Prototyp i Common Lisp och KEE

" Central modelldatabas i en miljö med
i ngenjörsverktyg.

o lntegrerade och användaranpassade gränss-
nitt och verktyg.

Tilläm pningsprojekt:
Modellering av kemiska processer

Ny standard för modellrepresentation behövs.

Utveckling och tekniköverföring

. Konferensbidrag och artiklar
r Programkomponenter
o Tillämpningsprojekt
o Standarder

Kärna ns modellrepresentat¡on

o Deklarativa och ekvationsbaserade
beteendebeskrivningar gör modellerna
användbara för olika uppgifter.

o Hierarkiska modeller med väldefinierade
gränssnitt: terminaler och para metrar.

. Terminalattribut för automatisk
konsistenskon troll av kopplin ga r.

r Multipla beteendebeskrivningar;
modellvarianter och alternativt beteende.

. Objektorienterad representation;
klasser med ärvning
u nderlättar ãteranvändning och
i n krementell modellutveckli n g.

o Den interna representationen bevarar
modellstru ktu ren.

Programkomponenter

e bra sätt att sprida idéer och metoder
¡ behövs i tilläm pningsprojekten
r prototyp i Common Lisp och KEE

1
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Kärna för
modellutveckling och simulering

lmplementera en kärna för modellutveckling
och simulering i C**.

lnte ett universitets uppgift att utveckla och
markna dsföra kom mersiella progra m kom po-
n enter.

Tjäna som en bas för nãgon annan att utveckla
kom mersiella prod u kter.

Nya verktyg för användargränssnitt pã väg.

STU-projekt 1989 - 1981

MãI
o sprida resultaten
. lägga grunden för en bred användning
. fã återkoppling frãn användare
o utveckla modellbibliotek
o utveckla tillämpningsspecifika verktyg och

användargränssnitt

Beslutade projekt
. lT4: steritherm-process
. DUP: sockerkristallisation

Tillä mpningsprojekt

P rojektförsla g vä I kom n as!

Sta ndardisering av modellsprå k

IMACS
lnternational Association for Mathematics
and Computers in Simulation

SCS

The Society for Computer Simulatjon

rso
. Sta ndardförsla g till data representa tion

IFAC
lnternational Federation of
Automatic Control
. WG on "Guidelines for CACSD-software"
. Förslag för linjära system

IBPSA
lnternational Building Performance
Sim ulation Association
. Förslag till neutralt format

M öjliga fortsä ttn inga r

. Diskreta händelser i kontinuerliga modeller
o Presentationsformer för reglersystem och

dess struktur
o Bibliotekshjälpmedel
o Para meterskattningsverktyg
o Symbolisk manipulering och analys av

modeller

2
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1. fntroduction

This is a final report for the project "Tools for model development and simu-
lation" (sru projects 8?-02503, gT-02425) carried out in the period July lgg7
to June 1989. The project is the last part of the STU supported research
program "Datorbaserade hjälpmedel för utveckling av styrsystem (Computer
Aided control Engineering, CACE)", which started in the end of igg¿.

Automation and advanced control are of strategic importance fo¡ the
Swedish industry. There are examples in the whole range from traditional
process industry and power generation to aero- and astronautics. To be able
to develop and operate high performance systems, computer based tools for
model development, simulation, analysis, design, validation, operator training,
production planning, operator support, supervision, fault diagnosis etc. are
needed.

Today's CACE tools have proved to be useful. However, they were de-
signed 10-20 years ago. The computers had then moderate computing capacity
and primitive hardware for graphical input and output. The main flnction of
the tools is to perform extensive numeric calculations and present the results
in the form of simple plots. The users want to have tools that better support
their needs: user interfaces which support their way of thinking, integrãted
environments supporting all phases from specification and design to operation
and maintenance etc. The enormous development of the information technol-
ogy (workstations, object-oriented programming, computer graphics, artificial
intelligence, expert system techniques, computer algebra etc.) has opened
possibilities to improve the CACE tools significantly. The goj of the CA,CE
project has been to

L. investigate how the CACE tools can be improved
2. develop prototype tools

3. establish international contacts

In the first phase of the CACE project a nurnber of pilot projects investigated
some ideas and the potential of computer graphics, computer algebra and
expert system techniques. Prototype tools, which can demonstrate ideas and
principles were also developed. These projects showed that it indeed is possible
to improve the tools. A summary can be fo'nd in Mattsson (1ggz).

For the last phase of the CACE project it was decided to focus on tools
for model development and simulation (Mattsson, 1g8z). The motives v/ere:

1. It is of importance for all kinds of engineering.

2. It contains most of the important issues for CACE.
3. It fitted well in the international collaboration.

An important conclusion from the pilot projects was that model representation
is a critical issue. The system concept is fundamental in control engineering,
but today's tools have only primitive representations, which do noi .oppo"t
the users'perception of systems. Furthermore, a coûunon basic 

""p""r"rriuìioois needed to make the CACE tools integrated.
The work in last phase of the cAcE project has largely followed. the

research program. A major result is a design proposal for a kernel for model
development and simulation. The proposal may be of interest for all users of

4
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models. A basic idea is to support reuse of models so that models can be used
for different tasks and so that it easy to modify a model to describe a similar
system, since it is difficult and laborious to develop neÌy models. By a kernel
lve mean the routines to manipulate the internal representation. In our design
there is a clear separation between user interface, internal representation of
data and models and processing tools. This separation makes the design more
flexible and allows customized user interfaces. The kernel can be viewed as a
central model data base in an integrated environment for model development,
simulation, analysis, design, documentation etc. A prototype implementation
of the kernel as well as a user interface has been written in Common Lisp
and KEE. The project has also comprised an application study focusing on
modelling of chemical processes to get some evaluation of the ideas.

This report is organized as follows. h chapter 2 motives for supporting
model development are given. Chapter B outlines basic ideas and our ap-
proach to support model development. Chapters 4 and 5 describe the kernel
in some detail. Chapter 6 is about user interfaces and Chapter z is about
the application study. chapter 8 contains the conclusions. Appendices A -
C list published papers, conference contributions, other reports and. external
lectures given by CACE group mernbers.

2. Models Are Essential

The reason for supporting model development is that
l-. models are essential in all kinds of engineering and
2. model development is difficult and time consuming.

It is a well-known fact that it is difficult and time-consuming to develop a ner\¡
model and we will discuss approaches to support model development in the
next section. Let us now motivate why models are needed.

\Mhat are the uses of models?

Models are useful in all phases of a systems life from design to operation and
maintenance. The designer can use a model to simulate and to analyse the
behaviour to learn about the system and to get insight in its behaviour and to
validate his design. He can try various system architectures or configurations
to make the best choice. He can use optimization tools to tune system param-
eters. Models are needed in simulators for education and training. Computer
based tools for production planning, online optimization, operator support,
supervision and failure analysis need models of the system.

Note that modelling and simulation are closely connected to each other.
To simulate you need a model. Realistic models are typically non-linear, which
implies that it is difficult to analyse a behaviour in other ways than tinough
simulations. However, with a modelling language clearly separated from cal-
culation and simulation issues, models can be used in a more general context
for process documentation and to preserve design knowledge.

5
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\Mhy are rnodels needed?

All mathematical methods need some kind of model of the system under con-
sideration. If we do not want to use mathematical methods and models when
making a neï¡ design we have to make trial-and-error experiments on real
equipment. rt may be unfeasible to make experiments on real equipment for
complexit¡ performance, safety and economic reasons. First, the system to be
designed. may have to be so complex that it is impossible to come up with any
reasonable design from trial-and-error experiments. Second, to achieve high
performance the system must be optimized, but it is in practice impossible
to tune more than three coupled parameters by trial-and-error. Third, safety
regulations may forbid real experiments, or require validation of the design for
extreme and emergency conditions and it may be dangerous or impossible to
perform this validation by real experiments. Fourth, real experiments are of-
ten expensive and time consuming to perform. Furthermore, when redesigning
a plant, it may not be allowed to disturb the operation of the existing piant,

Power generation, aero- and astronautics are typical areas where advanced
mathematical methods have been used for a long time to handle complexit¡
performance and safety issues.

Fierce competition is an important force to use advanced mathematical
methods to make better and cheaper designs, and to use computer based tools
for production planning, online optimization, operator support, supervision
and failure analysis to increase productivity and quality and to decrease pro-
duction and maintenance costs.

Requirements on saving energy and raw material as well as avoiding en-
vironmental pollution make the designs more complex, since the system must
contain recirculation loops to win back energy and material. Recirculation
loops introduce interactions between various parts of the process implying
that it is impossible to design and to operate them independently of oi each
other.

More specifi.c motives for using advanced mathematical methods for d.e-
sign and in particular control design can be found in Anon (1gg?) and Fleming
(1988). The us Department of Defense has picked simulaiion ánd mode[inl
technology as one of22 critical technologies, since it can reduce design and prol
duction costs, improve performance and maintenance, train personlel. Sim-
ulators for education and training have been used. for a long time in pou¡er
generation, aero- and astronautics. The interest from other industry areas
to use simulators for education, training and operator support is large today.
STU has a special research program DUP to investigate how process opera-
tors' tasks can be supported by computer based tools. A large part oi this
program is devoted to simulators,

6
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3. Support of Model Development

In this chapter we will first indicate requirements on concepts and tools for
model development and then outline our approach.

S.L Requirements

Since models are important and since it is difficult to develop neïy mod.els, a
basic question is how computer based tools can support model development?

Reuse

The best way is of course to be able to provide the user with the desired model
directly and automatically. This implies model libraries and reuse of models.
There are three facets ofreuse:

1. Va¡ious pu.rposes or calculations.
Models are needed in all mathematical methods and it should be possible
to use a model for various purposes without having to recode it manually.

2. Símilar systems.
Ii should be easy to adapt a model to describe a similar system.

3. Differenú users.
The user interface should preferable be customized and adapted to un-
derstand and use the user's concepts and terminology.

New models

A model can be developed using first principles or by analysing measured data.
Our project have mainly focused on the first approach.

when developing a new model, decomposition is needed to handle com-
plexity. It should also be possible to extract and reuse parts of existing models.
There should be tools that tune model parameters from measured data.

3.2 Basic ideas

Our proposal is based on four main ideas

1.. declarative models

2. structu¡ed models

3. automatic consistency checking

4. customized user interfaces

Declarative models

Models developed to be used in one package today cannot be used in another
package without additional work. Unfortunatel¡ much "mod.el d.evelopment"
work of today consists of manual recoding or implementation of aJapters.

7
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An obvious reason is of course that there is no comrnon agreement on the
representation of models.

Another maybe less obvious reason is that the representations used in
most of today's CACSD and simulation tools are too specialized and of too low
a level to allow reuse of models for other tasks than simulation. Today,s most
used languages for continuous simulation (ACSL, CsMp, CSSL Iv, EASYS
etc., for overviews see Kreutzer (1g86) and Kheir (1ggg)) follow the cssl
definition (strauss, 196?). These tools solve probrems of the type dnf dt :
f þ,r) if the user defines a Fortran-like procedure which calculates f (t,'r).

To allow a model to be used for different purposes, it should be declarative
and. not procedural. It should describe facts and relations (equations) and not
be a calculation procedure. A declarative model is multipurpose, since it can
be manipulated automatically to generate efficient code for simulation, cod.e for
calculation ofstationary points, linear representations, descriptions which are
accepted by other existing packages etc. Models of controllers can be used for
automatic generation of the control software or to generate layouts for special
purpose analog or digital VLSI circuits which implement the controller.

A declarative model is usually also closer to the model developer,s percep-
tion of the physical realit¡ and therefore, development of new models is easier.
when developing a model from first principles for a physical system one uses
fundamental laws as mass balances, energy balances and. phenomenological
equations. Model development as well as documentation are facilitated if the
user can enter these equations as they are without having to transform them
into a computational procedure. The risk of introducing errors during manual
transformation is reduced. The natural declarative form for continuous time
models are Differential-Algebraic Equation (DAE) systems, g(t,ù,æ) = 0. An
overview of important properties can be found in Mattsson lieeoa¡.

The kernel can allow any logical and mathematical framework such as
differential-algebraic equations or difference equations to describe behaviour,
but a basic idea is that behavior:r descriptions should be declarative and 

"qou-tion based.

Structured rnodels

To understand large models and to be able to reuse parts of models, good
structuring facilities must be supported. A powerful modularization conlept
supports model development by beating complexity as well as it allows reuse
of parts and building of models by putting together existing components.

Block diagrams is a common structuring tool. A block represents a sub-
model. The connections between the blocks show cause-and-effect relation-
ships between inputs and outputs of the submodel. A connection is unidirec-
tional saying that the value ofan output should be calculated from the input
connected' It means that the model developer must deduce the computational
causality to define what are inputs and outputs to a submodel.

when making a model librar¡ it is very inconvenient to define which
of the terminals of a submodel that are outputs, because what are inputs
and outputs of a submodel is not only a property of the submodel itseHfbut
also of how it is used. As motivated above a model should not be u, .o*-
putational procedure. It should not be a procedure which can calculate the
outputs when the values of the inputs and the internal state are given. The
model development and simulation tools must be able to handle interactions
with unspecified computational causality (non-directional interaction). A con-

8



39

nection should only define a relation saying that two terminals á and B are
equal, not define a compute statement A:= B or B := ,4,. Id.eas like this have
been developed in con-nection with special purpose simulators. An example is
SPICE (Nagel, 1975) for electrical circuits where the basic building blockì are
four poles.

In a sirmrlation language like CsSt (Strauss, Lg6z) model decomposition
is handled by macros, which require specification of the causality of the inter-
action. Another drawback with the macro concept is that the model structure
is not preserved at compilation. The macros are expanded at compilation and
at simulation the model has no structure. The names of the states and the
variables of the submodels are replaced by names like QQQQI, QQQQ2 etc that
are generated automatically resolve potential name conficts. In the simula-
tion language Simnon (Elmqvist, 1g?b) blocks are included in the language,
but it is necessary to specify causality.

Bond graphs (Karnopp and Rosenberg, 1gz1) is another way of describing
a model. rt works well if the components are coupled via energy exchange only.

Our proposal for model structuring is object-oriented and introãuces a
smalI, basic, common set of concepts; A collection of basic objects like mod-
els and terminals with specifi.ed properties and operations. The proposal is
described further in the next chapter.

Autornatic consistency checking

It is important to make the use of library models safe and. reliable. A model
component is an encapsulated entity with well defined interfaces. This pre-
vents to a large extent unintended abuse. It would be nice if the *"" 

"orrldget automatic warnings when making improper corurections when putting to-
gether a model. To allow automatic consistency checks, the modei develãper
must '(supply" redundant information. our concepts allow a model developer
to supply such information as described in next chapter. However, it is not
our aim to force a user who, for example, is in an exploratory phase, to specify
things that the computer itself can deduce from the context. A model devei-
oper is hopefully better motivated to supply redundant information when he
has tested the model and is going to include it in a public model library. Such
information can be seen as a part of the model documentation.

Customized user interfaces

wb believe that various users could agree upon the objects proposed, but
that they want to have customized user interfaces with r¡arious textual and.
graphical presentations. The proposal focuses on the basic objects and their
properties and allows integration of different customized user interfaces.

The concepts proposed are basic and are mainly intended for researchers
and modelling and simuration specialists. other user categories can be sup-
ported by building nelv user interfaces and new layers oftools. Such tools can
allow an architect or a chemical engineer to describe his building or chemical
plant and the assumptions in his own language. The tools should then gen-
erate the desired model in an explicit form as outlined below. It means ihat
the generated model is readable and can be modified by the user. Today's
"high-level" tools of this kind are too rigid. They produce canned., black box
models which cannot be modified. The user is in trouble if some component
is missing, since it is very difficult or even impossible for him to adl new
components.

I
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4. Model Structures

An important conclusion from computer science is that modules should be
encapsulated with well-defined interfaces. The idea is to support abstraction
by separating the internal details of a model from its interface. It means also
that internal details can be changed without affecting the way the module is
used as a component.

The model is the kernel's basic structuring unit. It is an abstraction of
some dynamic behaviour. A model consists of three parts: terminals, pa-
rameters and realizations. The terminals are variables which constitute a
well-defined interface to describe interaction with the environment. Parame-
ters are interface variables defined by the model designer to allow the user to
adapt the description of behaviou¡.

Realizations

A realization is a description of model behaviour. A model user can use a
model without having to bother about how its behaviour is defined internally
and the model designer can and must define its behaviou¡ without any as-
sumptions about the environment.

One reason for treating a realization as a separate part within the model is
that we want to have rmrltiple realizations. Different realizations can give more
or less refined descriptions of the behaviour or they can define the Èehaviour
for different working conditions or phases of a batch process. The user can
choose the appropriate realization for each particular use.

W'e distinguish between primitive realizations and structured realizations.
A structu¡ed realization is decomposed into submodels and its behaviour is
described by the submodels and their interaction. The submodels can in turn
have structured realizations which means that the model concept is hierar-
chical. A primitive realization is not decomposed into submod.els, but its be-
haviou¡ is described in some mathematical or logical framework as differential
equations, difference equations etc.

Pararneters

A parameter is a time invariant variable that can be set from outside to modify
a realization. The burden of a user to set parameters can be relieved by letdn!
the model developer provide default values. If a good default alternative is
provided, the casual user could be left unaware about the flexibility and no
extra burden is put on him. To support reparameterizations and alternative
parameters, it is possible to define relations between parameters.

Terrninals

Terminals can be viewed as variables which are shared by the internal descrip-
tion of the model and its environment.

It is natural to aggregate terminal variables, since the description of an
interaction often involves several quantities. We propose two types of compos-
ite terminals: record and vector terminals. Their subterminals can be simple,
record or vector terminals.

L0
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Ex¡,n¡pr,p 4.1-A pipe terminal
A terminal to describe the ends of a pipe or the inlets and outlets of pumps,
valves and tanks can be defined as a record terminal

PipeTe:minal IS A RecordTerminal IIITH
components:

p IS Â PressureTerminal;
q IS Å MassFlor.rTernina1;
d IS ¡, DiameterTerminal;

END;

having three components, which are simple terminals. The component d de-
fines the diameter of the pipe or hole. tr

Connections

Interactions between submodels of a structured realization are described by
terminal connections. The term "connection" refl.ects what we are doing in the
block diagram when describing an interaction. We will not discuss oru" iot"r-
faces here, but just point out that a block diagram is a good way of describing
model structure. Elmqvist and Mattsson (1g8g) have developed a prototypã
simulator, where hierarchical block diagrams with information zoomitrg r""
used to visualize the model structure. Information zooming means thai the
amount of information displayed in a block changes dynamically depending on
its size on the screen.

A connection between two structured terminals means that their first
components are connected to each other and so on recursively down to the
level of simple terminals. There are two sorts of simple terminals: across
and ú.hrough. A connection between two across terminals means that they
are equal. Examples of physical quantities are position, pressure, temperature
and voltage. Through terminals have an associated direction (in or out) and
connected terminals should sum to zero. Examples of through quantitiás are
mass fl.ow, energy fl.ow, force, torque and current.

A simple terminal has an attribute defining the unit of measure with
the SI unit as default. It is used for automatic introduction of proper scale
factors in the connection equations, thus eliminating the need of user defined
adapters.

It is important to note that generally the causality of a terminal (input
or output) is not defined by the model designer but is inferred from the usã of
the model.

The semantics of a connection is kept simple, since we do not want to
provide two different ways of describing complex behaviors. It is possible to
describe complex interaction by introducing new submodels. It is also desirable
to make the means to describe interactions independent of the frameworks used.
to describe the behaviour of primitive models.

Ex¡Ivtpln 4.2-Pipe terminals cont.
Assume that we want to model a system where a tank has a valve at the
outlet. We then just connect the outlet terminal of the tank model to the
inlet terminal of the valve model. The equations for the interaction saying
that the pressures as well as the diameters should be equal and that the mass
flows should sum to zeto are deduced automatically from the connection. tr
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Consistency of connections

rt is important to make the use of library models safe and. reliable. The
encapsulation of the models prevents to a large extent unintended abuse, but
the terminals are dangerous holes in the wall. To allow automatic checks of
connections, the model developer may add extra information, which also is
useful for documentation.

simple terminals have the attributes name of quantity and value range.
The name of quantity is used used to check the consistency of connectiois.
There is an international standard (ISO 31) for naming of quantities in differ-
ent national languages like Engtish or swedish. Information about ranges of
validity is used to test for unintended abuse during sirmrlations.

A terminal component may be declared as time-invariant. such a ter-
minal is similar to a parameter. This has two complementary uses. First, a
connection implies automatic propagation of parameter values from one sub-
model to another. Second, if the two connected parameter terminals have
defined values, they must be equal for the connection to be consistent.

Ex¡,tvIpr,p 4.3-Pipe terminals cont.
Consider PipeTerninal in Example 4.L
defined by

The pressure component p can be

PrsssureTerminal IS Â SinpleTerninal
I{ITE

attríbutes:
value := UNKN0üIN;

quantity := pressure;
unit := kpa;
direction := acroÊs;
variability := time_varying;
causality := UNKNOWN;

END;

The mass fl.ow component q and the diameter component d are defined in
analogous ways' An important difference is that mass fl.ow is a through variable
and the direction attribute should be set to in or out.

The variability of d ought to be set to rine_invariant if the model does
not allow the size of the pipe or hole to vary with time. It also allows automatic
check of that two connected pipes are of the same diameter.

The terminal could also have a component indicating medium, which can
be used for consistency checking oï parameter propagation. For example, we
can check that water pipes are connected to water pipes. tr

Unspecified terrninal attributes
To allow exploratory model development and prototyping, a declaration of
a terminal may leave attributes unspecified as long u, ,r""urru"y information
can be deduced from the context. Unspecifi.ed attributes make it possible
to develop generic models. To support consistency checks of generic *odulr,
the model.developer can specify relations between unspecified attributes. See
Martsson (1989b).

12
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5. Object-Oriented Representation

rn this chapter we will outline the conceptual design of a kernel for model
representation. The basic entities, relations between entities and operations
on them are discussed.

object-oriented programming has been an increasingly popular method-
ology for software development. Increased programmer productivitg increased
software quality and easier program maintenance are the objectives for this
new methodology. object-oriented programming supports these objectives by
facilitating modularization and reuse of code. we will here show that ideas
from object-oriented prograrnming are useful also for mod.el representation.
For a brief introduction to object-oriented programming see Stefik and Bo-
brow (1986).

Basic rnodel objects

Models and model components are objecús in the kernel for model represen-
tation. An object has a unique identity within the system and it 

"orrt"ir6 
u

collection of attributes. There is a number of important types of objects rec-
ognized in the kernel. They are representations of model structuring entities
discussed in the previous section:

¡ models,

r terminals,

o parameters and

r realizations.

The last three object types can be used as components of moders.

Class objects and relations

In our proposal, all model objects are represented as classes. In object-oriented
programming a class describes the properties common to a set of similar ob-
jects - it defines an object type. For this reason, a model defines a component
tytrle rather than a particular instance of a component; the same applies to
realizations, terminals, etc. A class can have a nurnber of afttibutes which can
be simple variables or relations to other model objects.

There are a three important relations which can be established between
model objects. These are:

¡ has - part-of
o subclass - super class

r connection

The has-link is typically used between a mod.el and its terminals, parameters
and realizations. Further, a structured realization has this kind ofrelation to
other models indicating the submodels. A has-link is stored as an attribute of
the owner. The inverse relation is called part-of.

one class can be defined to be a subcl¿ss of another class - the super
class. The subclass will inherit all properties of the super class in addition to
the locally defined properties. rnheritance is an important concept in object-
oriented programming and its use in this context will be discussed below.

13
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A, connection is a symmetric relation between two terminals and it is
stored as an attribute of a structured realization.

Ex¡,vrpr,p 5. l-Tank model
rn this example we will show a model of a tank written in omola (Object-
oriented Modelling Language) (Andersson, 1g8ga,b). omola is a declarative
language for model representation that has been designed to support our pro-
posed concepts.

Tank IS A Model I{ITE
te:minals:
inlet IS Å fnPipeTerninal;
outlet IS Â 0utPipeTerninal;
level IS .å, OutTe:mÍna1;

paxa-meterõ:
area TYPE real := 1.0!
roh TYPE real := 1.0;

realization:
nornalBehaviour IS Â Set0fDAE }üITH
equations:
area*dot(leve1) =

inlet.q - outlet.ei
inlet.p + level*rqh*g =

outlet.p - rohr,vxabs (v) /2;
outlet.q =

pi* (outIe t . d/ Ð' 2*v*roh ;
END;

END;

This code represents a tank model with three terminals, two parameters and a
realization component stored as attributes. The inlet and outlet terminals are
both pipe terminals as in Example L, but with directed flow components. For
inlet positive flow is into the tank and for outlet positive flow is out from
the tank. The realization has three equation attributes. The first equation
is a mass balance and the other two are derived from Bernoulli's equation.
In Figure 5'1 we can see some of the objects involved and their relations
represented graphically. tr

Figure 5.1 some of the objects and their ¡elatione in the tank model. subclasg
links are solid while has-links are dashed.

