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A DESIGN SCHEME FOR INCOMPLETE STATE OR OUTPUT FEEDBACK WITH
APPLICATIONS TO BOILER AND POWER SYSTEM CONTROL.

G. Bengtsson“and S. Lindahi%

A rational method of designing a controller with
prescibed structure, using the best fit on +he
dominant eigenspace, has been developed and applied

to the control of a boiler and a power system.

SUMMARY

The problem of designing a linear feedback when all state
variables are not available is discﬁésed. The design
scheme is based on computation of a complete state feed-
back and a reduction to a specified structure. The reduc-
tion is made by approximation on the eigenspace corres-
ponding'to a set of dominant eigenvalues. The method con-
sists of successive choices of weightings on this space.

- The method is applied to the control of a boiler and a
three-machine power system. In the power system case the

- complete state feedback can be replaced by local output

feedback without any significant decrease in performance.

The examples indicate that the proposed method is a rea-

listic design method for multivariable systems.

Division of Automatic Control, Lund Institute of

Technology, P.0. 725, S-220 07 LUND 7, SWEDEN.




1. INTRODUCTION.

The concept of state feedback plays an important role in
rexisting control theory for linear systems. Linear quad-
ratic control theory [1] and pole assignment theory [3,4]
~are two well-known examples. Unfortunately the whole state
vector is, however, rarely available for measurement.‘Even
if it was available a state feedback control would some-
times result in far too complex control systems. The stan-
dard way to bypass these difficulties is to measure only
a small set of outputsband reconstruct the full state vec-
tor using a Kalman filter [2] or an observer [7]. The re-
sult is, however, still somewhat unsatisfactory since the
reconstruction by itself might produce high order dyna-

mics in the control function.

These facts justify the demands for simpler or suboptimal
control policies. Practical constraints on the feedback
system must be considered. A limited number of measure-
ments is one obvious constraint. In large systems consist-
ing of several coupled subprocesses, such as power systems,
there may be a desire to control the system with local
feedbacks on the different processes, eventually with the
addition of a small number of interconnections. There are,
however, no rational ways to design such hierarchical
control schemes. Another example is diagonally controlled
systems where the design philosophy is the classical one
with each input variable controlling a single output va-
riable. '

A few methods exist to treat problems of these types.

The use of dynamic feedback [ﬂ5,16,17l have the same disadvan-
tages as the observer approach above, i.e. the.rontrol may

be unnecessarily complex. The problem can also be tackled

by direct optimazation methods E8,18,1§}. However, this
tec%ﬁque does not seem to be practical when applied to large

systems. A special version of modal control {H,SE has also
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been used in this class of problems. Quite recently frequency
domain:methods have been developed which extend the classical
Nyquist criteria to multivariable systems. A survey of these
results can be found in [20) These criteria seems, however,
to-be:difficult to use for large systems with several inputs
and outputs. There is one considerable difference between

the approach of this paper..and the frequency domain techniques.
In this paper we start with an "optimal" solution which is made
suboptimal by imposing constraints in the control structure.

In the frequency domain approach one attempts to successively
improve the solution from an initial guess by varying the

gains in the control.

In this paper'a state feedback control is used as the
starting point. This is quite a realisticlassumption,‘
since there are straightforward methods to find such
controllers even for fairly large systems. See for in-
stance [1] and [4]. The step taken is then to fit this
control into another "similar" control with a predefined
structure. The idea behind this fit is to make it as ac-
curate as possible on the eigénsPace corresponding to a
dominant set of eigenvalues to the closed loop system.
It is illustrated by examples that satisfactory control-
lers may be obtained in this way after a few iterations.
It should be noticed that the method does not depend on
how the state feedback controller is obtainéd. The re-
duction technique is thus applicable to any method that

results in a linear feedback from the state.

Notice that this reduction  procedure is a rational way

of designing hierarchical control systems. Sometimes it isnot
possible to control the system satisfactorily by output B

feedback only. In such cases the reduction scheme can be
used to find controllers of PD-types, where the derivative
term will give additional information about the state of the

system and thus mpzke the system easier to stabilize.
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In the boiler case it is shown that the feedback from

all five states can be replaced by the feedback from two
outputs. In this case it is possible to avoid the Kalman

filter, proposed for the reconstruction of the state,

without any significant decrease in performance.

The power system is an example of a system, consisting

of geographically distributed subsystems. State estima-
tion and feedback can be organized in a centralized or

a decentralized manner. In both cases large amount of

data has to be transmitted. Although data transmission
systems are under construction it is desirable to have
control schemes, which do not require high speed data
'transmission. The whole state vector could be .reconstruc-
ted locally if the system is observable via locally avail-
able outputs. The dlmen51on of the Kalman filter, however,

becomes very high.

In this paper we consider a three-machine power system

with 15 states. The complete state feedback can be re-

placed with local output feedback without any 51gn1f1cant

decrease ip damping. Also in this case it is p0351ble

to avoid high order Kalman filters. The results also in-
dicate that very little can be gained from complete cent-

7 ralized control schemes and that properly desigﬁedrlocal

controllers are sufficient for dynamic control.

In large systems, such as power systems, the computatio-

nal effort is of importance. The major computational bur-
den in this case lies on an initial eigenvalue-eigenvec-

tor calculation, which corresponds to approximately 8n°

operations. An additional eigenvalue calculation may have
to be done to check if the reduced control law has an

acceptable degree of stability.

This method could be an effective tool for the de81gn of

multivariable controllers in an interactive mode.,




2. STATEMENT OF THE PROBLEM.

Consider a linear time invariant system in state space

form
x = Ax + Bu - ' ~ : (2.1)

where x is the n-vector of states and u is the m-vector
of control inputs. A and B are real-valued matrices of
compatible dimensions. Moreover, assume that a state

feedback controller

u = Lx + v . _ ‘ (2.2)

where v is some external input and L an mxn matrix, is

found such that the system (2.1) with the controller:(2.2)

has the desired properties.

In controlling the system (2.1) we will set certain
constraints on the feedback system. The intention ‘is

then to "reduce" the control law (2.2) such that these
constraints are satisfied. iTwo __specifie . types of
constraints will be considered corresponding to diffe-
rent degrees of complexify in the control function. These

definitions should cover a large variety of practical



constraints that might be imposed on the structure of a
feedback system.
In order to simplify the notations we will use stars (¥)
to indicate properties associated with the reduced cont-

rol laws.

The simplest kind of constraint is to permit output feed-
back. Let y = Cx denote the output of (2.1) where C is a

real rxn matrix. A control of the form

u = KXCx + v , (2.3)

\
1

will be referred as a control with a single constrained

feedback structure.

A more complex structure is obtained if the i:th input compon-

et vector is restricted to be a function of certain spe-

cified outputs. Let yi = Cix, i=1,2, ..., q, denote

q sets of output variables to (2.1) where C;, is an r;xn
. T T T T :

matrix. Moreover, let u = [u1 Us v uq] be a parti-

tion of the control vector into an appropriate set of q

subvectors. A control of the form

u; = K¥C.x + v, i=1,2, ..., q (2.4)

1 1

will be referred as a control with a multiple constrained

feedback structure. It is easily verified that 1local as

well = as hierarchical types of control systems are inclu-
ded in this formulation. Notice that the control (2.3)
is a special case of (2.4) with q = 1. An,illustration of °

the two concepts is given in Fig. 2.1 and Fig. 2.2.

A common way to do the kind of reductions considered here
is to simply neglect those entries of the state feedback

matrix;fhat are "small" in comparison with the others.




There are, however, several difficulties involved in
such a procedure, and it requires frequently a fairly
deep understanding of the process dynamics. Moreover,
there is no rational way to "compensate" the remaining
entries for the approximations made. The approach of
this paper will instead be to construct a certain sub-
space of the state space‘where the reduction is made.
In this way the "compensating" problem is avoided and
converted to the problem of finding the appropriate
subspace.
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3. CONTROL REDUCTION., : i

Assume that a state feedback control is given. This cont-
rol is then replaced with a "similar" control with a pre-
defined feedback structure. It is shown that this can be
done in such a way that a certain number of eigenvalues
remain invariant (mode preservation). Since there is an
upper bound on the number of invariant eigenvalues a dif-
ferent reduction is also given which minimizes a weighted
shift of the eigenvalues (mode weighting). Controls of de-

rivative types will be considered at the end of the section.

Mode Preservation.

Consider the system (2.1) with the control (2.2). The

closed loop system becomes
x = (A + BL)x + Bv | (3.1)

We will attempt to replace the control (2.2) with a simi-

lar control of the multiple constrained form (2.4). For

this control the closed loop system becomes

i§1 BlKlCl)x + Bv (3.2)

where B = [B B2 ee. B ] is a partltlon of the 1nput mat-

rix compatlble with the partition of the control vector

in (2.4). Moreover, the reduced control law shall be se-

lected so that some dominant propertles of (3.1) are pre-

served in (3.2).

