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" 'A STATE SPACE MODEL OF A MULTIMACHINE POWER SYSTEM.

S. Lindahl

ABSTRACT.

The equations for a multimachine power system are de-
rived., The model includes hydro turbines as well as
steam turbines and boilers. The nonlinear equations
are derived from basic physical laws. They are linea-
rized to obtain a linear state space model, which is
valid for small perturbations about an operating
point. A method of obtaining the equations on stan-
dard state space form is proposed. Except matrix mul-
tiplication the method only requires the inversion

of one nxn matrix (complex) and n 3x3 matrices (real),

where n is the number of generating plants.

This work has been supported by the Swedish Board for
Technical Development under Contract 71-507/U33.
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1. INTRODUCTION.

A power system consists of several plants, a large
distribution network and a variety of consumers. To
analyze the performance of the system, power engine-
ers have developed computer programs for simulation
of multimachine power systems [11, [31, [81, [9].
Methods of analyzing the stability of the linearized
model, describing small perturbations about an opera-

ting point, has also been developed [21, iul, [5].

Methods of improving the performance of a power sys-
tem have also been proposed, but these methods often

assume that:

o a single generator is connected to an infinite

bus,

0 the mechanical input to the generator is constant.

Under the above assumptions the voltage regulator be-
comes a single-input single-output system, and the .
classical methods can be applied to design the vol-
tage regulator. If we remove one of the above assump-
tions, the model becomes multivariable and classical
control theory does not provide a systematic method

of designing the regulators. Of course, simulation

can be used to find suitable tuning of the regulators.
One drawback of such simulations is the amount of com-

puting time required.

Modern control theory enables us to handle multiva-
riable systems, described by a set of first order 1li-
near differential equations

X = Ax + Bu (1.1)

where x is the state vector, u the control vector and



A, B the coefficient matrices. To apply linear-quad-
ratic control theory we assume that the performance

can be described by
T T

Vo= [ix7(8)Qux(s) + u (S)Qzu(si}ds (1.2}
0 -

where Q, is a symmetric nonnegative definite matrix,
and Q, is a symmetric positive definite matrix. The
problem is to find a control u{t), such that the loss
function V is minimized. The solution to the problem

1s given by the linear time-invariant feed-back.

ult) = -Lx(t) (1.3)
where
L = Q;1BTS (1.4)

The matrix S is the symmetric nonnegative definite

solution of the stationary Riccati equation

ATS + sA + Q, - $BQ;'B'S = 0 (1.5)

The control signals are linear combinations of all
state variables. To implement such a controller it
is necessary to transmit the whole state vector to
every plant and this may not be realistic. Since we
obtain a solution with all possible feedbacks we have
a yard-stick to evaluate the importance of feeding
certain variables from one station to another. We al-
so have the tools to analyze various suboptimal stra-
tegies. In any case it is necessary to simulate the
nonlinear equations, describing the system, and using




the actual control law. If the chosen control law
works 1t is immaterial that we have found it by app-
lying linear-quadratic control theory. This approach
is feasible only if the total amount of computing
time is less than the computing time required for

straightforward simulation.

In this report we derive the eguations for a multi-
machine power system with hydro turbines as well as
steam turbines and boilérs as prime movers. We also
propose a method of building up the system matrices
A and B in (1.1).

In Section 2 we describe the power system configura-
tion. The basic equations for the synchronous machine
are derived in Section 3. The synchronous machines
are connected to the transmission network and in Sec-
tion 4 we consider the transmission network. In Sec-
tion 5 we present the nonlinear equations for the
prime movers. Finally we describe the method of ob-

faining the system matrices.



2, DESCRIPTION OF THE POWER SYSTEM,.

The basic system studied is shown in Fig. 2.1.
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Fig. 2.1 - Schematic diagram of a power system con-
sisting of n generating plants. Each plant
is composed of a prime mover (P;), a syn-
chronous machine (G;) and an excitation
system (E;).
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The system consists of a linear multiport lumped
parameter electrical transmission network, n genera-
ting plants and local loads at the generator nodes.
The loads at nongenerator nodes are already included

in the transmission network.

At every generator node active and reactive power,
denoted P. and Q; respectively, is fed into the trans-
mission network. The active and reactive power demand
at the generator nodes is denoted by pdi and Qdi in
Fig, 2.1, The sum of injected power (Pi’Qi) and local
demand (Pdi’Qdi) is equal to the generated power (Pgi’
Qgi)‘

The generating plants consist of a synchronous machine
(Gi)’ an excitation system (Ei) and a prime mover (P.).
The inputs to the synchronous machine are the field
voltage (E¢;) and the mechanical power (P .J). The in-
put signal to the excitation system is denoted by Ui
in Fig. 2.1.

The input signal (s) to the prime mover is denoted by

-

Upn
The network is treated as if it was in steady~state
operating condition. The alternating node voltages
and current are represented by the complex quantities
¥ and 2 respectively. The transmission network is as-
sumed to be completely described by the complex nodal
admittance matrix Y. The nodal admittance equation
can be written

" n a
I =Y ¥ (2.1)

where all nonsynchronous loads are represented by
constant admittances and incorporated into Y by eli-

minating all nongenerator nodes.




The n complex equations (2.1) are separated into 2n

real equations as proposed in [10].
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This equation is written symbolically as
Iol 1% “Bul|'p (2.3)
I By Gyl |V

The synchronous machines are described by the set of
Park's equations [6], [7] given in Section 3. The
excitation systems are modelled by first order dyna-
mics.

Each synchronous machine is connected to either &
hydro fturbine or a boiler and steam turbine. The equa-

tions for the prime movers are derived in Section 5.

The following variables are used as state variables:

] Rotor angle

o Rotor angular velocity




° Flux linkage of field winding
0 Flux linkage of d-axis winding
o Flux linkage of g-axis winding
o Excitation voltage

o Water speed (hydro plants)

¢  Steam pressure {(steam plants)

In comparison with the other variables the flux 1lin-
kages of d- and q-axis winding‘(¢d and wq respective-
ly) changes very rvapidly and the differential equa-
tions for wd and wq are often approximated by alge-
braic equations., In this case ¥4 and wq are not con-
tained in the state vector but can be expressed as

4 linear combination of the state wvariables.

