
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptation and Learning

A Comparison of AI and Control Views
Larsson, Jan Eric

1993

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Larsson, J. E. (1993). Adaptation and Learning: A Comparison of AI and Control Views. (Technical Reports
TFRT-7505). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/22cb7028-3353-432f-8872-7429e816b120

rssN 0280-5316
ISRN LUTF'D2/TR¡T-.?505-.SE

Adaptation and Learning
A Comparison of AI and Control Views

Jan Eric Larsson

An Essay for the Course in Adaptive Control
Department of Automatic Control, Lund Institute of lbchnology

April 1993

Department of Automatic Control
Lund Institute of Technology
P.O. Box 118

S-22L 00 Lund Sweden

Documcnt namc

Internal report
Datc of icsuc

April 1993

Documcnt Numbcr
ISRN LUTFD2/TFRT- -7505- -SE

Author(s)
Jan Eric Larsson

Supcrviror
Karl Johan Äström, Björn Wittenmark

S ponsorìng organi¡aúion

Titlc and ¡ubtiüIc
Adaptation and Learning-Á. Comparison of AI and Control Views

Abatract

This report contains an essay written for the course in Adaptive Control given by Björn Wittenmark at the
Departmenü of Automatic Control in Lund during the spring of 19g3.

The point of the essay is to describe some classical learning projects in artificial intelligence and to interpret
them in automatic control terms. The projects treated are Samuelts Checkers program, Hsu's estimation of
evaluation function parameters in Chess, Tesauro's and Sejnowski's neural network for Backgammon, and
Michie's and Chambers' BOXES model for balancing a pole on a ca¡t. In addition, a short overview on neural
networks in general is given.

Kcy worde

ClassiJlcation systcrn ønd/or ind,cx tcrms (if any)

Supplcmcntary bibliographica¡ inîormatíon

fSSN ¿nd kcy títle
0280-5316

ISBN

Languagc

English
Numbc¡ of pagcs

29
Rccipícnt's notes

Sccurity clusiffcation

The rcport may bc ord'ercd, from thc Dcpartment of Automatic Control or borrowcd through the (Jníversity Library 2, Box 1010,
5-227 03 Lund, Swcdcn, Fax !46 46 llÙ|tg, Tclcx: SS24B lubbis lund.

1. Introduction

Once upon a time the research area of Cybernetics was born. In the begin-
ning it comprised several subjects, among other both artificial intelligence
and control theory. But after some years, these two fields became more
and more estranged, and nowadays they form two completely separate
schools ofresearch.

There are, however, points of strong common interest. One of these
is definitely learning, maybe the most profound area of AI and at the
same time one of the least successful. Some versions of learning are quite
similar to adaptiue control, a well established area of control theory.

This report will describe some common points of AI learning and adap-
tive control in the area of parameter adjustment, and it will interpret the
algorithms developed in AI in the terms of control theory. It was writ-
ten for the course "Adaptive Control," given by Björn Wittenmark at the
Department of Automatic Control, Lund Institute of Tbchnology, Lund, in
the spring of 1993.

First, AI learning and adaptive control will be described. After that,
some different learning projects will be interpreted from an adaptive con-
trol viewpoint.

2. What is læarning?

One of the most intriguing research areas of artificial intelligence is learn-
ing. It is a common opinion that computers cannot be called intelligent
until they are able to learn to do new things and to adapt to new situations.
This is certainly wrong, as many intelligent behaviors do not include any
learning aspect. In spite of this, learning is an important part of AI, and
maybe also one of the areas that have had the least success so far.

It is difficult to define learning, (more difficult than to define adap-
tation, as \üe shall see below). A general definition is that learning is
change of behavior in a given situation brought about by the repeated
experiences of such situations. But such a definition is much too general
to be useful, and it would include several computer programs that are not
normally referred to as learning programs.

As is often the case in Af, learning is best defined by examples of
what is done in the research area. At the same time, learning is a vast
field which is difficult to cover. Thus, the foltowing overview only serves
to give some examples of the different subjects:
o Rote learning. This is the simplest kind of machine learning, and it

simply means to store large quantities of data and using these data
to permit a learning behavior. Once a result has been computed, it
is stored in a large table and used again instead ofnew calculations.
A well known example of this is the first of Samuel's Checkers pro-
grams, see Samuel (1963). This program used a large database of

3

o

o

o

previously encountered positions to enhance its evaluations. If a pre-
viously stored position was found during the tree search, its value
was used, instead of the evaluation function or deeper search. When
a significantpart ofthe leaÊnodes could be found in the table, it gave
the same effect as that of a much deeper search.

Parameter adjustment. A large variety of programs rely on the pro-
cedure of weighting several features together into a single summary
value. In such cases it is sometimes possible to begin with an estimate
of the best value and then slowly adjust the weighting parameters ac-
cording to some loss function, so that they reach or come closer to the
best value. An example of this is the second of Samuel's Checkers
programs. This program played games against itself and adjusted
the weighting parameters of the evaluation function according to the
outcome of the played games. The results were, for that time, quite
impressing, and Samuel's second program is sometimes viewed as
the most successful example of AI learning. The program managed
to win a game against a human Checkers master. Another good ex-
ample of parameter adjustment is the training of neural networks by
backpropagation or other algorithms. A neural network approach has
also been used in a program to play Backgammon, see Tbsauro and
Sejnowski (1989).

The General Problem Soluen The GPS program, see Newell and Simon
(1963), has been used for learning. GPS is really a sort of inference
engine, using a data structure where states are represented, together
with operators to change these states. One state is the initial state
and some states are goal states, and GPS applies the operators in
turn, (based on a difference table), to reach from the initial to a goal
state. One way of using learning in GPS is to let the program try and
solve several similar problems while gathering statistical information
in order to construct the difference tables by itself. Another way is to
view the learning task as general problem solving, and describe the
initial and goal states, and the operators of learning itself in GPS,
and then let the program perform the learning task. In this way,
learning is equated with problem solving. This solution demands full
knowledge of the learning task, though, and provides a good example
of the principle that in order to learn something, one must already
know a lot.

Dynamíc Programming. The well established technique of dynamic
programming can be used in learning tasks. In Bellman (1961) such a
method is used to solve tt-e two-armed bandit problem, where a gam-
bler tires to optimize his winnings when playing two slot machines.
The winning probability of one of the machines is not known. Thus,
dynamic programming is used to find the optimum between gather-
ing information that will later give a better strategy, and "playing it
safe" by using the current knowledge and simply making the optimal
choice at every instant. This is a typical example of the fact that

4

o

o

o

testing to gather more information, or in other words, to excite the
process, may be suboptimal in a short perspective but valuable in the
long run.

Concept learning. In many AI programs, it is important to classify
objects, in order to applyreasoningrules about them. It may, however,
be difficult to devise the classification mechanism. For this, learning
has been used. A good example is Winston's learning blocks world
program. This program uses a set of primitive graphical concepts,
such as lines and points, and tries to invent new structural concepts,
characterized by the presence of certain subsets of basic concepts.
Thus, such concepts as archs, bridges, and houses may be learned, see
Winston (1975). Classificationcan also be done bylinear weightingby
a scoring polynomial, and in this case, concept learning by parameter
adjustment may be possible.