Model

RecordTermlnal

OutPipeTermlnal OutTermlnal

Tank lnlet outlat lavel
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fnheritance

Inheritance is an intricate but powerfirl concept in object-oriented program-
-iog. When a class is defined to be a subclass of another class it will inherit
all attributes and properties from the super class. The subclass is then free to
add additional attributes or to redefine inherited attributes. Inheritance can
be used to separate out some general attributes from a set of similar classes
into a common super class.

Inheritance will facilitate reuse of models since carefully designed general
models can be saved in libraries. These models or model components can be
used as super classes of more specialized model objects. We have already seen
how terminals have been defined in this way. The inlet and outlet terminals
of the tank model are subclasses of rnpipeTerminar and OutpipeTeminal
which are specializations of the same super class Record.Teminal.

As an example of how models .un bu defined by specializations .we can
imagine a model of a regulator defining only the terminals: set-point, measure
value and control value. This model can be specialized into different types
of regulators by means of adding different realizations. We may then dãfirre
a structured model like in Figure 5.2, containing the most general regulator
model. The structured model can then be specialized. to contain different
regulator models.

Figure 5.2 A structured model

Interpretation of model objects

Model structures represented in the kernel or in Omola cod.e can be accessed
and manipulated by different tools in a CACE environment. We may say that
a particular tool that extracts relevant properties of a model inúerpreús the
model. Different tools may extract different properties and therefàre, they
interpret the model differently.

since all model objects discussed so far are classes, i.e., they represent
types rather than instances of model objects, one obvious interpretation is to
use a model as a template to create a model instance. .A, model instance is,
for example, needed when the model is going to be simulated. Then there
must be representations for each particular model object and state variable.
The instantiation procedure is recursive in the components and. submodels.
Typically when we want to simulate a model it is first instantiated then all
equations are extracted from the primitive models and equations are generated
from the connections. second, the equations are sorted and turnedinto code
that can be used by the DAE-solver. Since the model structure is maintained

TankSystem

Regulator Pump Tank

1_5



46

in the simulation model (the model instance) the user can access it the normal
wa¡ perhaps through its block diagram, and examine or change parameters
and initial values.

As examples of other possible interpretations of model objects we can
mention

o to generate a graphical picture of a system structure,
o to generate a text descriptions of a model for documentation,
o to generate a special purpose code, e.g., regr:lator code or
o to turn a model into a form accepted by a particula,r design package.

6. The l]ser Interface

The user interface is a very important component in any computer based. tool
and in particular it is important in our proposed environment. A simple user
interface has been implemented in our prototype in order to demonstrate the
basic concepts. In this chapter we will first give a very brief overview of the
current trends in design of interactive usel interfaces. Then we will give a
short description of the interface of the implemented prototype.

Current trends in user interface design

Human - computer interaction is currently a very active research area. De-
velopments in computer hardware technology have made it possible to create
very advanced user interfaces to application programs. Howãver, the methods
for designing such adr¡anced interfaces are still rather primitive.

A curent trend is to more and more separate the implementation of the
user interface from the application program. For simple applications this can
be done in a clean and natural wa¡ but in many cases for more complicated
application prograrru¡ this is not a clean cut. Often a good user interface need.s
a substantial amount of "understanding,' of the application. In other words,
the user interface needs a model of the application. In this case we havå
the problem of keeping the application model consistent with changes in the
application.

Another trend in interface design is to use higher level specifications of the
user interaction. Commonly used are toolkits of various graphical objects and
interactors, such as dialogue boxes, push buttons and menus of different kinds.
Tluy are often designed for a special computer or a special window manager.
The úrterViews (Linton et a1., 1g8g) is an example of such a toolkit based on
x window system. A use¡ rntetface Management System(urMs) contains a
library of interactive objects like the toolkits but it also has a number of tools
that helps the interface designer to put the objects together into a complete
user interface. The interface designer may describe the interface or, , 1noru
abstract level, sometimes by a declarative language. This means that the
designer specifies what is to be done by the user interface rather than the exact
details of how to do it. The designer may also use some formalism to describe
dialogue such as transition graphs or BNF (push-down automaton). some
more advanced tools allow the interface designer to build the user interface in
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an interactive or semi interactive way with immediate feedback showing the
current appearance of the interface. An introduction and survey of UIMS can
be found in Mayers (1989).

The ongoing standardization of windowing systems and graphic input
and output primitives makes it more attractive to develop and commercialize
advanced UIMS software. In a few year's time such systems will probably be
more cornmonly available at reasonable prices.

The prototype interface

Ïn our prototype we have realized the importance of a reasonable good user
interface. In the project we have not in particular studied user interface design
as such, since the project have been focusing on representation of modàls
rather than the presentation. However, in order to demonstrate the powel
and appropriateness ofthe underlaying representation a reasonably advanced
interactive user interface had to be designed. We chose KEEI as the basic
implementation tool for the prototype. One reason was that it provided some
amount of support for building user interfaces. KEE uses object-oriented
representation of graphical entities. Predefined. primitive graphical objects
can be specialized and combined into more advanced ones.

A graphical interface in our suggested modelling environment can not be
clearly separated from the application - the model representation data base

- because it is too much involved in the used data model. The approach
taken instead, is to let the user interface operate directly on the model data
base. The models represented in the data base may then contain additional
information manipulated only by the user interface. For example, a mod.el
contains information about how it is presented on the screen, graphically or
as text, menus of possible operations, etc.

Direet manipulation of models

The style of interaction in the prototype user interface is based on direcú
manipulation. Most objects, attributes and relations in the model data base
can be represented on the screen. The screen representation can be a graphical
icon, a diagram or a textual representation. In general every object is mouse
sensitive and has an associated menu of operations.

The model data base in our prototype is divided into a set of libraries.
A library is a collection of model objects and their attributes, and it can be
saved and loaded from external memory. Objects in different libraries rnay
have relations. The screen is separated into four important areas:

. an access window for loaded libraries,
o a library display window,
¡ an editor area and

. one or more general display windows.
The access window for loaded libraries displays a list of all loaded libraries
where each entry is mouse sensitive and has an associated menu of libra,ry
actions. The library display window shows the content of a selected library.
For example, it may show the graphical icon of every model object in the
library. Two important operations are implemented for most model objects;
these are dísplay and edit. These operations can of course be called r"o-
r Knowledge Engineering Environment, KEE is a t¡ademark of Intellicorp, Inc.
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the object's lnenu which is accessible through its icon but since they are very
conlnonly used there is an alternative short cut. An object can be picked
from the library display and an icon contour image can be dragged into an
appropriate area of the screen. If an object is dragged into a display wirrdow
the object will be displayed in that window. If an object is dragged into the
editor area of the screen, the object can be edited.

In the editor area of the screen, one of a number of different editors may
appear. The type of the object to edit deternrines which editor that will be
invoked. There is a text editor for primitive realizations (equations) and other
text delinitions. A structure editor is invoked for block diagram editing of
structured models and a form is invoked for editing the attributes of simple
terrninals.

Figure 6.1 The prototype rnodelling environrnent.
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7. An Application Study

The project has also included an application study which focused on modelling
of chemical processes. The aim was to get some evaluation of the ideas and
feedback from a real example. The application study has been performed by
Bernt Nilsson, who is a chemical engineer interested in modelling. He has
played the role of a user who wants to model a medium sized, typical chemical
process plant that contains a reaction part with a tank reactor and two tubular
reactors, and a separation part with three distillation columns in series.

The modelling work is described and discussed in Nilsson (1g8g), where
also the model can be found. Since the application is a typical chemical plant,
he presents an object-oriented modelling approach for chemical plants.

Chemical processes are often complex plants that are composed of a large
number of components. However, chemical processes are often built as a num-
ber ofsubprocesses. In the application there are the reaction part and separa-
tion part. These subprocesses can be decomposed further into process compo-
nents or unit operations. This decomposition is easily and neatly described by
our hierarchical model decomposition concept. The process components are
often standard process equipments such as pipes, pumps, valves, reactors, heat
exchangers, distillation columns etc. that are used in different configurations
in different processes. A model class allows reuse of a description in several
instances and the inheritance mechanism allows adaptation of a model.

Nilsson (1989) describes ways of further decomposing chemical models.
one interesting example is the medium and machine decomposition. It is
of interest to separate the description of the process components from the
descriptions of the chemical media. In today's simulation systems a model of
for example a chemical reactor contains a reaction model which can only be
modified by setting parameter values. A, specification of a chemical reactor
should contain the equations describing its thermodynamic and hydrodynamic
properties, while the equations describing the reaction should be associated
with the chemical media. Nilsson shows that the submodel concept allows a
nice medium and machine decomposition.

Regular structures are common in chemical processes. For example, a
distillation column may contain a few hundred. trays connected in series. To
handle this convenientl¡ Nilsson proposes matrices of submodels and a ma-
trix notation to describe how they are connected. Finite element approaches
to distributed parameter systems (partial differential equations) create also
regular structures.

Parameterization and generic models are important to increase the flexi-
bility and the reusability of models. The concepts proposed support Nilsson,s
basic needs of parameterizations. He states that it important to be able to
parameterize structural properties like the number of chemical components
flowing in a pipe. 'With matrices of submodels it is possible to let the number
of trays in a distillation column be a parameter. He illustrates in several ways
that inheritance allows powerful parameterizations. For example, it makes it
simple to change the model of the medium in the distillation column.

Nilsson concludes that the proposed model representation is superior to
existing ones, but it requires also a good model/user interface and number of
tools to make a good modelling environment.

L9



50

8. Conclusions

First, the results of the project is summed up. Then technology transfer is
considered. Third, some more general experiences of software techniques and
tools are discussed.

S. L Results

Most of today's languages for continuous sirmrlation follow the CSSL defini-
tion (Strauss, L967). It has served well for over 20 years. We think it is time
to capitalize on the enormous development of information technology and re-
consider the for¡ndations of model representation. Our proposal is a modest
effort in that direction.

The major contribution of the project is that experience in model struc-
turing, progress in numerical analysis and new ideas in object-oriented design
are collected and turned into a coherent scheme for model representation. Our
proposed model representation scheme is general, powerful, clean and easy to
understand. The result is presented as a design proposal of a kernel for model
representation. The kernel is intended as central model representation data
base in an environment of tools for system engineering. The basic features of
the kernel are:

o Declarative and equation based behaviour descriptions to make the mod-
els versatile and useful for various applications.

o Hierarchical mod.els with well defined interfaces based on terminals and
parameters.

o Terminal attributes for automatic check of connection consistency.
o A model may have several behaviour descriptions to support model ver-

sions and alternative behaviour.
r Object-oriented representation where classes with inheritance facilitates

reuse and incremental model development.
o An internal representation which preserves the structure of models.
o The kernel allows integration of customized user interfaces and various

tools.

A prototype implementation has been written in common Lisp and KEE. To
get some feedback and evaluation of the ideas, the project has also comprised
an application study focusing on modelling of chemical processes. Experiences
from the prototype and from the application study indicate that the ideas are
sound and that the kernel proposal may indeed serve as a basis for a new
generation of modelling, design and simulation tools.

The proposed kernel ought to be of interest in all areas of engineering
and for all who use models and simulation. The ideas have been presented at
conferences and the prototype has been demonstrated for a number visitors
fromindustry and universities. Peopie frommany different areas of engineering
who have struggled with similar problems of model representation, have found
our solutions very interesting.
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8.2 Development and technology transfer

The scientific results of the project are and will be made public through articles
in international magazines and as conference contributions (see Appendix A).
Some of the results have and will be published as licentiate ¿nd doctoral theses.

The contact net with Swedish and foreign universities and companies that
develop CACE tools is extensive and functioning. We are noïy extending it
to include also researchers and. developers working with model development
tools and simulation in general. The international conferences give good op-
portunities to exchange ideas and information and to make acquaintance with
new people. Besides control engineering conferences we have also participated
in conferences aimed at modelling and simulation in general as well as con-
ferences aimed at special applications as chemical engineering and building
simulation.

Implementation of the kernel

A very good way of transfering results like that of our project is of course
to make the tools available to many people. The experiences from Simnon
show that useful program components are a very good way ofspreading new
ideas and methods. our prototype is written in Common Lisp and KEE. The
advantage for us of using KEE was that the prototype could be implemented
with a modest effort. However, since KEE is very expensive, we do not expect
the prototype to be widespread.

To make our tools generally available, it is necessary to implement them
using cheaper and more commonly available languages and software compo-
nents. 'We think that it is not the task of a university to develop, market
and maintain commercial and professional software. But we realize that we
have a responsibility of transfer the results of our project and making them
generally available. A project supported by sru (sru project 8g-01g3z ,.A
kernel for modelling and simulation") has just been started to implement a
kernel for model development and simulation, which someone else can develop
further into a commercial product of the prototype kernel. C++ is used as the
basic implementation language. An economic reality is that it is expensive to
develop professional software and the market for CÄCE-products is relatively
small. However, our kernel may be of interest in most areas of engineering and
ought to have a much larger market. There are companies and groups that
have expressed interest in making a commercial product. However, it is too
early to make any predictions now and we welcome all proposals.

Application projects

Another good way of spreading neu' ideas and methods is to have joint ap-
plication projects with developers and users. However, to be able to transfer
the results in application projects, implementation of the tools are needed. In
application projects the developers get feedback and can modify and improve
the tools. For a special application they can develop customized tools and
user interfaces. Model libraries can be built which can be of use not only for
the participating part, but also for a whole line of business.'we are planning to run a number of application projects. However, as
pointed out above, we need implemented tools and the implementation project
has therefore been given priority. A proposal for an application project to-
gether with Sockerbolaget has been submitted to STU's research program
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DUP. The application is modelling of sugar crystallization. Simulation and
sirmrlators have a central role in DUP, which aim is to investigate how process
operators'tasks can be supported by computer based tools. It is natural to set
up and finance application projects in DUP. STU's program "Applications of
the info¡mation technology" is another possible source of financing application
projects.

Standardization

Much could be gained if we could agree upon a conunon set of ideas. rt is time
to lay the foundation for a new standard for model representation. IFAC has
a working group on standards for CACSD Software. We are participating in
this work. rt has not addressed non-linear systems yet, but it has focused on
linear systeru.

It may be remarked that to build flexible model libraries we must also
agree on cornmon principles for model development. This is a hard task, but
it might be possible to achieve in certain application areas.

There is an international association IBPSA (the International Building
Performance Association), which promotes the science of building performance
simulation in order to improve the design, construction, operation and main-
tenance of all types of buildings. IBPSA's international membership includes
architects, engineers, building managers, academics, software developers, and
government representatives concerned with building performance. IBpSA or-
ganized a conference Building Simulation '8g on June 28-24, LgSg in Vancou-
ver, Canada. At this conference Per Sahlin, The Swedish Institute of Applied
Mathematics, ITM, Stockholm and Edward Sowell, California State Univer-
sit¡ Fullerton, California presented a proposal for a neutral format for building
simulation models to allow users to share models (Sahlin and Sowell, lg8g).
This proposal is inspired and infuenced by the results of our project.

8.3 Experiences of software techniques and tools

The project has dealt with design of tools for model development and simu-
lation and to do this we have exploited ideas, approaches, methods and tech-
niques from computer science as well as used existing software. Hence we may
also ask what we have learned that can be of more general interest.

Object oriented programrning

object oriented programming (for overview see e.g. Stefik and. Bobrow, 19g6)
is a technique for structuring programs and to support reuse. The basic ideas
are data abstraction and inheritance.

objects and abstraction is natural in engineering. Block diagrams and
and other kinds of schematics and flow graphs are common. Blocks have
often well defined interfaces. In control engineering it is common to talk
about input/output models, where only the relations between the inputs and
outputs are known. Nothing is then said about the internal structure or the
implementation of it. When the model also defines internal structure, we speak
about internal models.

Although the ideas of object oriented programming are or at least seem
to be natural, it is not self evident how to use them in a special application.
Zobel and Cummings (1989) discuss use of object orientation for digiiat signat
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applications. They had found that it is many cases not obvious whether oper-
ations should be implemented as methods or as special processing objects. For
example, should FFT be a method of signals or a special object (machine)?
They were going to carry through both approaches to get a deeper insight and
experiences.

In discrete event sirrmlation the models can perform the simulation them-
selves by sending messages to each other. This is not possible in continuous
time. The differential-algebraic equations must be solved simultaneously. It
could be done in an object oriented fashion by having a Solver object that
collects the equations from all the models, solves them and returns the result
to the models.

We have used object orientation on several levels. First, for the architec-
ture of the system to get an flexible and extendible integrated environment
which allows customized user interfaces. Second, the modelling concepts are
object oriented. Third, the internal model representation is also object ori-
ented.

A. kernel for model development must allow interactive definition and cre-
ation of new model classes (types). Interactive languages like KEE, CLos,
Smalltalk allow interactive definition of new classes and a model class can
basically be implemented as a class in the implementation language. rn com-
piled languages like simula and C**, it is not possible to define new classes
interactively. It means that it is not possible to represent model classes di-
rectly as classes in the implementation language. An extra layer to handle
definition of new model classes and inheritance between model classes must
be implemented.

Databases

Databases are central. We need them to store models, parameter data, mea-
surements, results of calculations etc. Common representations are needed to
make the tools integrated.

Today's databases can handle a large set of independent data efficientl¡
but in CACE the amount of data are moderate, but the relationr ."" co-pl"*.
For example, a model may be a linear version of another model at a certain
operating point for some given parameter values. Object oriented databases
is a promising approach.

Graphics and user interfaces

Computer graphics gives good possibilities to improve,the user interface. It
can be used to make concepts, properties, structures and. other information
more concrete. Direct manipulation is an interesting technique which allows
the user to operate on visual objects and get immediate visual feedback. Visual
metaphors must be selected carefully to give the user a correct conception.

Graphics must be designed carefully to be useful and end.urablã in the
daily use. The primary use of graphics should not be spectacular demonstra-
tions.

Unfortunatel¡ it is laborious to implement graphics. First, portability is
a major concern. As a user you want to have a homogeneous environment.
The advantages of having a standard window system for all CACE programs
are quite obvious and uncontroversial, but it should be noted that CACE
programs are not the only use of a workstation. The user will use the native,
vendor-supplied window system, and would therefore prefer that one also in
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CACE progranrs. The same also applies for text editors. The situation seerns
to irnprove and x window System is today a de facto standard. Second, there
are today very few tools available for definition and implementation of user
interfaces, but it is an active area. Hopefully there will be commercial user
interface management systems (UIMS) available within a few years.

AI and expert systern techniques

The complexity of AI has speeded up and influenced the development of pow-
erful workstations, high interactivity, computer graphics, animation, object
orientation, direct manipulation etc.

'We consider the expert system technique as a useful and powerful pro-
gramming technique. The kernel does not itself contain any expert system,
but we have exploited ideas on information representation and declarative
programming; equations to describe behaviour. Rules can be used to define
events. Deduction of unspecified model attributes and consistency checking
can be implemented by rule based systems.

Some people claim that they have knowledge based simulation when they
provide simple model libraries. Knowledge based simulation is, however, in
our opinion more than providing a model library. There should be facilities
that assist the user to select the proper models and model versions as well as
to evaluate the results.

Syrnbolic manipulation and computer algebra

The increasing computing capacity makes it possible to perform symbolic ma-
nipulation. The user can give his problem on for him a suitable form. Syrnbolic
manipulation can then be used to simplify the problem and to generate de-
scriptions that the nume¡ical tools need. Analytic expressions may give better
insight than tables of numerical values.

Existing comrnercial packages for computer algebra such as MACSYMA,
REDUCE, Scratchpad, Maple and Mathematica are powerful. Unfortunately,
it is not easy to use exisiting packages for computer algebra in other tools.
They are interactive and assume that they are ru.n by human beings. The
results returned from the packages are on a format intended for human beings.
They are not built to be run or called by other programs. They can of course be
run as separate processes and comunication can be done via pipes, mailboxes
etc. depending on the operating system. The diffi.culty is to decode the text
strings returned by the package. The reference manuals do not give any formal
specification of the format. So if we want to write a program to decode it,
we have first to investigate what is returned. All this is laborious to do but
the situation is even rvorse. Since the format is not formally specified, a nerv
release of the package may change (improve) the format.

Libraries of routines for symbolic manipulation, like the numerics libra"ries
would be very useful.
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with increasing detail. The first abstraction
level for a model might be just its name or
icon. The next level might describe usage
and extemal behavior, and a third level might
detail its intemal behavior. The amount of
information increases at lower abstraction
levels. Modularization can be used to main-
tain useful views with a limited number of
related concepts. Modularization means that
the information at a certain abstraction level
is decomposed into smaller entities.

The concept of this paper is that a graph-
ical description of the structure is easier to
understand than a textual description. Mod-
ularization is achieved by use of block dia-
grams. To support abstraction, information
zooming and hierarchical block diagrams are
proposed. Multiple windows are used to sup-
port further multiple views of the model.

The use of hierarchical block diagrams and
information zooming will be illustrated by
an example. Please remember that when sit-
ting at the terminal one can scroll, pan, and
zoom in the windows, but that the dynamical
aspects are lost in a paper that can show only
snapshots of the screen.

An Exarnple

As an example, consider a model of a ther-
mal power plant. The block diagram in Fig.
I shows the major components and their in-
teraction. The annotated boxes represent
submodels, and the lines between the boxes
indicate interaction between the submodels.
To the left in Fig. 1, we find the model for
the combustion chamber. It delivers energy
to the boiler, heaters, and reheaters in the
turbine part. The boiler produces steam,
which is heated in the superheaters. The
steam then goes to the turbines via the steam
valve. From the turbine system, the steam
enters the feed water system. Extract steam
from the turbines is used to preheat the feed
water. The feed water goes to the boiler, and
to sprayers in the heater as well. The equa-
tions describing the system are typically mass

and energy balances. External functions for
interpolating in steam tables are also re-
quired. The model has 470 variables; in its
textual form, it is 1200 lines long, including
layout information.

By pressing the right mouse button when
moving the mouse, one can scroll and pan

ABSTRACT: New workstations with high-
performance graphics offer new possibilities
for man-machine interaction. This paper pre-
sents a prototype simulator for dynamical
systems, called Hibliz (Hlerarchical Block
diagrams with Information Zooming), which
explores some features of modem computer
graphics. Hibliz supports hier¿rchical block
diagrams to describe the model decomposi-
tion and interconnection structure. The user
can scroll, pan, and zoom the block diagram
continuously in real time. Zooming controls
the amount of information displayed. When
zooming in on a block, it changes from an
annotated box to a representation showing
intemal structure with increasing detail.
Since the block diagrams can be hierarchi-
cal, it is possible to make the description at
each level simple and clear. Hibliz also sim-
plifies model development by allowing sub-
models in the form of ordinary differential
and algebraic equations rather than assign-
mcnt statements for derivatives and algebraic
variables.

Introduction

It is difficult for a human to develop and
handle models of large and complex sys-
tems, because most humans are unable to
deal with many entities simultaneously.
Consequently, a system for model develop-
ment and simulation ought to have structur-
ing facilities so that the user can view a
model from different viewpoints, each hav-
ing only a small number of entities. Up to
now, it has been difficult to design and im-
plement such facilities, because structural
properties are not easy to fepresent textually.
The decomposition of a model into sub-
models with interconnections is more easily
described graphically. The current trends in
scientific personal computers will make
graphical displays commonly available. This

Pr€sented at the IEEE Control Systems Society
Third Symposium on Computer-Aided Control
System Design, Arlington, Virginia, September
24-26, 1986. Hilding Elmqvist is with Sau-
Control AB, Development Ceriter, P.O. Box 62,
5-221 00 Lund, Sweden. Sven Erik Mattsson is
with the Department of Automatic Control, Lund
Institute ofTechnology, Box I 18, S-221 00 Lund,
Sweden.

will revolutionize the man-machine interac-
tion. Apple's Macintosh is a clear indication
of what we could expect. Such machines will
offer great opportunities to invent more ef-
frcient problem-solving tools.

This paper presents a prototype system for
model development and simulation. The
simulator explores some of the possibilities
of new workstations with high-performance,
real-time graphics. Special attention has been
given to the use of graphics to describe struc-
tural properties. Hierarchical block diagrams
are used to describe the model decomposi-
tion and the interconnection structure. By
moving a mouse and pressing its buttons, the
user can scroll, pan, and zoom the block
diagram continuously in real time. Infor-
mation zooming is used to control the amount
of information displayed. When zooming in
on a block, it changes from an annotated box
to a representation showing the intemal
structure with increasing detail. The concept
of information zooming was introduced by
Elmqvist []. The prototype simulator is
called Hibliz (Hlerarchical Block diagrams

with Information Zooming).
Hibliz is a simulator for dynamical sys-

tems, described by sets of ordinary differ-
ential equations and algebraic equations. The
structuring concepts proposed also can be
used for more general systems with both
continuous-time and discrete-time submod-
els; however, the algorithm presently in-
cluded for simulation can handle only con-
tinuous-time models. Hibliz allows the sub-
models to be described in the form of
equations instead of assignment statements
to facilitate modeling and use of model li-
braries.