The following variables are used as input variables:

o Excitation input
0 Gate opening (hydro plants)
0 Steam valve setting (steam plants)

o Fuel flow (steam plants)

e |



3. SYNCHRONOUS MACHINE AND EXCITER.

In this section we rederive Park's equations [6],
[7]1 for the synchronous machine. Often these equa-
tions are rederived under the assumption that the
machine is in steady-state, but used for the machine
in transient state. Our task is to find a set of
equations valid for transient as well as steady-
state conditlions, and this is one reason to rederive
Park's equations. The material in this section is

mainly based on [12].

The first step in this process is to transform the

original 3-phase machine to a 2-phase machine with

the same magnetomotive force (mmf). Then we trans-

form the 2-phase machine to the dg-machine applying
a second linear transformation which removes the

time-varying inductances of the 2-phase machine.

3.1. The Ideal Synchronous Machine.

The windings of a 3-phase 2-pole synchronous machine
are shown in Fig. 3.1. On the stator there are the
three distributed a-c¢ windings r, s and t, one in
each phase. They are symbolized by the corresponding-
ly labeled concentrated coils. The magnetic axes of

the phase windings coincide with the coil axes.

The d-c field winding, f, is on the rotor. The effect
of the damper windings is included in a general dam-

ping term as described in Section 3.5.

The rotor has two axes of symmetry, the polar, or
direct axis d and the interpolar, or quadrature,
axis gq. The magnetic flux paths have different per-

meances in the two directions of axis. The 4 and q




Axis of
phase s
Rotor : Rotor
quadrature direct
axis axis
Y

Axis of
phase r

Axis ot
phase t

Fig. 3.1 - An idealized synchronous machine.

axes revolve with the rotor, while the magnetic axes

of the three stator phases remain fixed.

In deriving the basic equations required for model-

ling of a synchronous machine it is assumed that:

A 3.1) The stator windings are sinusoidally distri-
buted around the air-gap as far as the mutu-
al effects between them and the rotor are

concerned,

A 3.2) The stator winding self_and mutual_inductan-

ces vary sinusoidally as the rotor revolves,




10.

and are of the form atbscos 2y and c+b. cos(2y-2u/3) 1

reSpectively,fwhere a,b,c and 4 are-constants.

A 3.3) Saturation and hysteresis are negligible.

The circuits r, s, t and f have their own resistance
and their own self-inductance and mutual inductance
with respect to every other circuit. The script let-
ter & with appropriate subscripts is used to denote
these inductances for any value of y. In terms of the
self and mutual inductances &, - the flux linkages are

wr grr j2’105 th grf 1
P L 2 L £ i
S| . sy ss st sf 8 (3.1)
Yy frp Pes Fer o Per]lit
Vel Per *rs tre Prr|if]
or symbolically
wrstf = Lrstflrstf (3.2

In (3.1) all inductances except bep are functions
of ¥ and thus time-varying. We observe that assump-

tion (A 3.3) is necessary for (3.1).

The following expressions for induced emf are valid
for the 3~phase machine:

v T or i, 4 dy_/dt (3.3)
vy S r i o+ dy /dt (3.4)
ve = r i 4+ d¢t/dt (3.5)
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Ve = rfif + dwf/dt (3.6)

or symbolically

Vrstf - Rrsthrstf ¥ pwrstf (3.7)
where

px = dx/dt

r, - armature resistance

re - field resistance

3.2. Transformation from a 3-phase Machine to a

2-phase Machine,

In this section we transform the 3-phase machine to
a 2-phase machine with the same mmf distribution,
We do not change the geometry of the iron circuits

but permit the number of effective turns to change,

For the transformation from 3-phase to 2-phase we
require that: '

R 3.1) The instantaneous value of the mmfs must
be equal.

R 3.2) The currents, voltages and flux linkages

must be transformed with the same matrix.

R 3.3) The instantaneous power (I1'V) must be inva-

riant.

Denote the effective number of turns/phase with N3

and N, and divide the mmf into components on the
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(b)

" Fig. 3.2 - Transformation from 3-phase to 2-phase.

i

The original 3-phase machine (a). The re-
sulting 2-phase machine with the same mmf

distribution (b).

p-axes. R 3.1) now gives:

Ny(i -1 /2-1,/2) (3.8)
N3(J3 is/z-/a itlz) (3.9)
Na(ir+is+it) (3.10)

1e

(3.11)
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The current io does not produce any field in the air-
gap and is associated with the stator leakage induc-

tance.

Under balanced 3-phase conditions iO is zero. Equa-

tions (3.8) to (3.11) can be wyitten in matrix form:

BN K ~X/? -K/2 0] 'ir,'
ig 0 Y3K/2 -VY3K/2 0 i
- _ (3.12)
10 1(,I K1 K1 a 1y
Llf_ _U O O 1“ Llf_

where X = N3/N2 and K,I = N3/NO.

Equation (3.12) can be written in symbolical form as:

Yagor © Cilpsis (3.13)
Requirement R 3.2) now gives:
v = C,V (3.14)

aBof T rstf

Requirement R 3.3) and equations (3,13) and (3.14)
further yield:

LT LT T _
PaBOf - IaBofVaBOf - Irstfc1c1vrstf -
_ _ T
- Prstf - Irstfvrstf
Hence
T
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Condition (3.15) implies

Summing up we find that the linear transformation

Cy is given by

IaBof - C1Irstf (3.16)
Vegor = CqVpsts (3.17)
Yasor = C1¥pstr (3.18)
K -1/2 -1/2 0 ]
AL Y3/2  =V/3/2 0
1/V/2 1/4/2 1/V2 0
|0 0 0 /372

For the 2-phase machine we want to retain the struc-

ture of the equations for flux linkages and write

Yagor = (3.20)

Logofiagor

Substituting (3.18), (3.2) and (3.16) into (3.20)
and multiplication with C? from the left yields:

T
rstf ~ CﬂLasof

L C (3.21)

1

The elements of the inductance matrix Lasof will in

general depend on y. For induced voltages in the

3-phase we have (3.7)
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Vrstf : Rrstflrstf T PYpger (3.77)
Substitution of (3.7) into (3.17) gives

VaBOf - C1Rrsthrstf ¥ C1pwrstf (3.22)
Using (3.16) and (3.18) to eliminate Ipstf‘and Yootr

in (3.22) we obtain:

T

T
1PC1¥ 4 pof

VaBOf - C1Rrsth1IaBOf +C

Observing that C1 does not depend on t we find

VaBof - RaBoquBof + Pwagof (3.23)
where
R = C,R__, CT (3.24)
agef 1 pstf 1 .