!




Partition the state feedback‘mafrix as

r 3

by

Ly
L =

L

\ 4
where L. is m.xn. Then if K.C. = L. have solutions K¥

i i 171 i 1

for i =1, 2, ..., g, the exact and the reduced control

laws would be identical. However, such solutions rarely
exlist, and therefore approximations must be made. The
following theorem describes one rational way to do such

approximations.

Theorem 1: Let A ='{A1,A2,...,Ap} be a symmetric set of
eigenvalues to A + BL and let Q be a real basis matrix

for the corresponding eigenspace. Then if
1€;Q = 1;Q . o o (3.3)

have solutions K? for i =1, 2, ..., g, then A is also

a set of eigenvalues to ; '

A+ % B. K¥C - .
- 1 .

i=q tt 7
Moreover, if T = [Q Q] where the columns of Q are any
set of vectors that extend the columns of Q@ to a basis
in R™ then 7 : o

(] (@]
4 . Ay Ap -
A + BIOT = (3.4)
: 0 A
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and
o) o % Tt A
A11 A12 + L B ALiQ
. . 1=1
-1 3 b = : ’
T (A + ' BiKiCi)T = (3.5)
i=1
0 A+ V B2aLi
22 , L
| i=1 )
where .
ALl = Kici - Ll
and
(8!
T'1Bi -
B2 -
i
Proof: Introduce Ao = A + BL and
A% = A+ % Binci
i=z1 B . . o )
From (3.3) we have : -
(A + .3 BinCi)w = (A + 3 BiLi)w = (A + BlL)w (3.6)

i=1 i=1

for any w € {Q}. Since {Q} is Al invariant'by construction,
it follows from (3.6) that {Q}Ais also Ag~invariant and

AoQ = AgQ. Let the columns of Q be any set of vectors thgt
extend the columns of Q to a basis in R, Choose T = [Q Q]

and write




11.

( 3 fAQ O
. VAR VAR A A,
a7 - - o= L (3.7)
LO VAOQ) kO A22
(AR o) (A© 0
1 VAZR  VAZQ Ay VARR
T AéT = ~ Al = o (3.8)
L0 VABQJ LO VABQ :

1

The set of eigenvalues of A?1 equals A. From (3.8) it
then follows that A is also a set of eigenvalues to Ag.

Moreover, we have

A ~

%0 = C Ax - : = A% % 3% - =
VAOQ = VAOQ + V(.i BiKiCi L)Q = A12 + V L Bi(KiCi Li)Q
i=1 : i=1

= A12 § B AL Q
and in the same way
VAXQ = AD, % BSALXQ
i=1 a
Comments: : o _ ‘
1. A real basis for the eigenspace can be constructed
from the eigenvectors as was described in Séé%%@%@2 q

2. A comparison between the matrices (3.4) and (3.5)

clearly illustrates the kind of approximations that
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are made. The upper left block corresponding to ei-
genvalues A are identical in both systems. The re-
maining blocks are changed by an amount depending on
ALE, i.e. the difference between the exact and the

reduced control laws.

- 3. The remaining eigenvalues of A + BL are different

from those of A + BK¥C. Observe, however, that the
effect of the approximations are only localized to
the part of A + BL that contains the less dominant
modes. The case when the approximations still cause
an unacceptable change in the system is covered be-

low.

- 4. Theorem 1 also yields an algorithm for pole assign-

ment via output feedback. It has been shown in [5]
that if rank C = r, then a symmetric set of r eigen-
values may be "almost" freely assigned. If a state
feedback matrix L has been found so that r eigenvalues
to the closed loop system takes some prescribed values
Theorem 1 may be used to find a correéponding output

feedback matrix (assuming (3.3) is solvable).

Mode Weighting.

The condition that (3.3) shall be solvable for K. gives

~an upper bound on the number of eigenvalues that can be

held fixed. This bound mostly equals r., i.e. the number
of measured variables. One trivial exception is C = L,
where K = I preserves all the eigenvalues. It may, how-
ever, still happen that some of fhe remaining eigenvalues'
move to undesired locations in the complex plane. The so-

lution to this problem is to- include a larger number of

.eigenvalues looking for least square solutions of (3.3).
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Introduce the matrix norm

. 172
] = (eromTy)

valid for an arbitrary real matrix M.

Consider first the case when there is more than one so-
lution to (3.3). Let Ri’ i=1,2, ..., g, be nonsingu-

lar r;xr. matrices. Then one solution is given by

1
* (3.9)

. S PR
Moreover, this solution is the one that minimizes the

norm |[K; R;||, i.e. a solution with small feedback gains
is selected. The matrices Ri are used to scale the output

variables.

Consider now the opposite case when there is no solution

of (3.3). We may then attempt to minimize the norm
|1 (x;c5Q - LWl | | (3.10)

" where W is a nonsingular pxp matrix. In fact the minimum

\

is obtained by taking

R t “ |

Now remember the special choice of basis that was made N
in ( '

I

i | . e | ~ 1 '3.11)
Q 7<[a1 a8y «v. g Re{as+1} Im{as+1} Re{as+2}...] {

- where I is the eigenvector corresponding to Age If we
choose W = diag(w1, Wos eoey W ) where Wy 0, (3.10)

p
may be rewritten as




. €,
T dr

A4,

: 2 2 o
l!(KiciQ = LyQwW[|T = % wy [K.C.a L.a (3.12)

k=1 Tk ATk

-

From the last expression we see that a successive increase
in W, causes a successive better fit of the eigenvalue Ak
in the closed loop system,  cf. Th.1. In this way W may be  interpre-
ted-as a weighting matrix for the eigenvalues we desire

to hold fixed. This point is further clearified by examples

later.

Finally we observe that (3.9). and (3.11) may be combined
to '

. -1 =1
K¥ = L,QW(R] \C,Qi) 'R]

i (3.13)

»

Proportional and Derivative Control.

In some cases acceptable degree of stability cannot be

achieved by output feedback only. The classical way to

bypass this difficulty is to include derivatives of the
“outputs in the feedback loop. o

We will now permit a control of the form

u = K¥y + KjPy ‘ ' ‘ o (3.14)

where P is a given mxr matrix and y = Cx. Only the single
constrained case will be considered. The extension -to the
multiple constrained case is straightforward. In classi-
cal control terms the control (3.14) is of PD-type. The
ivative term will set some constraints on the qual=
ity of the measured signals, especially the presence of
high frequency noise. This kind of control has, however,

turned out to be successful in many applications.
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i

By some simple manipulations the control (3.14) is trans-

formed to the standard form (2.3). Using (2.1) we have

u = K?y + K%PCX = K#Cx + K%PC(AX + Bu)

Assuming I - KEPCB is invertible the last expression may

be solved for u

1K¥CX + (I - KgPCB) 'KuPCAx =

u = (I - K%PCB) 5 3

- R1CX N ﬁZPCAx C(3.15)

Now defining a new output vector y as

C

~

§:Cx:

X ' ‘ (3.16)
PCA B

The equation (3.15) can then be rewritten as

~ ~ ~ A A

u = (K;K,)Cx = KCx , - ' (3.17)

The previous results can now be used to find an approp-

riate K. The feedback gains in (3.14) are then calcula-

ted as .

K# = (I - K=2=PCB)K1 - . ' (3.18)
(YR iy > _1 s

K2 = K2(I + PCBKQ) . (3.19)

s
The benefit of this kind of control is apparent from

(3.16) and (3.17). By having a larger portion of the
state available we are also, in view of the reduction
technique above, able to keep a larger number of eigen-
values fixed. Moreover, if rank'{a} = n then the reduced

and the exact control laws become identical.
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Eﬁamgles.

Finally we will give some examples to illustrate the ideas

of the section. Two more farreaching examples are considered

in the next sections. A common feature in these examples is that
the neglected modes become more dominant in the reduced con-
trol system. This could be expected since restrictions are
imposed on the feedback structure, which naturally results

in some decrease in performance.

Example 7:

. 2] 10

X = X + u
-1 1 0 1
(-5 =1)

u = X + v
L 2 -5

The closed loop system becomes

. -4 1 1 0 »

X = X + ' \Y | ’
1 -4 0 1

and the closed loop eigenvalues equal Aq S -3 and Ay =

= -5, Assume we shall hold Xq = -3 fixed. The eigenvec-

tor corresponding to b is

a, = 1/v2
T ) 1

~ Assume we permit a feedback of the form




This control is then of the multiple constrained %ipe

(2.4). The feedback structure becomes

-5 0 ’
u = X+ v
0 -3
The eigenvalues of
q
A+ z B.k%C
; itivi
i=1
becomes vA = -3 and vy = -4,
Example 2 :
(0 0 0) 1 0
X = 0 1lx + |0 o0olu
1 0 0] 1 1
(1 2 0] .
y = X
0 1 1)
-2 -1 -1
u = X + v
1 -1 -1
The closed loop system is
-2 -1 -1 1 0
x=]0 0 1{x + |0 o|v
0 -2 -2 1 1
The

eigenvaluesvof A + BL are Ay =

-1+3 and A

3

—2.