The learning ofconcepts from a set of examples has also been treated
by Haussler (1-988), and Haussler et aI (1991). Here, Valiant's learn-
ability model and learning framework, see Valiant (1984), is used and
Haussler arrives at necessary and sufñcient conditions for learning
to be possible. This is determined by the finiteness of the Vøpnih-
Cheruónenkis d.ímension, a simple combinatorial parameter of the
class of concepts to be learned, see Vapnik (1982), and Vapnik and
Chervónenkis (1971). This theory can also be used to measure the
efficiency of some different learning methods. For example, Haussler
has investigated the PAC model for neural net learning, see Opper
and Haussler (1991) and Haussler (1992).

Another concept learning project is described in Ioannidis et aI (L992),
where a system uses learning for database design.

Learning from Examples. Some projects use,learning from examples.
Pitas eú aI (1992) use examples to learn rule for a rule-based system.
Gasarch and Smith (1992) describes a system that tries to learn a
mathematical function from examples and is allowed to pose extra
questions in order to improve the learning efficiency.

Learning as Discouery. Doug Lenat's program AM, see Lenat (1977),
uses a frame-based knowledge representation together with a heuris-
tic search among some 250 rules to discover mathematical proofs.
For example, it could discover the concept of prime numbers, which
is quite impressing. However, AM relied heavily on its heuristics, and
what it basically did, was to perform generalization from the implicit
knowledge hidden in its rules.

Learning by Analogy. Analogy is a powerful tool for inferencing, but
it also demands a proper interpretation. Much interest has gone into
this field, see for example Winston (1980). This system uses a frame
representation to draw analogies between oþects.

Leørning Belief Networks and, Expert Systems. Some projects use
learning to build knowledge-based systems. Hsu and Yu (1992) de-

5

o

o

scribes a fault diagnosis system that learns by examples, in much the
same way as the BOXES algorithms to be described later. Tbrasso
(1991) describes learning in a diagnostic expert system. Mahmoud
et aI (L992) describes a learning rule-based system for control. Neal
(1992) describes a system that learns a belief network, i.e., an influ-
ence diagram by neural network techniques. the system can then be
used more or less like an expert system.

o Leørning Mathemati.cs. Learning algorithms have been used to learn-
ing mathematical concepts. Helmbold et aI (1992) describes a system
that learns integer lattices, while the system of Arikawa et aI (1992)
learns simple formal systems.

o Learning in Control Theory. Iæarning is also used in several con-
trol applications, and the following can only server as a collection of
some interesting examples. A survey is found in Moore et aI (L992).
Messner et al (L99L) presents a new adaptive learning rule for par-
allel calculation. The target processes are robots. Mahadevan and
Connell (1992) describes a robot learning to push boxes with learning
of the BOXES (!) type. Heinzinger et aI (L992) gives some stability
results for learning control algorithms. Kalaba and Udwadia (1991)
use learning for structural identification in mechanical systems. Ho
et aI (L992) describes a learning neural network for short-term load
forecastingin power systems. Li and Tzou (1"992) describes a learning
fuzzy controller.

There are several other areas in learning, for example different versions
of learning or generalization from examples, case-based reasoning, and
also more connectionistic ideas, such as primitive agents that causes a
global behavior to adapt or learn.

From this overview, it is clear thatAI learningcomprises several quite
different methods. The aim of this essay is to give an adaptive control view
of learning techniques, thus it will be limited to treating learning through
parameter aQjustment The other techniques will not be furùher treated
here.

3. What is Adaptíue Control?

There has been difficulties in defining what is to be meant with adaptive
control. The everyday meaning of the word "adapt" is to change behavior
in order to better conform to new circumstances. The similarity to learn-
ing should be noted. Th'e itlea of adaptive control is to take a standartl
controller, such as a PID or RST controller, and changeits behaviorto suit
changing operating conditions, i.e., to adjust its parameters, and maybe,
(in case of the RST controller), its structure, to preserve a good tuning
when the controlled process is changing. Thus, adaptive control may be
defined as dealing with controllers uiewed øs consisting of two levels, one
standard control level, and one level of parameter (and maybe structure)
adaptation.

6

But as is the case with AI and learning, adaptive control is best de-
fined by examples. There are two main approaches to adaptive control:
model-reference adaptive systems, (MRAS), and self-tuning regulators,
(STR). Both these approaches build on the general idea of using the dif-
ference between observed and wanted behavior, and to adjust parameters
according to this. First, the MRAS approach will be described, as it is the
simpler and more direct of the two" The following part is based on.Åström
and Wittenmark (1989).

Model-Reference Adaptíu e Sy sterns

The model-reference adaptive system is based on a specification of a ref-
erence model, which describes how the controlled system should ideally
behave. A btock diagram description is given in Figure 1.

Figure L A block diagram of a model-reference adaptive system. From ^ð,stxim
and Wittenmark (1989).

The system consists oftwo control loops, one inner in which the controller
controls the process, and one outer, where the adjustment mechanism
adjusts the parameters of the controller so as to make the controller +
process system behave similarly to the reference model.

The parameters of the controller are adjusted depending on the dif-
ference between the process and model outputs, i.e., the model error

2=!-!m.

The sensitivity derivative of the model error for the parameter is also
weighed in, and the value multiplied by a gain y. The following adjust-
ment mechanism, the MIT rule, was used in the first MRAS:

where e is the model error and 7 the adjustment gain. In other words,
the parameters of the controller are adjusted proportionally to the modeì
error and the sensitivity derivative of the parameter in question.

v m

U
c

v

ôe

ae
de
dt -ye

I

Model

Adjustment
mechanism

Controller

u
Controller Plant

In summary, a model-reference adaptive system has the following gen-
eral properties:
o The processes handled are physical processes, which are continuous

and usually can be described by linear or reasonably nice nonlinear
equations. The equations are for example usuallycontinuous, and the
nonlinearities are often limited so that the parameters of the linear
approximations do not vary within more than some orders of magni-
tude.

o The model enor is derived as the diffe¡ence between the process be-
havior and a reference model.

o The parameters ofthe controller are adjusted accordingto a gradient
method, so that the model enor is driven to zero.

o Under some reasonable assumptions, such as that the controlled pro-
cess is linear, that the signals are persistently exciting, and that mod-
eling errors and noise are small, it is possible to prove stability and
convergence, or at least to hope that convergence will occur with rea-
sonable speed in most cases.

Self-Tfuning Reg ulator s

The self-tuning regulatoa (STR), is based on estimation of a parameter-
ized model of the process. This model is then used to calculate controller
parameters to achieve a specified behavior. A block diagram describing
the general idea is found in Figure 2.

Sp€clflcatlon

t_

Procoss paramelgrs

Reference

-J

îigure 2. A block diagram of a self-tuning regulator. From Äström and Wit-
tenmark (1989).

lflle estimatio¿ block is usually performed with a recursiue least squares
algorithm, which basically implies that the parameters of the model are
updated according to the following equations:

e1t¡ = elt - t¡ + K(t)(y(t) - çr 1t¡â1t - t¡¡
K(t) = P(t - I)rp(t)Q"I + rpr 1t¡r1t - 1)p(¿))-'

P(t) = 1r - xçt¡çr (t))p(t - D/l
I

EstimationConlroller
d€slgn

Controllsr
paramstêrs

T

Conlrollsr Process
Outputlnput

This equation has a strong intuitive appeal. The estimate d is obtained by
adding a correction term to the previous estimate elt-t¡. This correction
is a function ofthe difference between the process output and the output
predicted by the model; it is a pred,iction error method.