From (3.3} to (3.6) we have

£ 0 0 0]

ad

0 Zf‘a 0 0
Rrstf = (3,25)

0 0 r 0

a
P 0 0 rf_

Observing that C1 and Rr ¢ comutate we finally have

st

RuBof = Rrstf (3.26)
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...............................

3.3. Transformation from a 2-phase Machine to a dg

" Machine.

Tn this section we are concerned with the transfor-
mation from a 2-phase machine with fixed coils to a

dq-machine with moving coils.

(a) (b)

Fig. 3.3 - Transformation from a 2-phase machine to
a dg-machine. Original 2-phase machine (aj.

Resulting dg-machine (b).

The same requirements are made on this transforma-

tion as in the previous section.

Denote the effective number of turns/phase with N,
and N and divide the mmf into two components on the
d-and q-axes respectively. Requirement R 3.1) now

gives:
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sin y)

=
o
[aN
"

Nz(lu cos vy + ig

=
.
i

NQ(-la sin y + ig cos ¥)

or 1n matrix form

'"id' B N,/N cos vy N,/Nsiny 0 0] EN

i -N,/N sin ¥ N,/N cos ¥ 0 01l

Qo |2 2 Bl (3.27)
1 0 -0 1 0 i,

_lfa . 0 it 0 1— _lf_..

Requirements R 3.2) and R 3.3) imply, after similar
algebra as in the previous section, that:

C, = I (3.28)

Summing up we find that the linear transformation C2

is given by

quof = CZIaBof (3.29)
quof = szasof (3.30)
wdqof = czwaeof (3.31)

where
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— -

cos Y sin ¥ 0 0

-sin vy cos Y 0 0
c = (3.32)
4] ¢ 1 4]

1o 0 0 1
For the dq-machine we write the flux linkage equa-

tion

Yaqor = Maqorldqof (3.33)

and postulate that quof shall be independent of v¥.
The value of the self-inductance of the d-axis win-
ding can be different from the value of the self-

inductance of the g-axis winding.

We write the inductance matrix L

dqof as
2+22 0 it 21
0 el 0 0
L = (3.,34)
dgof 0 0 2 0
O
_31 0 0 £ﬁ_

where 2 can be interpreted as the mean value of the
self-inductance of an armature winding. The induc-
tance %, can be interpreted as a variation in self-
inductance of an armature winding. The self-induc-
tance of a stator winding has its maximum value when
the polar axis of the rotor coincides with the mag-
netic axis of the stator winding. The minimum value
is taken on when the interpolar axis coincides with
the magnetic axis of the stator winding. The d- and
g-axis windings are orthogonal, which motivates that
both [quof]12 and {quof]21 are zero. The stator
leakage inductance is not coupled with any other in-
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ductance, which motivates the off-diagonal zevroces in
the third row and the third column. The g-axis and
field windings are orthogonal, which motivates that
both [quof]QH and {quof]HZ

Substituting (3.20) and (3.29) into (3.33) and multip-
lication with Cg from the left yields:

are zero.

. L : :
Lygor = ColaqorCa (3.35)

which after substitution of (3.32) into (3.35) gives:

L+L, cos 2y L, sin 2vy 0 2, cos Y]
2, sin 2y L~f, cos 2% 0 £, sin vy
_ 2 2 1
Lagos * (3.36)
0 0 [} 0
o
_}1 cos v 21 sin y 0 zf |

To derive an expression for Lp
(3.21)

we use equation
stf 9

= C4Lygq.C (3.21)

b aBof 1

rstf

Substitution of (3.36) into (3.21) now yields:

211 Pqa fgg gy
Yo1 oo s Pty

“rots Y31 tap Fag gy (3.3
Pyt Py tys Ruy

where
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211 = £0/2 + R+ RZ cos 2Y

fqp = hoq = = 22 + 2, cos(2y=2n/3)
Lyq = tgq = - /2 % &, cos(2y+27/3)
fqy = Ryq = /372 %, cos vy

Sop = 2p/2 + 2 ¥ 2, cos(2y+21/3)
Ly3 % L35 = - /2 + L, cos 2y

Poy = %y, = V372 %, cos(y-2m/3)

Laq = 8572 + %+ 1, cos(2y-2m/3)
Loy = byz = V372 %, cos(y+2m/3)

Ly = 3/2 zf

We now observe that assumption A 3.1) and assumption

A 3.2) allow Ld to be a constant matrix.
qof

To derive an expression for induced voltages in the

dq machine we use equation (3.23)

v = R

0(-80f dﬂoqusof + quaﬁof (3.23 )

A substitution of (3.29) and (3.31) into (3.237)
yields after multiplication with C, from the left

C.R . .CL

dqof = C2RugorCalaqer * 2P (3.38)

T
v (C3¥gq0¢)

Taking derivative of the second term in (3.38) gives
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Vager ° Raqorlaqoer * CZP(CE)@dqof * P¥aqer  (3-39)

where quof is given by

R = C.R . .CL (3.20)
dgof 2 aBof "2

Using (3.26) we find

R = cl (3.41)

dgof © CoRprste®s

Observing that C2 and Rrstf commutate we have the

following expression for R

dgo f

quof = Rrstf (3.42)
Introducing

fo -dx o 0]

d
W= C,p(Cl) = & O ’ ’ (3.43)

1] 0 0 0

I 0 0 0
(3.39) can be written
v = (3.u4)

daof = Rdqofldqof T "dqor * PYaqor

The first term in equation (3.44) represents voltage
drop across the armature resistance. The second term
represents the speed voltages and the third term rep-

resents transformer voltages.
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3.4, The Air-Gap Torque.

