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CHAPTER 1 - INTROBUCTION

The purpose of these lectures is to present some basic stochastic
control problems and to present mathematical theory that is useful in
solving the problems. To provide a red line in the lectures they are
focused on a specific problem, namely to understand feedback mechanisms
which is a fundamental problem of contrcl engineering.

A schematic picture of a process with feedback 1s shown in Fig. 1.
The process is characterized by {nputs, i.e. variables which can be
manipulated, cutputs, i.e. variables that can be measured, and
distunbances, The disturbances describe the interactien between the
environment and the process, It is assumed that this interaction is
such that the environment influences the process but that the process
does not influence the environment. The feedback mechanism receives
informaticn about the process and the environment through the measure-
ments and it generates appropriate control actions se that the closed
loop system behaves appropriately in spite of the disturbances from
the environment. A common example of a feedback law is the PI regula-
tor which is described by

u{t) =u

1 t
regft) + K[e(t) + T [ e(s} ds]

(1)

e(t) =y ) - y(x),

ref
where t is time, u is the input signal, y the output signal,
Uiof and Yyar are reference values for the input and the output.

It is very fortunate for the contral engineer that many processes can
be controlled very successfully using a PI-requlator provided that the
parameters K and T are chosen appropriately. This fact is of

course less fortunate for the control thecretician.

Feedback processes were first explored purely empirically in
connection with technical systems like centrifugal governors and
electronic amplifiers. It has later heen found that feedback processes
alsc play an important role in economical, biological, environmental,
and soclal systems.

Many attempts have been made to develop mathematical theory
which will help to understand and to design feedback systems. Classical
control theory was largely analytical in its nature. It gave tocls for
analysing a given feedback system. There was a great emphasis on
stability theory. Synthesis and design problems were dealt with by
repeated analysis. Over the past 30 Years theory which aims directly
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Feedback = Process Y

Fig. 1 - Schematic diagram of
a feedback system.

at design and synthesis has been formulated. Optimal control theory
is one idea. It answers the following problem. Given a description of
the process to be contrelled and a criterion which characterizes the
desired behaviour of the closed loop system. Find the best fsadback.
One drawback with optimal contrcl theory is that it dces not neces-
sarily give a feedback solution. This is shown by the following

example,

EXAMPLE 1.1
Consider a process described by

gy .
it = M

with initial conditions
y{0} = a.

Assume that it is desirable to control the process in such a way that
the performance of the system evaluated by the criterion

J = 1y2ie) +u?(t) ] at
4]

is as small as possible. It is easy to show that J 2 az and that the
minimum is achieved for the control signal

= -t 1.1)
uft) = - y(0) e 7, (2.1

or for the feedback law

w(t) = - y{&), (lfé) 




or for any combination like

alt) = - a y(0) e © ~ {l-a) y(t), & < 1.

The ceontrol signal given by {l.1) is called a control program or an
open loop solution because it requires only the knowledge at the
measured output at time t = 0. Egquation {1.2) gives a proper feedback
law because the value of the control signal at time ¢ is a function
of the measured output at time . It is clear that the solutien (1.2)
is more robust than the solution (1.1} because it will give a smaller
value of the leoss function if there are perturbations in the descrip-

tion of the model.
o

The example shows clearly that in order to get a feedback sclution to
an optimzl contrel problem it is necessary to introduce disturbances
and uncertainties in process descriptions. In stochastic control theory
the disturbances are described as stochastic processes. Stochastic
control theory will give valuable insights into the properties of
feedback systems, It will give the structure of optimal feedback laws
and it will e.g. tell when it is motivated to use a feedback law that
is more complicated than a PI regulator. It will also in some cases
give practical design tools.

From a mathematical point of view stochastic contrcol theory is a
combination of the theory of stochastic processes with the theory of
differential and difference equations, calculus of variations, and
optimal control theory.