Here, the similarity with the MRAS approach should be noted. Both
methods adjust parameters to minimize the difference between an actual
value and one supplied by a model, but one uses a gradient method, while
the other uses a least squares algorithm. In an MRAS, controller param-
eters are adjusted, as is the case in a direct sTR, while in an ind.irect
srR, the adjusted parameters describe a model, which is used to compute
controller parameters. The latter is done in the controller d,esign block of
Figure 2.

rt is now possible to summarize the properties of a self-tuning regu-
lator:
o The processes handled are, (once again), physical processes, which are

continuous and usually can be described by linear or reasonably nice
nonlinear equations. The equations are for example usually continu-
ous, and the nonlinearities are often limited so that the parameters of
the linear approximations do not vary within more than some orders
of magnitude.

o The model error is derived as the difference between the process be-
havior and an estimated model.

o The parameters of the model are adjusted so that the prediction error
is driven to zero.

o ljnder some reasonable assumptions, such as that the controlled pro-
cess is linear, that the signals are persistently exciting, and that mod-
eling errors dnd noise are small, it is possibre to prove stability and
convergence, or at least to hope that convergence will occur in most
cases.

with these simple characterizations of adaptive controllers in mind, the
time has come to investigate the different methods of AI learning, and
compare them to the adaptive control ideas.

4. Clæckers

The first, and also most classical example of rearning by parameter ad.-
justment is the second checkers program of samueì, see samuel (1968).
In order to interpret samuel's ideas in control terms, let us first describe
the learning algorithm.

A Description of the Program

samuel's programs, as most other board game progïams relied on a tree
search. This means that from each position where á move must be made,
the program investigates the possible moves and resulting new positions
several moves ahead. At the end points, called leafnodes, an evaluation

I

function is applied, S¡ving a quantitative value describing how good the
position is for the program.

The values of the leaf nodes are then backed up in a minimax fashion,
so that whenever the program is to move, it chooses the maximal value
among the successor nodes, while if the opponent is to move, the minimal
value is chosen. From the root node, which corresponds to the position
from which a move actually must be made, that move is chosen which
leads to the position with the highest backed-up score. This minimax
search has the advantage that it guarantees the program to find the best
possible move within the search horizon and given that the opponent plays
perfectly. If it is possible to search to the end of the game, the program
will play a theoretically perfect game. The algorithm can be enhanced in
several ways, for example with the ap-algonthm, which means thatout of
a total of N nodes in the tree, only zxtÆ need be investigated. For non-
trivial games, such as Chess, Checkers, and Othello, it is seldom possible
to search to the end. In this case a heuristic eualuati.on function, f , is
used instead of the true value, /, of the leaf node positions. The better
this evaluation function can approximate the correct value, the better the
program will play.

The evaluation function of Samuel's second Checkers program con-
sisted of a linear polynomial, where parameters, å;, were used to produce
a weighted score of sixteen terms, fi, each being a quantitative measure
of some feature of the cur"rent position, p, on the board:

l6

i@) =luxft(ù.
í=l

The efficiency of the evaluation function, /, and thereby the strength of
the program's play depended critically on getting a good weighting of the
different terms, i.e., of finding an optimal choice of values for the param-
eters å¡. Tlpical examples of terms, fi, were the mobility, (the number
of available moves), the advancement of pieces, (the number of rows the
pieces had moved forward), the centrality, (the distance of the pieces from
the center ofthe board), etc.

The evaluation function terms were 38 all in all, out of which 16 were
used at a time. If one term had been given the lowest weighting for 32
moves, it was taken out of the scoring polynomial and replaced by one
of the terms from the waiting pool. This strategy was used to allow any
number of terms while simplify,ng the adaptation problem by not using
more than 16 of them at a time.

The material advantage, (computed as 200 points for every man and
300 points for every king, the opponents pieces counted negatively), was
deemed to be the most important term, and to give some basic stability and
direction to the learning algorithm, this term was computed separately
and always kept unchanged. Thus, the material advantage was in fact
made the loss function for the learning. In Checkers, the gain of a piece
usually leads to the win of the game; thus the assumption seem quite
reasonable.

10

Ttre program was run in two variants, a and p. The ø version adapted
parameters in its evaluation function, while p worked as an invariant op-
ponent. Whenever ø had won sufficiently many games against p, ttre
latter took over the new parameter settings of a. If ø lost three consecu-
tive games, it was deemed to be on the wrong track and "a fairly drastic
and arbitrary change was made in its scoring polynomial, (by reducing
the coefficient of the leading term to zero)." This idea is somewhat simi-
lar to the simulnted annealing methods used in neural networks. samuel
explains the problematic effect by referring to local maxima, but it is not
clear that this really is the explanation.

The basic idea of the adaptation was that after each tree search the
value of the evaluation function in the root node, f", *"r compared to the
backed up value ofthe search, I. fn" difference,

õ=i,_i,
was used as a kind of error, and the parameters in the evaluation function
was slightly afiusted so that the evaluation in the root node, f,, matched
the backed up value, f, b"tt"".

lfhe rationale for this was that under reasonable assumptions, (which
are true for the game of Checkers), a value backed up by an ap-search
is more reliable than a direct application of the evaluation function. The
program actually was trying to reach an evaluation function that approx-
imated the value found by a deep tree search.

The inputs to the adaptation procedure were the sign of ô and the
signs of the evaluation function parameters , k¡. A correlation coefficient
for each parameter was updated during play, and the parameters com-
puted using these coefficients. specifically, if the ratio of two correlation
coefficients, ci, was bigger than ¿ but smaller than n. + 1_, i.e., if

n3c¡<n+1-,

then the corresponding weighting parameter was set to 2, in order to
give a large span between the weighting parameters.

some stabilization measures were also taken. If ô was berow a certain
limit, no updating was done, while if the material balance was affected,
the change in correlation coefficients was doubled, and if ô indicated a
win or loss, (the largest possible values), it was quadrupled.

Results

samuel describes two test runs with the program. The first one consisted
of 28 games played, and resulted in violent changes in both which terms
that were used and discarded, and in the weighting parameters. At reast
20 different terms were at the leading position during different parts of
the experiment. Even at the end of the run samuel conceded that "the
learningprocedure was still not completely stable." The parameter setting
resulted in a program that was first "tricky but beatable" and later'better
than average."

1L

Prior to the second test, several stabilization measures had been
taken. The program \Mas often fooled by bad play on behalf of the op-
ponent, so the adaptation was made slower when ø was leading. The
terms were replaced every 32nd move, instead of originally after every
8th. It was also decided to demand that a should have a majority of wins
over þ before the replacement of scoring polynomials took place.

The results of the second test was a more stable but slower learning.
Here, a seemingly semi-stable state was reached after some 30 games
played. Still, after each parameter transfer, several oscillations occurred
before a landed on a parameter setting that enabled it to win over p.

Samuel observed that the rote learning program efficiently learned to
play opening and endgames, but never became good in the middlegame,
while the parameter adaptation program quickly learned to play a good
middlegame. However, it never learned to play in a conventional manner,
and its openings were weak. AIso, after 28 games, it still had not learned
how to win with two kings against one in a double corner, a reasonably
trivial task.