17




Assume we permit a feedback of the form

1
I
-l
I+
e

First we attempt to keep the eigenvalues A o
2

fixed. The corresponding eigenvectors are

0 0.5 0 0.5
a, = |~0.5| + j(=0.5 a, = -0.5| - 3|[-0.5
1 0 . 1 0

The basis matrix Q for the eigenspace is then selected

~according to (2.8) as

(AL L)
0 0.5
a= [-0.5 =-0.5
1 0 |

Solving (3.3) for K we have

0.67  0.33
-0.33 -1.67
and the eigenvalues of A + BK%C are vy g T -1+3 as de-
>

sired and vy = 1.33. The third mode has become unstable

and therefore we include also this mode looking for

K

| e

least square solutions according to (3.12) and (3.13).

.

The eigenvector corresponding to Ay = -2 is .
1
as = 0

18.
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The basis matrix for the eigenspace then becomes

0 0.5 1
Q = |~0.5 -0.5 0
1 0 0

We choose the weighting matrix W as W = diag(1,1,0.1)
‘where a relatively small weight has been laid on Age

Using (3.13) we now have

y
Kg_ =

0.64 0.32
II

-0.32 =-1.66
and the closed loop eigenvalues ar’e'v1 5 = ~0.995+0.9987
2
and 1.29. The weight on the third mode was obviously too
small. Take instead W = diag(1,1,0.8). We then obtain

(-0.30 ~0.15
Kt =
L 015 -1.u2).
The closed loop eigenvalues are now v, 5 = -0.57£1.14]
. T3
and v, = -0.73 , which is considered to be satisfactory in

3
this cases The solution was obtained after a few iterations

z+by successively altering the weighting factors. In the general
case there is no guarantee that a satisfactory solution

'can be obtained. However, if'a satisfactory solution is
difficult to obtain by altering the weighting factors,

this indicates that the system, is difficult to chtrél

with the prescribed feedback structure.
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4. APPLICATION TO BOILER CONTROL.

A computer program for control reduction has been written
based upon Theorem 1 and the least sQuare solution (3.13).
This program has been used to find simple control strate-
gies for a boiler. The starting point is here a linear
'quadratic cohtrol law, which is used to fit a certain
feedback structure. By simulations we show that a reduc-
tion can be made without any significant decrease in per-
formance. In fact, the responses of the reduced control
system are very similar to the responses of the system

controlled by complete state feedback.

Control of a Boiler.

Different typés of models for a drum boiler are thorough-
ly described in [9]. Here we will use a fifth order model
from [101.

The linearized equations for a boiler around a certain

operating point can be written as
x = Ax + Bu
y = Cx

where the state variables are

b
-
i

drum pressure (bar)

Xy = drum liquid level (m)

X3 = drum liquid temperature (°c)
X, = riser wall temperature (OC).

Xy = steam quality (%)
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The control variables are

uy heat flow to the risers (kJ/s)

feedwater flow (kg/s)

Uy

Numerical values for A, B and C for a power station boi-
ler with a maximum steam flow of about 350 t/h are calcu-
lated in [10]. The drum pressure is 140 bar and the ope-

- rating point is 90% full load. From [10] we have

(-0.129 0.000 0.396x10"" 0.250x10"" 0.191x107 )
0.329x10°2  0.000  -0.779x10"*  0.122¢1073  -0.621
A= |0.718x107"  0.000 -0.100 0.887x107°  -3.857
0.411x10""  0.000  0.000 ©-0.822x107 0.000
| 0.361x107%  0.000  0.350x107°  0.426x107 " -0.743x10 ]
(0.000 0.139x1072)
0.000 © 0.359x107
B=|0.000  -0.989x1072
‘0. 2u9x10™ ©0.000
| 0.000 | ~0.543x10"°

-—d
o
o
o
L]

o
—
o
o

<

|

+ A state feedback matrix can be calculated using linear _
quadratic theory. In [10] it is shown that the following

feedback matrix gives satiéfactory responses.

~0.668x10"  -0.u18x10° 4 7

~0.136x107  -0.137x10 0.175x10

| | o : 4,1
T _o.908x10®  -0.u8s -0.815 o.uztagt) (T

-0.803x10
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The intention is now to replace the control u = Lx with

a simpler control using only output feedback, i.e.
u = K¥y = K%Cx

where K* shall be properly chosen. The eigenvalues of
A + BL are

Ay = ~0.490x10" ]

o -1, . -1
A = ~0.755%x10  '£3+0.511x10
2,3

. . ax10-1
*u,s = =0.14125+0.170%10

and they are shown in Fig. u4.1a.

First we attempt to include only the three eigenvalueé

k1 2.3 of A + BL having the least real part. Somewhat
b b]

arbitrarily we choose the corresponding factors as W =

= diag(1,1,1). Using (3.13) we have

0.924x10"  -0.3u7x10°

K% = , | (4.2)
I 0.403x102 ~0.827x10°

’

The eigenvalues of A + BK%C are shown in Fig. 4.1b. We
observe that the relative damping of -the neglected pair
My 57 -0.141%.0.017 ha§1déecre@sed‘ in the reéuced
control system. In order to increase the damping we in-
clude'also AH;S i% the solution and choose the weighting
factors as W = diag(1,1,1,0.2,0.2), where the smaller

weight has been laid/on XH,S' The least square solution

(3.13) becomes now

0.569x10° -0.286x10° '
K = .- o (4.3)
II 0.870x10 ~0.601x10°] - ' |
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and the eigenvalues of A + BK?IC are as shown in Fig.
4.17¢c. As can be seen the damping of the second complex
pair has increased, but ét the expense that the right-
most eigenvalue has moved somewhat nearer the imaginary
axis. A further iteration with W = diag(1,1,1,0.5,0.5)
gives ' ’
) 0.265x10"  -0.263x10° -
K - (o)

III -0.167x10"  -0.528x10°

The corresponding eigenvalue configuration is shown in
Fig. 4.1d.

Simulations show that K;I is the most satisfactory choice
in this case. The output feedback matrix can be compared
with the corresponding elements in the state feedback
matrix (4.1) (the two leftmost columns). As can be seen
the feedback gains are slightly less in K%I, but of the
same magnitude. However, the relations between the indi-
vidual feedback gains differ considerably. This is due to
the fact that compensations have been made in Kél for the

remaining columns in L.

In Fig. 4.2 - 3 the system is simulated with control laws
(4.1) and (4.3). Fig. 4.2 shows the responses for an ini-
tial condition.in drum level of 0.02 m and Fig. 4.3

the same responses for an initial condition in drum pres-
sure of 1 bar. As can be seen the difference between the
exact and the reduced control laws is astonishingly small,
indicating that a control only using feedback from the

measured variables will be sufficient in this case.,
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5. APPLICATION TO POWER SYSTEM CONTROL.

We consider a reduced model of the Scandinavian ﬁetwork,
which consists of approximately 150>nodes and 250 lines.
The reduction of the model has been performed in two'
steps at the Swedish State Power Board. The original mo-
del has been verified by experiments. The accuracy of
the reduced model can, of course, be questioned but in

any case it is a typically power system model.

The model has three generators, one in North Sweden
(GNOSVE), one in South Sweden (GSYSVE), and one in Nor-
way (GNGE). The generators in North Sweden and in Norway
have hydro turbines and the generator in South Sweden

has a steam turbine.

The modeling of a multimachine power system has been

treated in [13] and will not be discussed here.

The linearized equations for the power system can be

written as !

dx
dt

= Ax + Bu

y = Cx

where the state variables are:

X13XgsXqy = rotor angle; CNOSVE, GSYSVE, GNGE

XosXgsXqy = rotor angular velocity; GNOSVE, GSYSVE, GNGE

= flux linkage of field winding; CGNOSVE, GSYSVE
GNGE

K39%Xgs%q3

Xy sXgeXyy = excitation voltages; GNOSVE, @SYSVEY GNGE

27.
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cs%qc = velocity of water; GNOSVE, GSYSVE, GNGE

x40 = gsteam pressure; GSYSVE

The input variables are:

UysUg,lp = excitation inputj; GNOSVE, GSYSVE, GNGE
Uy sy = gate opening, GNOSVE,GNGE

U, = steam valve setting; GSYSVE

U = fuel flow, GSYSVE

The output variables are:

YqsVys¥g = rotor angular velocitys; GNOSVE,GSYSVE,GNGE
Yys¥gs¥g = te-minal voltage; GNOSVE, GSYSVE, GNGE
Y3sYgsYqg = excitation voltage; GNOSVE, GSYSVE, GNGE

Yo = steam pressure, GSYSVE

Numerical values for A, B and C for the power system
~are given in Appendix Q%JThe operating point corresponds
to the expected peak load 1975 with high transmission

from North Sweden to South Sweden.

