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Adaptive Stabilization of General, Multivariable,
Continuous- or Discrete-Time Linear Systems

Bengt Mâ¡tensson

Department of Automatic Control
Lund Institute of Technolory

Box ll8
S.22T OO LUND, STI¡EDEN

Abstract. Let ar¡ unknown continuous- or discrete-time, multivariable li¡ear system,
possibly non-minimum phase, and of high relative degree, be given. Suppose tbat we
have the a priori information that for a known, nonnegative integer l, there is e (non-
adaptive) regulator of order I which stabilizes the system. It is shown that this suffices
as a priori information for an adaptive stabilizing controller. An example of such an
algorithm is given. The continuous- ^nd the discrete-time versions are given by exactly
analogous formulas. This yields a continuous reg'ulator, which does not utilize probing
signals. It is based on a dense search through parÂrneter space, and does not utilize
high gain properties, as opposed to the nuniversal reg'ulators" proposed before. In the
absence of information of such an t, it is shown how to modify the algorithm to search
over the regulator structures, i,e. the controllerts dimension.

l. Introduction

During the last year there has been a considerable interest in "universal regulators', see

[3] - [4], t6l - t7l. In [7] it was shown for the first time that knowledge about the sign of
the "instantaneous gaino was not needed for stabilizing adaptive control of a first order
single-input single'output system. In [3] this was generalized to a minimum phase, relative
degree otre system of arbitrary (ûnite) order, and in [a] to a square multivariable minimum
phase system with CB invertible. The algorithm in [l] is however discontinuous and not
given explicitly. Another direction of generalization is [6], which describes a regulator that
will stabilize any single-input, single'output, minimum phase system of relative degree not
exceeding two.

The main contribution of the papers discussed above is that it has been demonstrated
that among the four 'classicalo assumptions on necessary a priori information for adaptive
control of continuous-time, single-input, single-output plants, namely

1) The degree of the plant, n, is known
2) The plant is minimum phase
3) The relative degree n is known
a) The sign of the "instantaneous gain" cAfr-rö is known

points 1) and 4) are not needed. The present work shows that 2) and 3) can be replaced
by a weaker condition.
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A "Universal Regulator" is presented which only depends on a nonnegative integer l, with
the property that there exists a constant, nonadaptive, linear controller of dimension l,
which yields internal stability to the controlled system. It is shown in [2] that for contin-
uous time systems, this is necessary a priori information as well (for a regulator of fixed
structure). Necessary and suficient a priori information needed for adaptive stabilization
of an unknown multi-input, multi-output linear system has thus been characterized. Obvi-
ously, this is not completely independent of 2) and 3): e.g. if 2) and 3) are both true, then
in general the least I is îi - I as is well known.

The regulator presented is based on a dense search through the parameter space. It differs
from the previous 'universal regulators" in [3] - [4], [6] - [7], in the sense that it is not
based on high gain stabilization. Both the continuous- and discrete-time versions are given
by exactly analogous formulas.

In Section 2, it is shown that the static feedback problem contains the dynamic feedback
problem for a fixed order of the controller dynamics. Section 3 presents the oUniversal

Regulatort, depending only on l. Convergence is proved. In the nort section it is shown
how the regulator can be modiûed to search over the structure of the (linear part of
the) regulator, still with guaranteed convergence. Some of its properties are discussed in
Section 5.

2. A Viewpoint on Dynamic Feedbacl

In this section we show that, from a certain point of view, dynamic feedback can concep-
tually be replaced by static feedback. The idea is very simple: we augment the plant by
attaching to it a box of integrators, each with its own input and output. Then we apply
static feedback from the augmented plant, i.e. the plant together with the integrators. For
the continuous time case, the situation is depicted in Figure l.