To derive an expression for the air-gap torque we
apply the principle of conservation of energy, which

can be formulated

e m
—% ——— 4 w2 = P+ P - P - P - P (3.45)
at at at m n ir im ed

where

Ee = energy stored in the magnetic circuits

Em = energy stored in the rotating masses

Pm = power delivered fyom the prime mover

P, = power delivered from the network

Pﬂr = power losses in the resistances

Pij = mechanical power losses

Péd = power losses in the damping winding

The energy stored in the magnetic circuits can be

written
R
Ee -2 quodeqofquof (3.46)

The energy stored in the rotating masses is given

by

(3.47)

vwhere
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J = moment of inertia of the combined turbine genera-
tor
w = angular velocity of rotor
The electrical power delivered from the network to
the generator is given by the expression
P = IT v (3 14-8)
n dqof "'dqof )
Substituting (3.44) into (3.48) gives
P = I _R. I I Wy +
n dgof 'dqof dgof dgof " "dqgof
+ I _py (3.49)
dqofP dqof y

The power losses in the resistances 1s given by

Lir

T

* TaqorRdqorldqor (3.50)

Finally we assume that the power losses in the dam-

ping windings can be written

P&d = D1m(m-m0) (3.51)

and the mechanical power losses can be written

z D2m (3.52)

Taking derivatives of (3.47) and (3.48) now gives

. db

dt

Cdw

m:Jmm (8.53)

dt
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- dE r -4 T
g quof g;*(quofquof) - quofp¢dqof (3.54)

dt

Substitution of (3.49) to (3.54) into (3.45) and

rearranging the terms yields

J % =P /o - M, - M, (3.55)

where the air-gap torque Me is given by

Moo= - I _u fw o= P 1, - ¢.i (3.56)
e dqof" "dqof q~d d™q

The damping torque Md is given by

Mg = Dqlw=wg) + Dyw (3.57)

Equations (3.55), (3.56) and (3.57) will be used in

the following sections.

3.5. Linearized Equations for the Synchronous Gene-

" rator,

The nonlinear equations for the synchronous machine
will now be linearized. To avoid a lot of negative
numerical values of the generator currents we will
also change the sign conventions for id’ iq and i .

o
" Motor references were previously used for all cir-

and q-axis windings as well as for the zero sequence

winding.



25,

I [
—_— -—
+ +
v Vv

(a) (b)

- Fig. 3.47 ~ Sign conventions. Motor references (a)

and generator references (b).

Motor references means that applied voltage and cupr-

rent into the winding are positive.

" Generator references, on the other hand, means that

generated voltage and current out of the winding are
- pesitive,

In Section 3.3 we derived expressions for the flux

linkages
lydqof = quofquof (3.337).
2+£2 0 0 21
0 2=, 0 0
L = (3.34’)
dact 1y 0 8,0
2, 0 0 L

After change of sign conventions we can write

= Lgi

T
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(3.59)

<
Iy
1]
e
fu
o
j.-h
Hh

p = - L 1 (3.60)

where we have introduced

g = Pg
Laf - JL‘!
Ly = 2+ &,
Lq é L - 22

As the equations (3.58) to (3.60) already are linear

they are immediately valid for small deviations and

we have
éwf Lf "Laf 0 6lf
awd = Laf —Ld 0 81, (3.61)
8 0 0 -1, §
wq a i

where 8x = x - X Equation (3.61) can be written

0"
symbolically as

8¥ = L8I (3.62)
which after multiplication with @ yields

bw ¥ = XsI (3.63)

where

X = oL ' (3.64)
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In Section 3.3 we also derived expressions for in-

duced voltages in the dq machine.

Vagotr ® Raqofldgesr * "dqor * PYdqor (3.447)
B _dy N .
0 X 0 o0
X o 0 0

w = (3.""3’)
0 0 0 0
0 0 0o o

After change of sign conventions (3.437) and (3.447)

can be written in component form

Ve = P + reip (3.65)
Vg = pwd - raid - wwq (3.66)
vq = pwq - Palq touyy (3.67)

After linearization (3.65) to (3.67) become

§Ve = Doyg + rfaif (3.68)
6Vd = Pﬁwd - PaSid - w05¢q - wqﬁm (3-69)
qu = pswq - raélq + modwd + Pyl (3.70)

where the angular velocity w = dy/dt.

In Section 3.4 we derived the following expression

for the air-gap torque

wdi (3.567)
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After change of sign conventions (3.567) can be writ-
ten

Me = wdlq - wad (3.71)

which after linearization becomes

SMe = 1q6¢d - ldéwq - ¢q61d + wdslq (3.72)

3.6, Basic Equations for the Exciter.

The exciter system of each generator is assumed to
be described by a first order linear system with
time-constant T,.

Ve 1 Vt
1+sTe

Fig. 3.5 - Block diagram for the exciter.

The differential equation describing the exciter is
obtained from Fig. 3.5

pve = (= ve + v MT, (3.73)

Since equation (3.73) already is linear it is also
valid for small deviations from an equilibrium point

and we have

péve = (- dvg + §v /T, (3.74)
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4, TRANSMISSION NETWORK.

In the previous sections we derived equations for
the individual generators and used the polar and

the interpolar axes of the rotor as reference frames
for the electric quantities. These axes do not in
general coincide with corresponding axes of another
generator. In this section we choose a common frame
of references for the electric quantities. We also
derive a transformation from rotor-based to network-

based quantities.

4.1. Selection of Angular References.

The equations for each generator are expressed with
reference to pairs of axes (d,q) which rotate in

synchronism with the rotor of the generators. On the
other hand, the equations for the connecting network
refer to axes (D,Q) rotating at constant speed (wo).

In steady-state these axes rotate at the same speed.

The angular displacements, defined in Fig. 4.1, can
be obtained from the solution of the load-flow prob-
lem, Q

.
|
,

/Ath

' Fig. 4.1 - Angular relationships between network and
synchronous machine reference axes,.
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The choice of common reference frame is not unique.
One reasonable choice is that (D,Q) coincide with
(d,,9,), the reference frame of the largest genera-

tor, in steady-state.

Under transient conditions the angles 0, will vary
as the machine speeds vary. The angles Oi are state-
variables and id and iq are linear combinations of
state-variables but vy and vq are needed for the
computation of péy 4 and p6¢q. Therefore it is neces-

sary to have an expression for 3§v, and 5Vq in 8@,

d
Gld and alq.

4,2. Transformation of Network Equations.

