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A Bode Sensitivity Integral for Linear Time-Periodic Systems

Henrik Sandberg and Bo Bernhardsson

Abstract— For linear time-invariant systems Bode’s sensi-
tivity integral is a well-known formula that quantifies some of
the limitations in feedback control. In this paper we show that
a very similar formula holds for linear time-periodic systems.
We use the infinite-dimensional frequency-response operator
called the harmonic transfer function to prove the result. It
is shown that the harmonic transfer function is an analytic
operator and a trace class operator under the assumption that
the periodic system has roll-off 2. A periodic system has roll-
off 2 if the first time-varying Markov parameter is equal to
zero.

I. INTRODUCTION

In recent years there has been an increased interest for the
fundamental limitations in feedback control. One reason for
this is that in many control design tools these limitations are
not clearly visible, and an inexperienced designer can easily
specify performance criteria that are not possible to attain.
The articles [1] and [2] contain examples of this. There
are many of these limitations in control. The connection
between amplitude and phase of transfer functions and
Bode’s sensitivity integral formula are two examples. The
limitations come from the fact that the transfer functions
are analytic functions, and this has strong implications.

In this paper we focus on Bode’s sensitivity integral. This
is a standard result in control, see for example [3]. The
sensitivity function S = (I + G)−1 is defined as in Fig. 1.
The result says that the sensitivity function cannot be small
everywhere. If the transfer function Ĝ(s) of the open-loop
system G has roll-off 2 and is stable, then we have in the
Multi-Input-Multi-Output (MIMO) case that∫ ∞

0

log |det(I + Ĝ(jω))−1| dω = 0. (1)

This is also called the “waterbed effect”. If Ŝ(jω1) = (I +
Ĝ(jω1))

−1 is made small for some frequency ω1, then it
will be large for some other frequency ω2. In particular, the
modulus of the sensitivity, |det Ŝ(jω)|, cannot be less than
1 for all frequencies ω.

This trade-off holds for time-invariant linear systems. It is
known that there are limitations also for linear time-varying
and nonlinear systems, see for example [4]. However,
frequency-domain methods are then often not applicable. In
the paper [5] an analogue to (1) is developed for continuous-
time time-varying linear systems. The sensitivity integral is
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interpreted as an entropy integral in the time domain, i.e., no
frequency-domain representation is used. For discrete-time
time-varying systems similar results are given in [6].

For time-periodic linear systems there do exist frequency-
domain representations. Sampled-data systems are a special
type of time-periodic systems. Fundamental limitations for
sampled-data systems are studied in [7], [8] using transfer
function techniques. In this paper we study general time-
periodic systems and we use the harmonic transfer function
(HTF), see [9], [10], [11], which formally is a MIMO
transfer function Ĝ(s) with an infinite amount of inputs
and outputs. Using the convergence and existence results
for the harmonic transfer function that are developed in [12]
we will be able to write (1) with Ĝ(jω) being the HTF. To
do this we need to answer the following questions:

1. What does roll-off 2 mean for a time-periodic system?
2. In what sense is the HTF Ĝ(s) analytic?
3. What does the determinant mean for the HTF?
We do not consider open-loop unstable systems in this

paper. This case is considered in [5] using exponential
dichotomies. In the time-invariant case when the open-
loop system is unstable, the right hand side of (1) is equal
to π

∑
i Re pi, where pi are the unstable open-loop poles,

see [13]. The authors do believe that it will be possible
to generalize the method of this paper to cover also the
unstable case.

The paper is organized as follows: In section II we give
some of the basic results for the harmonic transfer function.
The section ends with Proposition 1 which tells what roll-off
2 means. In section III we review what an analytic operator
is. In Proposition 2 we show that with roll-off 2 the HTF
is in fact an analytic operator. In section IV we review
the definition of the trace class operators and the operator
determinant. In Proposition 3 we see that the HTF indeed
is a trace class operator and that the determinant is well
defined. By using the propositions of the previous sections,
we can in section V state the main result, which is a direct
analogue of (1) for periodic systems. In section VI we give
an example of the result.