More formally: Consider the following dynamic feedback problem: Given the plant

ù:An*Bu, ø€R', ¿€Rm

g:Ct, y€RP

and the controller
2-Fz*Gy, z€Rl

u: Ez+ KV

It is easy to see that this is equivalent to the static feedback problem

(rc)

t

(2c)

+BiAI

Ú:Ci
ú_KÚ

2

(3c)
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Figure 1. Dynamíc fædback conside¡ed as statìc feedback.
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For the discrete time case: Let the plant be

r(t+t):Ar(t)+Bu(t),

(t\: cs(t)'

and the controller
z(t + r) - Fz(t) + Gy(t), z efll

r€Ro,

y€Rp

u€R,* (1D)
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u(t):Ez(t)+rv(¿)
This is equivalent to the static feedback problem

i(t+ l) - ãã(t) + bú(t)

i(ú) : crlt¡
ú(r) : irilt)

where i,i,A,Ê,Ô,and ^fr are as¡ before and ü(t) - (u(t)r z(t + r)î)T.

(3D)

3. The lfniversal Regulator

As shown in the preceding section, it suffices to consider adaptive control based on static
feedback. A (fix;d) regulator is then nothing but a matrix € RlwXP. Since a (fixed)
regulator achieving internal stability to the controlled system places all the eigen''ralues

in the open left-half plane, (or the open unit disc) and these depend continuously on the
parameters of the controller, there is an open set in parameter space yielding a stable
system. Equip SJwxP with the norrn

lláll,: !(e)?i

Thus we identify R,-t", aÍ¡ a nonned space, with RMP, equipped with the Euclidean
norm. For the sequel, we let ll.ll denote the this vector norm, or the corresponding induced

matrix norrn. Partition glwxP : Rr x SMP-| in a natural way. Let the regulator be

íL - s(tl(k))iv(r¿(ß))i (4)

å : llill' + ll¿ll' (5c)

k(ú+ 1) - k(ú) + llill' + ll"ll' (5D)

where

or

iv(lr) is "almost periodic" and dense on 5MP-L

and l¿ and g are continuous, scalar functions satisfying

h(k)/æ, fr-'æ

There exists a 6 such that ldgldhl < 6

g ({au + (P,'v)}Ê") : R* for n e z,a * o,'l > P

re(a(*)) # - o, ,b ---+ oo

We can now formulate our main theorem.
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Theorem. Conside¡ ú.he minimal plant (I). .Assume that I is c.äosen so that tåe¡e exists
a (frxed) stabilizing controller of the form (2), and that the augmentation to the form (3)
åas beed done. The controller (a) - (5) subject to (6) - (10) will then stabilize the system
in the sense t.hat

(r(ú),2(t),k(t)) * (0,0,&-) as ú -r oo

w.äere k- ( æ.

Remank. One set of functions satisfying (7) - (10) is

) sin\Æ+ t)
A curve il(lr) on ,9MP-1, satisfying (6) can e.g. be realized by the following procedure:

First we introduce coordinates on 5MP-1, with a variety of lower dimension removed. We

use the "spherical coordinateso on ÍMP-L:

tr : sin 0up-t "'sin 02sin01

:rz : sin 0n¿p-t "'sin 02cos01

ÍM p -r : sin 0 ¡¡ p -t cos 0 ¡4 p-2

ÍMp : cos0¡4p-¡

where
(0r,. ..,0up-t) e (0, 2r) x (o,o)MP-2 - pMP-r

This is a bijection firom DMP-l to a open, dense subset o15¡/P-1. In order to satisfy (6)
put

0;:aih d:1,...rMP-l
where {or,...¡dMp-t } are linearly independent over the rational numbers. The curve
/V(lr) is now analogous to a skew line on a torus, hence it is dense and almost períodic [1].

We will prove the theorem only for the discrete time case. The proof for the continuous
time case is similar, and can be found in [5].

For the proof we need the following lemma, which is proven in the appendix.