In [142 linear quadratic control theory was used to find
a suitable state feedback matrix L. Numerical values of
-L is given in Appendix 4. The intention is now to re-
place the state feedback u=Lx with local output feedback
ui:Kiyi, where u. are the inputs and y; are the outputs

at generator i. The eigenvalues of A+BL are:
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Ay o= -7.33.10°% -
X, = -2.09.107" |
oy ~2.77+107 1+i3.55.107 "
A = =3.17.107" | /: | ’
ENPE ~3.83.10 1+i2.53.107" ) |
Ag = -5.14.107"
Ag qp = -1-36+13.12 ‘
R T U LR
RE ~1.49+13.79.10" 2
Ay = -2.U613

and they are shown in Fig. 5.1.

.The control reduction was performed in two steps: In the
first step we allowed locai state feedback and attempted
to preserve all eigehvalues. By adjﬁsting the weighting
factors (w) in five iterations we found a subset of seven
‘critical eigenvalues. These were A3, Au,‘ks, A7, x8, A13,
and A1u. In the second step we attempted to preserve only
the critical eigenvalues and used the same weighting fac-
tors as in the first step. The least square solution

(3.13) is given in Appendix § and the eigenvalues of

A 4BK%C are: i
A = -5.56.10" %
A = -3.33+10 1£12.70-10"]
-1, -1
by = =3.44.90 7 '£i2.52.10
+ed 1. 1
g, g = ~3.84-107 £i2.10+10
_ a1
Ag = -4,65+10
A = -7.95.10" 1+13.00
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Miq,12 = 1.19+14.08
P = -1.47

Ay = -1.66
Agg = =24

The eigenvalues of A +BK*C are shown-in Fig; 5.2.

The power system is simulated with the complete state
feedback given in Appendix 2 and the responses are shown
in Fig. 5.3. The power system is also simulated with the
local output feedback given in Appendix 3 and the respon-
ses are shown in Fig. 5.4. In both cases the rotor angle
of the generator in North Sweden (x1) is given an initial

value of 0.5 rad.

It is surprising how well the local output feedback
behaves. The linear quadratic control law is designed
to keep the angle differences small, the frequency and
the terminal voltages small. We observe that Xy s Xg and
Xq4 are close together when state feedback and local
output feedbaek are employed. We also observe that the
rotor angles are not reduced to zero with local output
1 The

angles could be reduced to zero if one of them is in-

feedback. This explains the zero eigenvalue A

cluded in the output vector. In practice the frequency

error 1is integrated and fed to the controllers.

The responses of Xy X5 and X4 0 (angular velocity) are
less but still very satisfactory damped in the second
case. The responses of VysYe and Vg (terminal voltage)

are at*so less damped but the damping is still acceptable.
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The proposed local output feedback does not require

larger control effort than linerar quadratic control

does. It is interesting to note that Uy is initially
negative in the linear quadratic control simulation

but positive in the local output control simulation.

From fig. 5.4b we observe that the terminal voltage is
negative at t=0 and using only this information it is

an understandable reaction to increase the excitation
input in order to increase the terminal voltage. The
linear quadratic control law decreases the excitation input
in a coordinated action to reduce power swings and restore
the state to zero. We also
observe that u, and U, (gate opening) ate almost zero

in the second case. This is an advantage of the pro-

posed local output feedback and is consistent with the
current trend to use the excitation control to improve

damping power system stability.

The state variables associated with the prime movers
(XS’X1O’ and x15) are almost zero in the second case.
This is a direct consequence of the fact that the prime

mover inputs are almost zero.

T+ is concluded that very little can be gained from
complete centralized control schemes for dynamic control
and that properly designed local controllers would be
sufficient. The proposed method of approximating complete

state feedback with output feedback could be an effective

tool for the design of such local controllers.
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6. CONCLUSIONS

In this paper we have attempted to devolope a rational
approach to fit a known structural controller, based

on output measurement by considering the best fit in

the eigenspace corresponding to the dominant eigénvalues

of the complete state feedback controller. This sate s
feedback controller can be computed in many ways e.g. by
linear quadratic contro theory. An iterative procedure

is developed %® by allowing the designer to change
weighting factors for the dominant modes. Computatinally
the design method requires an eigenvalue-eigenvector
calculation and one least=-squares solution as well as

one eigenvalue calculation per iteration. The feasibility
of the method has been d=monstrated on a number of s
examples. It has been demonstrated thatam an ocutput
feedback controller, using only two outputs, behaves

almost as well as feeding back the full state. It has also
been demonstrated thatwmry very little can be gained from
complete centralized control schemes for a power system

and that properly designed local controllers are sufficient.
In both cases state reconstruction has been avoided and %
the second ® the power system example shows the fgasibilityﬁi

of the method for large decentraliged systems.
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APPENDIX 1

Invariant Eigenspaces.

Let A be an arbitrary nxn matrix and let A = {11, Xos

ceis AP} be argiven subset of eigenvalues to A.

Assume that A is a symmetric set, i.e. if X € A fhen al-
so A € A, where the bar indicates compléx conjugation.
First consider the case when A is cyclic, i.e. there are
‘n linearlV independent eigenvectors to A. Then an in-
variant subspace is simply obtained from the eigenvec-
tors Q45 8ps sre ap corresponding to A, i.e.

- (Al.1)
Q = [a1 dp e a- ] - u“ )7

is a basis matrix for the eigenspace.

If A is non-cyclic the conéept of generalized eigenvec-
tors is introduced. Le %; be an eigenvalue ?f mgltipli-
city o, > 1. The generalized eigenvectors as, aj,
agi corresponding to Ay are.  then defined as the nontri-

viai_solutions of

a

.« o a g

i
o

1

k

n
Q
-
~
"
—
w
N
-
-
Q

The basis for the eigenspace is then constructed accor-
ding to the following rule. If ai is selected, then ai,
k=1, 2, ..., 2~=1, must also be selected as members oﬁ
the basis if an invariant subspace shall be obtained.
In this way an invariant eigenspace may be constructed

corresponding to any set of eigenvalues to A.

Finally, observe that since A is assumed to. be a symmet—
" ric set and A is assumed to be real, a real basis for

the eigenspace is obtained by taking




A1.2

| (A4.2)
Q = [a1 dy «.. ags Re{as+1} Im{as+1} Re{as+2} N Jc g
where 45 @y «eey A, are assumed to be real and ag4q0
Bgyos *oeo ab are assumed to be complex. For any pair i,

A belonging to A then choose Refal, Im{a} as members of
‘the basis where a is the eigenvector corresponding to A.
In this way complex arithmetic is avoided in the sequel,

and is only needed in the eigenvector calculation.
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APPENDIX 2

i

Pseudo Inverses.

[

. . +
Let M be an arbitrary real matrix. The pseudo 1inverse M

of M is then defined by the following four conditions:

1 iy M7 = ut i

M= M

2° M M
3° MM is symmetric

4 M M is symmetric

It is shown in [11] that v is uniquely defined by these
conditions. Numerical algorithms exist to find such in-

verses, see for instance [12].

" The pseudo inverse has some nice properties in minimiza-

“tion on inner product spaces. Consider the equation
Mx =y

which shall be solved for x. Then Xy F M+y has the fol-

lowing properties:

19 x, minimizes | IMx - y|| where |

| denotes the ordi-
"nary euclidian quadratic norm.

2° amongst the possible candidates for the minimum of

|IMx - y||, x, is the one that minimizes | 1x]].




APPENDIX 3 A3,

A=MATRIXr PAGE 1L

A( Lr 203 314159403 A( 2¢ L)z==o242249=01 A( 2y 2)z==,322029+01
AL 29 3)z ,162950+00 A( 2¢ 5)= 340985400 A( 2+ 6)= ,113810~01
Al 2¢ 7)==,06L348=02 Al 29 8)==.684552-02 A( 2,11)= ,.128439-01
A( 2912)5=,998Uc26-08 A 2#13)z=.712887-02 A( 3y 1)==,213677-01
AL 30 2)5=.676501=01 AC 3p 3)==.304433+00 A( 3y W4)= ,250453+00
Al 3 6) J147243-01 A( 3¢ 7)==.884903-02 A( 35 8)z ,554234=03
Al 30110 606434a=0c A( 3¢12)= «672120=02 A( 3¢13)= ,827741=02
Al 49 4)z=,769251=01L A( 5S¢ H)z=140858+01 A( 6¢r 7)== 314159403
AC 7r 1) ¢310451=01 A(G 7¢ 2)z=.207229=01 A( 7y 3)==,138751=01
AC 79 6)==.49909u=0L Al Tr 7)==.2u42749+01 A( 7» 8)= u465573=01
AC 7010)= o159024+0U0 A( 7¢11)= .18861u=01 A( 7012)=-,141278=01
Al 7¢13)==,99311u-02 Al 8¢ 1)z ,180088=-02 A( 8y 2)= ,602946=02
AC 81 3)= .695009=02 A( 8¢ B)z=,227243=02 A( 8y 7)==,282597=01 -
Al 8r B8)==,.30095854+00 Al 8s 9)= 336492400 A( Bsll)= ,471545=03
AL 8pl2)= ,3902¢5-02 Al Brl3)z J403555=02 A( 9y 9)==,100000400
ACLOr10)z==,732244=02 A(l1ls12)z 314159403 . A(12y 1)z ,130U472-01
A(l2y 2)==,106509-01 A(l2s 3)==.791938=-02 A(l2r» 6)= ,649000-02
AlLl2y 7)==,511251~02 A(1l2) 8)==462964~02 A(12911)=-,195372~01
A(12912)==,.0887216+00 A(12013)=z 165403400 A(12¢15)z 441134400
A(L3r 1)= ,728355=02 A(13s 2)=z 410596=02 A(13» 3)= ,636214=02
ACl3y B)= 7237L6=02 A(13s 7)==.444029-02 A(13, 8)==,930530-04
AlLSer11)==,145205~01 A(1l3,12)==:536106=01 A(13+13)==,288581+400
ACLl3pll4)= 247001400 A(L4,)14)z=-.769231=01 A(15¢15)==-,183560+01