The model description concepts of Hibliz
are discussed in the following section. The
operation of Hibliz is described in the next
section and then implementation is ex-
plained.

Model Description Concepts

Two basic principles can be used to struc-
ture a model: abstraction and modulariza-
tion. The essence of abstraction is to extract
important properties while omitting insignif-
icant details. Different levels of abstraction
are defined, allowing the system to be viewed

Jonuory l.989
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Powersystem: SYSTEM;

eamval Turbines
Heaters

ombustion

edval FeedWater
Boiler

Fig. 1. Power system model.

the picture continuously. If both the right
and middle buttons are pressed, one zooms.
When one zooms in on the diagram, the

blocks open up and show their intemal de-
tails. Zooming further (Fig. 2), the intemal
description of the boiler can be seen. It is a

new block diagram.

Model Decomposition

Hibliz supports the use of hier¿rchical
block diagrams as a tool to handle complex-
ity. A basic rule is that a block diagram
should be simple and contain only a small
number of blocks. The selection of module
boundaries is guided by one's perception of
the problem space. If a first attempt at struc-

turing results in too many blocks, it is ad-
visable to introduce a new hierarchy. There

is almost always interaction (coupling) be-

tween modules. In order to be useful, a de-
composition must be chosen in such a way
that the extemal interaction complexity is

small compared with the internal complex-
ity. There should not be crisscross lines be-
tween the blocks. Furthermore, the entities
in a module should be related (cohesion).

Modularization gives many advantages. It
simplifies the modeling. It makes the model
more flexible and easier to adapt and man-

age. One can also build and use libraries of
models. Technical systems are often built in
a modular way and composed of standard
components. The behavior of these standard

components may be well known, and good,
generally accepted models already may

exist.

Multiple Windows

The user can create new windows for
viewing a model. One of these windows is

the current interaction window for scrolling,
panning, and zooming. To help the user keep

track, rectangles outline the parts of a win-
dow that are also shown in other windows.

The user can point at an object in any win-
dow and ask for automatic scrolling, pan-
ning, and zooming to this object in the in-
teraction window.

Interaction Structure

Now consider the interaction between the

models. In the first level, the block diagram
(Fig. l) shows which models interact. The
next level (Fig. 2) is concemed with how

models interact, i.e., which variables are in-
volved. The graphical representation for a

submodel consists of two rectangles; one in-
side the other. The descriptions of interfaces

are placed at the border of the submodel be-
tween the inner and outer rectangles. At the
most detailed level, the effect of interaction
can be seen in the equations containing in-
teraction variables.

A model is an encapsulated entity, and the
interaction variables are the only variables
visible from the outside. The interaction
variables are associated with submodels.
They cannot be associated with connections,
because it should be possible to develop a
submodel without knowing in what environ-
ment it will be used. This is necessary to
allow for model types and model libraries.
A model often interacts with several other
models, implying that the formal interaction
variables should be grouped corresponding
to the different possible connections. Such
groups are called interfaces. Interfaces may
have a hierarchical structure.

For example, consider the model Boiler in
Fig. 2. To the right, the interface Iwater of
Boiler can be seen. It models the incoming
feed water to the Boiler. This interface is
connected to the right interface of Econo-
mizer to model that the feed water goes to
the Economizer. The feed water is heated in
the Economizer. It then leaves the Econo-
mizer and flows into the Drum. This is mod-
eled by the connection between the left in-
terface of Economizer and the right interface
of Drum. In Fig. 3, we can see that the in-
terfaces of Economizer have three compo-
nents: flow rate, enthalpy, and steam pres-
sure.

A connection between two strucrured in-
terfaces meâns that their corresponding com-
ponents are connected. The number of com-
ponents must be the same in the two
interfaces. Primitive interface components
also may be used to pass through a structured
connection to submodels. The user needs

only to speciS the interfaces of nonprimitive
models to the degree of detail necessary to
draw the block diagram within the actual
block. The connection between the interface
Iwater of Boiler and the right interface of
Economizer illustrates this.

nomlzeDrum

Boller: OBJECT,

]-Se Down
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Fig. 2. Power system zoomed in at Boiler
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Behavior

Before discussing the semantics of con-
nected variables, consider a primitive sub-
model. The model Economizer is one ex-
ample. As before, zoom manually, but there
is also a facility for quick automatic zoom-
ing. Pointing with the cursor at the outer
rcctangle of a model and pressing the middle
button, Hibliz automatically zooms in on the
model (Fig. 3).

The behavior of models at the lowest hi-
erarchical level is described by equations in
textual form. An equation should have the
form

expression : expression

We will not describe the syntax and seman-
tics of expressions in full detail (see [l]).
Expressions have the usual syntax with arith-
metic, relational and Boolean operators.
Conditional parts (if-then-else expressions)
as in, for example, Algol 60 are also al_
lowed. Common mathematical functions
such as sin, cos, and exp are available. The
language supports simple integer, real, and
Boolean variables. Hibliz also provides a
mechanism for incoqporating additional
functions written in pascal. These functions
can be used directly in the model. For ex_
ample, RHP, THp, and THpH used in the
model Economizer (see Fig. 3) are such ex_
ternal functions implementing steam tables.

There are four kinds of variables: con_
stants, par¿lmeters, interface variables, and
intemal variables. Constants and parameters
are considered to be constant during a sim_
ulation, but the user can change the values
of parameters on-line between simulations.
The values of interface variables and intemal

Fig. 3. Economizer model.

variables may, of course, vary with time.
The time derivative i of a variable ¡ is writ-
ten as ''x'der. " The scope rules for variables
are very simple because of the powerful con-
nection concept. Variables can be referenced
only from equations in the submodel where
they are declared.

It should be noted that the basic concept
is not assignment statements but general
equations. Thus, a model can be represented
as f(t, i, x, p) : 0. Many integration al-
gorithms and simulation packages require
that the derivatives are solved explicitly by
the user: * : F(t,.r, p). The supporr of gen-
eral equations simplifies the model devel-
opment, and the documentation becomes
better since equations are closer to first prin-
ciples. When developing a model for a phys-
ical system, one uses fundamental laws such
as mass balances, energy balances, and phe-
nomenological equations. These are either
algebraic equations or ordinary differential
equations that relate certain variables. Com-
pared with the assignment form, it is easier
to check that the model is entered correctly.
The risk of introducing errors during manual
transformation into assignment statements is
reduced.

Furthermore, as thoroughly motivated by
Elmqvist [2], the equation form is the only
reasonable representation for model librar-
ies. With models in assignment form, for
each submodel, it must be decided which of
its variables are inputs (in other words, are
known) and which of its variables are out-
puts (defined by the model). As a simple
example, consider a resistor. Ohm's law
states 4 - Vz : R1, where V1 and V2 are
the voltages at the ends of the resistor, / the
current through the resistor, and R the rcsis-
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tance. The model has three variables; Vr, Vr,
and L In this model, the resistance R is a
given parameter. If we should write the
model in assignment form, there are three
possibilities:

I:: (\ - VùtR

Vt:: V2 + RI

Vr:: V, - N

The fint variant assumes that 4 and V2 are
inputs and defines 1. This model is appro-
priate if, for example, one end of the resistor
is connected to a voltage source and the other
end is connected to the ground. The second
and third variants âssume that the current and
the voltage at one end are known. These
models are appropriate if the resistor is con-
nected to a current source and the ground.
Consequently, for models in assignment
form, several different models are required
for a resistor, depending on how it is con-
nected to the environment. This makes both
use and maintenance of a model library
messy. Furtherrnore, other environments
may result in algebraic loops so that equation
systems with equations from several sub-
models must be solved to transform the
model into assignment form. Two resistors
connected in series betwee¡¡ a voltage source
and grcund is a simple example of this. Sub-
models cannot be transformed into assign-
ment form individually, since the transfor-
mation is a global problem.

A more sophisticated connection mecha-
nism can be introduced when equations are
allowed. Hibliz supports two rypes of con-
nection semantics, depending on the char-
acter of the interaction variable. Consider,

w2

Economl-zer : OBTIECT,.
PAR

k=0.0;f=0.0;cm=0.0¡
m = 0.0; Ve - 0.0;

VAR
Ttn, T2, R2, l2lJt TmH:real,.

EOUATIONS
P2:PL-f*$r1*w1;
(Cm*m*TmH + Ve*R2l*H2' DER =

Q+Wl*Hl -r¡12*H2;
R2 : RHP(H2, P2l;
T2 : IHP (H2, p2l ;
T2H : THPH(H2, P2l ;
Tm:T2*k*Q;
TmH : T2H;
W2 : W1;

1

H2 H1

P2 P1
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for example, three connected electrical wires.
Each wire is represented by a voltage and a

cunent. The constraints at the junctions are

that the voltages are equal and the sum of
the currents is zero. These two types of cut
variables are sometimes called across vari-
ables or through variables. Other examples
of across variables are prcssure and temper-
ature. Mass and energy flow, thrust, and
torque are examples ofìhrough variables. It
is natural to associate a direction with a

through variable. The directions are impor-
tant when putting up the equation for con-
nected variables so that the terms in the
"zero-sum equation" are given correct signs.
The interfaces are presently declared tex-
tually; for example, the interfaces of a re-
sistor may be declared as

Wirel: (Vl: real, Il: IN real)

Wire2: (Y2: real, 12: OUT real)

An interface variable is defined to be a

through variable by the keyword IN or OUT
as indicated above for Il and 12.

Hibliz interprets the connections drawn by
the user and generates appropriate equations
automatically.

How Hibliz Is Operated

The user operates Hibliz via a keyboard

and a mouse with three buttons. He can cre-

ate and edit hierarchical block diagrams, in-
sp€ct the model, and simulate it.

Scrolling, Panning, and boming

The mouse is used for pointing at the

screen; a cursor follows the movements of
the mouse. As indicated earlier, the mouse

is used when scrolling, panning, and zoom-
ing. In order to scroll and pan, press the right
button and move the mouse. To zoom, first
press the right button and then the middle
button. Now, moving the cursor up means

zooming in;. down means zooming out. An
object (model, interface, curve, or text) can

be zoomed in by pointing at it and pressing

the middle button only. Zooming is done
smoothly, and the final size of the object is
chosen as large as possible while still being

contained in the window. Text objects are

treated specially. Their final sizes are chosen
so that the longest line of the text matches
the width of the zoom window. The text line
pointed at is scrolled to the center of the
zoom window. This allows convenient
scrolling within a window. A connection is

considered to belong to the enclosing model.
Therefore, pointing at a connection is a con-
venient way of zooming out to a higher hi-
erarchical level. If the middle button is

pressed without pointing at anything, a

zoom-out to 70 percent is performed. Note
that it is possible to point at an object in a

window other than the current zoom win-
dow. Pointing in an overview window thus
allows rapid inspection of different objects.
A new window is selected to be the current
zoom window by pointing at it and pressing
the left and right buttons.

Two-Button Stetching

To lay out objects such as windows,
models, and interfaces on the screen is a

common operation. The layout with respect

to position and size is done with "two-button
stretching." The lower left corner and the

upper right comer of the objects follow the
mouse in different ways depending on which
of the left and middle buttons are pressed. If
the left button is pressed, the cursor points
at the lower left corner, which follows the
movement of the mouse. The same applies
for the upper right comer when the middle
button is pressed. If both buttons are pressed,

the cursor points at the center of the object,
and the whole object moves. The stretching
is finished when both buttons are released.
It should be noted that the objects are com-
pletely redrawn, even in the two-bunon-
stretching mode.

Commands

Commands are chosen from a pop-up
menu. The menu is shown when the left but-
ton is pressed. The desired command is se-

lected by pointing at the corresponding menu
entry. Hibliz highlights the selected entry and
performs the command when the button is
released. If no entry is selected when re-
leasing the button, the menu disappears.
Command actions sometimes require addi-
tional input from the keyboard or mouse.
Hibliz then prompts in the command area at

the bottom of the screen.
The Model command creates a model and

its graphical representation (two rectangles

and the name). Hibliz prompts for name,
which the user should type on the keyboard,
and the enclosing model, which the user
should select by pointing at it with the mouse
and pressing the left button. The layout is
done with two-button stretching as described
earlier.

The Interface command is used to declare
and position an interface. An interface is
presently declared textually, and its graphi-
cal layout is done automatically. The user
positions and stretches it using two-button
stretching.

The Connect command makes it possible
to draw connections between interfaces by
using the mouse and the left button ro input

a sequence of line segments. The start inter-
face is first selected by pressing the left but-
ton. Intermediate points are given by releas-
ing and pressing the button. The last line
segment is refreshed while the mouse is
moved (rubber-band drawing), and the in-
terface structure is searched for the destina-
tion interface.

The Text command is used to edit the tex-
tual parts of models. The editing is per-
formed using a simple screen-oriented edi-
tor. When the user leaves the editor, the text
description is parsed. Error messages arc

currently given as text in the command win-
dow. Here there are many possibilities to use
graphics and color to explain the error to the
user.

The Remove command allows deletion of
models, interfaces, and connections. The
Copy command copies a model and all its
submodels, interfaces, connections, and the
text. The Save commnnd stores the current
model hierarchy as a text frle. Such a file can
be read by the Get command to recreate the
model. If a model has been defined earlier,
the hierarchical position and layout are given
as for the Model command. The Copy, Save,
and Get commands make it possible to build
simple model libraries.

The Layout command is used for changing
the position and size of windows and models.
Therc is no facility to change the layout of
interfaces and connections. The View com-
mand creates a new window for viewing the
model.

The Compile command analyzes the model
and prepares for simulation. 'lhe Simulate
command prompts for start and stop time and
then starts the simulation.

The Display command creates a display
for presentation of simulation results of any
variable. The presentation of simulation re-
sults is very primitive at present. Only sim-
ple trend curves are implemented.

The Hardcopy command creates a descrip-
tion of the cuÍent content of the screen in
the form of a PostScript progmm. The pro-
gram can then be used to create hard copies
on, for example, Apple's LaserWriter.

the Exit command stops Hibliz and re-
turns to the operating system.

Implementation

The code for Hibliz consists of some
28,000 lines of Pascal. The software is
highly modular. Related types, variables, and

procedures are grouped together. Machine-
dependent parts such as file and string han-
dling are isolated to improve ponability. A
preprocessor, which we call Packman, is
used to produce a standard Pascal program
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from module files, since Pascal does not al-
low mixed declarations of global constants,
types, variables, and procedures.

Packman

Packman accepts files consisting of sec-
tions of code preceded by headings such as
.PROGRAM, .LABEL, .CONST, .TYPE,
.VAR, .FORWARD, .PROCEDURE,
.INIT, and .MAIN. Packman ouÞuts the
contents of all sections labeled .CONST on
a file named CONST.SEC, and so on.

Typically, the file issued to Packman is a
short file containing a number of commands
to include files. Inclusions may be nested.
Hibliz is built similar to a transparent onion
consisting of six layers. Outer layers can use
elements of inner layers. Packman is de-
signed to prcmote separate compilation. By
the commands .DEFINITION or .IMPLE-
MENTATION it is possible to speciff what
should be visible outside the compilation unit
and what should be hidden. Portabiliry with
respect to separate compilation facilities of
different Pascal compilers can be handled by
modifying Packman.

Data Structure

A model is represented as a record con-
taining lists of submodels, variable declara-
tions, connections, and equations. A general
list package for doubly linked lists with
headers is used. It has operations such as

Newlist, Into, First, and SuccElem. A node
is a Pascal record with variants. The com-
mon area contains information such as for-
ward and backward pointers for list manip-
ulation; the variant part contains a pointer to
a record describing models, interfaces, con-
nections, etc. Note that this method of im-
plementing lists makes it possible for a model
description, etc., to be a member of several
lists at the same time. The list package makes
it easy to handle and manipulate lists.

Compiler

The model descriptions at the lowest level
are parsed at exit from the editor or when
read from a file by the Get command. The
parser builds a syntax tree for each equation.
The Compile command links the identifiers
to their declarations, Interface variables con-
nected to each otherare put into a list. These
lists of connected interface variables are then
analyzed to generate the proper equations,
their syntax trees, and the links to declara-
tions, It also checks that across and through
variables are not connected to each other.
The rype consistency of all expressions is
checked.

When Hibliz has collected all equations,

it has a differential/algebraic system of the
form

g(t, i, x, v, p, c) : 0

where t is the time, ¡ and y vectors of un-
known variables, p a vector of known pa-
rameters, and c a vector of known constants.
The vector v contains those unknown vari-
ables that do not appear differentiated in the
equations. Hibliz uses the differential/alge-
braic system solver (DASSL) [3]. DASSL
has a reputation of being one of the best and
most robust numerical solvers for differen-
tial/algebraic systems. DASSL accepts prob-
lems of the above form if it is provided with
a routine for calculating the residual A :
gQ, i, x, v, p, c) when the arguments are
known. However, to decrease the order and
complexity of the problem, simple symbolic
formula manipulation is performed as fol-
lows. Connections of across variables lead
to simple identities of the form A : B. lt is
easy to explore these entities and eliminate
variables. The record describing a variable
has an element called alias, with an initial
value implying that it is its own alias. When
simple equations are found, Hibliz modifies
the alias elements accordingly and removes
the equation from the list of interesting equa-
tions.

After the elimination of simple equations,
Hibliz assumes thati and y are unknown and
sorts the equations and variables so that the
problem becomes block lower triangular with
minimal diagonal blocks. If a block is scalar
and the variable to be solved from the equa-
tion is a component v, of the vector y, and
the equation is of the form v¡ : (expression
independent of vi), the variable v¡ is elimi-
nated from the vector ofunknown variables
passed to DASSL. The routine for evaluat-
ing the residual A can, in this case, calculate
v¡ itself. The partition to lower block trian-
gular form may fail. An error message is
then given listing unassigned variables and
redundant equations. The problem is then
either singular or has algebraic relations be-
tween the components of the vector ¡.

To make the calculation. of the residual
vector A more efficient, Hibliz generates
code for a virh¡al stack machine. The code
is interpreted by a Pascal procedure. The
values of constants, parameters, and vari-
ables are stored in a global array.

The Run command sets the initial values
ofstates as given by the initial section ofthe
models and then uses DASSL'to solve the
system.

Graphics

Routines for handling graphics are an es-
sential part of Hibliz. A local coordinate sys-
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tem is assigned to each model such that the
lower left comer of the rectangle has the co-
ordinates (0,0) and the upper right comer has
the coordinates (l,l). The positions of its
interfàces, submodels, equations, etc., are
expressed in this coordinate system. When
moving and scaling a model, this hierarchy
of coordinate systems makes it almost trivial
to scale and move its submodels properly.
All coordinates are storcd as real numbers
since continuous zooming requires high-res-
olution coordinates.

Hibliz currently runs on an IRIS 2400 from
Silicon Graphics, Inc. [4]. The IRIS is a
high-performance engineering workstation
designed for interactive color graphics and
computing applications. The program inter-
face to the graphics is the IRIS Graphics Li-
brary. It has routines for definition and ma-
nipulation of objects in (local) world
coordinate systems and projection of these
objects onto the screen. The IRIS has special
graphics hardware for transformations from
local world coordinates into screen coordi-
nates. Clipping and scan conversion also are
done in hardware.

Fonts

A block diagram contains text, and to make
continuous zooming possible it is necessary
to display characters of different sizes: The
IRIS Graphics Library supports one fixed-
pitch raster font of height 16 and width 9
pivels. New raster fonts can be defined;
however, because of memory constraints,
larger characters have to be viewed as graph-
ical objects consisting of straight and curved
lines.

The authon have developed a support pro-
gram to generate new fonts. This program is
based on ideas given in [5]. The user defines
the shape of a character as a number of line
segments and the size and form (rectangular,
circular, oval, etc.) ofthe pen to be used. A
line segment is defined by its start and end
points and its tangents in these points. In-
termediate points on the line segment are de-
fined by a cubic spline tunction ([5], pp. 2a-
26).

Hibliz uses both raster and graphical fonts;
for characters up to 16 x 20 pixels, raster
fonts are used. The use of both raster and
graphical fonts makes outputting of text
somcwhat more complex. There are, how-
ever, two god reasons for using raster fonts
and not only graphical fonts. First, when
drawing a small character, the quantization
may deform the character so that it looks
distorted and is difficult to recognize. If a
chanacter is moved over the screen, its form
changes due to the quantization, and, for ex-
ample, an "o" looks like an amoeba. Sec-
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ond, it is important to make the graphics as
fast as possible. When the characters are
small there may be many of them on the
screen, If the charac¡ers are defined as
graphical objects, this implies drawing of
many line segments. For example, to draw
a nice-looking O, at least 20 line segments
are needed. The IRIS can draw a maximum
of65,000 line segments per second; whereas,
it can display up to 150,000 raster characters
per second.

Conclusions

Some of the ideas on graphics presentation
and interaction have been further carried
through by the first author at Sattcontrol.
That has resulted in a product called Satt-
graph 1000 [6], which is a presentation sys=

tem for plant operators. Sattgraph 1000 uses

the concept of information zooming to deal
with hierarchical structuring and has an ob-
ject-oriented approach to interaction during
creation of pictures and for operating a plant.

The structural properties of a model are
very important, particularly when working
with large, complex systems. It is the au-
thors' belief that it is easier to describe struc-
tural properties when graphics are used than
when a purely textual description must be
used. In this paper, the authors propose the
use of hierarchical block diagrams, which
can be scrolled, panned, and zoomed con-
tinuously. The block diagram describes the
model decomposition and the interconnec-
tion structure. The zooming controls the
amount of information displayed. When
zooming in on a block, the block changes
from an annotated box into a representation
showing the intemal structure with increas-
ing detail. Since the block diagram can be
made hierarchical, it is possible to make the
description at each level simple and clear.

The new workstations with fast, high-per-
formance graphics make it possible to im-

plement the man-machine interface pro-
posed. To demonstrate the feasibility of the
proposal, a prototype system, calted Hibliz,
has been implemented. Hibliz also simplifies
model development by allowing submodels
in the form of ordinary differential and al-
gebraic equations rather than assignment
statements for derivatives and algebraic
variables.
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Abstract

This pa,per describes an expert system interfa,ce for a progra,m for system identification.
It works as an intelligent help system for the interactive progra,m Idpac, using th.e
cornmand spy strategy. This means that the system is completely non-invasive and
uses the previous command history to understand what the-user is doing and gives
Itelp according to this. Scripts are used for representing procedural knowledge-and
production rules for cliagnostic knowledge. The system hai been implemented-and a
knowledge dal,abase developed. An exarriple run with the systern is s[own.

Introduction

A modern CAD program usually is quite complex and demands the user to have a, lot
<rf knowledge, about the prr:gra,m as well a,s about the problem doma,in. For this reason,
there is a need for help sysierns with knowledge about both these areas. We l-relieve
tllat an expert system is well suiterl for the imþlernentation of such a help system. In
order to use expert system techniques in a CAD prograrn, several problènrs must be
solved.

. qAq progra.rns usually have a flexiLrle commanrl dialog. 'Ilris way of comrnunication
should be retained when the expert system is added to the progra,m.

. 'l'he expert system should be totally non-invasive, allowing the user to fall back on
the plain CAD program in case it is not able to give the user any help.

. An inexperienced user often has a general idea of what he wants to do, but does
not know exactly how to do it. The èxpert system should be able to guide the user
from general ideas to specific cornmands, i.e., il, should give goal relatetl help.

. An intelligerrt help system should have facilities to teach the user about the target
program and to transfer knowledge from the knowledge database to the user.

. An expert system used as an intelligent help system interface must be able to handle
both procerlural and diagnostic kirowledge. We propose to represent procetlural
knowledge with scripts, and diagnostic knowledge with production rules.

_ According to these design criteria a,n expert system interface has been tleveloped.
It contains a command parser, a script matching device with a database for scripts-and
rules, a query module, a file system, an on-linè dictionary, and interfaces to the user
a,nd ldpa,c.

We ha,ve focussed the project on the idea, of a non-invasive, goal related help systern
in general, and not in any special kind of man-rnachine cornnrunication. Thus, the
decision was made to use almost the same command language in the interface as in
Idp"g. An alternative would have been to equip the syãtem with, e.6.r a graphics
interface, but as this was not necessary for the development, we abstained fic¡m the
efïort.

Idpac is a command driven program for system identification, see [1,2,3]. This
p.roject 

-wa-s originally orrtlined in [4,5]. A previous system was descrilied in'[6]. A
thorough description of this project is given in [7,8,9].- There are some other piojects
in the area of irrtelligent hel¡r systems, iee [tO, ti].