The transformation relating rotor-based voltages to

network-based voltages is given in [107%

r, T . T,
Vd1 cos 61 sin 01 s 0 0 vD1
Vq1 -3in 61 cos 61 ‘e ] 0 qu
Vdn 0 0 “ o cos Gn sin On an
iyqq_ I 0 0 sss ~S1n en cos Onn_an_

(4.1)

For the present approach we reorder the equations in
(4.1) to obtain




L an]

<
H

@] =z <<
It I n

w
H
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vt l »
QoS 01 i 51n @1
0 | . C
|
0 1 0 .
a »
cos O s1n ©
N e e e
-31in 01 ; cOSs 61
. 0 \ 0
* E »
0 ; 0
] @ !
i -sin n ? cos OQJ

T

( )

T
(v o-.,V

Q1° Vq2? on’

diag(cos 015 COS 0,5, .., COS @n)

-~ diag(sin ©,, sin 995 +vevs 8in O)

D1

Dn

01

on

(4.2)

(4.3)

(4.4)
(4.5)
(4.6)
(4.7)

(4.8)

(4.9)
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We also need a transformation from rotor-based cur-
rents to network-based currents. We.require that the
power ITV shall be invariant under the transforma-
tion. To derive the transformation matrix we rewrite
(4.3)

VM = TVN - (4,10)
where

Uy = VRV

Vg © (vg,vg)T

I (4.11)

i
It
[

(I )

T

(I )

1
=
11
3 =

O O3

» L

In Section 2 we stated that the networlk could be

desceribed by the nodal admittance matrix in (2,.3)
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O NEpD (2.37)

The nodal admittance matrix is always nonsingular,

making it possible to write

= (4.12)

Substitution of (4.11) and (4.12) into (4.3) now
vields

df - NN d (4.13)
Vv -5 C XN RN S Cil|I
which can be written
Vv R -X I
dif - f'm mpod (4.14)
\ Xm Rm I
where
Rm = CRNC + SRNS + SXNC - CXNS {(4.15)
Xm = CXNC + SXNS + CRNS - SRNC (4.16)

The linearized version of (4.14) can be written

§. 0 (4.17)
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where

|
E, = — (R I. - XTI) (4,18)
d 30 m-d m q
and
]
E = — (XTI + R I) {(4.19
q 80 ( m-d m g : )
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5. PRIME MOVERS.

The fundamental torque balance equation was derived

in Section 3.4

Jpw = Pm/m - M, - My (3.55)

where

J = moment of inertia of the combined turbine gene-
rator

w = angular velocity of the rotor

P = mechanical power delivered from the prime mover

M_ = air-gap torque

My = damping torque

Assuming

Md = Dq(w—wo) + Dyw

we find

Jpdu = 6Pm/wo - M, - Déuw (5.1)
where

D =Dy + D, +P /o ' (5.2)

To obtain expressions for §P it is necessary to in-

vestigate the different types of prime movers.

——
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" Fig. 5.1 - Simplified diagram of a hydro turbine.

Following [13] we have for the hydro turbine in Fig.
5.1

(5.3)

which essentially states that all potential energy
is converted to kinetic energy and that all kinetic
energy is available as output power from the hydro

turbine.

In equation (5.3)

Pm - mechanical output power

q - flow of water
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p - density of water

\% - velocity of water at outlet

out

a - outlet area

In practice it is observed [15] that the efficiency
is depending on the angular velocity of the hydro

turbine. This means that (5.3) has to be written

Pm = % n(w)p *» av

3

where n(w) is a speed dependent efficiency. Bernoul-

1li's theorem yields further

17 .2 _
Lpvy + 5 vo o = gh =0 (5.4
where
Vi T velocity of water in the dash-tube

L - length of the dash-tube
g - constant of gravity

h - water head

The dash-tube is assumed to have the constant area

A. The eguation of continuity implies

avoue ° Avt (5.5)

A substitution of (5.5) into (5.6) yields
pv, = gh/L - (Avt/a)Z/ZL (5.86)

Introducing the maximum steady-state velocity of
the water in the dash-tube
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Vimax = ¥2gh a__ /A ' (5.7)

and the state-variable

Z_ = v, /v (5.8)

we obtain

Pz = AV2gh (1 - 22a2 /az) (5.9)
P oua p max
max
Substituting
up = ala (5.10)
max
Tw = LamaX/AJZgh (5.11)

Equations (5.3) and (5.9) are transferred into

bz = (1 = z2/u)/T (5.12)
P Pt Ty

m

) 3, 2
P = Pmax(w)zplut (5.13)

Linearization of (5.12) and (5.13) finally yields

Pz, = (- Szp + du /Ty (5.14)

GPm = Pmax(wo)(aazp - 25ut) + (wo)ﬁw (5.15)

If we include

, 'B'P'm'ax

(o Y6w
o
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in the general damping term in (5.2) we can write
(5.14) and (5.15) as

pazp = aazp + béu, (5.186)

st = cﬁzp + déju,t ) (5.17)

5.2. Boilers and Steam Turbines.

Astrém and Fklund [14] have shown that a reasonable
accurate and low order dynamical model of a boiler

and steam turbine unit is given by

/8

dp - - 578_ -

—2 = a1(u1p as} + q2u2 a3u3 (5.18)
dt

where

p - steam pressure

u, - steam valve setting

u2 - fuel flow

u3 -~ feedwater flow

The mechanical output power from the turbine is gi-

ven by

5/8
P mq(ujp ~@5) (5.19)

The model (5.18) is essentially an energy balance
equation and it is assumed that the stored energy

in the boiler mainly depends on the steam pressure.
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The first term in the right member of (5.18) repre-
sents the energy in the steam delivered from the
boiler to the turbine. The second term represents
energy supplied from the fuel while the last term
represents the cooling effect of the feedwater. The
output power is proportional to the energy flow from
the boiler to the turbine, which implies that the

boiler steam~turbine plant has constant efficiency.

In this application we are not allowed to vary Uss
the feedwater flow, independent of the state of the
boiler. Instead we assume that .the boiler is equipped
with a feedwater regulator, which provides the boiler
with feedwater flow proportional to the steam flow.

The steam flow is given by
q © u1"/§

We also introduce the following normalized variables
into (5.18) and (5.19)

z, = p/pmax (5.20)
up = u1/u1max (5.21)
ug = u2/u2max (5.22)

and prescribe that the differential equation (5.18)

shall have a stationary point at

P % Ppax
¥4 % Mnax
Yo % Yomax
U3 = Y3pax
P, = P

b max
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Equations (5.18) and (5.19) can then be written

Pz, = {—{(1+a)utz;/8 - al + (1+8Ju, - Butz;/Q}/Tb
(5.23)
- 5/8
P, = Pmax[(1+u)utzP - al - (5.24)

The linearized version of equations (5.23) and (5.24)

becomes

pdzp = aﬁzp + btﬁut + bfﬁmf (5.25)

aPm = cszp + d‘éu (5.26)

t 7t
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6. CONSTRUCTION OF SYSTEM MATRICES.