69 NONZERO ELEMENTS
156 ZERO ELESENTS

B=MATRIX+ PAGE 1

B( 20 2)z=,227323+400 B( 4y 1)z «769231-01 B( 5, 2)= ,140858+01
BC 7¢ 4)= .162229400 8( 9r 3)= .100000+00 B(10r 4)==,783733-02
B(10r 5)= .730000~0¢ 8(12s 7)=-.294089+00 B(l4y 6)= ,769231~01
Bllby 7)= ,183560401 :

10 NONZERO ELEMENTS
95 ZERV ELoMENTS

C=MATRIX» PAGE 1

Cl 1y 2)= 100000401 C( 2¢ 1)==4212729~01 C( 2y 2)= ,932214+00
Cl 2¢ 3)= ,889955400 ¢ 2¢ 6)= .194903-01 C( 2¢ 7)=-,100683-01
Cl 2r 8)z ,7349gp-02 C( 2¢11)z 4178260-02 C( 2¢12)= ,227022=01
C( 2913)= ,232592-01 C( 3+ 4)= .100000+01 C( 4, 7)= ,100000+01
Cl 5S¢ 1)==,913649-01 C( Sr 2)= 240934400 C( 5, 3)= ,233823+00
Cl 5r B)= 4162355400 C( 5S¢ 7)z 4277790400 C( 59 8)= ,286660+00
C{ 5911)==,709951-01 C( 5¢12)= 159072400 C( Sr13)= ,143982+00
Cl 60 9)= ,i0U000U+0L C( 7010)= 4100000+01 C( 8r12)= ,100000+01
CC 9y 1)= ,108115~01 C( 9» 2)z 114114=01 C( 9 3)= ,151457=01
Cl 9y 6) ,126540~=0L C( 9r 7)==.743007-=02 C( 9¢ 8)= ,117922=02

CC 99r11)==,234655=01 C( 9¢12)= 4102604401 C( 9913)= ,912437+00
C(l0r14)= ,100000+01

34 NONZERO ELEMENTS
116 ZERO ELEMENTS
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L=MATRLIX¢s PAGE 1

LO dre L)z o145461+00 LC 1 2)z 146007402 L 1+ 3)= .,653267+01
LE 1y 4)= ,BIU307+0L LU 1s S5z «38775%2+01 L 1» 6)= ,718818~=01
LO 1y 7)) 4752995401 L 1¢ B8)z 311316400 L( 1s 9)= ,322513+00
LC 1e10)z ,519701401 LG 1s11)z ¢620178-=01 L 1¢12)z ,181910+02
LO 191302 438503+01 L lell)= 188907401 L( 1+/15)= .365105+01
LO 2r L)2=,130L05-01 L( 2¢ 2)==:550412400 L( 2¢ 3)= ,135702+00
L 20 4)= 4445665=-01 L 2¢ 5)z 100274400 L 2¢ 6)= (576800=02
LO 2y 7)= 2220695400 L( 29 8)= J4u8535=03 L( 2¢ 9)= ,278974=02
L 2010)= 433808=01 L 2¢11)z o112001~01 L( 2¢12)= 581754400
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ABSTRACT.

The problem of designing a linear feedback when all state
variables are not available is discussed. The design
scheme is based on computation of a complete state feed-
back and a reduction to a specified structure. The reduc-
tion is made by approximation on the eigenspace corres-
ponding to a set of dominant eigenvalues. The method con-
sists of successive choices of weightings on this space.
The method is applied to the control of a boiler and a
three~machine power system. In the power system case the
complete state feedback can be replaced by local output

feedback without any significant decrease in performance.

The examples indicate that the proposed method is a rea-

listic design method for multivariable systems.
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1. INTRODUCTION.

The concept of state feedback plays an important role in
existing control theory for linear systems. Linear quad-
ratic control theory [1] and pole assignment theory [3,4]
are two well-known examples. Unfortunately the whole state
vector is, however, rarely available for measurement. Even
if it was available a state feedback control would some-
times result in far too complex control systems. The stan-
dard way to bypass these difficulties is to measure only

a small set of outputs and reconstruct the full state vec-
tor using a Kalman filter [2] or an observer [7]. The re-
sult is, however, still somewhat unsatisfactory since the
reconstruction by itself might produce high order dyna-

mics in the control function.

These facts justify the demands for simpler or suboptimal
control policies. Practical constraints on the feedback
system must be considered. A limited number of measure-
ments 1s one obvious constraint. In large systems consist-
ing of several coupled subprocesses, such as power systems,
there may be a desire to control the system with local
feedbacks on the different processes, eventually with the
addition of a small number of interconnections. There are,
however, no rational ways to design such hierarchical
control schemes. Another example is diagonally controlled
systems where the design philosophy is the classical one
with each input variable controlling a single output va-

riable.

A few methods exist to solve some problems of these types.
Here we will only mention modal control [4,5] and the sub-
optimal linear quadratic regulator [8]. In [8] the usual
quadratic performance criterion is minimized with respect
to a selected number of feedback gains, using a function

minimization algorithm. Aside from the fact that the con-




vergence toward a unique global minimum has not been
shown, this technique does not seem to be practical when

applied to large systems.

In this paper a state feedback control is used as the
starting point. This is quite a realistic assumption,
since there are straightforward methods to find such
controllers even for fairly large systems. See for in-
stance [1] and [4]. The step taken is then to fit this
control into another "similar" control with a predefined
structure. The idea behind this fit is to make it as ac-
curate as possible on the eigenspace corresponding to a
dominant set of eigenvalues to the closed loop system.
It is illustrated by examples that satisfactory control-
lers may be obtained in this way after a few iterations.
It should be noticed that the method does not depend on
how the state feedback contrpller is obtained. The re-
duction technique is thus applicable to any method that

results in a linear feedback from the state.

Notice that this reduction procedure is a rational way

of designing hierarchical control systems. Sometimes it isnot
possible to control the system satisfactorily by output '

feedback only. In such cases the reduction scheme can he
used to find controllers of PD-types, where the derivative
term will give additional information about the state of the

system and thus making the system easier to stabilize.

The paper is organized as follows. Some mathematical pre-
liminaries are given in Section 2. The control reduction
scheme is presented in Section 3. Applications to boiler
control and power system control are finally discussed

in Sections 4 and 5.

In the boiler case it is shown that the feedback from
all five states can be replaced by the feedback from two
outputs. In this case it is possible to avoid the Kalman
filter, proposed for the reconstruction of the state,

without any significant decrease in performance.

The power system is an example of a system, consisting
P Yy P




of geographically distributed subsystems. State estima-
tion and feedback can be organized in a centralized ovr

a decentralized manner. In both cases large amount of

data has to be transmitted. Although data transmission
systems are under construction it is desirable to have
control schemes, which do not require high speed data
transmission. The whole state vector could be reconstruc-
ted locally if the system is observable via locally avail-
able outputs. The dimension of the Kalman filter, however,

becomes very high.

In this paper we consider a three-machine power system
with 15 states. The complete state feedback can be re-
placed with local output feedback without any significant
decrease in damping. Also in this case it is possible

to avoid high order Kalman filters. The results also in-
dicate that very little can be gained from complete cent-
ralized control schemes and that properly designed local

controllers are sufficient.

In large systems, such as power systems, the computatio-

nal effort is of importance. The major computational bur-
den in this case lies on an initial eigenvalue-eigenvec-

tor calculation, which corresponds to approximately 8n3

operations. An additional eigenvalue calculation may have
to be done to check if the reduced control law has an

acceptable degree of stability.

This method could be an effective tool for the design of

multivariable controllers in an interactive mode.