Lemrna. l4,ssume that the linear qystem (1D) is obseruable. Then:
(i) For all x(0), úåere are constants cs and c¡ sucå úåat

lt ú \
ll"(¿)ll'("o+" f tllv(")ll'+tll,(")ll'I rttl

\¡=o ¡=0 /

5
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for all r(0), u(.), and t 2 0. .Eere cs does not depen d oa t or v; and c1 does not depend oa

ú, ,(.) or r(0).

(íì) For T )- v, the obseruzbílity index of the systeut, cy czrr be taken so

t

llv(")ll'+ t ll"(r)ll,
T ¡=t-T

for aII t, u(.), and r(t - Ð.
(íä) cs and c1 can be úake¡ æ that (11) holds, witå tåe same c6 and c¡, for all augmentations
of the form (t) -- (3), i.e. for all I.

Proof of the Tbeorem. We claim that it is enough to show that fr increases to a ûnite limit
È-.By (4) - (5D), ! and ieP. Part (ii) of the lemma applied to the plant (3D) yietds

that z(ú) and z(t) -* 0, as ú --+ oo. This proves the claim. For the proof we may thus
assumethatklæ.

First we find an estimation of the norrn of ¡ before the system stabilizes: By (SD) and the
lemma applied to the system (3D) there exists constants co alrd cr such that

llãll' s co * ctk (12)

Next we analyse the properties of the regulator matrix cuwe g(å)/V(å): It follows from (6)
- (9) that {g(n)w(lz) ,h: h(k),,t e R+} is a dense subset of the space of M x P matrices.
BV (0) and (8), this curve is traversed with a bounded velocity iu the parameter Ir. By
assumption, there is a geJVe such that the control law ú :_goJYoi_ttab_ilizes the system.

There is also a Q : QÍ ) 0 such that (ã + goBnoÔ)'Q(A+ sohnoÔ) - A: -f. By
continuity, the left hand side will be < -|I for gJV in some neighborhood of 9olYo.

From this we deduce that there exists infinitely many disjoint open intervals I, : (ar, Êr),
v :_lrLr..:i a co_nstant ó_ > 0 such tbat B, - av ) ó for v : lr?r...i and (.4 *
s(h)Bl,I(n)C)'QG + s(h\BN(h)C) - Q < -lI ror Ir in any of these intervals.

We now analyze what happens when h e I, for some z. Suppose that h e I" when
ú: ú0. By above, {Qi will then be a discrete-time Lyapunov function, and llã(t)ll <
cse-er(t-t")llã(úo)ll for some c6¡c1 ) 0 and t ) úo.This, together with (4), means that
there exist constants do and d1 such that

llr(¿)ll'= r, (,Ë

oo æ

')
(

æ

D llill'¿¿ s ¿' 1*dosuPg
heI.

llã(¿o)ll'DlFll'¿r+ Ð lli,,ll2dt s 1+dosup

'Ler'üs úe üe

provided that l¿ stays within lrrfor some vrfor all ú > ús. In particular, the left hand side
exists finite, and the theorem will be proved.
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Finally we prove that å will get stuck in some Ir: The increase of h per unit of time is less
than or equal to

rcrr(¿sin(¿+,,, 
(#) (rvrt' + r¿r') ( sup (#) (, * ," r*r,i,lrï*,r,0) 

trtt' s

*r (#) d2(t+d6sup s)llill"

for some dz.By (t0) and (tZ) this tends to 0, so we will intersect the lower half of I, f.or
u large. rüfhile h e I" I¿ will increase by at most

;åt" (#) I (lt¡ll'+ tt¿tt') < d, ;åi (#) (' * r,;åp, 
Ð tt;(¿o)tt'

Combining this with the estimate (12), a¡d considering (10) we conclude that for l¿ sufr-
ciently large, the left hand side is less than 6/2. Thus there is z v such that I¿ will never
leave .I". This proves the theorem.

4. Searching over the Dimension of the Controller

If no I is known, the algorithm can be modified in the following way: Let the regulator
order be f(tu), where I : R+ - Z+ is piecewise constant over lengths l¡ / æ, and ¡({r, >
åo)) : Z+ for all lrs. Also put z : O every time the regulator order changes.