System fdentification
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System identìfication is the process of finding a mathematical model of a real world
process. 'I'he ¡nodels can be differential or difference equations, relating input signals to
o.utpgt signals-. System identification involves experiments in'which iãpui and*nutput
sj8nals of a.physica,l pro_cess a,re measured, choiie of a suitable model, va,lidation of
dal,a, nurnerical fil,l,iug of model parameters to these data, and several validation tests
for verification of the-results. Syilem identification <lemancls skill and experience ancl
the.validity of the results strongly depends on the user's knowledge. Flor thorough
readings on system itlentifical,ion, iee [i2,13]. An overview is founcl in [14]. 

u

Scripts
Running Itlpac requires a lot of procedural knowledge, i.e., knowledge about sequences
of commalds, and, on a highei level, knowledge "of'r"qú.trces 

of"subtasks of ldp."
sessiorrs. In order to represeirt sequences, the cõncept oi scrípts was introducecl. 

'\{/e

were.inspired by a data structure used in latuqal langua,ge uritlerstanding, [15,16]. Itshould be noticed that our script concept is different Ïrorir Shank's. IV" rise'r.ript'r to
describe the-possible orcler of a nurnb"rbf 

"orrrmands, 
where the cornmancls rnusi have

certain attributes, e.g-., parameters, in order to match. Scripts may be implemented in
¡ev.qr.al \¡¡4,{s' e.g_., with production rules or as Lisp lists. Thå tattei.pprou"l, was taken
in this project. Here is an example of a script.
((con¡nand plot (ínfiLe IISI) (infiLo 0UTSI))
(repcat
((con¡nand nlld (ourfile SYST) (infilc IISI)

(infil.e 0UTSI) (nu¡nber [))
(kscaLl (Esti.¡nation of, ordcr (parameter I{) performeil))
(o¡
((corurand residu (ourfilo RES) (infilo SyST)

(inftte IIfsI) (infite oUTSI)))
((co¡n¡nand sptrf (ourfile FREQ) (inJíle SYST))
(kscalL (Rcconmend nulti-Bode plot rith (parmcter FREQ)))
(con¡nand bode (inftle FREQ))))))

(kscalI (Give advice on most probabJ.e order)))

This.script desc.rib-es o ryty to perforrn a parameter estimation with increasing orcler of
the fitted model. First the usei should loõk at the sisnals with the pr.or commänd. The
inry¡rt files corresponding- to rtûsr. and ourst should already exist. A model is produced
with ul,ro. The output file svsr is created and N, the ordèr of the rlodel, is aisociated
with the actual argunrent used. Next, a fact stating that a parameter estimation has
taken place is sent io the production rule rlatabus". ihir is done with the KscALL clause.
Kscall stands for Knowledge Source Call and puts a fact in the fact database of the
producl,ion rule- systern, whichis associated with each script. After this, the user may
either look at the residuals with the RESTDU command, or piotluce data fór " 8",1" filoiwith sPTnF and plot it with BoDE. 'Ihis is expressecl witÍr the on clause. The Reps¡r clåuse
means that this whqle procedure may-be 1ðp-egted, arrd every tirne the rule system gives
advice on whether the order is sufficiently high.'During tÍre process it may use Ta,cts
put.into the database by previous kscalls. Th-is script iJof 

"drrrr" 
far too small to be

realistic, but it shows what a script may look like. For a script of reasonable size, see
tel.

Other clauses in the script language a,re the ALI clause, which expresses tha,t all
the following commands must matðh, Ëut the order of theá is not esËential, and the
scnrpruAcno clause, which is a kind of subroutine.

The Knowledge Based Command Spy
How does one combine a.CAD program_ï¡ith an expert system while keeping the good
features of both? The solutior, þroþored in-this papgr is ihe command rfy riru,teg"y.

. - The. expert system is used 
-a,s àn interface to Ïdpa". In our solution it is piåced

before the conrr¡rand decoder of Llpac, but an alternative would be to build it into the
outermost level of ldpac.
. W.". keep_the cormrrand language of ldpac. ln this way a cumbersome Q/A clialog
is avoided. The expert sys-tem traces the user without u,rkirrg any questionsi'and givei
help only on -demand. Thus the expert- system never fcrrcãs u"n"", to do' arrytÌÏing.
A user tha,t does not need or want ány heip is not bothered and there is alwåys tlä
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possibility of fa,lling back on plain Idpac in ca,se the hel¡r systern dnes not have enough
knowledge to.wotk pro¡rerly. i['he exfert system nray also irse a Q/A diatog to firrd <irt
facts about the experiment and expected results, but only if the user initiátes it.

The comrnarrd spy uses scripts in order l;o unrlerstand what the user is doirrg. By
rnatching scripts against the actual cotuna,nd history, the experl, interface is atrle tô
guess what the -user wants to do. The scripts also provide information on the next step
for reaching a desired goal.

- . Diagnostic reasoning is needed at certain points in an identifica,tion, notably when
things go \r¡rong or uneipected results arise. This is taken care of by production rules
associated with each script. 'I'he rules also allow for automatic documentation by
writing script based informa,tion to a text file.

S-everal scripts rnay be active al, the sa,rne time, as long as they match the conrm.a,nds
tyne<l by the user. This is typically the case when the system ii started. At a,ny tirne
the user rnay ask for the neit sensible command. The comrnand spy then lobks at
the next p,ossible comrnands in all the active scripts, and gives these cõrmnands as the
anslryer. If, _trowever, the user does rrot follow this advice, sorne error recovery actions
are taken. One possibility is to assume that the user wa,nts to start all over again, so the
initial scripts are tried once more. If one of them should match, the current-scriirt gets
suspended and the new script becomes the current script. If the userts .ommand .ioes
rxrt ma,tch any of the initial scripts, the command spy checks whether the command
matcltes any, previously suspended scripts. lf so, the ðurrent scripi; gel,s suspended and
the script which matched the comma,nd becomes the current sciipt. If noñe of this is
the case, -the command spy stays in its current state, sends the, for the cornmand spy
unintelligible, command to ldpac, and from the next command on it tries to restari
agarn.

Implementation

'l'he expert interface is macle ùp from several iridependent parts. MoÈf of the parts
work on a conurron database.

Figure I ayout

The user interface module reads a cornmanrl from the user and transforrns it into a
Lisp list. It provides all input and output functions used in other parts of the interface.
In this ryay, all of the system's deperrdènce on ternúnal types, graphi.r, etc., is collected
in one place.

The command pa,rser module checks the command for syntax and supplies defa,ults
in the sanre way that the parser of ldpac does. In this process it tiãnsforrns l,he
command into a more convenient form. This parser accèpts comma,nds with the
arguments-left out,-as the other routirres will fill information in, bv defaulting from
scripts and asking the user.

- The script matcher rnodule keeps track of the scripts incrementally and updates
them as it gets commands from the parser. llhe comnt.ridr once again are transfonned,
and files may be defaulted using knowledge frorn the scripts.

T'he query module works through the command description and tries to fill in the
remaining-unknown entries by asking the user a,bout them. In this way the user may
give only the command narne. If neceisary, he will then be prompted for âny parameters
left out. The query module also sends messages to the file systèm about crea,ted files.

The da,tabase contains the comma,nd gramïnar used by the parser, the scripts a,nd
rules used by the script matcher, the lile tiee of the file syitern, ãnd st'ate variables for
keeping track of the user state, set a debug mode, etc.

FARSER MATCHER QUEFY

DATABASE

IDPAC
INIERFACE
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The file, syste.rn keeps track of all the da,ta files created and used during an ldpac
session. It does this by storing data about the files in a directed graph structure. fhis
errables the lìle system to show, e.g., the 'ancestors' or 'descendañtst of a file.

. Th" expert interface and Idpac reside in two different VMS processes. The ldpac
interface sends the processed cornrnand to Idlrac via a, V1US tnaiibo*. In this way no
cha,nges had to be done to the ldpac prograrri itself. The interprocess cornmu¡rication
rt-¡utines are written in C.

The system is written in Franz Lisp extended with Flavors [17], and YAPS [1S]. It
consists of about 6000 lines of code arr<l runs under VMS on a VAX 11/780.

The Knowledge Database

A knowledge databa,se has been constrrrcl,ed during l;he prnject. It orrl.y deals with
parameter estimation using the maximum-likelihood rnethod, and thus, it cl<-¡es n<-¡t
cover everything that ldpac rnay be use<l {or. Still, we believe that t}ris small clata,base
shows that our solution will indeed work. The system is used for clemonstrations and
ha,s also been. used in an undergraduate level course on systern identification. The
rlatabase is thoroughly described in [9]. The script is about 300 litt"r long, and the rule
base contains about 200 rules. 'I'his-script and ihese rules carr reasonab-iy well handle
the the intera,ctive session of a studerrt. 

-

An Example Run

This is a,n exantple of a run with the systern. The script used is the one shown in the
s.criqt se-ction of -this paper. Approximately 10 rules are rreeded to handle this script.
A '?t asks for rule based informãtion and '??t for the next command according to the
script. 'Iexts appearing after a t!t are comments.

>p1ot i¡r / out

100 2ÃO

>?? 
o loo 2oo

llsxt conmand: ¡n1id
>trrlid syst2 ( in out 2 | Croat€ a second orde¡ modal_.

A-POLÏil0}IIAL
1, - 1,71073q^-1 + 0.747169Q^-2

B-POLYIÍOIIIAL

Q^-1 * (8.101658-3 + 2.733588-2q^-1 )

C-POLYTIOI,IIAL

1. - O.926365q'-1 + O.303477q--2

>?

Look at the ¡esiduals of in and out, using thc aystom systl,
)residu ! The user gives no argra.nts.
resídu , .. < Byst2 ín out I Some arc d€f¿ult€d.
Rcsiduals outfilo? ) ¡c¡2 ! Thc cystcm prompts fot thð ¡ost

0 300

300

400

400
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0.5

>??

[ôrt aon¡a¡rd! nlid or sptrf
)optrf freq2 ! Conputc a t¡¿nsfcr function.
)bodo ! Plot lr.

0.01

0,01 0.1

0.01 0.1

)nI syatS I Creatc a nos modcl,
nlld ryatS < in out ... ! [o do:faulù fo¡ rnoilol o¡dc¡.
llodcl ordor? ) ? ! Thc u¡r¡ rants a furth.! cxplanatLon.
Th. ordcr of, th. tra¡r6f.r funotion to bo fLttcd to the indat¡.
l{odcl ordc¡? ) 3

A-POLYTOUIAL

1. - 1.02007Q^-1 - 0.43999q^-2 + 0.521126q^-3

B-POLTIOI{IÂL
q^-1 * (5.147448-3 + 4.o!4478-2q^-t + 1.3BOB9E-2Q--2 )

C-POLY[O!IIÂL
t. - 0.221032q--1 - 0.376885Q^-2 + 0.245745q^-3

)tcs ros3

0.5

0.1

0

0

4

4

8

>??
[.xt aomrnd! nlid or sptlf
>Épt!ff,roq3 ( ayat3b / a ! Computo at¡ansfcrfunction.
>?

Por:forn tho connùrd BODE freq3 freq2.

8
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)bode freq3 freq2

0.1

0.01

0.01 0.1

o.ol 0.t

>?

Thc modcl orde¡ is probably hith 6nough eh6n tho Boile plots
start to coincide in th€ modium frequencics.

I

Conclusions

The main conclusion of the project is that if one wants to combine an expert svstem
with.a CAD program, the expert system should be used a,s an intelligent and non-
invasive help system. This retains the advantages of both the CAD program and the
gxpg{ systern.- It may be a,ccornplished by irnplementing a command rpy, as outlined
þ this paper. Secon<lly, not all kirowledge'need be irnpleñrented with proäuction rules.
Scripts nqay -be a better way of representing requences, especialty in problems where
both methods arr<l goals are well known. A good rule ìs to use .s muih as possible of
the structure of the problern in its solutiorr. ih. ur" of scripts will also reduce the size
of the knowledge databases considerably.
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1 fntroduction

Symbolic manipulation will play an important role in future CACE tools. Unfortu-
nately today's systems for Computer Aided Control Engineering (CACE) allow basi-
cally the user to perform numerical calculations. They do not support symbolic calcu-
lations. One important reason for this is that the tools were designed for computers
with what is today considered as moderate computing power and symbolic manipula-
tion calls for computing power. The increasing capacity of computers and workstations
makes it now worthwhile to introduce symbolic calculations in CACE systems.

fPavelle et al., 1931] give a popular scientific introduction to computer algebra.
There are commercial general-purpose systems for symbolic systems available:
MACSYMA developed at the MIT Laboratory for Computer Science, USA
REDUCE developed at Stanford Universit¡ the University of Utah and the Rand

Corporation, USA
Scratchpad developed by IBM
SMP developed at the California Institute of Technology, USA
Maple developed at the University of Waterloo, Canada
muMATH developed by the Soft \Marehouse, Honolulu

The main purpose of the project ttCombination of Symbolic Manipulation and
Numericst' was to experiment with and gain experiences of using a programfor symbolic
manipulation. As the tool we used MACSYMA and as the application analysis of
multivariable systems was selected. There is a framework for analysis and design of
multivariable systems using polynomial matrices. A standard text book is [Kailath,
1980]. Unfortunately, these methods have poor numerical properties. Methods based
on state space representations have better numerical properties. Ilowever, in many
cases it is desirable to be able to work in the frequency domain. It may be easier to
formulate and analyse properties of interest in the frequency domain than in the state
space. MACSYMA is good at polynomials and rational functions.

Motives for supporting symbolic calculations are presented in Chapter 2. The pack-
age developed in MACSYMA for analysis of multivariable linear systems is described
in Chapter 3. A Lisp function in MACSYMA can be used to establish interaction
with other programs, such as Simnon and CTRL-C. This is presented in Chapter 4. In
Chapter 5 a new method for calculating root loci is demonstrated: This serves as an
example of the idea to combine symbolic and numerical computation and thereby solve
more complex and composite problems. Conclusions are given in Chapter 6.

L
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2. Motives

There are several good reasons for including symbolic manipulation in CACE tools.
First, structure is important and an analytic answer may give a better insight. Second,
the user interface could be improved, since the userts original formulation is usually
not a computational procedure but rather equations and relations on symbolic form.
Third, models could be multi-purpose and reusable independent of what is known and
what should be computed. Forth, symbolic manipulation could be used. to facilitate
numerical solution. Below we will discuss these motives in more detail.

fnsight is Desirable

You may think that the ultimate CACE program is an automatic procedure which
outputs a VLSI chip that implements the optimal controller. Life is not that easy. You
must at least specify your desires and requirements; a specification of what you think is
optimal. Unfortunately, this may be a laborious and demanding task. Many problems
are not that well-defined. If it is a neï¡ type of plant, it might be diffi.cult to know which
are the decisive requirements and which that are easy to fulfil. A given constraint may
be totally decisive for the outcome of the control design. A designer may be willing tL
adjust the requirements to achieve other benefits, but he is not willing to conside, 

".r1rycase or combination. He wants to work in an iterative way and be able to eliminate
bad approaches early. He also wants to know why a certain approach fails. He wants
to get insight. For example, it may be easy and favourable to remove a constraint by
redesigning the plant. It is in most cases favourable to take the interaction between
process design and control design into account and consider them simultaneously.

A designer is happy when he has a profound understanding of the system dy-
namics. He then knows the possibilities and the limitations and can make the proplr
compromises during the design. He can justify why it is not possible to make a better
design according to the circumstances. In many cases insight is the key to design. If
you can pinpoint the critical parts and if you understand the diffi.culties, you 

"u,r, 
oft"r,

solve or avoid the problems and make a good design.
In real life most plants have significant non-linear behavior, while most available

software for analysis and synthesis assumes linear models. It is difficult to analyse non-
linear systems. The simulation model could be used for empirical studies concurrently
with a mathematical analysis. Possibilities to include and exclude different features in
the model by changing the model for one part or by making parameter changes are
useful when studying their importance. To have some success with the analysis we
are more or less forced to work mainly with linear models and to estimate the effects
of nonlinearities. Linearization is tedious to do with paper and pen. A good formula
manipulation program which takes the nonlinear equations and. outputs the linearized
ones would be a real time-saver. If there also was a program that took the linear model
and intervals for the parameters and made proper approximations, the analysis would
be even simpler to carry out. A nice thing with linear models is that thly can be
transformed into the frequency domain where many dynamical properties are easier
to understand. When analysing a system it is useful to have different viewpoints and
possibilities to transform back and forth between different representations.

2
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Support Llserst Concepts

It is important that a user can describe his problems on a for him natural form. The
user interface of a CACE system could be viewed as consisting of a language and
environment. The language should be more than just a means for instructing the
computer to perform tasks. It should also serve as a framework within which we
organize our ideas. It should be a high level problem solving language.

It is important that the user can give the mathematical description of a submodel
on a natural form. When deriving models from first principles the result is often a
system of differential algebraic equations (DAE):

g(trùratrtp¡c) : 0

where f is the time, æ and o vectors of unknown variablest p a vector of known pa-
rameters and c a vector of known constants. It is natural to require that interactive
software for model development and simulation supports DAE systems. The proto-
type simulator Hibliz ([Elmqvist and Mattsson, 1936]; [Mattsson, Elmqvist and Brück,
1986]) which was developed in another CACE project (STU project 84-5069) accepts
mathematical descriptions given as DAE systems. However, most simulation packales
of today do not allow models given as DAE systems, but require assignment statements
for derivatives and algebraic variables. The user must solve for the derirr¿tives and put
the model on the form

He is often allowed to introdu"" r"n,l"".Íï;fÌary variables and to give the assign-
ment statements in any order:

ù : ft(trùrærarprc)
u : fz(trù,rærarprc)

as long as it possible to sort them so that all derir¡atives and auxiliary r¡ariables are
calculated before use. This means that the user has to manipulate his model manually.
This is a non-trivial task. Errors may be introduced.

When DAE systems are supported, the model becomes more readable since the
user can recognize fundamental relations as mass and energy balances and other phe-
nomenological equations. It is easier to check that the model is entered correctly and
the risk of introducing errors during manual transformation is reduced.

Multi-Purpose and Reusable Descriptions

It is a laborious and time-consuming task to develop good models of plants and various
phenomena. Consequentl¡ it is important that the investments in model development
can be reused. A model can be used for different purposes as simulation, analysls and
design. The status of a variable may vary. Sometimes it is considered to be known, while
in other situations we want to solve for it. For example, when solving for a stationary
operating point the derivatives are set to zero and the states are to be solved for. 'When
a numerical ODE solver is used, the states are considered to be known and. we should
solve for the derivatives. When designing the plant or the control system, some of the
parameters are considered to be unknown by the designer.

3
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Furthermore' as thoroughly motivated by [Elmqvist, 1978], the equation form is the
only reasonable representation for model libraries. \it/ith models on assignment form,
it must be decided for each submodel which of its variables that are inputs (in other
words.are,known) and which of its variables that are outputs (defined by the model).
As a simple example consider a resistor. Ohm's law states Vt -Vz - RI, where V1 and
V2 ale the voltages at the ends of the resistor, -f is the current through the resistor and
-B is the resistance. The model has three variables VtrVz and.f. The resistance -R is in
this model a given parameter. If we should write the model on assignment form there
are three possibilities

I z: (Vt _ Vr)lR
V1 ::Vz*RI
V2::Vt - RI

The first variant assumes that V1 and V2 are inputs and defines f. This model is
appropriate if for example one end of the resistor is connected to a voltage source
and the other to ground. The second and third variants assume that the current
and the voltage at one end is known. These models are appropriate if the resistor is
connected to a current source and ground. Consequentl¡ for models on assignment
form we need several different models for a resistor, depending on how it is connected
to the environment. This makes both use and maintenance of a model library messy.
Furthermore, other environments may result in algebraic loops so that equation systems
with equations from several submodels must be solved to transform the model into
assignment form. Two resistors connected in series between a voltage source and ground
is a simple example of this. Submodels cannot be transformed into assign*"ot fo.-
individually, but the transformation is a global problem.

fmprove the Numerical Properties
It is favourable if a CACE system accepts problems on forms preferred by users. By
exploring syrnbolic manipulation the problems can in many cases be simplified u,rrâ
transformed to a form more suitable for numeric solution.

As an example consider the problem of fi.nding the optimum of a function. The
numerical solution procedure could be made faster and more robust if analytic proce-
dures for calculating the gradient and the Hessian are given. However, in many cases
it is laborious for the user to provide these procedures. It is much more convenient for
him if they are generated automatically.

You may say that a problem is ill-conditioned if a small perturbation in the equa-
tions can lead to a large deviation in the solution. The main question is, howeier,
what perturbations we have to consider in a particular case. If we have a fully param-
eterized model, where all explicit numbers are exact (structural ones, zeros etc), the
perturbations of interest are those described by perturbations in the parameters. If we
want to perform a numerical calculation and substitute the parameters with numbers,
then it is of interest to consider unstructured and random perturbations to model for
example quantization. Then a larger class of problems becomes ill-conditioned. For
a fully parametrized problem the condition number is not a problem invariant, but it
depends on the formulation and may be decreased by symbolic manipulation.

It is important to consider the structural properties of a problem when deciding

4
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whether it is well-posed or not. For example the problen e'ù+g: 1 where we know that
the system is stable, is well-posed. The only perturbations that we have to consider are
perturbations in e which lead to an e greater or equal zero. Even from a numerical view,
it must be considered to be well-posed. It is a minimum demand that a non-negative
number is represented by the computer as a non-negative number.

Possibilities to use symbolic manipulation to handle DAE systems are discussed in
fMattsson, 1986].

5
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3. An Analysis Package in MACSYMA

The framework of polynomial matrices is useful for analysis of multivariable linear
systems, see [Kailath, 1980]. However, polynomial matrices are not easily manipulated
by hand. It is thus very important that good analysis tools for polynomial matrices are
av¿ilable. 'We have tried to fill the gap between theory and practice by implementing a
package for analysis of multivariable linear systems in MACSYMA. The functions of this
package is listed below. Then a MACSYMA demo with matrix fraction decompositions,
co-prime factorizations, multivariable realizations, etc., will illustrate the beauty of
symbolic manipulations. The examples are taken from fKailath, L980]. For further
examples and details on the implementation including listings of the functions we refer
to [Ilolmberg, L986].

Ar¡ailable Functions

The following functions for analysis of multivariable linear systems have been imple-
mented in MACSYMA.

Linearization
LINEARIZE Linearizes the dynamical system ¿ : f (æru), y : g(æru)

Stability analysis
Generates the stability conditions for a continuous time system
Gives the stability conditions of discrete time systems and the steady
state output variance

Sampling
SAMP Sampling from transfer function to pulse-transfer function
S¡,MPST¡,TE Sampling from state space to state space

Geometry functions 
- 

state space
HERMITE Gaussian elimination when applied to a constant matrix
KER Computes the Kernel {Xl,4X :0}
IIüVERSE-IMAGE Calculates the inverse image {XIAX - B} (,4 possibly singular)
rNTERSEcrr0N computes the intersection of two subspaces
GR.0'M-SCHMIDT calculates an orthogonal base for a subspace
"û'rNv Computes the maximal L-invariant subspace in a given subspace
ABINV Computes the maximal (á, B)-invariant subspace in a given sub-

space

Factorization 
- 

trbequency domain
SMITH Calculates the Smith form together with transformation matrices
SMITH-l'lcMIttAN Calculates the Smith-McMillan form with transformation
HERMITE Calculates the Hermite form
COLIIMNREDIICE Makes a denominator polynomial matrix column reduced
ROïüREDIICE Makes a denominator polynomial matrix row reduced
RMFD Right Matrix Fraction Decomposition (MFD) of a transfer matrix
LMFD Left MFD of a transfer matrix
RTGHTCOPRTME Gives a right coprime MFD from a noncoprime MFD
LEFTC0PRTME Gives a left coprime MFD from a noncoprime MFD

6
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SS2TF State space to transfer function conversion
M¡'KESYS Makes a list of lhe ArBrCrD matrices to represent a system

Multir¡ariable Realizations
CONTROILER Calculates a controller form realization
OBSERVER Calculates an observer form realization
cONTR0LLABrtrrY Calculates a controllability form realization
0BsERvÂBrLrrY Calculates an observability form realization

Generation of the ,S(.4, B,C,D)-ffle
TOMIMO Generates the file ABCD.MIM from á, B, C, and D.

Example-Polynomial Matrix Manipulations
The following example is a MACSYM A Demo that illustrate the use of polynomial
matrices for analysis of multivariable linear systems. The cumbersome manipulations
are done by the above functions. The Demo starts with a transfer function matrix,
describing a multivariable linear system. The description is transfered into a matrix
fraction decomposition, MFD, i.e. a polynomial matrix description. Extraction of
different polynomial matrix factors of the MFD are made. Also, difierent multivariable
realizations are presented. For terminology and a background the reader is refered to
[Kailath], especially Chapter 6.