2. PRELIMINARILS.

In this section we will give a formal statement of the
problem. The concept of constrained feedback structures
will be concisely defined. For completeness some well-
known properties of invariant eigenspaces and generalized
inverses are also given, since these two concepts will be

frequently used in the sequel.

Statement of the Problem.

Consider a linear time invariant system in state space

form

x = Ax + Bu (2.

where x is the n-vector of states and u is the m-vector
of control inputs. A and B are real-valued matrices of
compatible dimensions. Moreover, assume that a state

feedback controller

u = Lx + v (2.

where L is an mxn real-valued matrix.is found such that
the system (2.1) with the controller (2.2) has the de-

sired properties.

In controlling the system (2.1) we will set certain
constraints on the feedback system. The intention is

then to "reduce" the control law (2.2) such that these
constraints are satisfied. In specific two types of
constraints will be considered corresponding to diffe-
rent degrees of complexity in the control function. These

definitions should cover a large variety of practical

1)

2)




constraints that might be imposed on the structure of a

feedback system.

In order to simplify the notations we will use stars (%)

to indicate properties associated with the reduced cont-

rol laws.

The simplest kind of constraint is to permit output feed-
back. Let y = Cx denote the output of (2.1) where C is a

real rxn matrix. A control of the form

u = K8¥Cx + v (2.3)

will be referred as a control with a single constrained

feedback structure.

A more complex structure is obtained if the i:th input

variable is restricted to be a function of certain spe-

cified outputs. Let vy = Cix, i=1,2, ..., g, denote

q sets of output variables to (2.1) where Cs is an r.xn
. T _ T T T .

matrix. Moreover, let u” = [u1 Uy oo uq] be a parti-

tion of the control vector into an appropriate set of g

subvectors. A control of the form

u; = K¥C.x + vy i=1, 2, ..., q (2.4)

will be referred as a control with a multiple constrained

feedback structure. It is easily verified that as well

local as hierarchical types of control systems are inclu-
ded in this formulation. Notice that the control (2.3)
is a special case of (2.4) with q = 1. An illustration of

the two concepts is given in Fig. 2.1 and Fig. 2.2.

A common way to do the kind of reductions considered here
is to simply neglect those entries of the state feedback

matrix that are '"small™ in comparison with the others.
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Fig. 2.2 - Two coupled systems controlled via multiple
constrained feedback structure.




There are, however, several difficulties involved in
such a procedure, and it requires frequently a fairly
deep understanding of the process dynamics. Moreover,
there 1s no rational way to '"compensate" the remaining
entries for the approximations made. The approach of
this paper will instead be to construct a certain sub-
space of the state space where the reduction is made.
In this way the "compensating'" problem is avoided and
converted to the problem of finding the appropriate
subspace. However, there are rational ways to construct

such subspaces and some of them will be described below.

Invariant Eigenspaces.

Let A be an arbitrary nxn matrix and let A = {A15 Ao

N Ap} be a given subset of eigenvalues to A.

Assume that A is a symmetric set, i.e. if X € A then al-
so A ¢ A, where the bar indicates complex conjugation.
First consider the case when A is cyclic, 1.e. there are
n linearlV¥ independent eigenvectors to A. Then an in-
variant subspace is simply obtained from the eigenvec-
tors a

Ao ones ap corresponding to A, i.e,

13

Q = [a1 ay «.. @ 1 (2.5)

is a basis matrix for the eigenspace.

If A i1s non-cyclic the concept of generalized eigenvec-

tors is introduced. Le A; be an eigenvalue of multipli-

. . . 1 2
city a; > 7. The generalized eilgenvectors S

o . . .
ail corresponding to A; are then defined as the nontri-

vial solutions of




i
o

1
(A - AiI)ai

]
Qo

k
(A - KiI)ai

The basis for the eigenspace is then constructed accor-
ding to the following rule. If ai is selected, then a?s
k=1, 2, ..., =1, must also be selected as members of
the basis if an invariant subspace shall be obtained.

In this way an invariant eigenspace may be constructed

corresponding to any set of eigenvalues to A.

Finally, observe that since A is assumed to be a symmet-
ric set and A is assumed to be real, a real basis for

the eigenspace is obtained by taking

Q = [a1 dy +.. ags Re{a8+1} Im{a8+1} Re{as+2} cee] (2.6)
where a9 @ps ...y ag are assumed to be real and ag 410
Qgyno oo ap are assumed to be complex. For any pair A,

A belonging to A then choose Re{al}, Im{al} as members of
the basis where a is the eigenvector corresponding to .
In this way complex arithmetic is avoided in the sequel,

and is only needed in the eigenvector calculation.

Pseudo Inverses.

Let M be an arbitrary real matrix. The pseudo inverse MJr

of M is then defined by the following four conditions:

MM Mt = M

..]’..
2° M MTM = M
MM is symmetric

M MjL is symmetric




It is shown in [11] that m' g uniquely defined by these
conditions. Numerical algorithms exist to find such in-

verses, see for instance [12].

The pseudo inverse has some nice properties in minimiza-

tion on inner product spaces. Consider the equation
Mx = vy

which shall be solved for x. Then Xy T MTy has the fol-

lowing properties:

10

@

X minimizes ||Mx - y|| where | | denotes the ordi-

nary euclidian quadratic norm.

2© amongst the possible candidates for the minimum of

| Mx - v, x, is the one that minimizes | [x]].




10.

3. CONTROL REDUCTION.

Assume that a state feedback control is given. This cont-
rol is then replaced with a "similar" control with a pre-
defined feedback structure. It is shown that this can be
done in such a way that a certain number of eigenvalues
remain invariant (mode preservation). Since there is an
upper bound on the number of invariant eigenvalues a dif-
ferent reduction is also given which minimizes a weighted
shift of the eigenvalues (mode weighting). Controls of de-

rivative types will be considered at the end of the section.

Mode Preservation.

Consider the system (2.1) with the control (2.2). The

closed loop system becomes
x = (A + BL)x + By (3.1)

We will attempt to replace the control (2.2) with a simi-
lar control of the multiple constrained form (2.4). For

this control the closed loop system becomes
x = (A + i?q BiKKCi)X + Bv (3.2)

where B = [B, By ... Bq] is a partition of the input mat-
rix compatible with the partition of the control vector
in (2.4%). Moreover, the reduced control law shall be se-
lected so that some dominant properties of (3.1) are pre-

served in (3.2).




1.

Partition the state feedback matrix as

by

L2
L =

L

q
where L. is m.xn. Then if K.C. = L, have solutions K%

i i ivi i 1

for i = 1, 2, «..s g, the exact and the reduced control
laws would be identical. However, such solutions rarely

exist, and therefore approximations must be made. The
following theorem describes one rational way to do such

approximations.

Theorem 1: Let A = {kqﬁk23..,,kp} be a symmetric set of
eigenvalues to A + BL and let Q be a real basis matrix

for the corresponding eigenspace. Then if

K;€5Q = LiQ (3.3)

have solutions K? for i =1, 2, ..., q, then A is also

a set of eigenvalues to

A+ % B.K¥C.
Z 1 1 1

Moreover, if T = [Q Q] where the columns of Q are any
set of vectors that extend the columns of Q to a basis

in R™ then

O O
1 , Arg o Ay
T '(A + BL)T = (3.4)
0 A°
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and
o] o % 1 wn
Ajq  Agp L ByALEQ
1=1
-1 ! .
T (A + ) BLKFCOT = (3.5)
1=1
o % 20180
0 A22 o BiALiQ
1=1
where
AL%T = K%¥C., = L.
1 171 1
and
3
quBi =
B’
i
Proof: Introduce AO = A + BL and
s q LY
AY = A+ ] BiKEC,
1=1
From (3.3) we have
LY q
(A + L BiK¥C w = (A + izq BiLi)w = (A + BL)w (3.6)

for any w ¢
it follows
AOQ = ASQE
extend the

and write

{Q}. Since {Q} is Al invariant by construction,
from (3.6) that {Q}Ais also Ag invariant and

Let the columns of Q be any set of vectors that
[ Q1

columns of Q to a basis in R™. Choose T




We then have

. VAQ  VA_Q
T AT = N
© 0 VA _Q

O
_ VABQ VABQ
T ART = A o
O o
0 VA%Q

O

The set of eigenvalues
then follows that A is

Moreover, we have

~

A q
VA%Q = VA Q + V( ) BK
iz=1
g
- A° ' INET
= Ay, + 1 ByALEQ
1=1
and in the same way
7a%0 = A° % %6
VAZQ = Aoy + ) Byali0
i=1
Comments:
1. A real basis for th

ATy AT,
o A5y
gy vaxQ
"o QAgé
of A9, equals A. From (3.8) it

11
also a set of eigenvalues to A¥.

O
Aqg

%C, - L)Q

e eigenspace can be constructed

(3.7)

(3.8)

from the eigenvectors as was described in Section 2.

clearly illustrates the kind of approximations that

A comparison between the matrices (3.4) and (3.5)




Th.

are made. The upper left block corresponding to ei-
genvalues A are identical in both systems. The re-
maining blocks are changed by an amount depending on
AL?, i.e. the difference between the exact and the

reduced control laws.