In the previous sections we derived the equations
for one machine at a time but we are now going to
derive the differential equations for n intercon-
nected generating plants. To simplify the deriva-
tions and to improve the clarity we partitién the
state and the input vector into subvectors. The
system matrices A and B in (1.1) are similarly par-
titioned into submatrices. In this section we are
going to derive the differential equations for the

subvectors one by one.

The state vector x is partitioned into seven subvec-

tors in the following manner

T T T T T T T T

X® = (Xy, X5, Xg, Xy» Xg» Xgs Xq) (6.1)

where

<% = (80.. 60 80 ) (6.2)
1 1, 2’ ..‘, n L]
T o (s 8 8

XQ - ( w1, mz, LA ) wn) (6-3)

xT = (Sw 9 o, Sw ¥ Sw v _ ) (6.4)
3 7 o' f1°? o f2* *t**> o' fn *

x> = (8w V., , 8w ¢ Sw v, ) (6.5)
Yy 0o’°dl? ofdz?r > o "dn '

XL = (8w ¥ ., 8w Sw ¥ ) (6.6)
5 0'q1’? 07q2? *°*? 0" gn *

xT = (8e e Se. ) (6.7)
6 £1°? f23 ***>» fn '

XT = (83 8z §z ) (6.8)
7 P1, PQ, Ql., pn -

where eps = xafivfi/rfi and zpi is the prime mover

state-variable for the i:th plant (zh,or Zy) .
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The input vector u is partitioned into 3 subvectors
in the following manner

ul = (u?, ug, ug) (6.9)

where -

uT = (du su su_ ) (6.10)
17~ ‘al? e2? "2 en :

uT = (8u su su, ) (6.11)
2 "t1 , 'tz’ L I e ] , 'tn ) -

uT = (8u su su._) (6.12)
3 £1° f2?* *=**>» fn *

Here U, denotes the input signal to exciter i, U,

denotes the first input signal to prime mover No, i

(gate opening or steam valve setting) and u denotes

fi
the second input signal to prime mover No. i (fuel

flow for steam plants).

In a similar way the system matrices A and B are par-

titioned into submatrices and we can write (1.1) as

4 A1 Bqg Az By Bgg Mg Aqggllxy
5 Apq Bog Bog Boy Ayg Ang Apgllxg
3 Agq Bgg Agy Agy Agg Agg Aggllxg
Ryl = 1 Byr Ay Byz Ay By Ay Ayl Xyl ¥
X5 Bgr Agy Bgg Ay Ags Agg Aggl | Xg
g A1 Peo Pez Bey Pes Pes Pev|| X6
(27] [Br1 Bao Bog gy Bgg Bgg Bgglxy)
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p g

Bi1 Bi2 Byy

Byg Bop Byy

Byqe B3y Basl|W
YooByr By Bygifvg

Bgq Bgo Bgzi|Ys

Bs1 Bgo Bz

Byq Byp Byy

We are now going to derive expressions for the sub-

matrices one row at a time.

6.1. Differential Equations for Rotor Angles (x1l.

The rotor angle is defined by

t
@i(t) = f wi(s)ds - w ot o+ Gi

0 2]

which immediately gives

péo,; = wi(t) e = Suy (6.13)

or symbolically
pd & = Aq,80 (6.14)
where

T

§ @ = (aej, 8055 vousy sen) (6.15)




45,

(6.16)

A1 = 1 (6.17)

6.2. Differential Equations for Rotor Angular Velo-

cities (x,).

The torque balance equation for the rotor was derived

in Section 5.

péuw, = (éPmi/mo - M. = Didw.)/d; (5.17)

where GPmi is the mechanical input power from the
prime mover given by (5.17) or (5.,26)

§P . = ¢c.8z_. + diau (5.177)

mi i %pi ti

s§P (5.267)

biﬁzpi + diﬁu

mi ti

§M,; is the air-gap torque given by (3.72)

H

§M i i5¢ - i .8y -

el q di ai’¥qi wqialdi + ¥ '6lqi (3.727)

di

Collecting the torque balance equations for all ro-

tor we have

p8a = A,n80Q + anld + Gdalq + Hqéwowd +

(6.18)

+ HdeOWq + A276ZP + 3226U

p1

where
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T

81, = (Gid1, §i40s +ves dldn) (6.19)
L . . T
slq = (51q1, 51q2, vens 51qn) (6.20)
Sw ¥, = (8w ¥ , 8w ¥ sw v )T (6.21)
o d o' dl’? o d2® *°°? o dn '
Sw ¥ = (8w ¢ Sw Sw ¢ )T ‘ (6.22)
o q o ql? oTq2? "°°°? o' gn *
- T
_ T
GUt = (6ut1, dutz, ce Gutn) . (6.24)
Ay, = Aiag(-D /0y, =Dy/Jy, vuey=D /3) (6.25)
By = dlag(=d g /Ty, b o)/Tgs waes =¥ /) (6.26)
Gq = dlag(¢d1/J1, ¢d2/J2’ ey wdn/Jn) (6.27)
H = dlag(1q1/woJ1, iqzlwon, vy iqn/man) (6.28)
Hd = dlag(—1d1/moJ1,—1d2/m0J2, ""_idn/man) (6.29)
Ay, = diagle,/w Ji, €ylu Jpy vevy 6 70 J ) (6.30)
B,, = diag(d /u Jy, dy/uw Jys veny 4l J) (6.31)

To derive an expression for 1

(3,.63) derived in Section 3.5

d and Iq we use equation

S ¥ = X8I (3.637)

The matrix X in (3.637) is .always nonsingular for phy-

sical reasons.