The file shown is a MACSYMA log file, output with the typeset switch true.
The resulting Troff/EQN typesetting code has automatically translated to Tþ[ by the
program MacEQ2Tþ[ (see [Mårtensson, 1986]).

(cl) Ioad("J-ogin.mac,,) g

(c2) demo (rrreaLizatíons . dem,') ;
/* This demo describes a couple of exampres in Kailath, chapter 6.
Example 6.2-L. Alternative MFDs for a Transfer Function. p. 36g-9.
Example 6.4'1,. controll-er-Form Rearization of a Right MFD. p. 4oz-g.
Exampre 6.4-2. Observer-Form Realization of a Left MFD. p. 416
Example 6.4-6. Constructing Canonical- Controllabil-ity Forms. p. 4gg-4. */
(c3) g:rnatríx([s/((s+r)*(s+2))^2,s/(s+2)^27,1-s/(É+2)^2,-s/(s+2)^zD;

(d3) (r+Inr+rIt
-(w -@

/* Example 6.2-1. Arternative MFDs for a Transfer Functíon. p. s6g-9. */
(ca) rmfd(g);

a
("+Ðr

(d4) lo,: lt" * t)'(" +2)' o I
L L o (s+2)2 1

I j" l]

7

(c5) ev(rightcoprime(dr,nr),%) ;

2tùT :
-s (" + 1)'
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(d5)

dr- (s + 1)2 (s *z)2 -("*r)2(s +z)
0 8+2

(c6) ev(columnreduce(dr,nr),7.) ;

-(r+r)2(s+z)

-g (c + 1)' 82
1tr :

0 1L
o B+21TùT :

(d6)

(d7)

(ds)

0

(s + 2)2 s+2 ¡fùr :

01
00
-1 0

00
00

¡c:

,0, ] ,": I
d,r

-4-40-1-2
10000
00-4-5-2
00100
00010

L0
s+2 1

10000
-1 0100

a

-a tl
/* ExamPIe 6.4-1. Control-Ler-Fo¡rn Realization of a Right MFD. p. 4OT-8. ,*/
(cZ) ev(real: controller(dr, nr),%) ;

|":l

|":I

!l

00
1.0
01
00
00

-20
-50
-40
20
L1
L*/

,tc:

0

1

01
4 -L2 T4

b

/r' Example 6.4-6. constructíng canonicar. controllability Fo¡ms.
*/
/* Search by Crate 2 */
(c8) ev(controllabil.ity(a,b, c),,/,) ¡

p. 433-4

0

0

0

-4
-4

1

0

0

0

0

0

0

0

1

0

4L
b

/* Search by Crate
(c9) crate-nr:1;

(de)

(c1o)

00
00
10
01
00

-4
-L2
-L3
-6
0

2

5

4

1

-2

1

ev(controllability(a, b, c), real) ;

0

1

0

0

0

1

0

0

0

0

b

0

0

0

0

1

001-6 1

-1 4 -L2 32 -1

8

(dlo) tc:
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/,¡ Exampla 6.4-2. 0bserver-Fo¡m ReaLizatíon of a Left MFD.
(cl1) rmfd(g);

p. 4L6 */

(dl1)

(d12)
0

s+2 1Ír,l :

a(s+1)2

,tl:þ': I

nldt
(s + 1)2 (" +2)2 0

0 (' + 2)z ll
I

-a -3

(c12) ev(Ieftcoprime(¿t,nt),%) ;

(" * 1)2 (a *2)2
(r+1)2(s+2)

0

(a+1)2(s+2)

s(s+1)2.9

0s2
10
-1 8+2

(c13) ev(rowreduce(dI,nl),%) ;

(d13)

(d14)

-4 1

-40
00
10
20

00
00
-4 1

-50
-20

1c:

þ,: I
-(s+2)2

8+2
1" -(s+2)
01nl

88

0 .e2
1'll':

(cla) ev(observer(dL,nI),%) ;

0

0

0

1

0

1

0

1

0

0

L

0

0

0

0

b
0 0100
-1 0000

I
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4. Generation of a MIMO System Text File

It will now be demonstrated how a MIMO system in MACSYMA can be transfered
into a text file of a special form. The special form of the text file is chosen to be
the same as the print format from CTRL-C. This makes it possible to load results
form MACSYMA into CTRL-C. It should also be mentioned that there is a Pascal
program written by [Mårtensson, 1936] that generates Simnon code from this text file
representation. The generation of the text file from MACSYMA is made by the function
TOMIMO. This is a LISP program and consequently we have to enter the LISP mode
before we apply it to our MIMO system.

(cl)
(c2)
(c3)
(ca)
(cs)
(c6)

(d6)

load( r'Iogín.mac" 
) $

a:matrix( 11.,2f , [3, 4] ) $
b:matrix( [S, e] , [7,8] ) $
c:matrix( [9, tO], [11, 12] )$
d: matrix( h3, 141 , hs , 161 ) $
sys :makesls (a, b, c, d) ;

¿l
Ð

7
&

2

4ll ,b: ,w -

6

I
910
11 L2

13 L4

15 16 ll
(cZ)
Break Entering Lisp:
(1): (Ioa¿ "tomimo.1")
t
(1): (tomimo $sys ,abcd.mim)
t

The MIMO system has now been written in the file ^0,BCD.ním. This file looks as
follows:

nmP

222

a=

72
34

þ=

56
78

10



86

910
TL L2

d

t3 1,4

15 16

11.
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5. Root Locus

In this section we will demonst¡ate a method for computing root loci by combining
symbolic and numerical computations. Only a very brief description will be given. À
fuller description is given in [Hotmberg, Lilja, Mårtensson, 1g86].

The naive way of plotting root loci of the type

á(s) +,tr(s) : s

where .A and B a.re polynomials and ,t real, is to solve the equation for a number of
equi-distant &-values and then mark the roots by an (x'for each &. This method has
severe disadvantages: Firstly it is rather time consu*ittg and secondly it gives a very
bad resolution near multiple roots. To be presentable, the plots also need heavy *rr,ou,l
paste-up. In the following subsection, a method based on the implicit function theorem
is suggested. A non-linear differential equation, that describes the root locus locall¡
is obtained by some manipulations of the transfer function (done in MACSYMA for
example) and a package for solving the differential equation (e.g. Simnon) can then be
utilized to compute and plot the root locus. This method is both faster and gives a
better performance near multiple roots than the method mentioned above.

A general problem

This subsection proposes a method for plotting the locus of points .e in the complex
plane satisfying the equation

/(s,k) : g, s,& € CI (b)

where / is analytic in s and & and where fr is restricted to the real axis. Several common
control theory problems are covered in this formulation: Ordinary root loci, LQG root
loci (& : control weighting), zeros of sampled systems (/c : the sampling interval), etc.

The method is based on the implicit function theorem applied to (b). The iâea is
the following: The problem is to compute {al/(s, &) : 0, Ic e la,å] C IR}. For this,
compute the &ts such that (b) has multiple roots in s. Away from these, the branches
s¿(&) satisfies

ôl

ft,,uù:-# (il)

0s

fmplementation

The transfer function G(s) is specified in MACSYMA and the closed loop characteristic
polynomial p("rk) is calculated. The real and imaginary part of the right hand side

"f (ü) are then computed and written to a file using the function print-ode. To avoid
divide overfl.ow in Simnon when a multiple root is encountered one has to stop the
integration before the multiple root. For each multiple root, one therefore has to find
the local behavior of s with respect to ,b. A graphical method to do this is to plot a

L2
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Newton diagram. This is equivalent to making the substitution s z: blco in the charac-
teristic polynomial and then finding pairs of dominating terms. The function newton
implements this and returns two lists. The first list contains the possible ,to-aiternatives
and the second list gives the corresponding coefficients (expressed as a polynomial in
ó). The function near-¡ultiple-roots uses newton for calculating the r¡¿lues of ,b for
which l#"t(¿)l : d,no,.The function printJ<xy uses near-¡rultip1e-roots to print
out these ,b values and the corresponding solutions in s.

The differential equation for the real and imaginary parts of the root locus is writ-
ten into the file ode.rL. The,b-values specifying the intervals for which the root locus
is to be plotted for are written (together with the corresponding initial values for the
branches of the root locus) into the file rootloc. r1. These two files are then processed
by a procedure written in the "editor language" TPU (Text Processing Utilitt) in VMS
generating one Simnon system description file ode. t (the "dynamics" file) and one file
rootloc.t containing the commands for setting initial values and integrating.

An Example

The following MACSYMA dialogue shows an example where the functions print-ode
and print-kxy are used. In the example the interval for the gain ,L is chosen to -2 1
k < 2 and the maximum derivative to d*or: 100.
(c1) load("rootloc.mac")$
(c2) g:rnatrix( lt/ s^2,1./ sJ, l-t/ s^2, Ol ) ;

(d2)

(c3) print-ode(g);

(d3)

(ca) printJ<xy (g,-2,2, 100) ;

(d4)

!
I

0

I
;rt

I
;t

The resulting files ode.rl and rootloc.rl are then processed by the TPU file
rootloc. tpu to get the Simnon system description file ode. t and the Simnon command
file ("macro" file) rootloc.t. The Simnon commands required to plot the root locus
are:

) syst ode

)axes}:^-22v-22
) rootloc

The result is shown in Figure.

ode.rI

rootloc.rl

13
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_') -l

Figure: The root locus plot.

6. Conclusions

As motivated and illustrated symbolic manipulation could be very useful. The user
interface could be improved by allowing the user to work on a higher level. He can
present his problem on a for him suitable form. Results on analytic or symbolic form
could give a better insight into structural properties than numerical tables. Even when
it is not possible to carry the symbolic calculations all the way through, symbolic
manipulation could be useful. Symbolic manipulation could simplify the problem and
transform it to a form better suited for numerical solution. Symbolic manipulation
could also be used for automatic generation of procedures for calculating gradients,
Jacobians, Hessians etc. thereby relieving the user's burdon and hopefully decreasing
the possibilities of introducing errors.

Our experiences of MACSYMA are that it is a powerful tool and can do a lot
with proper guidance from the user. One ad¡r¿ntage with with MACSYMA is that it
is written in Lisp. This makes it possible to extend the program with Lisp functions.
As you remember from Chaptet 4, this enabled us to establish an interaction between
MACSYMA and other programs, like Simnon and CTRL-C. The drawbacks are that
it is a large program and that it consumes a lot of computer power. Unfortunatel¡
MACSYMA is not modularized. For use in CACE systems it should be desirable io
have modularized tools for symbolic calculation so that a user could select for him a
proper set. 'We are eagerly searching for such a toolkit.

l

14
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It is important to consider that there is a user in the loop. [Ie can in many cases
improve the manipulation by proposing substitutions and by informing the system on
what kind of forms he want the answer. In many cases an equation system can be
simplified considerably if it can be assumed that a parameter or a certain expression
is zero. It is difficult for the user to anticipate all such cases in advance, but he may
well be able to ansvrer those questions interactively. Also, if the model is modified
there should be facilities to take care of assumptions made before so he doesn't need
to consider them once more when the manipulations are redone. To speed up the
manipulation it is advisable to store the successful path and try it when the user has
modified his model. The logging facility is also necessary for the explanation facility.
If the numerical solution procedure fails, the error message should relate to the user's
original formulation and not to the manipulated expressions.
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Ett expertsystem

för reglering på lokalnivå

Karl-Erik A,rzén

lnstitutionen för reglertekn ik
Lunds Tekniska Högskola

INDUSTRIAL PROCESS CONTROL

Many control loops are badly tuned or run in manual
mode

Adaptive controllers:

Commissioning difficult

Requires prior process information

Poor operator understanding

Heuristic safety-jackets important but difficult to
develop

Auto-tuners:

Limited tuning and control design methods

\MHAT IS LACKING?

Diagnosis functions, loop assessment, deeper control
theoretical knotvledge, user query and interaction fa_
cilities

9l

VISIONARY GOAL

A controller

that can satisfactorily control arbitrary time-valiabl
non-Iinear processes exposed to various distur-
bances.

rvhich requires a minimal amount of prior process
knorvledge.

which can make advantage of available prior pro-
cess knowledge.

that performs diagnosis of the control perforrnance
and the loop components.

rvhich the user can "reason" rvith, i.e., ask ques-
tions and get information and explanatious about,
e.9., process dynamics, actual control performancc,
achievabie preformance, specification trade-ofls,
etc.

rvhere the underlying control knorvledge and lieuris-
tics are transparently represented in a rva1, that
easily allorvs for modifications and extensions.
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92 APPROACH

"Include an experienced control engineer i,n the closed
control loop ønd prouide him wi,th the necessary toolbox
o f øI g orithms f o r control, identifi, cation, rneasLrem ent,
moni,toring, and control system design.',

Encode general control knowledge and heuristics about
auto-tuning and adaptation in a supervisory expert
system.

The cont¡oller consists of an ,,intelligent" combination
of dedicated algorithms.

KEY PROBLEMS

'What 
process knowledge is needed and how can it be

automatically acquired?

No easy ansv/er, seleral approaches

How does a suitable expert system architecture for
expert control look like?

Real-time, on-line application
Knowledge represented. as ¡ules and procedures

SYSTEM ARCHITECTURE

Communlcat lon
medla (plpes,
mallboxes...)

PROSPECTS

Research areas:

Intelligent PID auto-tuners

Expert supervision of adaptive controllers

Combination of feedback control and cliagnosis

Auditing of control loops

Possible short term results:

Smart single-loop controllers

Structuring of control engineering heuristics

Possible long term results:

A low-level system component in the future,s knorvl_
edge based control systems.

Natural extensions:

Mulüiloop systems

REALIZATIONS

Single computer

Distributed, multi-loop system

VAX 11/780 sysrem:

Knorvledge-based system rvritten in LISp, yApS,
and FLAVORS.

Numerical algorithms rvritten in pascal.

MUSE:

Commercial blackboard system.

Allorvs for emmbedded systems

Development systen - Sun

A/D

DlA

Operator,
Process
eng¡neeÌ

Blâck-
board

SchG
dulet

Expert
system

Numerical
algorithms

Man-machine
lnterface



STATIC CHARACTERISTICS

Can be determined from operational data

PROCESS DYNANIICS

Qualitative

o stable / unstable

o monotone / oscillatory

¡ minimum phase / SpR / low order

Step response characteristics

kp
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g

u

U

a"'""'''

u

â
L

U L
u

LEVELS OF PROCESS KNOWLEDGE

L0 Qualitative classification

L1 L0 and (a,L) or (hrao,rrao)

L2 Ll and lco

L3 L2 with more points on the step response or
Nyquist curve

L4 Mathemaiical mod:l with uncertainty estimates

HEURTSTICS

UpI N AgOt UpTp æ tucßg

êmaz N 0.41k" PI
e^a, ñ 0.6/k" PID
0 : LIT Rel. apparent dead-time
n: lcof lcßs Max. loop gain
rcO æ 1,3

Frequence response characteristics

I'n G(¡o)

o 
rEo,

:¡0. t:ro

Rc G( ¡o)

t9o. Ì90

LEVELS OF DISTURBANCE KNO'WLEDGD

L0: Qualitative knorvledge (transient,stationary,
reducible,measurable,predictable)

LL: L0 * magnitude of measurement noise and load
disturbances

L2: LI * time constants associated rvith disturbances
L3: Matematical disturbance model rvith arnplitude

and frequency distribution

LOAD DISTURBANCtrS

Unit load disturbance and PID controiler

u(¿) = ke(t)+k¿ s

u u

Servo or regulat or (feedÍorrvard? ), plant non_linearities,
range and resolution of sensors and actuators

l,* )d.s + k¿*
dt

RÊ6, PRo C

gives ff e(s)ds : (u(oo) - u(o)) I k¡
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The relay method:

Generates an oscillation by relay feedback.

Requires the process to be essentially monotonous.

REGULATOR TUNING
ZIEGLER-NICHOLS DESIGN

Tuning requires Èrao,crr80 or a, L
Assessment requires ko in addiiion

Tigbt Co0trol is
Nol R€quir.d

Tight CoDt.ol ¡s Requirêd
e

High lifeæu€nenr Low Sôluratioa L¡y Ùl€æurcrcût Noisc
Noi* Limit Såtùr¡lion Liñ¡t

Os II0.rs - 0.6 Pl
O*III0.6-1 Io¡PI

PI
I+A
I+B+C

PID
PIo¡PfD*A*C

tv> l I

PI or PID
PI+Á
PI+B+C PT +

Process knowledge obtained:

Pe¡iod and amplitu,fe: =* k1s6 and ø1ss

UotAt;y2 =* discrete model + l$erLrT
r æ 0 =+,jP.¿B
Filters in the relay loop gives more points on the
Nyquist curve

REGULATOR TUNING
DOMIN.A.NT POLE DESIGN

Based on the complete process model
'Works with the approximation,

G(s): Içpe-"Lf (L*s?)

Class of systems:

Systems with poles close to the negative real axis

s = qJ ei(t- a)

A: Feedforward compensation recommended,
B: Feedforward compensation essential,
C: Dead-time compensation recommend.ed
D: Dead-time compensation essential.

Case II is the prime application for Ziegler_Nichols
tuning

0 t0 t0

EXAMPLE 1

--sL
Gls) : 1l-sT

G (w ei(' -') ¡ : 7 (¡¿) ¿- ;ö(.)

.L:T : I

Crude assessment

C.rgO : 0.9 ¿lrSO : 2.0
kgo = 0.76 årso = 0.44

Accurate assessment

I: ø : 0.55

t = 0.36

PI: 0.55 < ¿¿ ( 1.1
0.36<k;<0.62

PD:

PiD 0.9(ø(1.7
k¿ < 0.76

rc

The PI case

k(a) : sin(@(ø)- a)
r(ø) sin(a)

sin(/(ø))

I
T

lo

lh

Ë¡(ar) :
r(ø) sin(c)

k¡ (w)

k(w)

OJ

{d

to to s

10
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(1+6) (1 + o.2s)( 1+ 0.05s)(1* 0.01s)

PIDWIZ COMPARISON

PID\,VIZ - commercial control loop tuner

Step response and load disiurbance

1: LTH-design, 2:PIDWIZ

EXAMPLE 2

1G(s):

Crude assessment

ugo:3
kgo : 0.3
,- _ tDtu-où

Accurate assessment

I:

1d,ßo :32
krso : 0.03

| ,r-0.5

u :0.62

0.62 < a 12.5
0.4 < k¿ 12.4

3.7(t¿(11
1.9<k<9.7
2.2{a{7.5
2.0<ki<27

?Í

?D

l0 20

sigrd

l0

G(s) =
0.Se-10!

G +l)-:110, +Ð tm :m

l@ 2@ tæ

30

t0 t0

PI:

PID

PD

G(s) =
l.se-2"

(1 + or"P

0.5

4.t

r.5

0-r

l0

T
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Using Control Theory to Improve Stepsize
Selection in Numerical Integration of ODE

Kjell Gustafsson
Department of Automatic Control, Lund Institute of Technology
P.O. Box 118, 5-221 00 LUND, Sweden, Email gell@conürol.lth.se

Abstra,ct. Stepsize selection in numerical integration of ord.inary differential equa-
tions can be regarded as a control problem. An estimate of the solution error is fed
back in order to choose the new stepsize. The standard stepsize controller used tod.ay
does not give saüisfactory performance. It is based on a static asympüotic relation
between the stepsize and the error. A dynamic model that better describes this re-
lation is derived. It ie then used to analyze and to explain the problems with the
standard controller. A, new conüroller is designed using the model. It is of pI type
and gives superior performance at little extra expense.

Keyword,s: Control applications, computer eimulation, numerical analysis, numer-
ical integration, stepsize selection, ordinary differential equations

1. Introduction ¡n6rroct corrocl1,3

L.2

1.1

1.3

1.2

1.1

When solving ordinary differential equations nu-
merically (e.g. simulating the time response of a
continuous time control system) it is often hard
to judge the quality of the produced solution.
Simulation programs are normally constructed
such that the user only supplies the differential
equation and an accuracy requirement, while the
program takes care of everything regarding the
numerical integration. The user trusts the pro-
gram to efficiently produce a solution within the
required accuracy. Normally the program suc-
ceeds in doing this, but for some, remarkably sim-
ple, equations even the best algorithms known
today fail. An example from a simulation of a
control system is shown in Fig. L. The oscillating
component in the signal to the left is not a part
of the true solution of the equations. The simula-
tion program does not succeed in detecting this,
even though the errors are much larger than the
accuracy requirement.

The artifact in Fig. L is caused by ihe
algorithm for stepsize control in the integration
method. Consider the iniùial value problem

ù=f(t,y), 0<¿<?, y,l €RP
v(o) : vo

Figure 1. Ä, sirnulation of thc control signal
during a step rceponse of a eimplc control sya-
tcm. The oecillatory componcnt, in the signal to
the left, is c¿u¡cd by an irregular stepsize sc-
qucncc. Thc corrccü signal, to the right, is ob
taincd by improving thc atcpsizc control algo-
rithm.

with the exact solution g(ú). An integration
method forms the numerical solution {y,}f=o
at discrete time points t, using a discretization
of (1). The (time)distance between two solution
points is called the stepsize hn, hn = tn+L - tn.
It controls the quality of the numerical solution,
and the goal is to choose it such that the
difference between g(t,") and g, is small.

The appropriate stepsize hn varies along
the solution of the differential equation. It is
hard for the user to relate a given stepsize to
a specifi.c accuracy and üherefore the choice is
normally left to the simulation program. The
choice is a matter of both accuracy and efficiency.

0.9 0.9
01505 10 5 10 15

(1)
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Figure 2. Control syetcm vicw of stcpeizc
sclcction

Small steps make the solution accurate, but
require more computation due to the increase
in the number of steps needed. Therefore, the
strategy is to choose the stepsize as large as
possible within the accuracy requirements, since
that gives an acceptable solution with the least
amount of computation.

The stepsize selection can be regarded as a
control problem (see Fig. 2). An estimate of the
solution error is compared with the user-specified
accuracy requirement, and the result is fed back
and used to determine the new stepsize. The
controller should keep r close to tol, and when
doing so preferably use a smooth control signal.
A smooth stepsize nequence improves the quality
of the error estimate, and then it is more likely
that r really reflects the difference between gr,
and y(t,).

The standard rule for stepsize selecüion ie
derived from a static asymptotic relation be-
tween the stepsize and the estimated error. In
reality the relation is dynamic and depends on
the operating conditions. Often ühe static rela.
tion is a good approximation, but in some cases
a dynamic model has to be used. The standard
controller can not handle these dynamics, and
the result is an unstable control system mani-
fested as in Fig L. The problems in Fig 1 is easily
detected, but often the discrepancieg are more
subtle, and for the user hard to detect.

In this paper we will derive a model that
captures the process behavior. The model is then
used to derive a new controller, which solves the
stepsize control problem. Finally, the properties
of the new controller are demonstrated using a
numerical example.

2. Standard Stepsize Control

To gain insight and to introduce notations, we
will start by deriving the standard stepsize con-
üroller. As will be seen it can be viewed as a pure
integrating controller, which explains some of its
properties.

An explicit m-stage Runge-Kut,ta method
(Hairer, Nørsett, and \¡Vanner, 198?) applied to

the initial-value problem (1) takes the following
form

i-1
Y : f þ, * c¡hn, ao * hoÐ 

"rtvt),i=t
i=t,..rn

i=l (2)

tn+L = to* ho
m

ê¿+1 = n^E(bi -iìto
i=t

r".*L = llê"+tll

The coefficients {ø¡}, {ô¡}, {û¡}, and {c¿} are
chosen such that the Taylor expansion of the
numeric solution y' matches as many terms as
possible of the Taylor expansion of the true
solution y(úr). The exponent of the matched
term with the highest order is referred to as
the method order. The method supports two
formulae of orders /c - 1 and /c, respectively. They
are represented by the two coefficient sets {å¡}
and {â¡}. One coefficient set is used to advance
the integration while the other ie used for the
error estimate ê.

For robustness, a mixed absolute-relative
ttnorm" is used to form r. A common choice is

2

v

r
(eror
stl¡nste)

an*r=Un*hnÐUltt

(3)

where q¡ is a scaling factor for the i:th component
of y.

The nonlinear difference equations in (2)
constitute the true process. Its behavior is com-
plicated, but the main properties can normally
be captured using a simple linear model.

The error é is formed using the difference
between the two coefficient sets {b¡} and {ô¡},
and asymptotically it is proportional to lrß, i.e

rn*L = llö,.llhl',. (4)

The coefficient vector { consists of elementa"ry
differentials of f of order k - L and higher
(Gustafsson, 1988), and is O(1) as l¿ --* 0.
The standild stepsize control algorithm is based
on assuming / constant or slowly varying. The
control objective is to make r equal úol, and that
may be achieved in ühe next step by choosing
h" = tol/llþ,"11. Here f,, is unknown, but since /
is constant, ón-t can be calculated from r, and
hn-y anð. used instead. Then

llell =
ê;

MD
i

(

2

hn= (#)
rlk

hn-r (5)
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Augmented with some safety factors, this is
the stepoize controller found in most production
codes used today (Gear, 1971; Hairer, Nprsett,
and Wanner, 1987).