3. The remaining eigenvalues of A + BL are different
from those of A + BK¥C. Observe, however, that the
effect of the approximations are only localized to
the part of A + BL that contains the less dominant
modes. The case when the approximations still cause
an unacceptable change in the system is covered be-

low.

4. Theorem 1 also yields an algorithm for pole assign-
ment via output feedback. It has been shown in [5]
that if rank C = 1, then a symmetric set of r eigen-
values may be "almost" freely assigned. If a state
feedback matrix L has been found so that r eigenvalues
to the closed loop system takes some prescribed values
Theorem 1 may be used to find a corresponding output

feedback matrix (assuming (3.3) is solvable].

Mode Weighting.

The condition that (3.3) shall be solvable for Ki gives
an upper bound on the number of eigenvalues that can be
held fixed. This bound mostly equals T i.e. the number
of measured variables. One trivial exception is C = L,
where K = I preserves all the eigenvalues. It may, how-
ever, still happen that some of the remaining eigenvalues
move to undesired locations in the complex plane. The so-
lution to this problem is to include a larger number of

eigenvalues looking for least square solutions of (3.3).




15,

Introduce the matrix norm

1/2
M) | = (trom®y)

valid for an arbitrary real matrix M.

Consider first the case when there is more than one so-
lution to (3.3). Let Ri’ i=1,2, ..., g, be nonsingu~-

lar P X, matrices. Then one solution is given by

! (3.9)

. -1 o=
Ki = LiQ(Ri CiQ) Ri
Moreover, this solution is the one that minimizes the

norm []Ki R;Il5 i.e. a solution with small feedback gains

is selected.

Consider now the opposite case when there is no solution

of (3.3). We may then attempt to minimize the norm

[[(x;c.Q = L, Q] (3.10)

where W is a nonsingular pxp matrix. In fact the minimum

is obtained by taking

o T
Ki z LiQW(CiQW)

Now remember the special choice of basis that was made

in (2.6), i.e.

Foood

Q = [a1 a5 v oagh Re{as+1} Im{as+1} Re{as+2

where 3 is the eigenvector corresponding to Xku If we

choose W = diag(w,Ij Wos eees wp) where w, # 0, (3.10)

k
may be rewritten as
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2 2 ’ 2
|lx;ciQ - Lw|]” = % wy [K.Cia = Lia | (3.12)

k=1 K
From the last expression we see that a successive increase
in Wy causes a successive better fit of the eigenvalue Xk
in the closed loop system. In this way W may be interpre-
ted as a weighting matrix for the eigenvalues we desire

to hold fixed. This point is further clearified by examples

later.

Finally we observe that (3.9) and (3.11) may be combined
to

y - to=1

¢ o= . QV . . . o
K LlQN(Rl ClQW) Ry (3.13)
Proportional and Derivative Control.
In some cases acceptable degree of stability cannot be
achieved by output feedback only. The classical way to
bypass this difficulty is to include derivatives of the
outputs in the feedback loop.
We will now permit a control of the form
u o= Kiy + K5Py (3.14)
where P i1s a given mxr matrix and y = Cx. Only the single

constrained case will be considered. The extension to the
multiple constrained case is straightforward. In classi-
cal control terms the control (3.14) is of PD-type. The
drivative term will set some constraints on the qualita-
tive of the measured signals, especially the presence of
high frequency noise. This kind of control has, however,

turned out to be successful in many applications.
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By some simple manipulations the control (3.14) is trans-

formed to the standard form (2.3). Using (2.1) we have

u = K¥y + K§PCx = K¥Cx + KEPC(AX + Bu)

Assuming I - K?PCB is invertible the last expression may

be solved for u

U = (I - KEPCB) 'KxCx + (I - KPCB)~

Ty -
5 5 5 KTPCAX =

2

. ﬁch + kzPCAx (3.15)

~

Now defining a new output vector y as

C

§ = Cx = X ' (3.186)

PCA
The equation (3.15) can then be rewritten as

u = (R1R2)éx = KCx (3.17)
The previous results can now be used to find an approp-

riate K. The feedback gains in (3.14) are then calcula-

ted as

~
7]

(1 - KgPCB)k1 (3.18)

! (3.19)

~
it

K2(I + PCBKQ)

The benefit of this kind of control is apparent from
(3.16) and (3.17). By having a larger portion of the
state available we are also, in view of the reduction
technique above, able to keep a larger number of eigen-
values fixed. Moreover, if rank {6} = n then the reduced

and the exact control laws become identical.
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Examples.

Finally we will give some examples to illustrate the
ideas of the section. Two more farreaching examples are con-

sidered in the next sections.

and the eigenvalues of A + BL equal Aq = -1 and Ay = -2,

Assume we permit a feedback of the form
u = ky + v

and that Aqo @ -1 shall remain fixed. The eigenvector cor-

responding to A1 is

e
a, = 1/V?2
! 1

In this simple case we have Q = ay. Solving (3.3) we ob-

tain




and the eigenvalues of A + Bk*C become vy F -1 and vy =

= -1, i.e. one eigenvalue equals -1 as desired.

ExamElewg
1 2 1 0
X = X + u
= 1 0 1
-5 =1
u = X + v
2 =5

and the closed loop eigenvalues equal Aq F -3 and Ao =
= -5. Assume we shall hold Aq F -3 fixed. The eigenvec-

tor corresponding to X4 is

1
a, = 1/V2
! U

Assume we permit a feedback of the form

This control is then of the multiple constrained type

(2.4). The feedback structure becomes

19.




The eigenvalues of

q
A+ z B.k¥C
L i7i

=1 *

becomes vy = =3 and Vo F =1,
Examgleﬂé
0 0 0 1 0
x =10 0 1lx+ o olu
1 0 0 1 1
1 2 0
y = X
0 1 1
-2 =1 =1
u = X + v
1 = =]

The closed loop system is

-2 = = 1 0
x = | 0 0 Tl + |0 0fv
0 -2 -2 1 1
The eigenvalues of A + BL are A = =17

and X

~2.

20.




Assume we permit a feedback of the form

k11 k12
u o= y + v
o1 Koo
First we attempt to keep the eigenvalues i, , = =1+
3

fixed. The corresponding eilgenvectors are

0 0.5 0 0.5
a; = |-0.5| + j[-0.5 a, = [-0.5| - 3|-0.5
1 0 1 0

The basis matrix Q for the eigenspace is then selected

according to (2.6) as

0 0.5
a = |=0.5 =0.5
1 0

Solving (3.3) for K we have

0.67 0.33
K =
T =0.,33 =1,.67
and the eigenvalues of A + BK%C are vy o © -1+j as de-
2
sired and vy = 1.33, The third mode has become unstable

and therefore we include also this mode looking for

least square solutions according to (3.12) and (3.13).

.

The eigenvector corresponding to i = -2 is

21.
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The basis matrix for the eigenspace then becomes

0 0.5 1
Q = 1-0.5 -0.5 0
1 0 0

We choose the weighting matrix W as W = diag(1,1,0.1)
where a relatively small weight has been laid on Ay

Using (3.13) we now have

0.6l 0.32
K¥_ =
1 -0.32 -1.66
and the closed loop eigenvalues are Vy 5 = ~0.995+0.998]
2

and 1.29. The weight on the third mode was obviously too
small. Take instead W = diag(1,1,0.8). We then obtain

~0.30 -0.15
K =
LIl 0.15 -=1.42
The closed loop eigenvalues are now Vg o T =0.57x1.147
’ 2
and vy = ~0.73. In this way, by successively altering

the weighting factors, a satisfactory solution can be

obtained after a few iterations.
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4, APPLICATION TO BOILER CONTROL.

A computer program for control reduction has been_written
based upon Theorem 1 and the least square solution (3.13).
This program has been used to find simple control strate-
gies for a boiler. The starting point is here a linear
quadratic control law, which is used to fit a certain
feedback structure. By simulations we show that a reduc-
tion can be made without any significant decrease in per-
formance. In fact, the responses of the reduced control
system are very similar to the responses of the system

controlled by complete state feedback.

Control of a Boiler.

Different types of models for a drum boiler are thorough-
ly described in [9]. Here we will use a fifth order model
from [101].