Interpretation

The updating mechanism used in Samuel's second Checkers program is
a bit similar to an MRAS system; maybe most similar to the sign-sign
algorithm, a simple version often used in telecommunications:

d0 .ôe.::- = -Tsiçn(*)sifn(e)

There are some important differences, however, between such an MRAS
and Samuel's algorithm:
o Samuel's "process" is a minimax ap tree search. It consists of several

maximum and minimum computations, together with logical selec-
tions, and as opposed to most physical processes, it is highly nonlin-
ear and discontinuous. Thus, no stability proof is even within sight,
and it is indeed not clear why an adaptation procedure should be able
to converge, nor that Samuel's tests really do so.

o The "model error," ô, is discretized into four levels, while the corre-
lation coefficients are computed by a stable and "calm" correlation
algorithm, (Samuel does not give any precise details).

o Most difficult is probably the problem of credit assignment, i.e., the
adaptation may be fooled by faults by the opponent. This corresponds
somewhat to the problem of persistent excitation. The problem is how
to find out exactly when the important choices were made, and to
separate these moments for others, where faults by the opponent
and consequences of earlier play are the reasons for a changing ó'.

Samuel's solution tries to avoid the worst effects, but all in all, this is
still an unsolved problem. An obvious improvement would be to use
the adaptation on lost games only.

\2

Eualuation

Samuel's second Checker program is probably the most successful AI
learning example, and for its time, (1963), it was certainly impressing.
From today's horizon, however, the glory has faded somewhat:

o It is not clear that the aclaptation procedure is stable or converges to
a good value. The degree of calmness reached would not be deemed
satisfactory in any adaptive control system.

o The level of play attained was, in spite of all rumors, not very high,
neither compared to the human skill of those days, nor to the level of
today's computer programs. Samuel's program won one game over one
state master in the US, but that was a master of blind players, and
there was still a long way to go in order to reach world class level. Tb-

day, the Checkers program Chinook, see Schaeffer et aI (1992), plays
on par with Marion Tinsley, the Checkers world champion, and is
probably the world's second or third best player. This program relies
on an efficient tree search, multiprocessing, and large databases of
endgame positions. It uses no adaptation or learning whatsoever, but
it can search up to 20 plies, (half moves), and often evaluates the leaf
positions with 1007o accuracy, as they can be found in the endgame
databases. The 20 plies depth should be compared to the 3 or 4 ply
searches of Samuel's program. With some knowledge of state of the
art game programming techniques it is trivial to write a program that
searches some 10 to 15 plies deep and outperforms Samuel's program
by far.

Some Final Comrnents

Samuel's results were impressive and maybe the best example of success-
fuì learning in its time, but they are now of little importance to game-
playing programs. This shows that a large portion of humility is needed
in the field of learning. It is very difficult to reach working results at
all, and there are some few successful results of this. Tb hope for better
performance than with other techniques is so far unrealistic.

5. Cltpss

Tt'rc Chiptest, Deep Thought, and,Deep Blue programs are all part of a long
term project of VLSI construction for chess processors, see Hsu (1987) and
Anantharaman et o/ (1991). Ttrese programs are really a combination of
sofiware and hardware, to perform very fast minimax aþ tree searches.
The current version of Deep Blue is the world's strongest chess machine,
but it still has some way to go before it can compete with the best human
chess players.

Deep Blue and some other game-plafing programs use databases of
human master games to adapt their evaluation function parameters. The
idea is simple:

13

o

o

From information about which side that \,von a particular game, and
maybe also who played it, the positions of the game are scored as
good, bad, or even.

The evaluation function polynomial is then tested in the different
positions and the parameters adjusted to better aglee \,r¡ith the previ-
ously computed scores. This adjustment is usually performed with a
least squares or maximum likelihood criterion.

Interpretation

These methods are clearly very similar to the least squøres and. recursiue
Ieast squøres algorithms. The main difference is that the "process" in
question, (the function telling the game-theoretic value of a position), is
discrete, highty nonlinear and discontinuous. Making a single, seemingly
insignificant move may change the value of a position from won to lost.
Ttrerefore it is unclear how well the approximations can work.

Euøluøtion

Several game-playing programs use methods like the one described to au-
tomatically adjust the parameters of their evaluation functions. The fact
that Deep Blue uses the method has given it an unfairly good reputa-
tion, while the tn¡th is that Deep Blue owes it first place among chess
computers to its enormous speed, not its evaluation. The best evaluation
functions are probably to be found in commercial prog'rams running on
slower hardware, and these evaluation functions have been produced by
careful hand crafting.

As with Samuel's approaches, the method is troubled by the problem
of credit assignrnent, and it is also very difficult to arrive at a reliable
evaluation of the input positions. The nonlinearities of the problem may
also cause troubles. It seems that the main advantage of the method is
that it provides a simple way to give a hopefully reasonabìs tuning of a
large set of parameters.

6. Bøckgømmon

A well known game-playing achievement was when the program BKG 9.8
won a match of eight games of Backgammon over the then reigning world
champion Luigi Villa \¡/ith 7-1", see Berliner (1980). It should be noted,
though, that the match did not concern the world champion title , and
that post mortem analysis showed that the progÌ'am did not play better
than the human opponent, but was lucky with the dice rolls. However, it
was the first time a computer program had won a match over a human
world champion in any board or card game, and the program certainly
played on par with the human opponent.

Berliner's program used no learning, but it is still interesting be-
cause Backgammon is best played without extensive tree searching. In-
stead, a good evaluation function is crucial. BKG relies on a well-tuned

t4

hand crafted evaluation function where the weighting parameters, rt¡, âr€
smoothly varying with the type of position, making it nonlinear. The
difference between Backgammon and other board games, such as Chess,
Checkers, and Othello, is probably due to two factors. First, the dice rolls
give a large degree of randomness to the game, so that any single move
will not change the winning possibilities radically. Secondly, the relative
simplicity of the game makes the game-theoretically correct evaluation
smoother than in the other games.

Tesauro's and Sejnowski's Learning Program

The evaluation of Berliner's program was hand crafted and essentially
concerned with estimating the value of different board patterns. It was
therefore natural to try and use a neural network for evaluating the dif-
ferent patterns and selecting Backgammon moves, see Tbsauro and Se-
jnowski (1989). This program used a three layer network to choose be-
tween generated moves. The inputs were coded into 459 nodes, of which
8 consisted of precomputed features such as number of men in different
regions of the board, the number of blots, (pieces that may be hit, which
are weak points), etc. The network had from 12 to 48 hidden nodes, used
a training set of 3202 positions evaluated by a human player, (Tbsauro),
and needed about 100 to 200 hours of training on a SIIN 3/160, using
backpropagation. The resulting program played an intermediate level of
Backgammon and had a 607o performance against the commercial pro-
gram Gammontool, by SUN Microsystems.

Eualuation

The fact that the program managed to learn to play a respectable game
of Backgammon is impressive. The domain is one of the largest that have
been successfully tackled by a neural network approach. There are several
weak points, however:

o Some hand crafted evaluation features were used. This helped to
speed up the learning, but the program became reliant on a priori
information.

o Lots of hand crafting was needed in selecting the examples, so that the
program learned to handle different types ofproblematic positions.

o The human evaluation of the positions in the learning set was not
completely reliable.

o The level of play was not so high. Berliner's BKG progÌ'am plays far
better using standard game-playing techniques and a hand crafted
evaluation function.