II. THE HARMONIC TRANSFER FUNCTION AND

ROLL-OFF OF TIME-PERIODIC SYSTEMS

In [12] it is shown how the harmonic transfer function of
a time-periodic system G given on impulse-response form

y(t) =

∫ t

−∞

g(t, τ)u(τ)dτ (2)

can be computed. We repeat some results briefly here. For
a periodic system there is a period T �= 0 such that

g(t, τ) = g(t + T, τ + T ). (3)
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Fig. 1. The sensitivity operator S is defined as y = Su = (I + G)−1u.

We assume that g(t, τ) is real and has uniform exponential
decay

|g(t, τ)| ≤ K · e−α(t−τ), t ≥ τ,

for some positive constants K and α. The operator G is
then bounded on L2.

To define the HTF of a linear periodic system G we need
the following steps: First we expand the periodic impulse
response (3) in a Fourier series:

g(t, τ) =
∞∑

l=−∞

gl(t − τ)ejlω0t, ω0 =
2π

T
,

gl(t − τ) =
1

T

∫ T

0

g(r, r − t + τ)e−jlω0rdr,

(4)

with convergence in L2, see [12]. Hence we expand the
periodic system into a sum of modulated time-invariant
impulse responses gl(t). For exponentially stable systems
we can apply the Laplace transform on each time-invariant
impulse response gl(t):

ĝl(s) =

∫ ∞

0

gl(t)e
−stdt, Re s > −α. (5)

Furthermore, we have that ĝl(s) is analytic in Re s > −α
and ĝl ∈ H2 ∩ H∞. Now the HTF Ĝ(s) is defined as the
infinite-dimensional matrix⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . .
. . . ĝ0(s + jω0) ĝ1(s) ĝ2(s − jω0)
. . . ĝ−1(s + jω0) ĝ0(s) ĝ1(s − jω0)

. . .

ĝ−2(s + jω0) ĝ−1(s) ĝ0(s − jω0)
. . .

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

for complex numbers s in a region J0:

J0 = {s : Re s ≥ 0, Im s ∈ I0}

I0 = (−ω0/2, ω0/2], ω0 = 2π/T.

Notice that we only need to define the HTF for frequencies
ω ∈ I0. The HTF Ĝ(s) is a linear infinite-dimensional
operator, which is a bounded operator on the space of
square-summable sequences �2 (at least for almost all s ∈
J0).

In [9], [11], [12] it is shown that for stable systems G
we can compute the induced L2-norm as

‖G‖L∞
= sup

‖u‖L2
≤1

‖Gu‖L2
= ess sup

ω∈I0

‖Ĝ(jω)‖∞ (7)

where ‖·‖∞ is the induced �2-norm.

A. Roll-Off of Periodic Systems

Notice that for all numbers q we can rewrite (2) as

y(t)e−qt =

∫ t

−∞

[g(t, τ)e−q(t−τ)]u(τ)e−qτdτ. (8)

We use the notation

yq = Gquq

where the operator Gq has impulse response g(t, τ)e−q(t−τ)

and maps input signals of the type uq(t) = u(t)e−qt into
signals yq(t) = y(t)e−qt. For every fixed q ≥ 0 we may
apply the theory developed in [12]. In particular we may
apply the time-varying Markov parameter expansions.

In the following proposition we use the notation g
(a)
x =

∂ag/∂xa, and p is the differential operator pu(t) =
du(t)/dt. Furthermore, the set S is the set of Schwartz
functions, i.e., the set of infinitely differentiable functions
u(t) with tapbu(t) bounded for t ∈ R and all non-negative
a and b. The set S is dense in L2.