The stored energy in the magnetic circuits can be writ-

ten ITXE/mO and the stored energy is always positive
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if any current differs from zero. Hence we can al-
ways express 6I in terms of dw Y. Equation (3.637)

can be written

6wowf Xf “Xaf 0 61f
Sw ¥ 0 0 X |61
where
Xf = méLf (6.33)
Xaf = moLaf {(6.34)
Xd = woLd (6.35)
X = w L 6.36
q - Yo™q ¢ )

Knowing that the inverse of X exists and observing

the structure of the matrix we have

1g Yer Yegqg O Suve

5igl = |Yag Yaa O Sw ¥4 (6.37)
53 0 0 §

*q Yaq] [¥e¥q

Now it is possible to form the expressions for §1c,

6Id and 6Iq.
6If = Yfféwowf + deamowd (6.38)
§T, = Y. 8w ¥Y_ + Y., Sw ¥ (6.39)

d af o f dd "o d

=Y Sw ¥ 6.40
6Iq qq®¥o’q _ ( )




where

§1

18

§I, =
6Iq =
ff
fd
df
dd

qq

Sw ¥
o
Sw Y
o

Sw ¥

0 q

<6if1, (Sifz, LI ) sifn

Caid1, §i
(6iq1,
diag(yff1,
diag(yfd1,
diag(ydf1,
diag(ydd1,
diag(yqq1,

(6wowf1’

"

(6wo¢d1’

(Gw0¢q1,

daz’

aiqz, LI N ] Gi

g,

)T

. T
* N Gldn)

T
qn)

Yegor =+ yffn)

dezﬂ ¢y yfdh)

Yagos *++ Yarn’

Yaaz> ***> Yadan’

Yqq2® **** Yqqn’

T
5”o¢f2’ v éwowfn)

T
Su¥ggs +ees S Vgn)

T
6w0¢q2’ st 6woqu)

(6.41)

(6.197)

(6.207)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.217)

(6.227)

Substituting (6.39) and (6.40) into (6.18) yields

PSR = Ajp8R * AjgSu Ve + Ay e ¥y +

where

s
1

o
1]

o=
1

+ A

256w0%q

+ A27szp + 822&191

(6.48)

(6.49)

(6.50)

(6.51)
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..............................

).

The differential equation for field flux linkage

(3.68) was derived in Section 3.6

péwfi = Gvfi - Pfiélfi (3.687)

Introducing €p; = Xafivfi/rfi and multiplication
with w_ on both sides of (3.687) gives

= worfifxafisefi - morfialfi (6.52)
which can be written symbolically
pw Yo = = w Re8Te + AgpdEg (6.53)
where
Sw ¥ = (Sw Y Sw Sw )T (6.54)
o f o"f1°? o f2°> ***"? o fn '
§T. = (8i.,, 6i 1. )7 (6.55)
f f1, fz’ .." fn L]
sE. = (8e Se de )T (6.56)
f “f1° f22 "> fn )
Rg = dlag(rf1, Pens wnes rfn) | (6.57)
Mg = dlaglo Pey/ K eqs & Teoi pgs +oes
) (6.58)

WP n/X afn
Substitution of (6.38) into (6.53) finally yields

psw Ye = Aggbo Yo + Ay Su ¥y + AgpSEe (6.59)
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where
Agg = = wRe¥ep
Agy = = w Re¥ey

(6.60)

(6.61)

6.4, Differential Equations for Armature d-Axis

Flux Linkage (x,).

From Section 3.6 we have

PBUgy = Bvgp * T

which after multiplication with w

can be written symbolically

.81 .. .
ai’tai ¥ woé¢q1

+ 0y s8u. (3.697)

qi

5 On both sides

pSmOWd = mOGVd + wORaGId + modmqu + mquSQ (6.62)

where

Su ¥y = (Sw by Sy e, S0 )T (6.217)

8V 4 = (Bvgqs Svgns e 6Vdn (6.63)

ST, = (8igy, 8ign, weuy 81y (6.197)

Sw ¥ = (8w U gy 860 W _ny seey S0 _P )T (6.227)

o q o' ql 0" q2 o'qn

50 = (Sugs Sugs weny S0 ) (6.167)

R, = diag(ra1, raz, sees Ton (6.64)
(6.65)

y = diag(¢q1, ¢q2’ ceas qu)
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The influence from the other generators is introduced
by the 8V, term. In Section 4.2 we derived expres-

sions for GVd and 6Vq.
= + §0 (4.177)

After substitution of (4,177) into (6.62) we have
PSw ¥y = 0 R8Ty = o X 6T +w Egs 0 +

+ woRaﬁld + moﬁmowq + mquSQ (6.66)

Combination of (6.39), (6.40) and (6.66) finally
yields

pﬁmowd = A“15 9 4+ AHZGQ + A436wowf +

+ Ay 00 Y, 4 Aqsﬁmcwq (6.67)
where
Ayq = 0 By (6.68)
Ay, = diag(mo¢q1, mo¢q2, cees woqu) (6.69)
AMS = mo(Ra+Rm)Ydf (6.70)
Auu f mo(Ra+Rm)Ydd (6.71)
AHS = - “oXquq + wOI (6.72)
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' Flux Linkage (x.).

Similar algebra as in the previous section makes it

possible to write

ps¢o¢q = Agg8 0+ A 80 + A fn ¥ +

+ Agyfa Vg o+ ASBGNqu (6.73)
where
Agy = moEq (6.74)
Agg = diag(-w biq, “w Vg05 +«e> —w ¥Yan? (6.75)
Apgy = w X Yar (6.76)
ASH = moXmYdd - mOI (6.77)
ASS = mo(Ra+Rm)qu (6.78)

6.6, Differential Equations for Excitation Voltages

).

In Section 3.7 it was stated that the exciter system

could be described by

péve. = (-Gvfi+6vei)/Tei (3.747)

After multiplication with.xa_fi/rfi on both sides of
(3.747) we have
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pleg. = (-6efi+6uei)/Tei (6.79)
where
ug; = Xafi/Pfi (6.80)

Equation (6.79) can be written symbolically

pﬁEf = A666Ef + BG,l('SUe (6.81)

where

E. = (e e e )T (6.567)
£ F1% Sfp0 s Spq .

U = (u 4, u u )7 (6.82)
e el? “e2? **'? Yen :

Agg = Aiag(=1/T 4, =1/T o, «uuy ~H/T ) (6.83)

Bgq = dlag(1/Te1, 1/Te2, e ey 1/Ten) (6.84)

6.7. Differential Equations for Prime Mover State

Variables (x-).

The prime movers were treated in Section 5 where
the models

+ Db (5.257)

POZy5 = 8pi02pg * Ppqifupgi * Ppoifipos
were obtained for the hydro plants and steam plants

respectively. The models may be unified to
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where

sU, =

§U,. =

77

72

73

6.8.