The conclusion of this example is that it is indeed possible to learn a
good evaluation function for Backgammon with a neural network. This
is an impressive achievement in itself. On the other hand, conventional
techniques still outperform the ones based on learning.

15

7. Othello

Another game that has been the target of research is Othello. Frey (1986)
and Mitchell (1984) describe a project in which a large database of late
middlegame Othello positions were used to tune the parameters of an
evaluation function, much in the similar way to that used by Hsu et al for
Deep Blue. The true score of the positions \üere computed by deep, (and
thus very time-consuming), searches to the end of the game, and then the
parameters of an evaluation function was adjusted to match the correct
scores as well as possible.

As an important part of an Othello evaluation function seems to be
to evaluate different edge and corîer patterns, it is an obvious idea to try
and train a neural network to perform this evaluation. Such project is
described in the thesis Walker (1993). Genetic algorithms hav ealos been
used in Othello evaluation, see Gupton (1989). The best Othello programs
today use simple, hand crafted evaluation functions and rely on deep tree
searches to play on par with the strongest human players. A project at
the Department of Computer Engineering, Lund Institute of Tbchnology,
aims at building very fast hardware for Othello.

8. Boxes

Michie and Chambers have devised an general learning algorithm called
BOXES, see Michie and Chambers (1968). It began as an algorithm for
playing trivial games as 3 x 3 naughts and crosses. The idea is quite sim-
ple. A problem is broken down into sub-problems, and a score is kept over
every possible action in every sub-problem. The algorithm plays a large
number of games and chooses the actions of each sub-problem that has
given the best outcome so far. In the case of a board game, there is a
sub-problem, (a box), for every possible position of the game, and the pos-
sible actions are the possible moves from the position in question. As the
number of possible positions for any non-trivial game is very large, (1030
for Checkers and Othello, and 10120 for Chess), the BOXES algorithm is
not possible to use for them. However, Michie and Chambers used it to
learn a somewhat different "game,' that of balancing a pole on a cart.

F

x

Fígure 3. Michie's cart and pole system

16

Figure 3 shows th'e cart and. pole system used by Michie and Chambers in
their experiment. A wheeled cart can move back and forth along a plane.
On top of the cart there is a pole, and the task is to balance the pole by
moving the cart. The input signals used by the BOXES algorithm were:

* The position of the cart on the track.
i Ttre velocity of the cart.

d The angle of the pole.

ti ttre angular velocity of the pole.

The BOXES model was obtained by a rough quantization of the state
space. Thus, r and 0 were discretized into five values, and * and A into
three. The r value intervals were three of equal size and two unbounded.
The I intervals were one quite small in the middle, two wider, and two
unbounded. The i and d intervals consisted of one natrow interval and
two unbounded. Ttris means that the state space was divided into 5 x 5 x
3x3 = 225boxes.

The output signal was the force F controlling the acceleration of the
cart. It was discretized into only two values, + and -, or left andrighfl
Each box contained a randomly chosen action from start. In the original
experiment, the system was simulated on a computer with a sampling
time of 20 H:z. It should be noted that "nice?f values were chosen on the
masses and length, so that the system was fairly easy to control. Even
so, Michie and Chambers also put in a weak spring that tried to pull the
pole towards the upright position, in order to make the system more easy
to control. Later, physical systems have in fact been built, but the small
number of boxes demands that the dimensions of the system be "nice"
enough, otherwise the number of boxes will be too large for the learn-
ing algorithm to work in practise, see Bernhardsson and Larsson (1989),
where a physical inverted pendulum was investigated. This process de-
mands some 100x40x6 boxes in order to be successfully controlled, which
makes the learning impractically slow.

Learning Algorithm

The original learning algorithm was quite simple, and it is this algorithm
that will be treated here. For every local box, some values are computed:

L¡ The left life. A weighted sum of the number of sampling points during
which the system managed to keep the pole from falling, (the life
time), while using the action Ieft in the box.

Lu Tbe left usage. A weighted sum of the number of Ieft actions actually
used.

R¿ T\eright life. A weighted sum of the life times while using the action
right ín the box.

R, The right usage. A weighted sum of the number of right actions used.

In addition to this, two global values are updated:

Gt The global life. A weighted sum of the life times of the runs.

17

G, The global usage. A weighted sum of the number of decisions taken.

All the sum are weighted so that there is a forgetting factor of 0.99. Thus,
the updating rules for the global values are:

Gt =0.99Gt+Tr
Gu=0.99Gu+1,

where ?r is the time in sampling points from the start of the run to when
the pole fell. Thus, the quotient QlG" is proportional to the average life
time of the test runs.

Ttre local values are updated according to the following formulas,
(where it is assumed that the box in question is using the left action
during the current run):

N
Lt=0.99Lt+f{rr-r;)

i=1

L"=0.99L,*N
E¿ = 0.998¿

ft, = 0.99R,

rWith these values, the following calculations are performed:

uL=
Lt + 20*
L"+20

R¡ + 20fr
uR= R"+20

The control action is selected as Ieft or right according to whether u¿ is
greater than up or not.

Results

The results of the learning tests varied within large magnitudes. Afier
some 300 test runs the system was often able to balance the pole for 20
to 40 seconds. In one case it was never able to balance it more than in
average 15 seconds, while in another case, after 600 tests it couìd baìance
it for 300 seconds in average. Michie and Chambers point out one suc-
cessful run of more than 72 000 sampling points, corresponding an hour
of simulated time.

As can be seen from these results, the learning process is not very sta-
ble, and it converges very slowly and unreliably. This may seem strange,
as it is certainlypossible to control the system with a standard state space
feedback controller, and the learning algorithm should reach a discretized
version of this sooner or later. The conclusion must be that the learning
procedure is indeed extremely slow. Later experiments by other groups

18

have tried to better the speed of the learning by using more a priori in-
formation about the process.

Barto, Sutton, and Andersson improved on the experiment by de-
signing two adaptive, neuron-like elements. They still used a predefined
division ofthe state space and their program was able to balance the pole
after some 100 trials. One reason for the better results may also have been
that a higher sampling frequency of 50 Hz was used, see Barto, Sutton,
and Andersson (1983).

Andersson used two predefined two-layer neural networks, one learn-
ing an evaluation function and the other learning the control actions. fn
this way, no predefined division of the state space was necessary. On the
other hand, this program took some 10 000 trials to learn to balance the
pole for an average of 140 seconds, see Andersson (1986).

In the CART experiment, the state trajectory was traced through each
trial and a continuous interpolation-function replaced the state division.
The program only considered states that was actually reached, and an
elaborate analysis was used to pinpoint the erroneous control actions.
The program was able to balance the pole indefinitely after only 16 trials,
but a large amount of a priori knowledge was used in the algorithm, see
Connell and Utgoff, (1987).

Interpretøtion

Michie's and Chambers'original algorithm is quite simple. It forms an
average of the life times achieved by either left or right for each box. This
average is weighted by a forgetting factor of 0.99 so that more recent ob-
servations will be more important. Then, very simply, the action with the
higher life time is chosen, but the life time average is summed with the
global life time average and normalized, so that when gtobal life times
increase, the adjustment of actions will be slower. For each box, the algo-
rithm is similar to a proportional controller working on an averaged input
with exponential forgetting, and the output is discretized into two levels
only and the gain decreased in proportion to how successful the controller
is.