Using logarithms makes (5) read

logå,,. = loglr,n-1+ /c-1(logtol - logrr), (6)

which can be recognized as an integrating con-
troller with logúol as set point and Llk as inte-
gration gain. Since the process model (4) can be
written

logr, = kloghn4 + log ll/ll, (?)

the closed loop from logtol to log r, will be
of first order. Choosing the integration gain as
1/,t makes it deadbeat. Moreover, the constant
load disturbance loglldll ir eliminated by the
integraüor in the controller.

Although assumed consüant, the distur-
bance f varies along the solution of the differen-
tial equation. Sometimes the va¡iations are very
large, and the controller does not manage to keep
r æ tol. A large increase in { will result in a sim-
ilar increase in r. An error r substantially larger
than tol cannot be tolerated. The step has to be
rejected, and a new try is made with a smaller
stepsize. At times when / increases drastically
there may be long sequences of alternating re-
jected and accepted steps.

A more severe problem is that the model (4)
is not adequate. The process changes behavior
between different operating conditions. The con-
troller (5) fails to handle this changing behavior,
and the stepsize cont¡ol loop becomes unstable,
causing a highly irregular stepsize sequence. The
phenomenon has been studied before, but almost
all studies have focused on characterizing and
descibing the behavior (Shampine, 1"g?5; Hall,
1985, 1986; IIall and Higham, 198?). Here the
goal is instead to solve the problem, and in order
to do that a better process model is needed.

3. A Process Model

Figure $. Stebility rcgion for DOPRI4S wiùh
local extrapolation.

Ex¡.¡upr,n L-DOPRI45
DOPRI4S (Eairer, Nørsett, and Wanner, 198?)
ig a fifth order explicit Runge-Kutta method. Its
er¡or estimator is also of fifth order, and

,E

-54-3 -2

R.

012

Consider the test problem

il=\y t)0, À<0
s(o) = so. (8)

Applied to (8), the Runge-Kutta algorithm can
be expressed as the exact process

An*L = p(h"\)y^
ên+t = E(h*\)y^ (9)

where P(ñ,,,.1) and E(h.^) are polynomials in
h"\.

-2 z3 z4 z5 26P(z)=t*z*î*î*h*m*mO
E,t -\ _ 9725 , !326 zTP\') - - 12oooo' aõõõõ' - t4ooo'

Up to and including the fifth order term, P(z) is
a co¡rect Taylor expansion of e' (the solution of
(8). The region defined by .9 = {tr.À : lP(h.f)l I
1) (see Fig. 3) is referred to as the stability region
of the method. tr

When ft,,.l is emall and well inside the
stability region E of the Runge-Kutta method,
the process is well described by the process model
( ). To verify, observe that .0(lloÀ) takes the
form.E(lr,,nÀ) : rc6(å.*À)k +*1(h¿,¡h*1+. . ., and
hence the error estimate

tn*L = llö"llh|,
6n = yn),k(rco + rc1hnÀ + . ..)

( 10)

Here f* is measured with the same norm a^e ê.
The coefficient vector S' is varying along the
solution gr. It is also dependent on hr, but the
dependence is weak since lÆsl ) lrrh,) + ... I

when å,rÀ is small, which is the case when å,o.tr

is well inside E.
For the linear problem (8), ó * 0 âs t ---+ c¡o,

and to keep r equal to tol, the stepsize controller
will increase the stepsize. As äo increases, it
will eventually equal /r, where h, puts å,,À on
ô5, the border of the stability region S of the
integration method (for DOPRI4S h,^ - -g.gL,
see Fig. 3). Further increasing the stepsize makes
the nonlinear difference equation sysiem (g)
unstable, and the stepsize is said to be limited by
numerical stabiliüy. The behavior of (g) changes

3
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when lar.) approaches ôS, and the process model
(a) no longer holds. Instead a new model has to
be derived.

The constant stepsize h, leads to the sta,
tiona,ry solution lg,arl : ly,l, .itt"" lP(r¿r.f)l =
L. Consider small perturbations, i.e. hn x hr.
Then the process may be written (Gustafsson,
1e88)

Ct -Ct*Cz

it to change Cr and Cz. Hence, the numerical
properties of the integration method are traded
for a stable closed loop system. From a control
theory point of view, it seerns more appropriate
to change the controller, and reserve the free pa.
rameters to optimize the numerical properties of
the integration method.

The operating conditions giving rise to the
model (4) are by fa^r the most common. There-
fore, the new controller should give good perfor-
mance for the case (13) without sacrificing per-
formance for (a). For the values of C1 and Cz ap-
pearing in practice it is sufficient to replace the
standard conüroller by a controller ofPI type, i.e.

G"(c) = kr* + n, (14)q- L

to achieve this end.
Ii is hard to give general formulae for how

to choose the controller pa^rameters /c¡ and lcp.
Their values are a compromise between stabil-
ity and response time. The coefficients C1 and
C2 varf for different integration methods, and
one cannoü expect to find values that will be ac-
ceptable for all integration methods. Still, for a
given method it is quiüe straight forward to de-
termine controller parameüers using methods like
root locus plots and Nyquist plots. A fairly de-
tailed description of the derivation of pa^rameters
for DOPRI4S ie included in (Gustafsson, 1988).
For DOPRI4S the pa,rameters where chosen as
&¡ = 0.06 and /cp - 0.13, which ehould be com-
pared wiüh the integration gain I/k = 0.2 (the
error estimator in DOPRI4S is of order b) in the
standard controller.

The new Pl-controller both stabilizes (13),
and improves the performance for the normal
process model ( ). The closed loop is no longer
deadbeat, and as a result the control signal
(the stepsize sequence) is smoother. This is an
important improvement, since a smooth süepsize
sequence makes the error estimate better, and
consequently r will more accurately reflect the
difference between y(to) and. yn.

The Pl-controller can be written on a form
resembling the etanda¡d controller (b). Some
manipulations applied to log å.,, = G.(S)(logtot-
logr,") using (14) yield

, (tot\-, (#)o* on_, (1b)IL--l-l'" \r* )
new factor

From this expression it, is clear that the new
factor corresponds to taking the most recent
development of r into account when deciding
upon the next stepsize. It is also clear that

1Tn*
hn

E

cr(h,^): h,À

Cz(h'^) = h"^

E,(h,^)
MÐ,
PI h"^)

Tn ( 11)

( 12)

(?)
with

P(h"^)
Again using logarithms, the process model reads

log r* = Gok) 1ogh* - log ¿,,) ,

ra t^\_Cg*Cz-Ct (13)
--p\at - c(s - t)

where g is the shift operator.
Although (13) was derived for the simple

test problem (8) it is valid also for other differ-
ential equations. In (Gustafsson, 1988) the result
is generalized to general linear differenüial equa,
tions, a^nd also experimentally verified for non-
linea.r /.

4. A New Controller

The standard integrating controller (5) gives un-
satisfacüorily performance for the process model
(13). For many commonly used Runge-Kutta
methods, e.g. RKF23, RKF45, DOPRI45, the
values of C1 and Cz are such that the closed loop
system is unstable or close to instability (Hall
and Higham, 1987).

In numerical analysis one does not normally
regard the stepsize control system as dynamic.
The relation (4) is assumed static with f con-
stant, and any discrepancy between r and üol
should (and could) be fully compensated for in
the next step. Therefore, the stepsize selection
rule (5) is never questioned, and all attempts to
solve the problem have concentrated on the pro-
cess. This shows up in (Hall and Higham, 1g8Z)
where the process (the integration method) is
modified to make the closed loop stable. When
constructing an explicit Runge-Kutta meühod
there is some freedom in the choice of param-
eters. Normally this freedom is used to minimize
error coefficients or to maximize ühe stability re-
gion of the method, but Higham and Hall exploit

4
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this type of controller is trivial to implement in
existing ODE codes.

Rejected Steps

Also with the new controller, r will occasionally
be too large, and the step has to be rejected.
The closed loop is no longer unstable for the
case (13), and the most likely reason for ühe large
error is a¡r increase in /. After the rejected step,
the next step is a retry and from the previous
attempt it is known what to expect ahead. The
disturbance f can be calculated from the rejecüed
step and the value is ühen used to determine a
new stepsize. The formula is identical to the one
in the standard controller (5).

It does not suffice to determine a new
stepsize to restart the controller. Á,lso its internal
state has to be updated. The disturbance S
exhibits a lot of structure, and since it increased
in the last step it is likely that it will increase
in the next step too. In order noü to get another
rejected step, the stepsize should be decrea.ged
in the next step as well. The internal controller
state can be used to achieve this end. In other
words, a.fter a rejected step, a new stepsize is
calculated from (5). If it leads to an accepted
step, the controller state is updated such thaü if
the accepted step is perfect (r = tol), there will
still be a stepsize decrease of the same factor as
the one in the last sùep. If, on the other hand,
the step is rejected, (5) is used again.

In a way this strategy for rejected steps
is an ad hoc solution, Still, it works very well
in practice (Gustafsson, 1988), a¡rd it has the
advantage of being easy to implement.

To summariøe this section, an outline of the
code needed to implement the new controller is
presented in Listing 1. The cont¡oller is called
after each step in the integration routine, and
it calculates the stepsize to be used in the next
step. The variable æ is the controller state, and as
before, å is the stepsize and r the corresponding
error estimate.

5. Numerical Test

To demonstrate some of the properties of both
the old standard controller as well as the new
one, they will be used to simulate the step
response of a small control system (A more
extensive set of numerical tests can be found
in (Gustafsson, 1988) and (Gustaf,sson and co-
workers, 1988)). The integration method is DO-
PRI45 with local extrapolation.

The control system is the one used in Fig. L,
and consists of a standard PlD-controller with

if cur¡vnt-step -accepeted tlo'en

if preai,ous -step :rcj ecteil tlnen
c z= h. h/æ

endif
/ tot\h' / otd,r\h"

"'= \;/ t;/ a

h:= s

old,r:= r
else

h '= 
(totl'tx o\r/

endif

Lieting 1. .A,n outlinc of thc codc ncedcd
to implemcnt thc new controller including thc
rcetart stratcgy aftcr rcjcctcd etc¡re.

filtered D-part

sT¿W
and the plant 1/(s + 1)n. The pa^rameters K -
0.87' 1i - 2.7, ?¿ = 0.69, and 1V = 30 yields a
well tuned controller.

Figure 4 shows some signals originating from
a simulation of the step response of the system.
The figure consigts of six gmall plots, with all
aignals plotted as function of time. The upper
lefü plot shows a correct simulation (using the
new stepsize controller) of the control signal
(u) and the plant output (g). The upper right
plot shows two curves corresponding to the work
needed to solve the problem. It is the total
number of integration routine calls for both the
old standard controller (solid line) and the new
controller (dashed line). Rejected stepe are also
included to properly reflect the total work. The
two plots in the middle show the estimated
error r (normalized with üol) for the old (left)
and the new (right) controller. The two lower
plots compare the stepsizes used by the two
controllers.

The PlD-controller and the plant form a
sixth order system with four complex eigenvalues
and two real. Five of the eigenvalues have a
magnitude approximately equal to 1, while the
sixth eigenvalue À6 ny -40. The eigenvalue )6
is related to the ûltering of the D-part in the
controller.

When simulating the step response the tran-
sient corresponding to ì6 dies out very fast. Con-
sequently the stepsize controller increases the
stepsize and soon l¿Àe is placed on ôS. For the
standard controller this leads to instabilit¡ re-
sulting in an irregular stepsize sequence which

1

ñ1Gpto: K ++
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Figure 4. Simulation with úol = 10-2

excites ihe fast mode corresponding to À6. The
error estimator f¿ils to recover this mode prop-
erly and the produced solution is erroneous (see
Fis. 1).

In contrast to the standard controller, the
new controller quickly finds the correct stepsize
and manages to control the error almost per-
fectly. Moreover, the new controller drastically
decreases the nu¡nber of rejected steps, and the
step response is sinrulated with 20 % less work.

6. Conclusions

Over the years automatic control has benefited
by the progress in numerical analysis. This paper
ha,s presented a problem where instead control
theory is used to understand and solve a prob-
lem in numerical analysis. Viewing stepsize se-

lection as a control problem separates an inte-
gration routine into two parts: the process (inte-
gration method, differential equation a¡rd error
estirnator) aud the stepsize controller. Hence an
integration method can be constructed for opti-
mal numerical behavior, and then a fftting step-
size controller is designed.

To design the stepsize controller a process
model is needed. Normally, a static asymptotic
relation between the stepsize and the estimated
error is assurrred, but the relation is better
described by a dynamic model when numerical
stability limits the stepsize. Such a model was
derived for explicit Runge-Kutta methods.

Usirrg the dynamic model, it is straightfor-
ward to analyze the standard stepsize controller.
l'he analysis gives insight and clearly points out
that there are operating conditions where the
süandard stepsize controller fails to siabilize the
process.

The standard stepsize controller can be rec-
ognized as a pure integrating controller. 'lhe gen-
eralization to a Pl-coutroller is then natural, and

using root loci plots or similar techniques its pa-
ra¡neters ca¡r be tuned such that good control
is achieved. The new Pl-controller gives better
overall performance at little extra expetrse.

Here only explicit Runge-Kutta methods
were considered, but the same problems show up
also for other types of integration methods. Sim-
ilar analytical models can probably be derived
for these methods as well, and once a model is
obtaiued it can be used to analyze aud irnprove
the stepsize control.
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Abstract
This paper describes an interactive tool for modelling of control systems. The
focus is on practical experiences with C++ as a development tool, and the need
for multiple inheritance, parameterized types, and exception handling, in this
application. Experiences with a new graphics standard, PIIIGS, using an object-
oriented programming style, are briefly covered.

1_ Introduction

Modelling has traditionally been one of the main topics in control engineering. Control
systems are complex and require careful design and analysis, in particular, as errors in
control system design can become expensive. There exists today a great need. for computer
aided design of control systems.

Our research is centered around tools for model development and simulation. The
objective is to design the basic concepts needed for structuring models, and to design
the internal computer representation of control system models. Àn experimental tool for
modelling and simulation has been developed in KEE, an expert system shell.

The experimental tool will form the basis of an engineering tool for the designer of
control systems. Ûn such a prod.uct, flexible, efficient and affordable system softwa¡e must
be used. W'e have therefore evaluated C++ as the future implementation language, and
PHIGS as the main graphics system. A simplified experimental tool has been implemented
in C**. Whereas the KEE version supports all essential parts of an engineering tool, the
C+* version only provides graphical interaction; the internal structu¡e is quite ri*it 

", 
i¡1

order to meet future needs.

2. Modelling of control systems

The model of a control system can be regarded as a hierarchy of components. One of
the fundamental ideas is to build libraries of component models, ranging from basic items
(for example, a pump) to more complex objects (for example, a distillation column). The
designer has the option of working bottom-up, putting predefined components togeiher to
form a new component, ol top-down, decomposing a complex object into manageabie pieces,
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or most likel¡ a combination of bottom-up and top-down design [Nilsson, 1987]. The key
word is reuseability - of earlier designs and of standard components.

A single component can be described in many ways: graphicall¡ textuall¡ using
block diagrams (describing its structure), or mathematically (for example, in state-space
or transfer-fi:nction form). It is also necessary to use models with different degrees of
detail and complexity, for example, an effi.cient simulation model for normal operation, and
an extended model for analyzing error conditions. All these models a¡e needed in different
stages of the design, and should be available in a model development tool. It should be noted
that the corrtmon "machine" view may be replaced by a t'materials" view. For example, a
chemical compound may carry all knowledge in the model, while the stations in the refinery
only signal changes of state.

With or:r set of basic concepts, a mod.el has th¡ee properties: it has terminals which
provide an interface to the outside world, parameters for adapting its behaviour, a^nd at
least one realization that defines its behaviour. Only data in the terminals are available to
other components; there are no global data, except a time reference for simulation.

'We currently support two types of realizations: primitive realizations using ordinary
differential equations, and structured realizations using block diagrams. A structured real-
ization consists of submodels and connections (between submodels, and between submodels
and the terminals of the enclosing model). Interaction between components is defined only
by connections.

Simulation is often used to analyze control systems, and the designer should be able
to simulate his/her model using this tool. Simulation introduces a number of interesting
mathematical problems, which will not be covered further in this paper [Mattsson, 1988b].
The connection concept also raises interesting questions: for example, what is a legal
connection, and how do you define compatibility between terminals [Mattsson, 1988a].

According to current trends, it is also necessary to throw in a^n expert system and a
couple of knowledge bases.

3. Direct model representation

Modelling of control systems maps nicely to the ideas in object-oriented programming.
It is natural to represent a model with a class in the programming language used for
implementing the design tool. It is then possible to develop new models using inheritance
and speciali zation of classes.

Inheritance is not suitable for describing all kinds of relationships between models.
Multiple representations of a single model (textual or mathematical), and specialization (a
car is a special kind of vehicle), can be described with inheritance. Decomposition of a
model into its components is different. For example, that a car has tyres does not mean
that the car can be inflated, so inheritance is not the right mechanism; components are
represented by class mernbers (Listing l).

The direct way of representing models with classes is used in the experimental tool
developed in KEE. Instantiation is used, for example, to create objects that contain
simulation data. A necessary key feature of KEE (and object-oriented systems like Loops)
is the possibility to dynamically define new classes while the program is running.
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class vehicle {
char* owner;

);

class car : public vehicle {
tyre fl, fr, 11, rr;
engine e;

);
Listing 1. Direct representation of a c¿r model, derived from vehicle.

4. Model representation in C**
If interactive model development is presumed, direct representation is not possible in C**,
simply because classes cannot be defined. at runtime. Consequently, components ca¡rnot
be represented directly with class members, and inheritance caruiot be used to derive new
models. To be able to interactively create models, we rnr¡st implement a dynamic framework
for representing models, realizations, etc. This framework is simila¡ to the class systems
commonly based on Lisp, but the implementation task is simplified by the structure of
control systems.

It should be noted that the engineer developing control systems will see an interactive
modelling tool; C** is used only to implement the dynamic framework, not as a control
system description language. One can also say that the object-oriented aspects of model
representation have been separated from the object-oriented aspects of C**. Still, object-
oriented programming effectively supports the design and implementation of the framework.

Internal data structures

Now, let's ph:age straight into the internal data structures of the C** program. The code
listed below is slightly simplified; constructors and destructors are not listed, and most
general purpose routines have been omitted. An example will be given below.

All objects are components; they have a name, and they can be inserted into lists
(tisting 2).

class component {
char* nane;
link next;

public:
virtual void nenuactiono ;
virtual void redrawO;

);
Lieting 2. Definition of the basic component class.

Method redraw is a schoolbook virtual function in C**: every component has a
graphical representation, so all components must implement redraw in some way. Graphics
will be described further in Section 5.

When the user points at a component and presses a mouse button, some components
(". g., models and realizations) will respond by displaying a menu. Other components
(". g., terminals and connections) are not associated with a menu. Ûr C++, whic.h in its
present shape only supports single inheritance, method nenuaction must be declared as a
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virtual firnction in the base class, component. When multiple inheritance becomes available
in Cf*, nenuaction would more naturally be the property of a class associated purely
with the user interface; models and realizations would be derived from this class, but not
terminals and connections [Stroustrup, 1 g87a].

Generally spea^king, multiple inheritance enables us to separate the user interface and
the modelling structure more effectively. There will be one "th¡ead" of inheritance for
the user interface (drawing block diagrams, and menu actions when applicable), and. one
thread of inheritance for the modelling of control systems (components, models, etc.). The
development of class libraries, in particular, will benefit from mr¡ltiple inheritance. For
example, fi:nctions provided by the operating system and the window manager, will be
easier to describe and. use in an object-oriented fashion with multiple inheritance.

The model contains terminals and realizations, in C++ represented with linked lists
(Listing 3)' General purpose lists of components are used, which efectively corrupts the
type security in C++. In addition, the programmer must bother about explicit type
conversions. Alternativel¡ generic lists could be faked with macros. F\rture versions of
C++ may incorporate true generics, also called parameterized types [Stroustrup, 1g87b].
The need is evident, even in this small example.

class model : public conponent {
list terninals;
list realizations;

void new-te:minalO;
void new-realizationo ;

public:
void nenuactiono;
void redrawO;

Ì;
Listing 3. Definition of the model clags.

There are two different kinds of model realizations: primitive reaüzations based on
equations, and structured reaüzations based on hierarchical block diagrams (tisting 5).
There is no "one-of" concept (for example, allowing a pointer to a set of classes) i" C1i,
8o an additional class reaLizatÍon i¡ needed (tisting 4). In this case, there are no real
problems; in other cases, an awkward data structure might be forced upon the prograrnmer.
The one-of concept is available with firll type checking in KEE, and has reduced the need
for common base classes.

class realization : public conponent {
Ì;

Listing 4. The common part of ¿ll realizations.

A submodel establishes a relation between two models, one fully enclosed in the other
(tisting 6). With a structured realization, a model is described by the behaviour of its
submodels and by its connections. The submodel also has a graphical meaning. When
a model is simulated, the submodel must be "instantiated" by the model representation
framework. Although many submodels may refer to a single model (". g., a pump), eve"y
submodel requires a private data area to hold simulation v¿riables.
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c1as6 eqn-rsalization : public realization {
list equations;

voíd new-equationO;

public:
void. menuactiono i
void red.rawO;

];

class struct-tealization : public realization {
list submodels;
list connections;

void new-eubnodelO;
void new-con¡rectionO ;

public:
void menuactionO;
void redrawo;

);
Listing 5. Primitive and structured model realizations.

clase eubnodel : public component {
point position, size;
model* parent;
model* sub;
voidr, data;

public:
void noveO;
void scaleo;
void instantiateO;
void redraw0;

);
Listing 6. Definition of the submodel class.

An example

A small example will demonstrate the data structures above: a servo built from a regulator
and a motor. On the screen, the engineer will see a block diagram as in Figure 1. Input to
the servo is the reference value, also called the setpoint. Output from the servo is the actual
position of the actuator. The regulator controls the motor, but the cornmon feedback loop
has been left out to simplify the example.

The textual representation in Figure 2 reveals the most importa^nt C** objects
needed for the servo. The servo object has two terminals and a realization (terminals and
connections will not be described in more detail). The realization is of course structured, and
contains two submodels. It also contains three connections: the reference value imported
to the regulator, the control signal from regulator to motor (shown in Figure 2), and the
exported actuator position.
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Servo

Regulator Motor

Figure 1. A servo with two submodels.

The submodel objects (for example, MotorSub) serve two purposes in this example.
FirstlS the graphical appearance of a structured realization is determined mainly by the
position and size of the submodels. This information cannot be stored in the model object;
a certain kind of motor can be used as a submodel in many different models. Secondly
the submodels establish a relationship between the enclosing model (the servo), and the
model objects used as componentt (e.g., the motor). The two pointers in the submodel
object are used, for example, when defining connections. The references between models,
realizations and submodels a,re shown graphically in Figure 3. The role of the submodel
when simulating the control system is not discussed here.

The C** objects used for representing the regulator and the motor are similar to
the servo objects. The main difference is that the regulator and the motor have primitive
realizations, probably expressed with differential equations.

Exception handling

Handling of exceptions (errors and similar uncoïnmon events) is a problem in all softwaxe
systems. Ordinary programming techniques, using status flags and if-statements, lead either
to bad program structure and cluttered cod.e, or to programs that take proper behaviour
for granted. A well designed exception handling mechanism (as in Äda), is an inv¿luable
asset in practical software development. Exceptions increase the readability of the program
and indicates the programmer's assumptions about expected and unexpected events [Ghezzi
and Jazayeri, L982, page 22].

The model development tool is quite complex, and. many inconsistencies must be
checked step-by-step, at different times. Exception handling is useful for restoring the
internal data structures to a previous well-defined state. Storing as little redundant
information as possible makes this task easier, but may increase complexity in other areas.

The absence of exception handling is a serious flaw of C++. Ada style exception
handling, which is also available in C [Lee, 1983], is very effective, but a more flexible
scheme may be called for in C++. Some people say that exception ha,ndling is needed for
developing good class libraries.

Finallg it should be noted that friend functions have been used sparingly (for example,
a connection needs free access to terminals and submodels), and proved to be extremely
useful. By bending the rules a little, a natural data structure has been maintained; ever-
expanding modules because of too strict encapsulation is often a problem with Modula-2
and Ada.
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Model: Servo
Terminals: [Re! Pos]
Realizations: [ServoRealiz]

Struct-rcalization: ServoRealiz
Submodels; [RegSub, MotorSub]
Connections: [RegSub.u - 

MotorSub.u, ...]