The purpose of these lectures is to give an exposé of some ideas
in stochastilic control theory. The material for the lectures has been
chosen in order to give some feel for the variety of the theory.
Insight into the nature of feedback processes has been chosen as a
unifying theme. For simplicity discrete time systems are treated
throughout. Section 2 dealis with a linear problem minimum varitance
control., The main virtue of this problem is that the theory is very
simple and the ideas transparent, The feedback laws obtained are
linear. It ls thus a good starting point. The models used to describe
the process and its environment are controlled ARMA (autoregressive
moving average) processes or CARMA processes for short, The theory
thus has strong ties to parametric time series analysis. The criterion
is to minimize the variance of process outputs. Minimum variance con-
trol is of interest for control of some industrial processes where the
purpose is to keep certain important guality variables as close as
possible to prescribed limits. The theory will tell when and why it is
useful to use a feedback law that is more complicated than the PI~




~regqulator. The theory will alsoc show the close relationships between
minimum variance contreol and optimal predictor thecry. The models usad
in the minimum variance control theory also occur in macroQcconomics.
There the models are referred to as "the reduced form" of the equations
describing a macroeconomy.

The process models used in Chapter 2 are pure external descrip- F
tions. In Chapter 3 the linear stochastic control problem is approached A
from a different point of view. The main difference is that the mode]
of process and its environment are now characterized by internal de-
scriptions or state models. The criterion is again to minimize the
expected value of a guadratic form. The problem statement i3 somewhat
moye dgeneral than the minimum variance problem., The major results of
this theory are the Kalman filtering problem and the so called separa-
tion theorem or certainty eguivalence problem which again will give
important insights into the nature of the feedback control problem,

The feedback laws obtained in Chapters Zand 3 are all linear
feedbacks. In Chapter 4 we turn to models that will give nonlinear
feedback laws. To keep the mathematics simple a problem with finite
states is discussed. The nonlinear probiem can then be solived and the
sclution will provide valuable insight into the properties of feedback
control,

In Chapter 53 the results of Chapter 4 are generalized. The
preoblem formulation will e.g. include the problems discussed in
Chapter 2 with the additicnal complication of the process medels now
being unknown. The analysis will lead to discussion of notions of dual
control, certainty eguivalence, caution,and probing.

The control laws obtained in Chapter 5 are extremely complex.
They can not be implemented with computing power available today. In
Chapter 6 we therefore discuss simplifications that will have nice
asymptotic properties. This leads to the notlon of self-tuning
regulators.

The books [1] and {2] listed below are useful supplementary
reading. A reader interested in the continucus time problems can
consult [3].

References

[11 H Kushner: Introduction to Stochastic Control. Holt, Rinehart and
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CHAPTER 2 - MINIMUM VARTANCE CONTROL

i. INTRODUCTION

A very simple stochastic control problem is discussed in this section.
It is assumed that the process dynamics can be described by an external

description in the form of a difference equation with constant coeffi-~
cients and that the disturbances can be characterized as ARMA processes.

It is assumed that the purpose of the control is to find a feedback

law such that the fluctuations in the process output are as small as
possible as measured by the output variance. The mathematical models
for the process, its environment, and the criterion are discussed in
Section 2. It turns cut that there is a close relationship between
minimum variance control and optimal prediction., The prediction problem
being scomewhat simpler 1s therefore filrst discussed in Section 2., The
minimum variance problem is then formulated and solved in Section 4.

2. MATEEMATICAL MODELS

The mathematical models used to describe the process dynamics and its
environment will now be discussed. Single-input single-output systems
are first treated., It 1s found that a generic model called@ a CARMA

process (Controlied ARMA process} can be obtained. The multivariable

version of this process is then given.

Process Dynamics

Consider a system described by Fig. 1. Assume that there is one
input and one cutput only., It is assumed that the relation between
the measured output y and the control variable u c¢an be described
by the difference equation

Yt} +aiy(t—l)+...+a&y(t—m) = béu(t-k)+...+béu(t-k-m).

This is the case for example if the process can be described by an
ordinary linear differential equation with constant coefficients and

a time delay and if the input signal is assumed constant over sampling
intervals of unit length. Introduce the backward shift-operator q“l
and the polynomials

M@ =1 +ajg  +...talg "

—l)

I

By (q by + blg™t +... + big™,
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The model can then be written as
Bl (q—l)
y(t) = . ult-k). (2.1)
A (g )
This model is often a reascnable approximation of many engineering ¥
processes that are being operated c¢lose to equilibrium conditions.