Eualuation

Michie's and Chambers'BOXES algorithm is quite general, and con learn
to control the cart and pole process. It still uses important a priori knowl-
edge about the division ofthe state space, though, and given this, it is fair
to say that it shows a low order of stability and an extremely slow conver-
gence. An MRAS or STR would converge after a couple of pole movements
while BOXES needs hundreds of complete test runs. Other approaches
are either more general than BOXES, but then even slower in learning,
or more efficient but then dependent on more specific knowledge. In the
latter cases, it seems that the point of the experiment has been lost, and
that the solutions are far too specific to the process. As such solutions,
the proposed algorithms does not compare favorably with standard state
space controllers.

19

Some Final Comments

Once again it is seen that the goal of learning will not be to outperform
standard algorithms. Indeed, it is difficult enough to achieve successful
learning at all. Michie himself has emphasized this, Michie (1990). It is
also eas¡ it seems, to loose track of what is relevant research. The original
BOXES experiment is general enough to be applied to many problems,
while the solutions that are more efficient in learning use a lot of a priori
information, which makes their general value doubtful.

But the most important obserryation is probably that a conventional
model such as a state space description,

i=Ax+Bu
Y=Cr+Du

contains a large amount of useful a priori knowledge, and that learning
without knowing even the structure of the process is very difficult.

9. NeurøI Networks

In recent years, neural networks have been successfully applied to pat-
tern recognition and optimization tasks, see for example Hopfield (1982),
Hopfield and Thnk (l-985), Burr (1988), Gorman and Sejnowski (1988),
Sejnowski and Rosenberg (1987), and Widrow, Winter, and Baxter (1988).
Tþo main types of neural networks have been used, the multilayer net-
work and the Hopfield net.

The area of neural networks have grown immensely in the last years.
Thus, the following is only an interpretation of the basic techniques, and
no overview ofthe field. A good presentation ofthe research area, with a
twist towards control, is found in Miller et øI (1990).

Multilnyer Networks

The most common neural network consists of a set, (layer), of input nodes,
some layers of hidden nodes, and a layer of output nodes. Each node in
the hidden and output layers receive as input a weighted sum of the nodes
in the preceding layer. Some function, (often a sigmoid or truncation), is
applied to this sum, and the result becomes the output of the node, to be
used by the next layer, see Figure 4.

ui

Figure 4. A single node of a multilayer neural network.

Some special types of nets have limitations on the number of layers and
the functions used. Adaline is basically a one layer net, see Widrow and

20

Hoff, (1960). The multilayer network was originally called a Perceptron,
see Rosenblatt (L962). In a CMAC network, (a special case of a Per-
ceptron), the function applied is the identity, thus a CMAC is a linear
summing device, see Albus (1975 a, b).

This general structure means that a multilayer neural network can
be described as a static nonlinear map /, where

f(x) = F(wF(vF(ur))).

Here F is the (nonlinear) function and U, V, and 14¡ the weighting ma-
trices corresponding to the connections in the network, see Figure 5.

x

Figure 5. A multilayer neural network in block diagram form.

According to Weierstraß'theorem, every map C(,R",.R-) can be approxi-
mated to any degr:ee by a polynomial, and it has been shown that a three
layer neural network with an arbitrarily large number of nodes in the
hidden layer can approximate any continuous function over a compact
subset of ,8". This implies that neural networks with one hidden layer
are capable of performing any characterization.

Interpretation

There is no special control interpretation of a multilayer neural network.
It is simply a nonlinearmap, and the use of neural networks as opposed to,
say, polynomial approximations depends on whether the representation is
versatile enough to provide a good basis for analysis and algorithm design.
A neural network is simply one general way of "packing" a static nonlinear
function.

Hopfield Networks

A Hopfield network usually consists of a layer of nodes and a feedback via
time delay, see Figure 6.

¡(t) x(+l)

Figure 6. A Hopfield network in block diagram form.

Here, the inputs are the weights of the nodes and the output the stable
states.

2L

Interpretation

A Hopfield network is based on feedback, and in the case of a one layer
network, the control interpretation is simple and well-known. In this case
the Hopfield net is identical to a linear system with no inputs,

i, = Ax.

The difference from the standard use of such systems is that here the
parameters of the matrix A are the "inputs" and the stable states of the
system are the "outputs."

Weieht AQjustment

Neural networks became popular when the backpropagaúion method for
adjusting the weights was introduced, see Narendra and Parthasarathy
(1988). In this method, the partial deúvatives of an error criterion with
respect to the weights in a multilayer neural network are determined and
the weights are adjusted along the negative gradient to minimize the error
function.

In order to perform backpropagation, the same network of nodes may
be used, but the signals flow in the other direction, which explains the
name backpropagation.

Interpretation

The backpropagation algorithm is more or less a pure MRÁ.S method. The
change of the weights, ø;, is proportional to the partial derivative of the
output error, e:

do¡ ôe

-

-
il-

dt-Iôa;

This is a variant of an MRAS adjustment rule.
Thus, it can be concluded that backpropagation is a reliable method,

but that it will suffer from all the same problems as the MRAS approach,
the most important being that of ensuring persistent excitation.

Adaptiue Control with Neural Networks

It is possible to use neural networks both for system identification and
adaptive control, see Narendra (1990). Here one neural network is trained
to behave as the process, (estimation), and one network is trained to use
the estimated model to make the system behave as a reference model, see
Figure 7.

22

rcfmodel

ident NN

mtrolNN pfæ6s

Figure 7. A self-tuning regulator based on neural net\Ã¡orks. Frûm Nar.end¡a
(leeo).

Interpretation

It is straight-forward to see that the proposed controller architecture is
an indirect STR, where the estimation and design blocks have been im-
plemented with neural networks. It is interesting to note that so far, no
methods for making direct contl.ollers based on neural networks exist, see
Narendra (1990).

fn conventional adaptive control, several assumptions are made in
order to guarantee that the methods will work:
o The sign of the high frequency gain is known.
o The order ofthe plant is known.

o The relative degree of the plant transfer function is known.
o The zeros of the plant lie inside the unit circle.
o The reference model is linear.

These assumptions make it easier for the method to work with a successful
result, and indeed they are necessary for aìlowing proofs of convergence
and stability. It seems rather obvious that if a controller based on neural
networks is based on a process that does not obey these assumptions,
problems will occur. When the assumptions are obeyed, however, the
neural network approach could be feasible.

Eualuation

It is hard to evaluate the success of neural networks as a whole. It is clear
that they have been successful in specific tasks as pattern recognition, and
that they may be useful in for example intelligent sensor methods.

Concerning control, very few results have so far been reached. When
applied to problems which conventional adaptive controllers handle well,
it may be supposed or at least hoped that the neural networks will also
be successful. For more difficult problems, such as processes that violate
some of the assumptions listed above, it should not be hoped that neural

23

networks will be better able to solve them, because the problems origi-
nate from the process and other circumstances, and may not be solvable
whatever method is used.

An important difference between conventional control theory and neu-
ral networks is that, as neural networks are nonlinear, aìmost nothing of
the known theory ofstability and convergence can be used. So right now,
using a neural network approach means that very little theoretical anal-
ysis can be done and no stability proofs given. The only way lefi is to use
the methods and see what happens, which is a worse situation than is the
case for conventional controllers.