Submodel: RegSub
Position: (-0.6,0)
Size: (0.5,0.5)
Parcnt: --rServo
Sub: --+Regulator

Submodel: MotorSub
PositÍon: (0.6,0)
Size: (0.5,0.5)
Parcnt: ---+Servo

Sub: --+Motor

Model: Regulator
Tetminals: [R,ef, u]
Realizations: [IÙegR,ealiz]

Eqn-rcalization: RegRealiz
Equations: t...1

Model: Motor
Terminals: [u, Pos]
Realizations: [MotorRealiz]

Eqn-rcalization: MotorRealiz
Equations: t...I

Figure 2. Textual representation of ùhe servo; terminals, connectiong ¿nd equations ¿re not
shovun. square brackets denote a list, an arrow (--+) a pointer reference.

5. Using PHIGS

PHIGS (Programmer's Hierarchical Interactive Graphics Standard) is a new BD graphics
standard, aimed at interactive CAE/CAD applications [Brown, 1985]. PHIGS should be
regarded as an extension and a complement to the Graphical Kernel Standa¡d [Hopgood
et al., 19831, but not as a replacement.

The basic unit in PHIGS is the structure (cf. segment in GKS). A structure contains
elements for drawing, graphical attributes, and transformations. It is possible to build
hierarchies of structures (i. e., one structure may call another), and to edit the contents of
a structure; this is not possible in GKS. Application data may also be stored in a structure,
possibly a useful feature.
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Parent

Sub

Figure 3. References between models, re¿lizations and submodels of the eervo.
connections and equations ¿re not shown.

Terminals,

In order to take maximum advantage of the hierarchical structures in PHIGS, one
structure is associated with every object in the C** program. This oïre-to-oïre correspon-
dence is very convenient; changes are normally localized to a single PHIGS structure, and
complete legeneration of the graphics can be avoid.ed. As a typical example, consider chang-
ing a pump model: the structure associated with the pump must be changed, but modeL
using the pump as a submodel only refer to a structure identifier, and need no changes.
The fine granularity of the graphics hierarchy causes an extra overhead at red.raw, which
is quite tolerable in this application, though. It can be noted that the model development
tool is not a typical PHIGS application, in the sense that it uses the hierarchical features
of PHIGS, but not the 3D capabilities.

The correspondence between the object hierarchy a.nd the PHIGS structure hierarchy
is shown in Figure 4. The object structure on the left is the same as in Figure 3, but thl
regulator objects a¡e not shown. A PHIGS structure is associated with each object, as
indicated by dashed arroü¡s. The PHIGS structures on the right form a parallel hiãrarch¡
logically connected with "execute structure" primitives. The graphical representation of a
model is determined by the realization and its associated structure. The PHIGS structures
are in reality more complex, for example, to control picking (see below).

The problem of associating a C++ object with a structure, was solved by some fancy
programming. A C++ object can easily refer to a structure by storing the structure
identifier, but a problem arises when control must go from a structure to the associated
C++ object (for example, when the object's menu action should be invoked). The solution
is to use the object's this pointer as pick identifier, after conversion to an integer. When
the PHIGS system returns a pick identifier, the identifier is converted back to a ,¡pointer to
component.t' The exact natu¡e of the object is not known, but all components implement
method menuaction (Listing 2).

PHIGS can display graphics on multiple "workstations," which in a workstation envi-
ronment corresponds to multiple windows. By using so called fllters, different graphical rep-
¡esentations can be displayed with a single structure hierarchy. Regrettably, multiple *o"k-
stations are not yet supported by some PHIGS implementations. Event mode input and rub-
berband lines may also be missing in current implementations. Window management is not
available in the PHIGS standard, and may therefore cause considerable practical problems.
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Servo

ServoRealiz

MotorSub

Motor

MotorRealiz

rectangle(...)

execute(S ervoRealizStruct)

text(-1.l,1, "Servo")

executeS.egSubStruct)

execute(MotorSubStruct)

scale(...)

translate(...)

execute(Motorstruct)

rectangle(...)

execute(MotorRealizStruct)

text(O,0, "Motor")

Figure 4. Parallel hierarchies of C** objecta (left) and PHIGS structures (right).

6. Conclusions

In our experience, a dynamic environment like KEE is the best choice for research and rapid
prototyping. An engineering tool requires a less expensive and more efficient implementation
tool that is available on rnâny computers; in this case, C** is superior. W'e have not mad.e
a detailed evaluation of KEE versus C++, but the current work shows that programs and
data structures using the object-oriented parts of KEE can be implemented in C++ with
reasonable efort.

The major difficulty is that C++ does not support dynamic creation of classes. For
this reason, models of control systems cannot be directly expressed as classes in C*f ,
so an object-oriented framework must be implemented. The data abstraction a¡rd object-
oriented programming aspects of C** provide good support for this framework, a¡rd a
good programming environment in general. Multiple inheritance, parameterized types and
exception handling are much needed extensions to C**.

PHIGS is a powerful new graphics standard, but current implementations need im-
provement. W'indow management remains a problem area.
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Abstru'ct, This paper describes our experiences with InterViews, an object-oriented
package for implementing user interfaces written in C**. A comparison is made
with PHIGS' a more conventional graphics standard. A strong interaction between
base classes and derived classes is observed, notably base classes depending on the
behaviour of the derived classes. The application is an interactive block diagram
editor. It is used as a stand-alone graphical tool which generates equations for
Simnon, a simulator for non-linea¡ systems.

Keywotd,s: object-oriented programming, user interfaces, c**, Interviews, com-
puter Aided Control Engineering

1. Background

Developing real control systems is always a difficult üask.
Mathematical models and simulations are often used in
the design a^nd analysis of control systems. The use of
computers for thie purpose is called Computer Aided
Control Engineering (CACE). The development of new
CACE üools requires research on the basic concepts of
modelling control systems, and ühe computer represen-
tation of control system models [Mattsson, 1g88][Ander-
sson, 1989]. Equally important is the choice of tools for
developing these tools.

For research and prototyping, a combination of
KEE and Common Lisp has proved effective. KEE pro
vides a dynamic and interactive object-oriented devel-
opment environment, including simple graphical output
[IntelliOorp, 1986]. A practical engineering tool for de-
signing control systems must be more economical than
an experü sysüem like KEE, eo a leaner implementation
is needed. C** is a very good implementation language
in this case because of its efficiency and support for
object-oriented programming [Brück, 198?].

One of the remaining problem areas is the imple-
mentation of the user interface. The developer must
choose among a few window managers and several

graphics packages. In the ou-going evaluation ofdifferent
alternatives, this paper describee our experiences with
InterViewg [Linton a^nd Calder, L98?], an object-oriented
library for implementing user interfaces, written in C**
[Stroustrup, 1986] and running on the X Window Sys-
tem [Poutain, 1989].

The evaluation of InterViews was conducted by de-
veloping a block diagram editor for Simnon, a simulator
for non-linear eystems [Elmqvist et al., 1g86]. Simnon
is an interactive, command driven eimulation package
with its roots in the L970's; Simnon is still very much
staüe-of-the-art for continuous simulation, but has no
graphical input. The block diagram editor is not inte-
grated with Simnon, and therefore reasonably sized for
evaluation purposes. This paper also contains a compari-
son with an ea¡lier evaluation of PHIGS (Programmer's
Hierarchical Interactive Graphics Standard) in a simi-
lar application. A primitive block diagram editor was
developed, but without any relaüion to Simnon [Brück,
1988]. Previoug work has also explored continuous pan-
ning, scrolling and zooming of block diagrams on a high-
performance workstation. The concept of information
zooming was introduced, meaning that the information
contents of a block changes depending on its size on the
screen [Elmqvist and Mattsson, 1989].

1
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Figure 1. Scrccn durnp of a eirnplc blocl< diagram.

2. The application

A key concept in Simnon is the system, which corre-
sponds to a mathemaüical model of the reality being
studied. A system is described in a special modelling
language. There are continuous systems based on difrer-
ential equations and discrete systems based on difference
equations. A third type is the connecting system, which
is used to form compound systems from enclosed conüin-
uous or discrete systems. Every Simnon system is stored
as a separate text file.

The connecting system is often visualized (with
pencil and paper) by drawing a block diagram. Unfortu-
natel¡ the drawing must still be transformed into state-
ments of the modelling language. The block diagram ed-
itor ca¡r produce simple forms of Simnon's CONnEcting
System, hence the narne Scones.

Figure L shows a simple block diagram in Scones.
There is a fix command menu on the left side, and
a drawing area for the block diagram on the right.
Systems are represented by large annotated boxes.
Special symbols represent the sum (Ð), product (tI, not
shown in Figure 1) or negation (-1) of signals. General
expressions are represented by generator symbols (-).

When creating a block diagram, the user can either
creaüe a neïr system in which case Scones will make a
template file, or read an existing file in which case Sconee
will extract properties necessary for drawing ühe block
diagram. Scones knows the name of ühe system, and
maintains for each system a list of terminals (inputs and
outpuüs) which can be connected to terminals of other
systems. The connections define the interaction between
the systems enclosed by the connecting system. A
sequence of connected special symbols are transformed
into an arithmetic expression in the connecüing system.
It should be noted thaü Scones completely ignores the
equations that define the behaviour of a continuous
or discrete sysüem. Scones also defines a global time
variable t in every connecting system.

The block diagram in Figure 1- represents a servo
constructed from a motor and a regulator. A generator

COI{TIIIU0US SYSTEM Regu1

'rFilename pid.t
ICreated Fri Feb t0 14:14:51 1989
IIIPUT y-ref y
0UTPUT u
ETÛD

Listing 1. Simnon codc for thc rcgulator system.
Comment lince bcgin wiüh a double quote (").

C0NNECTIIùG SYSTEM Consys
"Fil-ename consys.t
rrCreated Fri Feb 10 14:30:33 1989
TIME t
1'System: Regul
y-ref[Regul] = if t > O then 1 else 0
y[RegulJ = -y[l{otorJ
"Systen: Motor
u[Motor] = u[&egul] + sin(t)
rrGenerator: if t ) 0 then 1 else 0

'rGenerator: sin(t)
EITD

Listing 2. Simnon code for thc connccting rystcrru

provides a step in the regulator's reference value yrr¡.
The control signal from the regulator y is influenced
by a load disturbance from another generator. The
measured value from the motor u is negated. The
template system for the regulator (without equations)
is shoïyn in Listing 1. The connecting system produced
by Scones is shown in Listing 2. The template code for
the motor is very similar to the code for the regulator
in Listing L, and therefore not shown.

3. InterViews and PHIGS

InterViews is an object-oriented user interface package

[Linton and Calder, 198?]. It provides the basic building
blocks for implementing a wide variety of user interfaces,
Basic objects derived from the base class Interactor
can display a graphical image and accept input events.
Composite objects derived from clase Scene can display
a complex image by combining other objects (including
scenes).

Scenes defined in InùerViews can arrange interac-
tors in many ways: side-by-side horizontally (an HBox)
or vertically (a VBox), one stacked above the other (a
Deck), or framing an inüeractor (a Frame). Every inter-
actor has a predefined natural size, but may stretch or
shrink within specified limits. This means that a scene
can adapt to available space by stretching or shrinking
its components. Glue objects can be inserted to improve
the layout. Other "high-level" user interface objects are
scrollers and panners that change the view of a scene,
different types of buttons, pop-up menusr and a string
editor.

2
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Comparing InterViews with an established graph-
ics standard such as PHIGS [Brown, 1985] is like com-
paring apples and oranges; the comparison is interest-
ing though, as either InterViews or PHIGS may be the
best alternative in a particular application. Superficiall¡
the similarities a¡e striking: both InterViews and PHIGS
provide

¡ Hierarchical etructure of graphics. Complex images
a¡e constructed by combining simpler objects.

¡ Reuse of a graphical object in different contexts,
and multiple views of a single object.

o Event mode input.

The main difference is in the degree of "object-orien-
tedness." InterViews is fully object-oriented, whereas
PHIGS can be classified as object-based [\{egner, 1g8Z].
Graphical objects in PHIGS (called structures) are
manipulated by a fixed set of operations, contain only
graphical information, and their storage is managed by
the PHIGS runtime system. With InterViews, classes
derived from class Interactor add behaviour to graphical
objects, and ca¡r directly represent the real-world object;
no separate graphical object hierarchy is needed.

Interactor objects in InterViews axe more ,,live,,

than süructures in PHIGS. When a graphical object
changes, it sends a Change message to its pa^rent (enclos-
ing scene). InterViews will then send Red¡¿w messages
to all affected interactors, including the one that was
changed; the interactors draw images that reflect their
internal state. Redraw messages a¡e also sent on demand
from the window manager, for example, when hidden in-
teractors become visible. With PHIGS, the application
program must edit the contents of separate structures.
The PIIIGS system will generate the image by traversing
its internal data structures, either on command from the
application program, or "when necessary.t, It is proba.
bly easier to use specialized graphics processors or to
distribute processing to intelligent graphics terminals in
PHIGS, than it is in InterViewe.

Similarl¡ input events are sent directly to the tar-
get interactor in InterViews. In PHIGS, the application
prograrn will geü the identifier of the target structure
and of all ancestor structures of the target. The ap-
plication program is responsible for identifying related
objects in its own world. InterViews also contains a
set of PIIIGS-like graphical objects, derived from class
Graphic. A.pparently, class Graphic does not handle in-
put events, so interactors were used in this project.

Another imporüant difference is the positioning
of objects. PHIGS objects are positioned at (æ, g);
multiple local coordinate systems may be used. In
InterViews, objects are typically positioned relative
another object, without bothering about the exact
coordinates; the object may in fact move around or be
reshaped as available space increases or decreases. The
InterViews approach is normally much more convenient,
and interacts better with the window rnanager. The

In¡erVims Sca¡¿s

+ Connecllngsystem

lnl€raclor System

Componsnl

SpsclalSymbol

Negatlon

Figure 2. Thc closs hicrarchy in Sconce.

strengths of PHIGS are its powerful 3D capabilities,
and its handling of difierent projections. Good PHIGS
implementations are also significantly more efficient in
drawing complex images. Filters are used in PHIGS
to control what objects should be visible, pickable, or
highlighted. Filters are ha^rdly needed in InterViews, as
the graphical image is generated by user written routines
that easily adapt to the properties of the corresponding
objects. In PHIGS, filters are quite useful.

In short, PHIGS can be regarded as a powerful
standard for drawing graphice, and InterViews as a
powerful tool for building user interfaces.

4. System design

Scones was designed with simplicity and ease of imple-
mentation in mind. It hag few features and the user in-
terface is simple. Interaction is mouse based, except for
input of text strings. The use of Scones is strongly in-
fluenced by the u¡ay you draw block diagrams manually,
the modelling concepts in Simnon, and the user inter-
faces of other drawing programs. Internal operation is
event driven, using the default event dispatcher of In-
terViews. Scones was implemented entirely with Inter-
Views and there are no direct calls to the underlying X
Window System.

An important objecüive li¡as closeness to Inter-
Views. Most classes used for representing the block dia.
gram were designed as step-wise augmentations of pre-
defined InterViews cla"sses. Mixing attributes related to
the real-world objects being modelled and the graphical
attributes is appropriate in this application; in other ap-
plications it may be desirable to sepa^rate the graphical
aspects, for example, to take advantage of distributed
graphics processors. The availability of multiple inheri-
tance would probably lead to a design with looser cou-
pling between graphical and modelling aspects. It would
then be possible io build a class hierarchy based on
ühe modelling aspects, inheriting graphical aspects as
needed from InterViews.

The major class hierarchy in Scones is shown in Fig-
ure2. Interacúo¡ is the base class ofall graphical objects.

Sum

3
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Class Component represents the cornm.on behaviour of
all objects in a block diagram. Typical atüributes are
terminals (the endpoints of a connection), operations
on all terminals of a component, and handling of events.
Component is an abstract base class (no objects car¡ be
directly instantiated) and most operations are realized
in derived classes, for example, to generate the equa.
tions of the connecting syrtem by following connections.
Class ,Sysúem represents a continuous or discrete system
in Simnon. One specialization is the ability to fire up
the editor on the corresponding Simnon text file. The
main purpose of all other components is to tie together
connections. These att¡ibutes are represenüed by class
SpecialSymbol, but geometrical shape and arithmetic
meaning are realized by derived classes. Class Gene¡a-
úo¡ has more features than other special symbols (e.g., iü
can be edited), and should probably have been derived
directly from class Component.

A scene in InterViewe is essentially an arranger of
other objects; this definition also applies to the connect-
ing system of Simnon. The properties most closely re-
lated to the operation oflnterViews are collected in class
ConnectíngScene. Additional properties related to con-
nections and the generation of equations were collected
in class ConnectÍngSysúem. The division into two levels
of derivation was motivated by the problems in realizing
all the needed behaviour of a¡r InterViews scene. Con-
nections are not regarded as objecüs like systems or sum-
mation symbols (and are üherefore not interactors), but
rather as an attribute of the connecting system. This dis-
tinction is probably Ìvrong; many operations (e.g., dele-
tion) would be easier to implemenü if connections were
represented by interactors. The user interface could also
be improved if connections responded to mouse clicks.

5. Experiences

The first question that arises when you start using a
new software package is t'What can I do?', The second
is "How should I do it?" Graphics with InterViews can
be realized in three complementary ways:

1. InterViews provides a rich set of ready-to-use build-
ing blocks, for example, text messages, buttons, and a
string editor. These standard interactors are easy to use,
easy to integrate (e.g., to create an input form), and be-
have as expected. tl
2. Simple user defined graphical objects are derived
from class Interactor. A few low-level methods must be
implemented, such as, Redraw. Certain attributes of the
interactor must be initialized by the user, for example,
the shape object and interest in input events.

The methods and attributes of the low-level objects
are not difficult to understand separately, but their use
should be better documented to the benefit of new users.
When no output at, all is produced, it may not be

obvious that the real cause was forgetting to initialize
the shape member va¡iable. Misuse of attributes, failure
to implement a method, or performing initializations in
the wrong method, may initially pass unnoüiced; in some
other context, tried and "debugged' classes may fail for
some unexpected reason, tr

8. Composite graphical objects that contain other
interactors are called scenes. InterViews provides ma,ny
useful types of scenes, but apparently not a ecene that
simply puts an interactor at position (c,3r) which was
needed in Scones.

Implementing a scene is considerably more complex
than just drawing some graphics. Firstl¡ the scene must
manage a collection of inserted inte¡actors. A number
of operations may reguire interaction with the enclosed
objects, for example, ehape calculations. Secondl¡ the
derived scene interacts intimately with its base class
and the low-level routines of InterViews. The user
written scene must provide a number of services for
insertion, deletion, changes, reconfigurations, reshaping,
etc. Furthermore, the scene must have a fairly complete
set ofoperations to be operable at all; few shortcuts are
possible. On the other hand, once done it is quite easy to
comprehend, and not too difficult to redo for a different
application. tr
Object-oriented programming is apparently more com-
plicated than normally presented, i.e., as simply inher-
iting behaviour from the base class, or as the base class
providing a template for the interface of derived classes.
This application shows a Btrong coupling between ba.ge
class and derived class; in pa^rticular, the function of the
base cl¿gs relies on a properly implemented derived class.
This is exactly why the keyword protected. was intro-
duced into C**; to distinguish class members that must
be accessed by derived classes, but not by code outside
these clåsses.

The problems with strong coupling are common in
any application where code ie reused, and obviously noü
typical for object-oriented programming. The need for
high-quality design and documentation of generally used
base classes is pronounced. Object-oriented program-
ming does make it easier to reuse existing code but the
designer of a useful base class must anticipate future
needs, for example, by declaring methods virtual in
C**. One may say thaü object-oriented programming
will give you less trouble with the past, and more trouble
with the future.

InterViews is a well-designed package, and most
problems are due to lack of documentation (about the
average UNIX standard). A major improvement would
be a description of the internal operations of InterViews,
e.g., in the form of a data flow graph. This would give
more insight in the interaction between objects, and
ühe intended use of certain methods - what happens
when a window is resized? Currentl¡ a major source
of documentation is the InterViews code. There are a

4
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number of overview papers related to InterViews [Linton
and Calder, l987][Vlissides and Linton, 1988][Linton et
al., L989], and a lively mailing lisü on Internet.

Little effort was needed to learn how to use In-
terViews and implement an acceptable uger interface,
compared to our previous experiences with PHIGS in a
similar application. The new user inüerface is also much
improved. Object-oriented programming is well suited
to implementing user interfaces, and this application is
close to the basic concepts in InterViews. The possibil-
ity to express objects directly in C** and InterViews
is a significant advanüage, and probably one reason why
InüerViews is easier to use than PHIGS. Numerous revi-
sions of the program has shown that it is easy to extend
the user interface and to add new graphical objecüs. A
considerable amount of time was spent on restructuring
existing clagses. Two features of InterViews have not
yet been evaluated: perspectives for changing the view
of a graphical object, and persístent graphics for saving
graphical objects on a file.

A reasonable block diagram editor has been im-
plemented in three months, including time to learn
InterViews, Scones contains 987 lines of header files
(mosùly clase declarations) and 234? lines of other code.
Users find the program somewhat slow, but it is unclear
whether this is because of deficiencies in InterViews or
in the X server.

6. Conclusions

InterViews is a powerful object-oriented package for
implementing user interfaces. It provides a set of ready-
teuse building blocks (e.g., text messages, buttons, a
string editor), and simple graphical objects are relatively
straight-forward to implement. Non-standard composite
graphical objects are considerably more difficult, mainly
because of missing documentation.

PHIGS is more efficient and has powerful BD
primitives, but PHIGS is not tailored at implemenùing
user interfaces. Comparing two similar applications,
InterViews is easier to use and yields a better user
interface.

A surprising experience was the strong interaction
between base classes defined in InterViews and derived
classes defined in the applicaüion. The derived classes
not only inherit behaviour, they must also provide ser-
vices to the base clasees and the InterViews system. This
coupling stresses the need for good documentation, in
particular documentation aimed at the class developer.
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Strukturerad Modellering
av

Kemiska Processer

Ett Objektorienterat Synsätt

Bernt Nilsson

1. Ka ra kteristiska egenska per.

2. Objektorienterad processmodellering.

3. Potentialen i objektorienterad modellering.

4. Visioner om datorstödd modellering.

Exempel på kemisk process

Kemiska processer

Ka ra kteristiska egenska per:

o Många komponenter i komplex struktur.

r Mãnga komponenter är lika.

o Nãgra komponenter är unika.

Processens livscykel:

o Projektering.

. Utbildning, träning och uppstart.

. Drift och underhãll.

Processmodeller

Ãterkom ma n de processkom ponenter

. Sparas i bibliotek.

. Säker ãteranvändning.

. Anpassningsbara.

o Para meterisering.

o Specialisering.

U nika processkomponenter

. Specialisering av biblioteksobjekt.

. Ateranvändning av " halvfabrikat".

. Modellutveckling med återanvändning av
modelldelar.

1
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Utveckling och återa nvä nd ning

Mod€¡l

Bohållart
inflôds
ulflöde

infiòde
uffiðde
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MaxO

Ga¡Tank
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l¡¡k
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Oyrìamlsk

&rfürtlånk
¡níðdo2
dga

MlnPumo
Maxo::2.t
€fekt=10

Kokaß
utfròde
d@i=4

Bldlotek:
EN

ÁN ENil

A¡vàndârdennierÞde:

Sammansatta objekt

¡ Automatisk konsistenskontroll.

. Anvä ndarspecialisering.

o Para meteröverföring.

Flöde+ Flöde

A A

B

o-
EoY

xo
3rõ B

Fas:=Gas Fas:=Gas

o
!,
!O
l¡.
gl

c
l*l!
Ot
CLo

r:=1

H ierarkisk mod ularisering

av processtrukturen

H ierarkisk mod u lariserin g ger oberoende pa ra-
meterisering:

. Konfiguration av enheten.

o Design av kolonnen.

o Maskinmodell (balansekvationer),

¡ Mediamodell (fasjämvikt).

Destillationskolonn
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Tubreaktor

I
I

H ierarkisk modularisering ger:

. Möjligheter till ãteranvändning.

. Underlättad modellutveckling.

. Enkel modellapproximation.

Processpec¡f¡ k modularisering

o Modellapproximation

o Transportfenomen

. Media/Maskin

Mlxl Mlr2 Mlx3 Mlx4

HetSida

KallSida

Reaktor

P rocesspec¡f¡ k para meterisering

. Strukturparameterisering I

. Strukturpara meterisering ll

o Parameteröverföring och hierarkisk para-
meterisering.

t¡¡¡o¡¡ri
Volym :- ,l

bivlllkor:
Rëaktù.Vorym

" 
Voìyñ

Flòde

ã;
åt"

E

rãs

Rôâkt6

!¡I¡Ds¡¡Ë
Fas
Volyn

bivillkor:
Fdê i h.Fes

ll$
HE
I Fås

ôâtåmelet:
Fâs:- câB

Þl$llber;
ULFas \

Mlx(1..n) lS A Mlx_ModellerTub

Mlx(1) Mlx(2) Mlx(3) Mlx(4)

N := 3 'Antal komponente/
1 1

ln
Area$=tn.q-Ur.q

AreahS = tn.q (c-tn.c)

O bjektorientera d

Processmodellering

Modellrepresentationen underlättar:

o Modellutveckling.