]

77

(6Zp1’
(Buyq,

(8u

diag(aT, a

diag(b

diag(b

A, .87
P

+

8§z

su

t1°?

£1°?

B

Pzg LA Y SZ

£23 e Sutn)

f1 [} 6U.f2 ] LI Y sufn)

b

b

f2, LR )

54,

GUt + B_,dU

72 73 °f

T

93 tees an)

b, )

_tz’ " ey _tn

b )

fn

Structure of the Complete System.

(6.85)

(6.237)

(6.247)

(6.86)

(6.87)

(6.88)

(6.89)

Equations (6.14), (6.48}, (6,59), (6.67), (6.73),
(6.81) and (6,85)

Ao

A22

0

)

>
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are collected to yield

0 g 0 0 8
Apg Ay, Agg 0 c
Agg Agy Agg Agp O
Ayg By Ay O 0
A A A 0 0

53 54 55
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22

(6.90)

61

o

A A

72 73]
Thus we have a state model with 7n state variables,

where n is the number of generators. In practice the
time derivatives of wd and wq are often very small,

In this wd and wq may be eliminated from (6.90) to -
yield a model with 5n state variables.

To store the entire A and B matrices we need 70n2

locations. The storage requirement can be reduced
if we store only the nonzero submatrices. Since Au1,
Aygs Ayys Aygs Agqs Agzs Agy and Agg
submatrices with elements outside the main diagonal
2

+ 17n.

are the only

the required storage can be reduced to 8n

The most severe numerical procedure is the inversiocon
of ¥ to obtain Z. The rest of the modelling process
only requires the inversion of n 3 by.3 matrices and
matrix multiplication.
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APPENDIX: LIST OF SYMBOLS

1. General Control Theory

A,B

Ql’Qz

state vector
control vector
system matrices
lossfunction
weighting matrices
feedback matrix

solution to the Riccati equation

2. General Power System Theory

EpsEpy

u ,u .
el

u_ U

active power generation

reactive power generation

active power demand

reactive power demand

active power injection

reactive power generation

mechanical power

excitation voltage or open circuit voltage

exciter input

prime mover input(s)

Al




<z H2

2

node current {(complex)
node voltage (complex)
node admittance matrix (complex)
A%
real part of I
. i’
imaginary part of I
N
real part of V
~F
imaginary part of V

fA¥4
real part of Y

"
imaginary part of Y

A.2




3. Synchronous Machine

lpr,)wsﬂwt)wf
Tpotgr ety

V.,V Vs,V
s’ f

A
xy

wﬁsxf

rstf
Vrstf '

rstf

bV oboVe
ia’iB’ io,if
VoV Vool
¥ aBof?

L

aBof

VaBof

flux linkages, 3-phase machine
currents, 3-phse machine
voltages, 3-phse machine

inductances, 3-phse machine
T
(¢P,ws,wt,wf>
T
(lP’lS’lt’lf) |
T

(Vr’vs’vt’vf)

(L

rstf)

Xy ‘xy

armature resistance, 3-phase machine
field resistance, 3-phse machine
diag(ra,ra,ra,rf)

number of turns/phase, 3-phase machine
number of turns/phase, 2-phase machine
flux linkages, 2—phase.machine
currents, 2-phase machine

voltages, 2-phase machine
Ewa’wﬁ’wo’¢f)T

(i yigsi sip)t
(va,vﬁ,vo,vf)T

transformation matrix for flux linkages,

currents and volteges from 3-phase to

2-phse machine




Prstf

PaBof

LuSof

RuBof

N
wd,wq,wo,wf
id,iq;io,if
Vd’vq’vo’vf
wdqof

qugf
quof
Paqof

©

Lﬂqgf

quof

Ak

active pover, 3-phase machine

active power, 2-phase machine

inductance matrix, 2-phse machine
resistance matrix, 2-phase machine
number of turns/phase, dq-machine
flux linkages, dg-machine
currents, dg-machine

voltages, dg-machine
(o sty te)”

(grigrigeig)
(vd,vq,vo,vf)T
active power, dg-machine

transformation matrix for flux linkages,

currents and voltages from Z2-phase to

dg-machine

inductance matrix, dg-machine
resistance matrix, dg-machine
energy

energy, stored in magnetic circuits
energy, stored in rotating masses

mechanical power




A.5

electrical power from network
power losses in resistances

power losses, mechanical

power losses, in damper windings
moment of inertia

angular velocity

damping coefficient,damper windings
damping coefficient, mechanical damping
air-gap torgue

damping torque

self-inductance of field winding

mutual inductance between stator d-axis

winding and field winding
self-inductance of stator d-axis winding
self-inductance of stator g-axis winding
grbgritg)

. . P &
(lf,ld,lq)
see (3.61)
see (3.43)

exciter time-constant

input signal to exciter




4, Transmission Network

VprVpi
VorVod

v

network terminal voltages expressed with

reference to network reference axes

T

(V3 sV =+ >V

(Vi gVinrs sae sV }T
Q1 Q2 Ont

angular displacement of the (d,q) axes
of machine i with respect to £D,Q) axes
of the network. (Fig. 4.1)

)T

(81,82, TR

network terminal currents expressed with
reference to network reference axes
real component of a network self- or

mutual admittance

imaginary component of a network self- or
mutual admittance

see (4.15)
see (4,16)
see (4,18)

see (4.19)




5. Hydro Turbines

q flow of water

o density of water

Vout velocity of water at outlet

a outlet area

nlwl speed dependent efficiency

Ve velocity of water in the dash-tube
L length of the dashtube

g constant of gravity

h 7 water head

A dash-tube area

Vimax maximum velocity of water in the dash-tube
Z state variable (vt/ytmax)

U, control variable (a/amax)

a maximum outlet area

T time~constant, water-system




6. Boilers and Steam Turbines

O 30n 30n 50 50
172273 ﬁ’ 5

q

7. Operators

p(.)

§(.)

(.}

diagOishn, +ve 5a

n

)

steam preassure

steam valve setting

fuel flow

feedwater flow

parameters, steam plant

steam flow

state variable (p/pmax)
normalized steam valve setting

normalized fuel flow

differential operator p{x)=dx/dt
incremental operator 6(x)=x—x0

transposition of a matrix

A=diag(A1,A2, ves ,Kn)

E R 7
Al 0 = 0
0 Az 0
A= &o-".
Y
0 0 Py
e n