10. A Compørison

Parameter adjustment has been used to provide a learning behavior in
many domains, as can be seen from the examples above. Some general
similarities and differences should be noted:

o The type of "process" may vary drastically. Adaptive controllers usu-
ally operate on reasonably nice and smooth processes, and are there-
fore ofien successful. The same is true for BOXES and neural net-
works for control, while the game-playing applications meet a very
different process, the game-theoretic value function. This functions
is discrete, but also highly nonlinear and irregular. Thus, there is
no possibility to ensure stability and convergence. Indeed, it is quite
surprising that good results are possible to obtain at all.

o A few learning algorithms can be proved to work under specified con-
ditions, (Vapnik-Chervónenkis), but most of the algorithms do not
provide any such proofs.

o The "difficulty'' of the process gTeatly affects the speed of conver-
gence. The adaptive controllers operate on the nicest pmcesses and
are thus the fastest, while Samuel's parameter adjustment is slower,
even though it is still a kind of gradient method. Here, the complex
process makes the convergence more difficult.

o The problem ofpersistent excitation varies greatly. In adaptive con-
trol, this problem has been thoroughly studied, and some counter-
measures against so called'estimator windup" and other bad effects
caused by lacking excitation are usually included in the algorithms.
In alla the other examples mentioned, the problem is not handled
at all. Instead, the methods rely on the general randomness of the
experiment situations to provide enough stimulation.

o Some learning algorithms use quite much a priori information, e.g.,
the adaptive controllers. These algorithms are usually fast in con-
vergence. Other algorithms, e.g., BOXES and neural networks use
much less a priori information. The only predefined knowledge in
these cases is a set of input signals and a failure or error signal.
These algorithms are consequently slower in learning.

24

o Algorithms like BOXES, which rely on gathering a large statistic,
(Monte CarloJike methods), are considerably slower than gradient
methods, (MRAS, backpropagation, Samuel's program), which in turn
are slorver than least square algorithms, (STR, Deep Blue, Frey's
Othello evaluation).

11. Conclusions

Learning is a fascinating prospect, and much longed for. If a problem is
difficult to solve, or demands knowledge that is not available or hard or
costly to gain, how good it would be to build a machine that could learn
by itself.

However, in most problem areas there are lots of knowledge, and
furthermore, learning is much more difficult than one may at first guess,

and as has been seen from the examples, it is often very slow and costly.
Thus, learning is very seldom a viable option, and so far it has not led to
any system that is better than a corresponding conventional non-learning
system. So one conclusion is that the ideas about learning as the crown
of methods, that will solve all problems, are wrong. Learning has so far
not given better results than conventional techniques.

Learning is still an important research target, however, as learning
processes are present in many activities. Therefore it is important to
study and learn how learning works. But the goals must be modestly set.
If learning is at all possible, that is a good feat in itself. In some lim-
ited areas, especially concerning neural networks for pattern recognition,
learning has been quite successful, and hopefully, it will come to use in
more areas and grow to a more and more successful discipline, slowly but
firmly, in a step by step fashion.

The final observation is that it is important not to forget the con-
ventional adaptive control methods, i.e., the MRAS and STR hpproaches.
They are certainly the most successful examples of learning, and so far
the only ones that have migrated from research to practical application in
large numbers. They can also be used to give examples of what problems
the other approaches may meet in the future. So far, the best example of
learning is adaptive control.

12. References

AIBUS, J. S. (1975 a): 'A New Approach to Manipulator Control: The
Cerebellar Model Articulation Controller, (CMAC)," Tbansactions of the
ASME, September, 220-227.

Amus, J. S. (1975 b): "Data Storage in the Cerebellar Model Articulation
Controller, (CMAC)," Tlansactions of the ASME, September, 228-233.

25

Aw¡I.¡THARAM^e,N, T. S., M. S. CetvpsELL, and F.-S. Hsu (1992): "Singular
Extensions: Adding selectivity to Brute-Force Searching," Artifrcial
Intelligence, 53, 1, 99-109.

Awonnssox, C. W. (1986): Learning and Problem Solving With MultÍlayer
ConnectÍoníst Systems, Ph. D. Dissertation, Coins technical report
86-50, Amhearst, Massachusetts.

ARtr<Awe, S., T. SnmoHARA, and A. Yrtu¡uoro (1992): "LearningElemen-
tary Formal Systems," Theoretical Computer Science, 95, 1, 97-113.

Åstnöu, I(J. and B. rvVnrn¡nvt¡nx (19S9): Adaptive Contrcl, Addi-
son-Wesley, Reading, Massachusetts.

BARro, A. 8., R. S. SurroN, and C. W. Au¡rnssoN (1983): "Neuronlike
Adaptive Elements That Can Solve Difficult Learning Control Prob-
lems,o IEEE Thansactions on Systems, Man, and CybernetÍcs, 13, 5.

Beu,uaN, R. (l-961): Adaptive Control Processes: A Guided ?bur, Prince-
ton University Press, Princeton, New Jersey.

Bnnmr¡nnssoN, B. and J. E. LenssoN (1989): "Learning State Space
Controllers," Tbchnical report, Department of Automatic Control, Lund
Institute of Tbchnology, Lund.

BerutNnn, H. (1980) : "Computer Backgammon," Sci enti frc American, J une
1980, 54-62.

BLTRR, D. J. (1988): "Experiments on Neural Net Recognition of Spoken
and riVritten Tbxt," IEEE Tbansactions on Acoustic, Speech, and Signal
Processing, 36, LL62-1168.

CoNNEr,t, M. E. and P. E. Urcor¡ (1987): "Learning to Control a Dynamic
Physical System," Proceedings of the AAAI '87, Amencan Association
for Artificial Intelligence, Seattle, Washington, pp. 456-460.

Fhnv, P. lV. (1986): "Algorithmic Strategies for Improving the Performance
of Game-Playing Frograms," in Farmer, D., A. Lapedes, N. Packard, and
B. Wendroff, (Eds.): Evolution. Games, and I'earning, North-Holland,
Amsterdam.

Gasencu, \M.I. and C. H. Srumr (1992): "Learningvia Queries," Journal
of the ACM, 39, 3, 649-674.

GonMAN, R. P. and T. J. Sn¡I¡owsxt (1988): "Learned Classification of
Sonar Târgets Using a MassivelyParallel Network," IEEE Ibansactions
on Acoustíc, Speech, and Signal Processing, S6, 1135-1140.

GrretoN, G. M. (1989): "Genetic Learning Algorithm Applied to the Game
of Othello," in lævy, D. N. L. and D. F. Beal, (Eds.): Heuristic
Programming In Artifrcial Intelligence: the First Computer Olympiad,
Ellis Horwood, pp. 241-254.

HAussLEn, D. (1988): "Qualifying Inductive Bias: AI Learning Algorithms
and Valiant's Iæarning Framework," Artifrcial Intelligence. 36, 1-2,

26

172-22t.

HlussLon, D. (l-992): "Decision Theoretic Generalizations of the PAC
Model for Neural Net and Other Learning Applications," fnformation
and Computation, 100, l-, 78*150.

H.lussrrn, D., M. IGeRNs, N. Lrrn¡sroNn, and M. Ii rW¡nuurtr (1991):
"Equivalence of Models for Polynomial Learnability," Informatíon and
ComputatÍon, 96, 2, 129-161.

HnlunotÐ, D., R. Sr,oaN, and M. Ii lühnvrur:n (1992): "Learning Integer
Lattices," SIAM Journal on Computing, 2L, 2, 240-266.