The Environment

It is assumed that the action of the environment on the process can be
described by a disturbance n acting on the ocutput. Adding a dlsturb-
ance n to the output y of (2.1} gives
Bl{q_l) -
y(t) = -3 ul(t-k) + n(t}. (2.2}
A (g )
There may in fact be many different disturbances acting on the process,
Under the linearity assumption it is possible to use the superposition
principle to reduce all disturbances to an equivalent disturbance n
on the output. The disturbance n thus has physical interpretation as
the output that would be cbserved if there is no control i.e. u = 0,
Moreover it 1s assumed that the disturbance n can be represented by
-1
e ™)

]’!(t) = —_1"' E{t); (2.3)
Ay (g )

where fe(t), £t=0,21,+2,...} is a seguence of independent normal
random variables and Cl(q'l) and Az(q_l) are polynomials in the
backward shift operator. Such a representation is certainly possible
if n is a stationary stochastic process with a ratlonal spectral
density. The representation (2.3) will however not necessarily require
a stationarity assumption. Non-stationary processes can be handled by
letting the polynomial A,{(f} be unstable i.e. have zeros inside the

unit disc.

The CARMA Model

A combination of the equations {2.2) and {2.3) gives the following
description of the process

B, (g™ h ¢t
yit) = e uit-k) + — e{t}).
Aylg 7) Ay(g ")
By introducing the polynomials A = AJA,, B = BLAZ' and C = CzAl;



this description can be simplified to

Al Yy yie) = Blg Y ult—k) + c(a™ Yy e(t), (2.4)
where

aiglh) =1+ alq_l ot anq_ﬂ

(gt = by + blq_l-é...+bnq_n, by # 0

cigty =1+ clq'l+...-+cnq'n.

There is no loss in generality in assuming that all pclynomials are of
degree n because we can always put trailing coefficlents equal to
Zero. B

The mathematical model (2.4} will be called a CARMA (contreclled
ARMA) process, because without the contrel i.e. u = ¢ the model 1is
identical to the ARMA process which is commonly used in time series
analysis. Notice alsc that without the disturbance the model is a
simple rational transfer function model which is commonly used in
engineering.

Notice that it is always possible to assume that the polynomial
C(£) has all its zeros outside the unit disc cr on the unit circle.
This is seen as follows. The peclynomial C(q_l) only enters the
system description in the description of a d¢isturbance

1

v(t) = Clg ) &t}

The signal v 1is completely characterized by its covariances.

rv(k) = E v({t) vit+k} = %Ek Ci Clux-
i=0

The covariance rv(k) is also given as the coefficient of the term

qk or q-k irn the Laurent series of the function C(f) C(E_l}. But

by factoring the polynomial and sorting the factors differently it i=

always possible to find a polynomial T(f) with all zeros cutside the

unit disc or oun the unit circle such that

1

cley (el =¥y et h.

A simple example will serve as an illustration,
EXAMPLE 2.1
Consider the random process {v{t}}

1

vi{t) = e(t) + cel{t-1) = (1+cg =) e{t),




where ¢« > 1 and var e(t) =1. Hence
C(q-l)C{q) = (1+chl)(l+cq] = {c+q"1J(c+q) = c2(l+c_lq'l)(l+c—lq),

The stochastic process {v(t)} «can thus als¢c be represented as

1

vig) = (1 +%«q—l)ce(t) = &'(t) + = g'{t-1), }

where var e'{t) =c2.

Multivariable Generalizations

The CARMA model can easlly be generalized to the multlvariable case,
The description (2.4} still holds provided that y{(t}, u(t}, and e{t)
are interpreted as vectors and that A(q-l). B(q?l}, and C(q-l} are
interpreted as matrix pelynomials. The vectors y and ¢ can be
chosen to be of the same dimension, The matrix polynomial C(q—l} can
always be chosen in such a way that det C(£) will always have its
zeros outside the unit disc or on the unit circle.

The multivariable CARMA model can be used to represent lnput
output relations for multivariable industrial regulation problems. This
model is also used in economics to represent the so called reduced form

of a macro economic model.