Proposition 1: Assume that g(t, t) = 0 for all t, that
g(t, τ) is twice continuously differentiable in the region
t ≥ τ , and that all the derivatives have uniform exponential
decay. Then G is said to have roll-off 2, and for all q ≥ 0
we may expand (8) in either of the following ways:

yq(t) = −g′τ (t, t)
1

(p + q)2
uq(t)

+

∫ t

−∞

[g′′τ (t, τ)e−q(t−τ)]
1

(p + q)2
uq(τ)dτ (9)

yq(t) =
1

(p + q)2
g′t(t, t)uq(t)

+
1

(p + q)2

∫ t

−∞

[g′′t (t, τ)e−q(t−τ)]uq(τ)dτ. (10)

when uq ∈ S.
Proof: We prove (10). (9) may be proven similarly.

By the assumptions on g(t, τ) and since uq ∈ S, yq is
absolutely (and hence uniformly) continuous and belongs
to L1. By Barbalat’s lemma we conclude that yq(t) → 0 as
|t| → ∞. If we differentiate (8) with respect to t we obtain

d

dt
yq(t) = g(t, t)uq(t) − qyq(t)

+

∫ t

−∞

[g′t(t, τ)e−q(t−τ)]uq(τ)dτ. (11)
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If we integrate (11) over (−∞, t] and solve for yq(t) we
obtain

yq(t) =
1

p + q
g(t, t)uq(t)

+
1

p + q

∫ t

−∞

[g′t(t, τ)e−q(t−τ)]uq(τ)dτ.

By assumption g(t, t) = 0 and the first term disappears.
If we repeat the above procedure on the second term we
obtain (10).

We say that the systems in Proposition 1 have roll-off
2, see also [12]. This can be motivated as follows: We
introduce PΩ as an ideal (non-causal) low-pass filter with
the frequency characteristic

P̂Ω(jω) =

{
1, |ω| ≤ Ω

0, |ω| > Ω
.

Proposition 1 together with the facts that S is dense in L2

and that the Fourier transform of a function in S is again in
S, implies that if we filter the input or the output of systems
Gq there are positive constants C1, C2, δ such that

‖Gq(I − PΩ)‖L∞
≤

C1

|δ + q + jΩ|2
(12)

‖(I − PΩ)Gq‖L∞
≤

C2

|δ + q + jΩ|2
. (13)

To show (12) one uses (9), and to show (13) one uses (10),
see [12]. In particular we have that ‖Gq‖L∞

= O(q−2)
as q → ∞ and ‖Gq(I − PΩ)‖L∞

= O(Ω−2) and ‖(I −
PΩ)Gq‖L∞

= O(Ω−2) for each fixed q as Ω → ∞.
The relation between the HTF of G and Gq is simple:

Ĝ(q + jω) = Ĝq(jω), q + jω ∈ J0, (14)

so it is enough to speak of Ĝ(s). The high-pass filtering of
Gq with (I−PΩ) means that rows or columns are truncated
(replaced by zeros) in Ĝ(s). If we choose Ω = (N +1/2)ω0

for some non-negative integer N , then Gq(I − PΩ) has an
HTF where the 2N+1 middle columns of Ĝ(s) are replaced
by zeros. (I−PΩ)Gq has an HTF where the 2N +1 middle
rows of Ĝ(s) are replaced by zeros, see [12] for details. This
has consequences for the roll-off of the individual transfer
functions ĝl(s) as is shown in the next section.

Remark 1: For a stable time-invariant system with
smooth impulse response g(t, τ) = g(t − τ), t ≥ τ , the
Markov parameters are equal to {g(0), g′(0), g′′(0), . . .}. If
g(t, t) = g(0) = 0 then we have that

|ĝ(s)| = O(|s|−2),

as |s| → ∞ and Re s ≥ 0. This is called roll-off 2 for a
time-invariant system.