Ho, Ii L., Y. Y. Hsu, and C. C. Y¡Nc (1992): "Short-Tbrm Loaf
Forecasting Using a Multilayer Neural Network with an Adaptive
Iæarning Algorithm," IEEE Tbansactíons on Power Systems, 7, 1,
L4I-L49.

HopFEto, J. J. (1982): "Neural Networks and Physical Systems with
Emergent Collective Computational Abilities," Proceedings of the
National Academy of Sciences, USA, 79, 2554-2558.

Hoenmlo, J. J. and . Ð. W. TaNx (L985): "Neural Computational
of Decisions in Optimization Problems," Biological Cybernetics, 62,
t4L-152.

Hsu, F.-S. (1987): "A TWo Million Moves/Sec CMOS Single Chip Chess
Move Generator," 7987 ISSCC Digest of Tþchnical Papers, p. 278.

Hsu, Y. Y. and C. C. Yu (1992): "A Self-Learned Fault-Diagnosis
System Based on Reinforcement Learning," Industrial and Engineering
Chemistry Research, 31, 8, 1937-1946.

II¡rNzNcnnC., D. FnNwrcK, B. PADEN, and F. Mry¡z¡,ru (1992): "stabilityof
Learning Control with Dsturbances and Uncertain Initial Conditions,"
IEEE Tbansactions on Automatic Control, 37, L, 110-114.

IoANNus, Y. 8., T. Seur,vs, and A. J. Wnnsrrr (1992): "Conceptual
Learning in Database Design," ACM Ibansactions on fnformation
Systems, 10, 3, 265-293.

KAT"ABA, R. E. and F. E. UnweoH (l-991): 'ân Adaptive LearningApproach
to the Identification of Structural and Mechanical Systems," Computers
and Mathematics with Applications, 22, L, 67-75.

Lourr, D. B. (1977): "The Ubiquity of Discovery," Artifrcial Intelligence,
9, 3.

Lr, C. J. and J. C. Tzou (1992): "A New Learning Fuzzy Controller Based
on the P-Integrator Concept," Fuzzy Sets and Systemg 48, 3, 297-303.

Mananrven, S. and J. CoN¡¡nr¿ (1992): "Automatic Programming
of Behavior-Based Robots Using Reinforcement Learning," Artífrcial
fntelligence, 66, 2-3, 311-365.

27

MAHrvrouD, M. S., S. Koroa, A. A. AsounrsEouD, H. M. Ers¡wo (1992):
'â Learning Rule-Based Control System," Information and Decision
Tbchnologies, 18, 1, 55-66.

MIcHrn, D. (1990): private communication.

ME$sNER, W., R. Honowrtz, W. rtr K^Lo, and M. Bolrs (1991): "A New
Adaptive Learning Rule," IEEE Tbansactions on Automatic Control, 38,
2, L88-\97.

MICHIE, D. and R. A. Ctt¡Nrsnns (1968): "Boxes: An Experiment in
Adaptive Control," in Dale, E. and D. Michie, (Eds.): Machine
Intelligence 2, Oliver & Boyd, I¡ndon.

MITcIÐLL, D. H. (1984): "UsingFeatures to EvaluatePositions in Expert's
and Novice's Othello Games," Master's thesis, Northwestern University,
Evanston, Illinois.

Moons, Ii L., M. Denræn, and S. P. Bs¡rr¿crrARyyA (1992): "Iterative
Learning Control-A Survey and New Il€sults," Journal of Robotic
Systems,9, 5, 563-594.

NeneNona, If S. (1990): "Adaptive Control Using Neural Networks," in
Miller, W. T., R. S. Sutton, and P. J. V[erbos, (Eds.): Neural Networks
for Control, MIT Press, Cambridge, Massachusetts.

NanoNona, Ii S. and Ii P¡nrrresARATFry (1988): 'â Dagrammatic
Representation of Back Propagation," Tbchnical report 881-5, Center
for Systems Science, Department of Electrical Engineering, Yale
University, New Haven, Connecticut.

NEAL, R. M. (1 992) : "Connectionist Learning of Belief Networks," Arti fr ci a I
Intelligence, 55, 1, 71-113.

NEwED, A. and H. A. Suvto¡¡ (1963): "GPS, A Program That Simulates
Human Thought," in Feigenbaum, E. A. and J. Feldr¡lan, (Eds.):
Computers and Thoughú, McGraw-Hill, New York.

Oeenn, M. and D. Htussrcn (1991): "Generalization Performance of Bayes
Optimal Classification Algorithm for Learning a Perceptron," Physical
Reuiew Letters,66, 20, 2677-2680.

Prres I., E. Mruos, and A. N. Vnvsts¡Nopoulos (1992): '.A Minimum En-
tropy Approach to Rule Learning from Examples," IEEE Ibansactions
on Systems, Man, and Cybernetics, 22, 4, 621-635.

Rosouemrr, F. (1962): Principles of Neurodynamics, Spartan, New York.

Seuurr,, A. L. (1963): "Some Studies in Machine LearningUsing the Game
of Checkers," in Feigenbaum, E. A. and J. Feldman, (Eds.): Computers
and Thoughd McGraw-Hill, New York.

Sczunrrrn, J., J. CulnERsoN, N. Thprcm, B. KNrcnr, P. Lu, and D.
SzerRoN (1992): "A \Morld Championship Caliber Checkers Program,"
Artifrcial Intelligence, 53, 2-3, 27 3-290.

28

So.lNowsKI, T. J. and C. R. Rosp¡rennc (1987): "Parallel Networks that
Learn to Pronounce English Tbxt," Complex Systems, 1, 145-168.

TbsAURo, G. and T. J. SuNowsxr (1989): "A Parallel Network that Learns
to Play Backgammon," Artifrcial Intelligence, S9, 3, 357-390.

ToResso, P. (1991): "Supervising the Heuristic Learning in a Dagnostic
Expert System," FTtzzy Sets and Systems, 44, 3, 357-372.

Vllr^rnr, L. G. (1984): "A Theory of the Learnable," Communications of' the ACM, 27, IL, Ll34-L742.

VæNut, V. N. (1982): Estimation of Dependences Based on Empirical
Data, Spnnger Verlag, New York.

VepNur, V. N. and A. Y. CranvóNENKrs (1971): "On the Uniform
Convergence of Relative Frequencies of Events to Their Probabilities,"
Theor Prcbab. Appl, 18, 2, 264-280.

Werxnn, S. (1993): According to a Usenet posting, Steven Walker
publsihed a thesis on a neural network to play Othello, somewhere in
Australia. No recbrd has been found of this, however..

'Wnnow,8., R. G. Wrlrrn, and R. A. Bexrnn (1988): "Layered Neural
Nets for Pattern Recognition,' fEEE Iþansactions on Acoustic, Speech,
and SÍgnal Processing, 36, 1109-1118.

Wmnow, B. and M. E. Hor4 Jn. (1960): IRE WESCON Convention
Record, pt.4, pp. 96-104.

WnIsToN, P. H. (1975): "Iæarning Structural Descriptions from Exam-
ples," in Winston, P. H., (Ed.): The Psychology of Computer Vsion, Mc-
Graw-Hill, New York.

WrNstoN, P. H. (l-980): "Learning and Reasoning by Analogy," Communi-
cations of the ACM, 23, 12, 689-703.

29