3. OPTIMAL PREDICTION

The cptimal prediction problem will now be discussed as a preliminary
to solve the minimum variance control problem, The main result is
given by

THEOREM 3.1

Let {y(t),t=0,%1,%2,,..1 be a normal stochastic process with the
representation

-1, g —1
alg ") y(&) = C(g 7} e(t), (3.1)

where (e(t),t=0,%1,%2,...} 1is a segquence of independent normail
(0, R} random variables. Assume that the pclynomial det C(g) has all
its zeros outside the unit disc. Then the k-step predictor which mini-

mizes the variance of the prediction error in steady state is given by

1 1

Seeskie) = 6™l ¢ hig™h v, (3.2)

where



a7 g hew™ = ciahatigh=righ +a7¥ e ha g (3.3)

and the polynomial F(g~1) is of degree k-1:

k+1

—l -
Ly - I+F g ...+ F ) q . (3.4)

Fl{g~
The error of the optimal predictor is a moving average of order X

Vittkle) = g{t+k} + Fy e{ttk-1) + ...+ F_, &(t+]) (3.5)

and the covariance of the prediction error is

cov [¥,¥] =R+F13FT+...+F_ (3.6)

T
1 k-1 B Fg-

1
Proof:

The proof is atraightforward and constructive. Equations (3.1) and
(3.3) give

1

vlt+k) = CA™Le(t+k) = Fe (t+k) + 6A™ Lz (v).

Substitution of & by y in the last term using (3.1} gives
y(t+k) = Fe(t+k) + 6C 1y (e),

The expression GC-ly(t) exist because det C=det ¢ and it was
assumed that all zeros of det C(g} were outside the unit dise. Now
let Q be an arbitrary function of y(t}, y{t-1),... Consider the
prediction error

Flttklt) = yle+k) - ¥ = Pe(t+k) + [6C Yy(t) - $1. (3.7)
et a be an arbitrary vector. Then
EIaT§'(t+klt)32 = ElaTFe (b+k) 1% + E{aT{GC'ly(t) -Ql}z +

+ 28{a"Fe (t+x)aT16c Yy (t) - §1). (3.8)

The last term vanishes because e (t+k), e (t+k-1),... e{t+l} are all
independent of y(t), y(t-1),... and then also independent of 9. The
predictor {3.2) thus gives the minimum value of the prediction error
for all a. It then follows from (3.7} that the prediction error 1s
given by (3.5). A simple calculation based on {e(t)} being indepen-
dent then gives (3.6).

Remank 1

Notice that the best predictor is linear. The linearity does not
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depend critically on the minimum variance criterium. Since {y(t)¥} is
normal, the result would be the same for all criteria of the form
E h{aT[y(t+k) -%1} provided that h is symmetrical.

Remarh 2

The assumption that e(t} and e{s) are independent for t # s 1is ?
crucial for the argument that the last term in (3.8) will vanish. If '
the stochastic variables ¢e(f) and e(s) are not independent it is

in general not true that the product of ¢ (t+r} and an arbitrary

function of yi{t),v{t-1),... will vanish, However if the predictor

is restricted to be linear functions of yi(t),y(t-1),... then it is
sufficient to assume &(t) and &(s) uncorrelated for the proof to

hold. This situation is typical for iinear prob%ems with guadratic

criteria.

Remark 3
Netice that it follows from {3.5) that

Flesllt) = y(t+1) - §(e+lle) = e (e+D).

The stochastlc variables {s(t)} can thus be interpreted as the inno-
vétions of the stochastic process ({y(t)}. It is straightforward to
calculate the predictor, The polynomials A and € such that
CA-l = A-lc are first determined. The polynomials F and (6 are then
obtained as the quotient of degree k-1 and the remainder obtained when
dividing ¢ by A.

Notice that the predictor ig a dynamical system (3.2) whose
dynamices is governed by the matrix pelynomial ({£). The assumption
in the theorem that det C{£} has all its zerocs outside the unit disc
guarantees that the predictor is stable., The initial conditions chosen
for the predictor are thus immaterial, It was shown in Section 2 that
the model could always be chosen in such a way that det C(£} has all
its zeros outside the unit disc or on the unit circle. The Theorem 3.1
thus assumes away the case when det C(E) has zeros on the unit aircie.
This case requires special treatment because the optimal predictor is

timevarying., A simple example illustrates what happens.
EXAMPLE 3.1

Consider the following scalar process

y({t) = e(t) - g(t-1}.