The linearized equations for a boiler around a certain

operating point can be written as

Ax + Bu

e
I

y = CXx

where the state variables are

x4 = drum pressure (bar)

x, = drum liquid level (m)

x4 = drum liquid temperature (°C)
Xy = riser wall temperature (°C)H

Xg = steam quality (%)
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The control variables are

heat flow to the risers (kJ/s)

Hi

Uy

i

u feedwater flow (kg/s)

2
Numerical values for A, B and C for a power station boi-
ler with a maximum steam flow of about 350 t/h are calcu-
lated in [10]. The drum pressure is 140 bar and the ope-

rating point is 90% full load. From [10] we have

f 1 1

~0.129 0.000 0.396x10" 0.250x10" 0.191x10"
0.329x107%  0.000  ~0.779x10” 0.122x107%  -0.621
A= 0.718x107"  0.000 -0.100 0.887x107°  -3.851
0.411x107"  0.000 0.000 ~0.822x107 " 0.000
0.361x10"°  0.000 0.350%107" 0.426x10""  -0.743x10”"
0.000 0.139x10"%
0.000 0.359x107"
B = | 0.000 ~0.989x10"°
0.249x10"" 0.000
0.000 ~0.543x107°

A state feedback matrix can be calculated using linear
quadratic theory. In [10] it is shown that the following
feedback matrix gives satisfactory responses.

(~0.668x10"  -0.418x10°  -0.136x10%  -0.137x10%  0.175x107
L =

=*Om803><101 fO,9O8x103 ~0.486 -0.815 0.431x10u

(4.1)
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The intention is now to replace the control u = Lx with

a simpler control using only output feedback, i.e.

where K¥ shall be properly chosen. The eigenvalues of

A + BL are

Ay o= ~0.490x10
i -1, -1
Ny 5 = =0.755x107 '£3+0.511x10
A = —0.1u13.0.170x10"]
4,5 S iEITU

and they are shown in Fig. 4.1a.

First we attempt to include only the three eigenvalues

x1 5.3 of A + BL having the least real part. Somewhat
b] 2

arbitrarily we choose the corresponding factors as W =

= diag(1,1,1). Using (3.13) we have

0.92ux10" ~0.3u7x10°
K& = (4.,2)
I 0.403x102 ~0.827x10°

The eigenvalues of A + BK#¥C are shown in Fig. U.1b. We
T g

see that the neglected pair ku g c -0.141+0.0763 of
2

A + BL has become a much less damping in the reduced
control system. In order to increase the damping we in-
clude also AM,S in the solution and choose the weighting
factors as W = diag(1,1,1,0.2,0.2), where the smaller

weight has been laid on X The least square solution

h,5°
(3.13) becomes now

0.569x10° -0.286x10°
K¥_ = (4.3)
I 0.870x10" ~0.601x10°
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and the eigenvalues of A + BK?IC are as shown in Fig.
4.17c. As can be seen the damping of the second complex
pair has increased, but ét the expense that the right-
most eigenvalue has moved somewhat nearer the imaginary
axis. A further iteration with W = diag(1,1,1,0.5,0.5)

gives

--O.265><1Ou ~0.263x106

K# = (4.4)
I1I ~0.167x10" ~0.528x10°

The corresponding eigenvalue configuration is shown in
Fig. 4.1d.

Simulations show that K%I is the most satisfactory choice
in this case. The output feedback matrix can be compared
with the corresponding elements in the state feedback
matrix (4.1) (the two leftmost columns). As can be seen
the feedback gains are slightly less in K?I, but of the
same magnitude. However, the relations between the indi-
vidual feedback gains differ considerably. This is due to
the fact that compensations have been made in K?I for the

remaining columns in L.

In Fig. 4.2 - 3 the system is simulated with control laws
(4.1) and (4.3). Fig. 4.2 shows the responses for an ini-
tial condition in drum level of 0.02 m and Fig. 4.3

the same responses for an initial condition in drum pres-
sure of 1 bar. As can be seen the difference between the
exact and the reduced control laws is astonishingly small,
indicating that a control only using feedback from the

measured variables will be sufficient in this case.
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(a) Ims (c) N Ims
"1“]0_1 ""m‘lo_ll
bad X X
X . Res Re s
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X : X X
N Im
{b) « s (d) N Ims
T ]“‘0_1 = 1,40"
X X
! N Re s X Res
T - I A4
<1107} UV >
x“l’do
X X
X

Fig., 4.1 - The pole configurations for the exact and the

reduced control laws.

(a) exact control law (4.1)
(b) reduced control law (4.2)
(c) reduced control law (4.3)

(d)lreduced control law (4.4)
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5. APPLICATION TO POWER SYSTEM CONTROL.

We consider a reduced model of the Scandinavian network,
which consists of approximately 150 nodes and 250 lines.
The reduction of the model has been performed in two
steps at the Swedish State Power Board. The original mo-
del has been verified by experiments. The accuracy of
the reduced model can, of course, be questioned but in

any case it is a typically power system model.

The model has three generators, one in North Sweden
(GNOSVE), one in South Sweden (GSYSVE), and one in Nor-
way (GNGE). The generators in North Sweden and in Norway
have hydro turbines and the generator in South Sweden

has a steam turbine.

The modeling of a multimachine power system has been

treated in [13] and will not be discussed here.

The linearized equations for the power system can be

written as

dx = Ax + Bu
dt
y = Cx

where the state variables are:

Xq = rotor angle, GNOSVE

X, = rotor angular velocity, GNOSVE

Xgq 0= flux linkage of field winding, GNOSVE
X, = excitation voltage, GNOSVE

Xg = velocity of water, GNOSVE

X = rotor angle, GSYSVE




The

= rotor angular velocity, GSYSVE

= flux linkage of field winding, GSYSVE
= excitation voltage, GSYSVE

= Ssteam pressure

= rotor angle, GNGE

= rotor angular velocity, GNGE

= flux linkage of field winding, GNGE

= excitation voltage, GNGE

= velocity of water, GNGE

input variables are:

= excitation input, GNOSVE

= gate opening, GNOSVE

= excitation input, GSYSVE

= steam valve setting, GSYSVE
= fuel flow, GSYSVE

= excitation, GNGE

= gate opening, GNGE

output variables are:

rotor angular velocity, GNOSVE

= terminal voltage, GNOSVE

= excitation voltage, GNOSVE

it

rotor angular velocity, GSYSVE
= terminal voltage, GSYSVE

= excitation voltage, GSYSVE

= gteam pressure, GSYSVE

= rotor angular velocity, GNGE

31.
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Vg = terminal voltage, GNGE

excitation voltage, GNGE

Y10

where GNOSVE, GSYSVE, and GNGE denote the generators in

North Sweden, South Sweden, and Norway respectively.

Numerical values for A, B and C for the power system
are given in Appendix 1. The operating point corresponds
to the expected peak load 1975 with high transmission

from North Sweden to South Sweden.

The initial state feedback matrix is calculated using 1li-
near quadratic control theory. In [14] it is shown that
the state feedback matrix given in Appendix 2 gives sa-

tisfactory responses.

The intention is now to replace the control u = -Lx with

a simpler control using only local output feedback

where u. are the inputs at station i and y; are the out-

puts measured at station i. The eigenvalues of A - BL
are:
A = =7.33.107°
o ol
Xz = =-2.,08-10
o -1, . -1
kgsq = =2.77-10 £13.55-10
_ -1
AS = =-3.17-10
o -1 .. -1
A6,7 = =3.83.10 +#12.53:10
o -1
K8 = 5.14-10
by = =1.36+13.12
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Nyq,qp = ~1.37xi4.18 ‘
_ . Y
Aqg,qy = -1.49£13.79410
Mg = -2.4613

and they are shown in Fig. 5.1.

Ims

5% Re s

X
2
x

Fig. 5.1 - Eigenvalues for the power system with complete
‘'state feedback.
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The control reduction was performed in two steps: In the
first step we allowed local state feedback and attempted
to preserve all eigenvalues. By adjusting the weighting
factors (w) in five iterations we found a subset of seven
critical eigenvalues. These were A3, Au, xB, x7, x8, A13,

and A In the second step we attempted to preserve only

14"
the critical eigenvalues and used the same weighting fac-
tors as in the first step. The least square solution
(3.13) 4is given in Appendix 3 and the eigenvalues of

A = K#C are:

y = -5.56-107°

A = -3.33.10 'xi2.70+10""
2,3

M5 T ~3.uye10” 1252.52.907
e 7 T ~3.84+10" 12i2.10+10""
Mg - —4.65.107"

‘g, 10 ° ~7.95.10" '+i3.00
g1 = "1-19-1k.05

A3 = =1.47

My = -1.66

Mg = =2.04Y

The eigenvalues of A - K¥C are shown in Fig. 5.2.

The power system is simulated with the complete state

feedback given in Appendix 2 and the responses are shown
in Fig. 5.3. The power system is also simulated with the
local output feedback given in Appendix 3 and the respon-
ses are shown in Fig. 5.4. In both cases the rotor angle
of the generator in North Sweden (xq) is given an initial

value of 0.5 rad.

It is surprising how well the local output feedback be-




haves. We observe that the rotor angles are not reduced
to zero., This is an explanation to the zero eigenvalue Al.
The angles can be reduced to zero if one of them is inclu-
ded in the output vector. In practice the frequency error

is integrated and fed to the controllers,

35,
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A lms
X [.___
X 34
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Fig. 5.2 - Eigenvalues for the power system with local
output feedback.
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