¡ Modellãteranvändning

. Modellförfining, modifiering och underhåll.

G rä n ssn itt:

. Bibliotek

¡ Modelleditorer.
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Anvãndarkrav

B i blioteksutveckla ren :

o Modelleringsmetodik

. Stru ktureringskoncept

. Ärvningsmekanismer

r Para meteriserin gsmetoder

P rocessm odellu tveckla ren:

. Lätta nvänt bibliotek

o Modulariserade modeller

r Avancerad parameterisering

o Speciella modelleditorer

Sl uta nvä ndaren:

r Naturligt gränssnitt

. Enkel kommmunikation

Modellbibliotek

r Mycket stort antal objekt.

o Olika utvecklare och användare.

Tank I
SoæTank

9öknìno

Tank_1 lS A Tank WITH
lermlnals:

lnflow lS A lnTermlnal
Outflow lS A OutT€rmlnâl

parameters:
Area lS A Param€ter WITH

value := 2.4
END;

,õ-lìè^tl^^.
Försteq 1 LâÕâI Tank f
Rsakllon l Lader Pumn I
Separat¡on 2 ReClrk PumD 2

Modelleditorer

Sammansatta modeller:

Primitiva modeller

¡ T

Pump_1

massbalans Dynam¡sk

energ¡balans Dynamlsk

impulsbalans

TãñR-
DOT(Volym)=ln.q-Ut.q
DOT(Energi) = ln.q.ln.Temp'Cp - Ut.q'Ut.Temp.Cp
Energi = Volym'Temp'Cp
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För presentation på "Annual AIChE Meet'ing ì989",
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Structured Modelling of Chemical Processes
with Control Systems

Bernt Nilsson
Department of Automaüic Control, Lund Institute of Technology

Box 1L8, S-221 00 Lund, Sweden
Phone +46 46 108796, Usenet: Bernt@Control.LTH.Se

Abstrs,ct. In this paper ü¡e discuss an object-oriented approach to modelling of
chemical Processes with control systems. The basic elements in object-oriented mod-
elling methodology are modularization, model encapsulaüion, hierarchical submodel
decomposition, model parameterization and inheritance. Models have an internal
structure of model components, like terminals, pa^rameters and behaviour descrip-
tions. The model behavior can be degcribed with equations or as a connected struc-
ture of submodels. Models and model components are represented as objects in single
inheritance object class hierarchies. Chemical processes and control systems can be
described with the same basic concepts. The objecü-oriented model representation
is implemented in a prototype called System Engineering Environment, SEE. The
SEE architecture allows different tools to operate on the models. Tasks that are
facilitated in object-oriented modelling a¡e model reuse and model development.

Keyword,s: Computer simulation; computer-aided design; modeling; process con-
trol; process models.

1. fntroduction

In this paper we are going to discuss an object-
o¡iented approach to modelling of chemical pro-
cesses with control systems. Benefits of this ap-
proach are facilitated model development and
model reuse. It is also possible to adapt and refine
models to capüure new conditions and demands.

Model structuring concepts are the key to
create a modelling environment with these bene-
fits. The models have a given internal structure of
model components. An object-oriented approach
to modelling represents both models and model
components as objects. Modularization, decom-
position, parameterization and inheritance are
the basic elements in this object-oriented mod-
elling methodology.

A new environment for system engineering
(SEE) has been designed wiüh ühese model struc-
turing concepts. The basic design is composed of
a model database, model/user interface and tools
that operate on models. One tool, that is imple-
mented in a prototype, is a simulator for differ-

ential and algebraic equations. This architecture
allowe an object-oriented approach to model de-
velopment and an equation-oriented approach to
the problem solving. SEE is presented in Matts-
son and Andersson (1989), Andergson (1g8ga)
and in Nilsson et at (1989).

This paper is organized as follows: An exam-
ple of a process model is discussed in Section 2.
Object-oriented modelling and model structur-
ing concepts ate introduced in Section 3. Mod-
elling of controlled chemical process is discussed
in Section 4 and in Section 5 a¡e some conclu-
sions.

2, The Tank Reactor Example

The main ideas are illustrated on a minor chem-
ical process part, namely an exothermic continu-
ous ¡tirred tank reactor. The reactor is assumed
to be homogeneous in concentration and temper-
ature. A chemical reaction is assumed to occur,
A ---+ B, and it produces heat. The reactor vessel

1
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can no\,r¡ be modelled with a dynamic mass bal-
ance, dynamic component mass balances and ðn
energy balance. The feed to the reactor is con-
trolled by a valve. The outflow of the reactor is
set by the surrounding system. Heat is removed
by a coolingjacket. The coolingjacket can be as-
sumed to be homogeneous and modelled by a dy-
namic energy balance. The cooling medium flow
is also controlled by a valve.

The mathematical model of the reactor sys-
tem then becomes a set of nonlinear diflerential
equations:

dvPE= Pq;n- Pqout

d,(vc)
Ë 

: Qincin - \m¿c* Vr

pcrry: pcp1¡oT¿n - ñpSoutT - e

oo"orffi = P¡cp,e¡T¡. - p¡cp¡u¡T¡ + e

rL= -rz = -koe-kct ; Q = r,A(T -?¡)
The concentration, c, ar¡d reaction velocit¡ r,
are column vectors with the length of two, to
describe the components .¿4 and .B.

The out flow of the tank is described by a
static momentum balance, which means that the
flow is a function of the height in the tank and
the pressure drop over the tank:

pgh * pun* - k"*'-f ø)2 
+ poxttet

The pressure drop over the valves can be mod-
elled by a static momentum balance too. The
pressure drop is a function of the flow and the
valve position:

.KuÃo: îîtqrnlqr"l
The tank reactor model described above is
equation-oriented. Model representations, like
this, do not have any structure. The model is
hard to reuse in new applications. It is not easy
to change the model and it is hard to read and
understand the model for a unexperienced user.

Figure 1. Thc continuou¡ stirrcd ta¡¡k rcac-
tor.

3. Object-Oriented Modelling

In object-oriented modelling models are repre-
sented as objects. Object-oriented modelling is
based on the methodology from object-oriented
programming. A good introduction to object-
oriented programming is given in Stefik and Bo-
brow (1984).

A.n object-oriented model representation has
been design in the SEE-prototype (Andersson,
1989a). A textual language for the model repre-
sentation is called Omola, Object-oriented Mod-
elling Language (Andersson, 1989b).

In this section we are first discussing some
model structuríng concepts and then the inhe¡i-
tance concept,

fnternal Model Structure

A model object has an internal structure of
model component objects. The internal structure
of a model is composed of three major component
types:

L. Terminal is a model component which can
be used to describe interaction with a con-
nected model.

2. Pa¡ameter is a model component that allows
the user to interact with the model, in order
to adapt its behaviour to new applications.

3. BehavÍour descúption or realization is a
description of the model behaviour. The
behaviour can be primitive, expressing the
behaviour symbolicalìy with equations, or
it can be composite and described by a
st¡ucture of connected submodels. Models
can have multiple realizations.

Model structuring concepts a¡e disussed in more
detail by Mattsson (1988). Model structures are
also discussed in .A.ström and Kreutzer (1986)
and in .A.ström and Mattsson (1g82).

An object-oriented model representation of
the reactor vessel can be seen in Figure 2.
It is composed of terminals, parameters and
primitive behaviour description. There are five
terminals and seven parameters. The behaviour
is described by dynamic mass, component and
energy balances, which are the same as the first
three differenüial equations in Section 2, one
static momentum balance.

1> uà 0
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tr'igure 2. Thc intcnal ¡tructr¡rc of thc rcac-
tor vc¡¡cl rnodcl.

Submodel fnteraction

In Figure 3 the structure ofthe reactor system is
shown and it is described as a composite model
object. The different parts are modul¿rized into
submodel objects. The connections between sub-
models represents submodel interactions. The in-
teraction between two submodels is given by ühe
terminal descriptions. If a connection is drawn
between two terminals then the system make a
consistency check. The two terminals on each
side of the connection must have the Bame in-
ternal structure.

Terminals with internal structures, that de-
scribe a pipe connection, are the Liquidln and
LiquidOut in Figure 2. Connections can have
natural interpretations, like the one between
the tank reactor model, TankReactor, and the
Vatvel model object. In a mathematical model
this connection represents a set of relations be-
tween va¡iables. This means that flow (g), pres-
sure (p), temperature (") and concentration (c)
in TankReactor and in Valvel are set equal or
summed to zero. This kind of submodel interac-
tion is well documented by Mattsson (1g8g). Ter-
minals are defined as objects. Thig means that an
process pipe terminal class can be a super-class
of every process pipe terminal object in the pre
cese model. Terminal descriptions are therefore
ea.sy and natu¡al to reuse.

Figure 8. ,4. block diagram showing thc com-
poaitc model of thc tank reactor systcm.

Hierarchical Submodel Decomposition

The tank reactor model can be decomposed
into three submodels, namely one reactor ves-
sel model (ReactorVessel), one cooling jacket
model (Jacket) and one heat transfer model
(AT-modeI). The reactor vessel model ie a prim-
itive model and is seen in Figure 2. This means
that the tank reactor model is a composite
model, with three submodels, and rve get a hier-
archy of models. This is a hierarchical submodel
description and it is shown in Figure 4.

f'lgure 4. The hicrarchical ¡ubmodcl dccom-
position in the tank reoctor examplc.

This decomposition makes it possible to
reuse submodels that is not directly interpretated
as physical components. A heat transfer model
object is an example of this. It is possible to
change the heat transfer model without chang-
ing surrounding submodels or the super-model
structure.

Inheritance

Models are represented as objects, which are
subclasses of predefined super-classes. A sub-
class inherits properties from its super-class.
The model representation has single inheritance,
which means that a subclass only has one super-
class. The properties that are inherited are the
object attributes, which are definitions of compo-
nents. Model object inherits model component
definitions. A system defined super-class Mod.el_
is the root of the model class hierarchy tree and
a specialization means that attributes defining
model components are added to the subcla^ss.

An example of how to use ùhe inheritance
concept is shown in Figure 5. The class Valve
is a subclass of the system defined super-class
Model. It is specialized by getting two attributes
that define two model components. These model
components are two terminals describing the
inflow and the outflow ofthe valve object. Valve
is a super-class to ControLValve, which have
two additional attributes describing the control
signal terminal a¡rd a parameter. The two valves
used in ühe reactor system are specializations of
ControlValve. They contain specializations of
the parameter attribute Area.

t
d

Llquidln
q

I=o
úot c

q p r|l,Ls-

Area Heal Capacitivity
Densily Pressure
Number_of_Componenls := 2

Rêaclion Hêâl
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A

tsA A

Figure 5. A pa,rt of model class hierarclry
trce dcecribing the rclation between somc valve
modcls,

Parameterization

Parameterization of models and model compe
nenüB are important in our attempt to reuse ob-
jects. Design vadables are defined as parameters,
which can be changed by the user. Area and den-
sity are examples in the reactor vessel model in
Figure 2. Sttucture pa,rameteriza,tion of the re-
actor vessel model means that the dimension of
vectors, like concentration, are being set by a pa,
rameter. The reactor vessel can be reused in a
new application with ånother number of chemi-
cal components by changing this parameter.

An important method of pa^rameterization is
to decompose the reactor vessel model into one
vessel machine model and one chemical medium
model, a medium and machine decomposìtìon.
The machine model contains the main behaviour
description (balance equations) and machine pa-
rameters (area). The medium model contains
the medium behaviour (reaction velocity) and
medium parameters (reaction heat and density).

Figure 6. A mcdium a¡rd madrinc dccom-
poscd rcactor vc¡¡el modcl.

The reactor vessel model can be decomposed
into two submodels, which are connected to each
other, which is seen in Figure O. This can be
seen as a parameterization of the reactor vessel.
Another reactor vessel model can be created
through inheritance of the attributes from the

old one. The medium model can be change by
overwriting the medium model definition.

A Modelling Methodology

A modelling methodology can use decomposi-
tion, parameterization and inheritance to cre-
ate process models that are generic and easy to
reuse.

Decomposition of process models into smal-
lare submodels is important for abstraction of
the modelling problem. Different decomposition
methods are process structure decomposition
into process objecüs, see Figure 3, transport phe-
nomenon decomposition, like in the tank reactor
model in Figure 4, or the medium and machine
decomposition seen in Figure 6. The resulting
submodels are often basic descriptions of funda-
mental behaviours.

Inhefitance can be used as a model type
concept and support reuse of similar models and
model components. Also by overwriting inherited
attributes can models be modified in order to
create new models.

Parameterízall¡'on of models should be made
to suit the user and facilitate reused. Chang-
ing a parameter of a reused model is done by
overwriting the inherited parameter value with a
new value. The definition of a submodel can be
changed in a aimilar way by overwriting the old
submodel definition. One important application
of this is the overwriting of media model defini-
tione.

Decomposition and parameterization meth-
ods and the use of inherita¡rce and discussed in
Nilsson (1989).

4. A Controlled Chemical Process

We have seen how one can use an object-oriented
approach to the modelling of the tank reactor
process. We are now focusing on the control
system description.

the Controlled Tank Reactor

The control system for the tank reactor process
can be described in a similar way. The reactor
has one structured terminal describing the con-
trol signal ofthe two valves. It has also one stluc-
tured terminal describing the three sensors: level,
temperature and outflow. A model of the con-
trol system is connected to the reactor system
through the control signal terminal and the gen-
sor measurement terminal. This is seen in Figure
7. The control system is a composite model with

A

4

Model

Valve
term¡nals:

inlet lS A lnFlowTerminal
outlet lS A

ControlValve
lerminals:

u lS A ContSignTerminal
paramelers:

Area lS A Parameler

Valvel
Darameteß:' Area:= 20

Valve2
Þaâmeters:' Area:= 3
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Figure ?. Thc tank reacüor with control sye-
üem.

an internal structure of submodels that repre-
sents the different controllers.

The first control system design is based on
two PlD-controllers, which is seen in Figure 6.
One controller (rfUr) uses ühe inflow valve to
control the reactor level. The outflow measure-
ment is used for feed forward control of the level.
The other PID (PID2) controls the reactor tem-
perature through the cooling medium valve.

Modiffcation of the Control System

A modification of the control system is easy
to do. A second control system design can be
a MlMO-controller based on a LQG-design on
state-space form. The state feedback and ob-
server submodels are subclasses ofgeneric classes
with a parameterization that facilitates reuse. In
thie case these a¡e specialized to capture a system
with three inputs and two outputs. In an envi-
ronment with tools for symbolic and numeric ma.
nipulations'we c n first symbolically linerize ühe
model into a linear model and then use the nu-
merical tool to calculate a LQG-controller, which
automatically create a controller like the one in
Figure 8.

Figure 8. Ä etatc-spacc bascd MIMO cont¡ol
rysücm,

This MIMO controller can now be used in
the reactor part model. In a reactor part model
the old definition of the control system can be
overwritten by the definition of the new one. The
new control system model must have terminal
with the same internal structure as the old one.

Figure 9. A chcrnical pla^nt modcl that rcr¡¡e
thc rc¿ctor ptocess part modcl.

Plant Models

The resulting composíte model, Reactorpart,
can be ¡eused in itg turn in a chemical process
plant model. One example is the proceeEl shown
in Figure 9. It is now possible to study the the
control system on a complete plant model. If we
have models for other parts ofthe process then it
is easy to connect them together to create a plant
model. A study ofthe new control system design
can now be done based on realistic disturba^rrces
from the surrounding equipment.

Multiple Presentations

Large processes with control systems can be seen
in a number of different ways. One way is the
p¡ocess orÍented view where the controllers are
distributed all over the process in order to fit
the process structure description. Another way is
the conúrol system orìented block diagram view
where the feedback loop are the mogt important.
A third view is computer ofiented. where the
hardware and software a¡e in focus. All these
views â^re difierent presentatione of the same
model representations. It should be possible to
have different presentations of the same object.

Figure 10. Two difrcrcnt prceentatione of a
controllcd chcmicsl proccss. Left: a proccss
oricntcd vicw. t ighú: a, control systcm oricntcd
vicw.

User interfaces for simulation also needs
multiple presentaüiong. .4. control engineer and
a process operator need different interfaces. It
is important to have interfaces that are natural
and convenient for the user. The user interface
presentations does not have to have the same
structure as the model representation.

5

MlxParl

ESSl

Stale-

MlMOControlSystem



126

5. Conclusions

Model reuse, development, refinement and main-
tena¡rce are facilitated through the concepts
of modularization, decomposition, parameteriza-
tion and inheritance.

Model Reuse

The strong modularization concept with encap-
sulated submodels with terminals supports easy
and safe reuse of models. Decomposition of mod-
els into submodels makes it possible üo reuse
the structure and change the submodels in the
structure. Advanced parameterization of models
can increase the reusability of models. Inhe¡i-
tance means that the model object description
ca¡¡ be digtributed in a tree of super-classes and
can therefore be reused.

Model Developrnent

Model development is facilitated in three ways.
One is the possibility to reuse submodels from
model libraries. Predefined submodels can be
reused in new composite models describing new
applications. This is possible due to the strong
modularization. One example is to uee common
process equipments, like pumps, valves etc., to
create a complex process.

The possibility to decompose a process
model in a multiple level description facilitate
development of complex systems. The model de-
veloper can chose the amount of abstraction on
each level.

Another way to facilitate model develop-
ment is to use the inheritance and specialize pre-
defined objecüs to describe new models in new
applications. This way to develop models is of
major importa^nce and has a great potential. This
is shown in the tank reactor example.

Model Reffnement and Maintenance

To adapt and to modify model behaviour to real
plant data requires methods for model refine-
ment and long term use of process models re-
quires possibilities to change, reuse and refine
models. À model class can have multiple real-
izations and this can be used to ¡efine the be-
haviour of models. A model can first get a simple
behaviour description. It can then easily be re-
fined by getting an additional behaviour descrip-
tion. The behaviour descriptions can be static,
dynamic, simple, complex, linear or nonlinear.
The user can choose a desired realization depend-
ing on the application. Model maintenance also
requires readable and easierly changeable mod-
els, which a¡e facilitated by decomposition into
small objects and by inheritance.
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Framtida behov för nodell-

utveckling och sinulêring 1

naasa- och pappe!Bindustrin

Sven Gunnar EdLund

STFI

Dagslåge betrãffanate utnyttjande
av si¡u¡.ering

Konstruktlon/p!o jektering
- etablerat

o Utbildning
- visst utnyttjande

o Tråning
- unaler introduktion

o Besluts6töd
visst utnytÈjande

Plocesserna karakteriselas åv:

- fysikallska/kemiska sàmband
komplexa och delvls okånda

- både lângsan och snabb dynåmik

- olj.njåra. flervariabla

- stora brLster i observelbarhet

- procesaanbanden föråndras ðver
tlden

KrltlekÈ fðr att nà ðkad
å¡våndning av sinuÌerlngr

BRA PRocEssMoDELtER

Behðvs åeen fðr styrnlng



Behov av kraftfulla
verktyg/uetoder fðr

no¿tellutveckling

nodellvaLidering

nodellunderhåll

Mt'lc-grånss¡ltt oeh nodeller

nåste utfornas utgâende från

anvåndarens behov, a¡beta-

situaèLon och f6rutsåttnlnqar

l3l
Exeûplet: Beslutsstðd

o Ànvånds uthålIigt
- kunna litâ pâ modellen
- efter 300 9ångers användning

kån svaret fðrutses:

-> 

detaLjerad modetl
l,¿ttt atè komplettera
model Len

o Små skillnãder mellan de
altelnativ son simuleras
- kråver nogglann nodell

o Moalellen måste hållas uppdaterad
- automatisk/adaptiv beståmnin9

av paranetrar/samband
- effektivt. stö¿l fðr nanuellt

nodellundêrhåLl

----> behov av
analysve

proces9-
rktyg
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MARINTEKNISKA SIMULATORER

Claes Källshõm, SSPA $ntems

Exempel på simulatorer vid Siöbef¡ilskolor:

Radarsimulator

Manävensimulator

Ballastsimulator

Maskinrumssimulator

I

POSTADRESS
POSIAI ADDRESS

Box 24001
S-40022 Göteborg
Sweden

BESOKSADRESS
5fREÊ¡ADDRE55

Chalmers Tvàrgata 10
Göteborg

TELÊX POStGTRO
POSTAL
CHEQUE ACCOUNT

46252-3

fÉLEFON
¡EtEPHONE

Nat 031 -63 95 00
lnt +46'31 63 9500

TELEGRAM
TEIEGRAM5

MAR¡TIME 20863
SSPAGBG S

TELEFAX

int +4631 639624

BANKKONÏO
SANK ACCOUNI

5E-SANKEN
5027-'10021 90

BANKGIRO
ßANK 6iRO

152'4875
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SYSTEMS

Exempel på marinmilitära simulatorer:

Radansimulator

Maskinrumssimul¡rtor

Stridsledningssimulator

Ubåtssimulator

Segetbåtssimulator

ovri# a
a

I

POSTADRESS
POsTAt ADDRES5

Box 24001
S-40022 GöteborS
Sweden

BÊSÖKsADREss
5IREEIADDRÊ55

Chalmers Tvárgata 10
GöteborS

POSIGtRO
POSTAL
CHEQUE ACCOUNT

46252-3

TELÊXTELEFON
IELEPHONE

Nat 031-63 95 00
lnt + 46 -l'l 6l 95 00

IELEGRAI'1
IETEGRA/r¡S

I,lARITIME 20863
SSPAGBG S

TELEIAX

int +4631 63?624

BANKKONTO
EANK ACCOUNT

5E-EANKEN
5027-10021 90

BANKGIRO
EANK 6'A0
152-4875



134

Staffan Nordmark, VTI 1989-09-1B

Förberedande inlägg 1 paneldiskussion: Frantida behov för
nodellutveckling och slmulering

VTI (Statens Väg- och Trafikinstitut) bedriver forskning inom

vägtrafikområdet och simuleringstekník och simulatorer har under

lång tid varit hjäIpmedel i denna forskning. Det har handlat om

aIIt från rena digitalkörningar, där tidsfaktorn inte är viktig,
till hybridsimulerfngar 1 realtid där verkllga komponenter anv-

änds för en del av systemet och resten beskrfvs i ett dator-
program. Många av de program som utvecklades på skilda håIl i
världen under 60- och 70-talen kunde kräva flera manår i utveck-
ling och man kunde i stort sett vara säker på att programkoden

innehåller flera felaktigheter pga de komplicerade ekvationerna.
Valídering kan i de flesta faII säkerstäIIa att felen åtmÍnstone
är försumbara. SjäIvklart är det en stor fördel om dessa fel-
funktioner kan ellmineras och program kan konstrueras av andra

än programmeringsspecf alis ter.

För mekaniska problem finns en klar tendens att använda stora
sÍmuleringspaket (multi-body systems) såsom ADAMS, MEDYNA, DADS

osv för att underlätta modellbyggandet och slippa tidsödande
härledningar av rörelseekvationer. Med dessa programpaket kan

den tid som åtgår för modellkonstruktion och programmering

drastiskt skäras ner men tilI priset av långa exekveringstÍder
och stor datakapacitet.

Det vore önskvärt om motsvarande utveckling även kan ske i real-
tidssammanhang. Det är ställt utom allt tvivel att användning í
en simulator av kördynamiska program är en utmärkt validering i
sig. Som förare har man goda möjligheter att relatera till verk-
ligheten och avslöja felaktigheter i progrankoden eller modell-
uppbyggnaden. Realtidsbegränsningen gör emellertid att för när-
varande är de generella programpaketen uteslutna även om vissa
ansatser åt detta håll har gjorts av Daimler Benz och Evans &

Sutherland för simulatortillämpningar. Generaliteten är begrän-

sad och insatsen av datorer avsevärd men detta kommer givetvis
att förändras i framtiden.
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KLASSISK SIMULERING

Besvärliga härledningar av ekvationer

Stort programmeringsarbete

Stort antal lelkällor

Kort exekveringstid

Måttliga datorkrav

SIMULATORER

REALTIDSKRAV

SIMULERINGSPAKET

ADAMS, DADS, MEDYNA m.fl

. enkel användning

' lâng exekveringstid

' stor datorkapacitet

REALT¡DSKRAV medför
historiskt

- 1975

* analogimaskinerev.hybridmaskiner
med assemblerprogram

1975 - 1980
. hybridmaskinermeddigitalprogrammen

i högnivåspråk (FORTRAN)

1980 - 199?

' en eller flera parallella digitala datorer
med program i högnivåspråk

199? -

' generella programpaket för Multi-body
systems

medför

tidsoptimerade program

begränsad storlek på programmen eller
flera parallellkopplade datorer

generella programpaket kan användas
enbart i begränsad utsträckning