In this case the polynomial C(t}) = 1=-& has apparently a zero on the
unit circle. The one-step predictor is given by

Ft+lie) = -e(t),
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Attempting to caleculate ¢(t} from y(t), y(t-1),... as was done
before we get
t

el(t) = I yik) + et

= z{t) + e{ty).
k=tq+1

o’

The presence of the term e(to) whose influence does not vanish as
tO -+ —w clearly shows the censequences of the egquaticn

Cig™l) sit) = yit)

being unstable, The initial condition s(tg) can be estimated by

1 t 1 t k
E(tG) = - =t x z (k) = - =t hat r yi{i) =
0 k.=t0+l 4] k=tG+l l=ta+l
1 t
= - =t b3 (t+1-k) y (k).
O k=tgtl

This estimate will converge to s(to) as the number of terms in the

series increases towards infinity. The predictor for y then becomes

A t k-1-tg by e-g-i
yit+lit) = - z T yik) = - X = y{t+i-1i), (3.9}
k=ta+1 0 i=1 0

This predicter ls clearly not a linear time-invariant system. Notice
that the predictor (3.9} has a varlance that approaches Eez as
t-t, =+ ~. A formal application of Theorem 3.1 gives the predictor

A t
ye+l]tr =~ £ y(k),

—co

which gives a prediction error with variance 2552. o

The result of this example can be extended to the general case. See

Hannan [5].

4., MINIMUM VARIANCE CONTROL

Having solved the prediction problem for the ARMA process we will now
return to the CARMA process defined by equation {2.4) where A, B, and
C are now regarded as matrix polynomials. To formulate the control
problem it is necessary to define a criterion and the admissible
controls.
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The Criterion

It is assumed that the criterion for the control problem is to control

the system in such a way that the steady state variance of the ocutput

is as small as possible. This criterion is a fairly good model for :
steady state control of important quality variables in industrial %
processes. The situation is illustrated in Fig. 2. Because of the
fluctuations in the process output it is necessary to choose the refe-

rence value for the vregulator above the test limit to make sSure that a

given percentage of the production is acceptable. By reducing the

variance in the output it is then possible to operate closer to the

test limit. This gives a gain which can be capitalized as increased
production or reduction of raw materials used. For processes with a

large volume of production even very moderate reductions in variance

can give very substantial benefits,

Prabability density

Set peint for regulater
, with low variance

Test |
lienit

Set point far reguiator
“with high variance

—,
Froceas output

Fig. 2 - Illustrates that a decrease of

the variance of the output signal makes

it possible to move the set point cgleser
to the test limit,

For single output systems the criterion will thus be taken as to -
minimize the following loss function

v, = E y2(t). (4.1

It will be shown that the same results will be obtained for the loss-
function
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N
v,=lmE 3 £ yio. (4.2)
Neteo =]

In the vector case the corresponding lossfunctions are

v =Ey (0 0yib) " (4.3)
5 and
1, ¥oor
j Vo, = lm FE I y{t) ¢yt (4.4)
; Noroo t=1
raspectively.

Admissible Contrels

It is assumed that the admissible control laws are such that ul(t},
i.e. the value of the control signal at time t, is a function of
yi{t), yi{t-1),.., and u{t-1),u{t-2),.... By restricting the function
to be linear the assumption on {e{t)} in the CARMA model can be
relaxed from &£(t} and £{(s} being independent for t # s to being
uncorrelated,

The Minimum Variance Control Problem

The problem of controlling a CARMA process in such a way that the
minimum varlance criterion (4.1} or {(4.3) is minimized will now be
discussed. The solution is given by

THEOREM 4.1

Consider a CARMA process given by (2.4) where {e(t)} is a seguence
of independent stochastic vectors with zero means and covariances R.
Assume that the number of inputs and cutputs are the same and that the
polynomials det C{£) and det B(E) have all their zeros cutside the

unit disc. Let the matrix polynomials F{q—l) of degree k-1 and

. G(q_l) of degree n-1 be defined by

: Al e = Figh +q7F 2 g h aigTh. (4.5)
: Then the coentrol law

e = -sle Y se™h Rl gee) = 7™ el e e (4.6)

minimizes the criterion {4.3) in the steady state and the steady out-~
put of the controcliled system becomes

y(t) = F(@™H 6(6) = c() +F elt=1) ...+ F, _ &(t-k+l). (4.7)

k-1
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Proo§:

A change of the control signal at time & will be noticeable in the
output at first at time t +k. Berause the matrix B, was assumed
regular it is also possible to change all components of the cutput at
time t +k arbitrarily. It follows from (2.4) and (4.5) that

1

yitik) = F(g 1) elt+k) + 23 g™h [BghH uie) + clgh) ety ],

For simplicity the polynomial A(q-l) will now simply be written as
A. Using (2.4} to eliminate ¢ in the last term we get

1 1

y{t+k} = F e(t+k) + A TBu{t) + A~

i

oc”lay(t) - A lec Butt-k) =

1

]

F e{t+k) + FC IBu(t) + A~ lac tay(t), (4.8)

where the equality is obtained by applying (4.5) to the terms contain-
ing u{t). To proceed notice that

1 1

G(ABF) - C = C{AF} — G, (4.9)

because it follows from (4.5} that

1 1 1

a(ary ™t ¢ = g (c-ar) (am)” dican”

c

i

c-cC]

car) ! ¢ = g®c(ar) " lic-ar = gficam T

L

c-cCl.

Equations (4.8) and {(4.9) give

1 1 1

yietk) = Flg D) elt+k) + Pl D Ha D g Hutw) +e(q

yE g hy i) 1,

The two terms of the right member are independent because of the defi-
nition of admissible strategies, because the polynomial det C{q'l) is
stable too, and because of & (t+k} being independent of y(t), y{t-1),
... for k > 0. It thus fecllows that

By’ (t+k)Q y(t+k) > E[Fiq De(er))TolFig etk ] =
= “’[Q+FTQF1+"'+§£—1QEk-1] R,

where equality is obtaired for

Big %) u(t) + G{q_l)' e(t) = 0.

Then also

y(t) = F(gh) e(w).

A combination of these eguations gives the control law (4.6)}. To see
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the transient behaviour of the system introduce the control law {4.86)
into the system description {2.4). Hence

atg ) +q 6@ HE e hl viey = c@™l) eny.
Equation {4.5) gives
cta™h (F g™ Myie) ~e(e)1 = o. (4.10)

Since the polynomial C{L) was assumed to have all its zeros outside
the unit disc, this implies that the expression in brackets will
converge to zero exponentially at a rate governed by the zeros of

det C(f).

Remark 1
The theorem still holds if e(t) and e(s} are cnly assumed uncorre-
lated for t # s if a linear control law is postulated.

Remark 2

A comparison with the solution of the prediction problem shows that

the control error under minimum variance control equals the error in
predicting the process k steps. The minimum variance control law can
thus be interpreted as doing the following. Predict output k steps
ahead where k is the time it takes before a control action is notice=-
able in the output. Choose a control signal which makes the predicted
value equal to the desired output.

Remank 3
The control error is a moving average of order k. This is easy to
test and useful for diagnosis.

Remark 4

It folliows from {4.10) that the poles of the closed loop system are
given by

det c(z"1) = 0.

Remanrt &

Notice that the control law {4.6) does not depend on the matrix Q.
The control law will thus simultaneously minimize the variances in all
components of the output. This motivates the name minimum variance
strateqy.

7
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Control Effectiveness

Without contreol the output becomes

-1 1) £ (t)

yplt) = A -1

ChCE

and under minimum varlance control the ocutput becomes

_ -1
ymv{t) = F{g 7} &{t).

Hence

1

]

y {t) = F(q

-1, -1 -1
v y Tl ah vy .

The reduction of the fluctuations in the cutput can thus be character-
ized by the transfer function -

-1, -1

Hig Yy = Fig D) ¢ High agh.

A simple example illustrates what can happen.

EXAMPLE

Consider a first order scalar system with k =1 ang

A(q_l) =1+ a q-l
C(q"l) =1+c q_l.
Hence
-1

- +

Hig 1} = l_,éﬂ:i
1 +cg

—j 2

4 (e 1m)E l+a“+2a cos a

1+c2+2¢c cos w

A graph of the function |H| 1is shown in Fig. 3. The graph shows
that in the particular case the action of the minimum variance 1s to
reduce the low-frequency compcnents and to increase the high freguency
components in the output.