III. ANALYTIC OPERATORS

To prove Bode’s integral theorem for time-invariant sys-
tems one uses that the transfer function is analytic and
Cauchy’s integral theorem. We will do something similar.
The HTF is an infinite-dimensional operator and therefore
we will need some of the theory for analytic operators.

There are several equivalent definitions of an analytic
operator, see for example [14]. We say that a bounded linear
operator Ĝ(s) is analytic in an open set Ω ⊆ C if it can be
expanded in a power series around each s0 ∈ Ω:

Ĝ(s) =

∞∑
k=0

(s − s0)
kĜk, s ∈ Ω(s0) ⊆ Ω

with uniform convergence in the open disc Ω(s0) in the
induced �2-norm, ‖·‖∞. The constant operators Ĝk are
linear bounded operators on �2. To prove that the HTF Ĝ(s)
is an analytic operator we can check the following sufficient
conditions [14]:

K1 All the elements of Ĝ(s) are analytic functions in Ω
K2 There is a positive constant K such that ‖Ĝ(s)‖∞ ≤

K for all s ∈ Ω.

The property K1 follows by (5) and (6). The property K2
needs some extra attention. We will use the Hilbert-Schmidt
norm to prove it. It is well known that the Hilbert-Schmidt
norm ‖·‖2 gives an upper bound to the induced �2-norm,
i.e., ‖Ĝ(s)‖∞ ≤ ‖Ĝ(s)‖2. Now by definition,

‖Ĝ(s)‖2
2 =

∞∑
k,l=−∞

|ĝl(s + jkω0)|
2. (15)

We will show that we can bound the sum (15) for all s ∈ J0.
By using the roll-off formulas and the discussion about

the truncation of rows and columns in section II-A, we can
conclude that for all non-negative integers N , and Re s ≥ 0:

|ĝl(s)| ≤
C1 + C2

N2ω2
0 + δ2

, l ∈ Z, |l| ≥ 2N + 1, (16)

|ĝl(s)| ≤
C1

|δ + s|2
, l ∈ Z, (17)

The first bound follows as ‖Gq − PΩGqPΩ‖L∞
≤ ‖(I −

PΩ)Gq)‖L∞
+ ‖Gq(I − PΩ)‖L∞

≤ (C1 + C2)/(N2ω2
0 +

δ2) when Ω = (N + 1/2)ω0. The modulus of the analytic
elements of the HTF of Gq−PΩGqPΩ must be less or equal
to the L∞-norm according to (7). As the transfer functions
ĝl(s), |l| ≥ 2N +1, are not truncated with this choice of Ω,
(16) follows. The second bound follows as the modulus of
the analytic functions ĝl(s) must be less than the L∞-norm
bound in (12), and then we can choose s = q + jΩ.

Hence, roll-off 2 for a time-periodic system as defined
in Proposition 1 implies that the transfer functions ĝl(s) on
the diagonals of Ĝ(s) have roll-off 2 in the classical sense
(Remark 1). Now we can prove that Ĝ(s) is analytic:

Proposition 2: If the periodic system G fulfills the as-
sumptions of Proposition 1, then its harmonic transfer
function Ĝ(s) is an analytic operator for s ∈ J0.
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Proof: If we use the bounds (16)–(17) for s = jω in
(15) we show, see below, that the sum converges uniformly
and there is a constant K such that

‖Ĝ(jω)‖∞ ≤ ‖Ĝ(jω)‖2 ≤ K, ω ∈ I0. (18)

By the maximum modulus theorem |ĝl(q+jω)| ≤ |ĝl(jω)|,
q > 0. We then also show that ‖Ĝ(s)‖2 ≤ K , s ∈ J0.

We now prove (18): To compute the Hilbert-Schmidt
norm we shall sum over the indices k and l. By using (17)
the sum in the k-direction converges for each l:

S(l) =

∞∑
k=−∞

|ĝl(jω + jkω0)|
2 < ∞. (19)

We need to show that
∑∞

l=−∞ S(l) ≤ K2. From (16)–(17)
we have

|ĝ±(2N+1)(jω)| ≤ (C1 + C2)min

{
1

N2ω2
0

,
1

|ω|2

}
.