By (iii) of the lemma, it is a straightforward verification to check that the proof will still
be valid. The details are omitted.

5. Properties of the lfniversal Regulator

The most obvious property of the regulator described in the previous sections is that it is
absolutely useless for every practical purpose, and its value is only on the level of existence
proofs, to show that adaptive control with a certain amount of a priori information is
possible.

From a certaiu point of view, the search may iuvolve a vast overkill. For the ndynamic

feedbacko case we are e.g. also searching through the coordinates of the controllerts state
space. With more a priori information considerable refinements can be done.

Appeudix.

Proof of the lemma. We first prove (i). BV adding inequalities over ú we see that it is enough
to show

t

ll"(¿)ll' - ll'(¿ - ùll' S r, Ð (lly(')ll, + llu(r)ll,) dr (13)
¡=t-v

7



for some c1 and all ú > y. F\rther, by using time invariance, it is enough to show (13) for
t : v.In an obvious operator notation

t
r(t) : á¿r(0) + t At-' Bu(r): Llr(o) + t't u(.)

ll"(")ll' - ll"(o)ll' < zllLix(o)ll' + zllr,iu(.)ll2 < 211L"rr(o)ll'+ zllLïll' f ll"{")ll' (t¿)

where .[t, and Lt, are bounded linear operators. We have

lVrite V(ú) a.s

y(t) : CL\x(o) + C L\u(.) = yr(t) + yz(t)

Clearly,

¡=O

v

o

v

¡=0

v

o

U u

0 o

But observability implies that

Ð llr,ll',1, < 2t llvll' + 2D llv,ll2 S 2t llvll',+ zulcllllLïll)'D ll"ll'

ll[ nß\ll2

",i,ì}.iäfm:
x(o)r A' l.r(o)

",iio*"

o

U

:do(oo

v

where M: MT ) 0. So,

u

llr,iø(o)ll' < ¿oÐ lly,ll' s ¿, Dllvll' + ¿,Ð ll"ll'
0 o o

for some d1 and d2. This, inserted into (14) proves (i).

Because of the estimations in (l ), $/e see that (ii) is already proved for the case t : T : v.
The proof for general ú and I is similar.

To show (iii), note that c1 can be expressed as a function of lllill and de, so it is enough
to show that these are bounded under all augmentations (1) 

- 
(3). But this follows

straightforwardly from the form of the augmentation. We leave the details for the reader.

Referencee.

lll V. I. Arnold, nGeometricalMethods in the Theory of OrdinaryDifierenti¿lEquations", Springer Verlag,
New York, 1983.

[2] C. L Byrnes, U. Eelmke, and A. S. Morse, "Necessary Conditions of Adaptive Control", to appear.

[3] C. L Byrnes and J. C. Willems, nGlobal Adaptive Stabilization in the Absence of Information on
the Sign of the High Frequency Gain", Proc. fNRlÁ Conf. on Analysis aad Optimization of S¡æÍeras,
Springer Verlag, 1984, 49-57.

8



I{l C. L Byrnes and J. C. Willems, sAdaptive Stabilization of Multir¡a,ri¿ble Linea¡ Systems', Proe. of
23rd Conl. on Decision æd Control, Las Vegas, 1981, 1674-1577.

[5] B. Mårte¡urson, "Tbe Order of any Stabilizing Regulator is Suf[cient A Prio¡i luformation for Adaptive
Stsbilizstion", to appear iu Systeas ¿nd ContrcI Letterc.

16l A. S. Morse, "A 3-dimensional 'universal' Controller for the Adaptive Stabilization of any Strictly
Proper, Minimum Phase Plant witb Relative Degree not exceediug two', preprint, August 1984.

[7] R. D. Nussbaum, 'Some Remarks on o Coqjecture in Paraneter Adaptive Control', Systems and
CoatrcI Lett err,, 3(f 9æ) 213-246.

I