The Minimum Phase Assumption

In Theorem 4.2 it was assumed that the poiynomial det B{f) has all
its zeros ocutside the unit disc. This assumpticn is called the minimum
phase condition because it implies that the input-output relation
given by (2.4) for e¢=0 is a nonminimum phase system. If this condi-
tion is violated the control law given by (4.6) still gives the
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0.51

L
e

0 T T
-0 x/2 4

Fig. 3 - Amplitude curve of the transfer function H
which shows how the minimum variance control law atten-
uates disturbances of different frequencies.

smallest varilance of the outputs., It follows, however, from {(4.6) that
the control signai u is given by

u{t} = —Bﬂltq-l) G(q-l) gl{t).

If the polynomial det B(£) has zeros inside the unit disc this diffe-
rence equation will be unstable and the control signal u will grow
exponentialily. This will not have any influence on the output vy
because the exponential components of u wiil be cancelled by the
operator B{qql) which operates on y in the system model. The
cancellation will of course only be possible if the control law was
caiculated from a precise model of the system. Small perturbations in
the model implies that the exponentially growing components will be
transmitted to the output. This is illustrated in Fig. 4 which shows
the results of a simulation. -

From a practical point of view it is thus clear that the control
law {4.6) is useless if the polynomial det B(E) has zeros inside the
unit disec. There are several different possibilities to circumvent
this problem. One.possibility is to include a penalty on the control
actions, i,e. to change the criterion to

E[y2+p u2].

Control laws with the property that u(t) will be very large will
then be excluded, In several cases it may, however, be unrealistic to
assign a proper value of p and we will therefore investigate the
problem with p=0. It turns out in fact that the problem of mini-
mizing {4.1) has several local minima if the pblynomial det B(Ef has
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Output y

o “8p 0o

Time

Control variable u

e % w0

Time

Fig. 4 - Simulation of a nonminimum
phase system with minimum variance
control. The system is described by
yit) - L7y (t-1) +0.7y({t-2) = 0.9 u(t-1}
+ u{t=2) +e{t) «0.7e{t=-1).

zeros inside the unit disc, Before stating the main result the notion

of reciprecal polynomial is introduced., Let B(L) be a polynomial
B(E) = by +byE +...+ b E" ;
then the reciprocal polynomial is defined by

n~1

B(E) =bot” + b E™ T 4L+ b .

In the single-input single-output case we have
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THECREM 4.2

Consider a single-input singie-output system described by (2.4). Assume
that the polynomial C{f) has all its zeros outside the unit disc and
that the polynomial B(f) has zeros both inside and outside the unit
disc. Let B be factored as

-1 1

Bla ) = Bylad D) Byla 1), (4.11)

where Bz(g} has all its zercs inside the unit disc and 82(0) =1,

Let H{g~l) and K(q_l} be defined by the partial fraction expansion
L -1 (g 1)

cig™h B,(q" 1
_ + , {4.12)

A(q_l) q_kBé(q-ll q_kBZ(q-l} A(q_l) ~
whera
-1, _ -1
deg H(g "} = k=1 +deg Byla 7). (4.13)

Then the variance of the cutput has a local minimum for the control law

k(g b ) Kta™ ) ( |
wlt) = = gy (t} = - ————————— ¢ (%) (4.14
Hig HB @ h 8, (g DB, qH

and the corresponding cutput is given by

—-1
Hig ) .
Y(t) ::—_— el{t). (4.15)

Bylg ™)

Proo{:
Equation (2.,4) gives

B
yetk) = B u(t) + £ e(ern) = 22 w(esk),
By
where
BB cB
wit+c) = 12 ult) + " 2_ e(t),
a4 AB,
The signals y and w have the same variances because B,y and ﬁz
are reciprocal polynomials. Eguation {4.12) then gives
B.B H
wit+k) = 22 uge) + et) + 5 gy,
Fy -X A
q "B,