For ω ∈ I0 and a fixed N > 0 we have

S(±(2N + 1)) ≤ (C1 + C2)
2

×

{
2N − 1

N4ω4
0

+ 2

∞∑
k=N

1

|ω + kω0|4

}
≤

C

N3
(20)

where C is a constant independent of ω. We can derive a
similar bound for S(±2(N+1)). Hence we have that S(l) =
O(|l|−3) as |l| → ∞. Hence the sum

∑
l S(l) converges and

there exists a constant K as in (18).
Since Ĝ(s) fulfills the conditions K1 and K2, it is analytic

and the proposition follows.

IV. TRACE CLASS OPERATORS AND DETERMINANTS

In the linear time-invariant MIMO Bode integral (1) the
determinant of the transfer function matrix is used. We need
to define a determinant for infinite-dimensional operators
also. This can be done for so-called trace class operators,
see [15], [16]. For a trace class operator Ĝ the determinant
is defined as

det(I + Ĝ) =
∏
k

(
1 + λk(Ĝ)

)
, (21)

where λk(Ĝ) are the eigenvalues of Ĝ. Trace class operators
are compact operators and have a countable number of
eigenvalues. The possibly infinite product (21) converges for
trace class operators, see (24). Note that for finite matrices,
(21) coincides with the regular determinant.

For the definition of a trace class operator we need the
s-numbers (or singular numbers) of an operator Ĝ:

sk(Ĝ) = inf{‖Ĝ − Ĝk‖∞ : rank Ĝk ≤ k}.

The numbers sk tell how well Ĝ may be approximated by
a finite-rank operator. If Ĝ is compact we have that sk → 0

as k → ∞ and s0 = ‖Ĝ‖∞. The trace class operators are
those operators for which

‖Ĝ‖1 =

∞∑
k=0

sk < ∞. (22)

With the norm ‖·‖1 the trace class operators form a com-
plete normed space, see [15]. In particular we have that:

trace Ĝ =
∑

k

λk(Ĝ) ≤ ‖Ĝ‖1, (23)

|det(I + Ĝ)| ≤ exp(‖Ĝ‖1). (24)

Next we will see that under the assumptions of Proposi-
tion 1, the HTF Ĝ(s) is in fact a trace class operator for all
s ∈ J0.

The HTF of GqPΩ, with Ω = (N +1/2)ω0, has elements
equal to zero everywhere except for its 2N + 1 middle
columns which are identical to the 2N +1 middle columns
of Ĝ(s) defined by (6). Hence, the truncated HTF has at
most rank 2N + 1. We know that GqPΩ converges to Gq

as O(Ω−2) = O(N−2) from (12). Using the norm formula
(7) and the continuity of Ĝq(jω) (Ĝ(s) is analytic), we
conclude that for each q + jω ∈ J0 we have that

s2N+1(Ĝq(jω)) ≤ ‖Ĝq(jω)(I − P̂Ω(jω))‖∞

≤ ‖Gq(I − PΩ)‖L∞

≤
C1

|δ + q + jΩ|2

≤
C1

(δ + q)2 + N2ω2
0

.

(25)

For each fixed s the singular numbers sk(Ĝ(s)) decay as
O(k−2) for systems with roll-off 2. We are now ready to
state the proposition of this section:

Proposition 3: If the periodic system G fulfills the as-
sumptions of Proposition 1, then its harmonic transfer
function Ĝ(s) is a bounded trace class operator in J0:

‖Ĝ(q + jω)‖1 ≤
K1

K2 + q
, q + jω ∈ J0,

for some positive constants K1, K2.
Proof: We have that

s0(Ĝ(q + jω)) = ‖Ĝ(q + jω)‖∞

≤ ‖Gq‖L∞
≤

C1

(δ + q)2
,

(26)

and for N = 0, 1, 2, . . . we have that s2N+1(Ĝ(q + jω)) is
bounded as in (25). The singular numbers form a decreasing
sequence and hence we can make the upper estimate

s2N+2(Ĝ(q + jω)) ≤ s2N+1(Ĝ(q + jω)).

Now we can use these estimates to bound the trace norm
(22):

‖Ĝ(q + jω)‖1 ≤

∞∑
k=0

2C1

(δ + q)2 + ω2
0k

2

≤
K1

K2 + q
,
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Fig. 2. The integration path ΓR.

for some constants K1, K2.

Before stating the main result, we need the following
lemma:

Lemma 1 ([15]): If Ω is an open set in C and if Ĝ(s) is
an analytic trace-class-operator-valued function for s ∈ Ω,
then det(I + Ĝ(·)) : Ω → C is an analytic function.

V. MAIN RESULT

Using Propositions 1–3 and Lemma 1 we are finally
ready to state the analogue of Bode’s sensitivity integral,
applicable to time-periodic systems:

Theorem 1 (Sensitivity integral): Assume that a stable
linear time-periodic system G has roll-off 2 in the sense
of Proposition 1. Assume furthermore that the sensitivity
operator S = (I + G)−1 is stable, i.e., there is an ε such
that

|det (I + Ĝ(s))| ≥ ε > 0, s ∈ J0. (27)

Then ∫ ω0/2

0

log |det(I + Ĝ(jω))−1| dω = 0. (28)

Proof: We have that det(I + Ĝ(s))−1 = 1/ det(I +
Ĝ(s)), see [16]. From Proposition 3 we know that
‖Ĝ(s)‖1 ≤ K1/K2. Using (24) and (27) we then have that

1

exp(K1/K2)
≤ |det(I + Ĝ(s))−1| ≤

1

ε

and hence det(I + Ĝ(s))−1 is a bounded function which
does not become zero for s ∈ J0.

As det(I + Ĝ(s))−1 is nonzero in J0 we can define a
complex logarithm there. Now,

log det(I + Ĝ(s))−1 = − log det(I + Ĝ(s)). (29)

From Propositions 1–3 and Lemma 1 we know that det(I+
Ĝ(s)) is an analytic function in J0. Then for any simply
closed curve Γ ⊂ J0:∫

Γ

log det(I + Ĝ(s))−1ds = 0, (30)

by Cauchy’s integral formula. To prove the theorem we
choose the curve ΓR shown in Fig. 2 and let R → ∞.

First we evaluate the integral (30) along γ2 and γ4 notice
that:∫ R

0

log det(I + Ĝ(q + jω0/2))−1dq

+

∫ 0

R

log det(I + Ĝ(q − jω0/2))−1dq = 0

for all R. The cancellation is because

det(I + Ĝ(q − jω0/2)) = det(I + Ĝ(q + jω0/2))

for all q. This follows by the structure (6) of the HTF and
the definition of the determinant.

Next we evaluate the integral along γ3. The complex
logarithm is defined as

log det(I + Ĝ(s)) = log|det(I + Ĝ(s))|

+ j arg det(I + Ĝ(s)).

When the impulse response g(t, τ) is real we have that
ĝl(s) = ĝ−l(s̄) and by the structure (6) and the definition
of the determinant that

arg det(I + Ĝ(s)) = − arg det(I + Ĝ(s̄))

|det(I + Ĝ(s))| = |det(I + Ĝ(s̄))|.
(31)

The argument is an anti-symmetric function, so when we
integrate over the symmetric interval γ3 it disappears:∣∣∣∣∣

∫ −ω0/2

ω0/2

log det(I + Ĝ(R + jω))d(jω)

∣∣∣∣∣
=

∣∣∣∣∣
∫ −ω0/2

ω0/2

log|det(I + Ĝ(R + jω))|d(jω)

∣∣∣∣∣
≤

∫ −ω0/2

ω0/2

‖Ĝ(R + jω)‖1 dω,

for each fixed R. The last bound follows by (24). Now
‖Ĝ(R + jω)‖1 converges uniformly to zero as R → ∞
according to Proposition 3. The integral along γ3 then goes
to zero as R → ∞.

The only term remaining of (30) is the integral along γ1:∫ ω0/2

−ω0/2

log det(I + Ĝ(jω))−1d(jω) = 0. (32)

Using (31) on the interval [−ω0/2, ω0/2] we obtain∫ ω0/2

0

log |det(I + Ĝ(jω))−1|dω = 0,

and the result is shown.

Remark 2 (Time-invariant systems): The integral in (1)
is over the interval [0,∞) whereas the integral in (28) is
over [0, ω0/2]. This might seem strange, but notice that for
a time-invariant system with transfer function ĝ(s), the HTF
is given by

Ĝ(s) = diag {. . . , ĝ(s + jω0), ĝ(s), ĝ(s − jω0), . . .}

for any ω0 > 0, and we see that (1) and (28) are identical
if we use that ĝ(s̄) = ĝ(s).
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Fig. 3. The values of the integral (28) for different values of q in the
Mathieu equation (33). By Theorem 1 the integral must equal zero for
stable closed-loop systems. It can be verified by, for instance, Floquet
analysis that the system indeed is stable for q ∈ [0.2.6] ∪ [9.4, 10.4].

VI. AN EXAMPLE: THE MATHIEU EQUATION

Now we verify the main result on an example. We choose
an open-loop system G with dynamics given by

ÿ(t) + 0.4ẏ(t) + 2y(t) = q cos(2t)w(t), (33)

where q is a parameter and w(t) the input. The impulse
response is given by

g(t, τ) =
q

1.4
e−0.2(t−τ) sin(1.4(t − τ)) cos(2τ). (34)

Clearly the system has roll-off 2 in the sense of Propo-
sition 1 and is exponentially stable. To obtain the closed-
loop system in Fig. 1 the feedback w(t) = −(y(t) + u(t))
is applied. Notice that when u(t) = 0 the dynamics of the
closed-loop system is given by a damped Mathieu equation,
see for example [9].

Next we compute the HTF of G using (4)–(6). Here ω0 =
2. After this we may compute the integral (28) for different
values of q. For q ∈ [0.2.6]∪ [9.4, 10.4], the closed loop is
stable. This can be shown by, for instance, Floquet analysis.
According to Theorem 1 the integral should then equal zero.
In Fig. 3 this is verified. It is also seen that when the closed
loop is unstable, the integral is strictly less than zero.

Furthermore, we can visualize the waterbed effect for pe-
riodic systems. This is done in Fig. 4. When the sensitivity
decreases for some frequencies, it must increase for other
frequencies.

VII. CONCLUSION

We have seen that there are fundamental limitations for
feedback control of linear time-periodic systems. The mod-
ulus of the determinant of the harmonic transfer function
Ŝ(jω) = (I + Ĝ(jω))−1 cannot be made small for every
frequency ω. The result is a direct generalization of Bode’s
sensitivity integral. To prove the result we have defined roll-
off for a time-periodic system, and used some of the theory
for analytic operators and trace class operators. The case
with unstable open-loop systems was not considered here,
but this is an interesting problem for future research.
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Fig. 4. The logarithm of the sensitivity function for the Mathieu equation
(33) is plotted for q = 1.0, 2.0, 3.0, and 3.5. For the bold curves (the stable
systems) the conservation law in Theorem 1 applies. When q increases the
sensitivity decreases for low frequencies. The sensitivity must then increase
for high frequencies to keep the areas below and above the zero level equal.
This is the waterbed effect.
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