Now use (2.4) to eliminate £(t) in the last term, then
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B.B
wlt+k) = —— &(t) + lzuw}+§[%yu>-%uw¢1]=
B.B -k
- _H 1’2 _g XB K =
—;:_TB-— e (t) +{ A IX) ]u(t) +CY(t)
2
-k ~
g 'B.B CB
= H— et + L2 [ - %] ute) + £ y(e) =
q B2 c Aq 82
B.H
- _Hk € (t) +—-(l:—u(t} +I—éy(t),
g Bz

where the last equality follows from (4.12}. Hence

n(g™ Bl(q_l}H{q_l) xig™h
wit+k) = — El(t+k) + [___———:E——___ u(t) +‘———:T— Y(t)]. (4.16)
Bylg ) Cig ) Clg ™)

Because the polynomial B,(f) has all its zeros inside the unit dise
and because of (4.13) the first term of the right member of (4.16} can

be written as the converging series

H

B(g™ ")

;:E;;?E:IT e(t) = e{t+l) + ala(t+2] + ol .

Since the polynomial C{E) has all its zeros outside the unit disc,
the second term can be expanded as a converging series in

y(t), y(t-1},... u{¥), ult-1),... The two terms of (4.16} are thus
independent and the smallest variance is obtained for the control law
(4.14) . The output of the controlled system is then given by (4.15).

Remartk
The control signal u defined by (4.14) is bounded if Bz(g} is

chosen as the factor which contains all zeros of B inside the unit
disc.

Consider a system described by (2.4) where the polynomial B(f) has
Zeros inside the unit disc., According to Theorem 4.1 there is an
absolute minimum to the variance of the output given by

ElF (g Dye(t) 1, (4.16)

The control law which realizes this minimum is given by

-1 ~1
utty = - —Ha Loy w2 SlA ) Ly,
Bla Hrg ) B(g™)
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The variance of the control signal will clearly be infinite because
B(g 1)
to Theorem 4.2 there is then another local minimum of the loss function

is unstable, Let B2 be an unstable factor of B. According

given by

-1 2 i
E [—_Tf—i‘i—ll— e(t)] . wan |
4 " Byla )

It is easy to show that

a(g™h - L@
eIy £(8) = Flg Y etk + = e,
q " By h B, (a b

where Ly is defined by the partial fraction expansion

claheah o @h 1,Eh
] i = oy deg Ly < deg B,
Alg 7)By(@ ) By{g 7)) A(g )

The loss function (4.17) is thus always larger than (4.16) and the term

L, (@ h 2
E[TT s(t)}
By(g )
represents the increase in the loss function required in order to avoid
having the factor Bz(q-l} in the equation (4.14).
When solving the minimum variance problem B, should be chosen to
contain all factors of B which have zeros inside the unit disc except

those factors which are also factors of 4.

5. APPLICATIONS

The minimum variance control theory tells that the feedback law of
Fig. 1 is a time invariant dynamical system. The theory also gives a
possibility to interpret the action of the feedback law. In the
simplest case actlon of the feedback can be described as follows:
Predict the output k steps ahead. Choose a control signal such that
the predicted value is egual to the desired value. The complexity of
the feedback law is uniquely determined by the mathematical model of
the process. For simple models the regulator may be equivalent to the
common PI reqgulater (i) but the regulator may also be much more
complicated.
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The minimum variance regulator has been applied to a number of
different industrial control problems. The problems have typically
been steady state regulation of industrial processes. The benefits
obtained have been determined from the arguments illustrated in Fig. 2.
The successful applications have the property that moderate reductions
of the wvariances will give rise to substantial economic gains. It is
thus motivated to spend the extra effort reguired to develop the
models and to obtain the control laws. The determination of the mathe-
matical model (2.4} is the major difficulty when trying to apply
minimum variance control. The model (2.4} can rarely be obtained from
apriori physical data, Instead the model has to be estimated from data
cbtained from an experiment on the process. In a typical experiment the
input signal is perturbed and the resulting variations in the output
are recorded. When the model is obtained it is possible to tell the
results that can be expected from minimum variance control. This is
a substantial advantage because it can then be decided if the effort
is worthwhile and if it is justified to use a control law which is
more complicated than the simple PID regulator.
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CHAPTER 3 - LINEAR QUADRATIC GAUSSIAM CONTROL

1. INTRODUCTICN

The theory described in this chapter is called linear quadratic %
gaussian (LQG) control theory because the process dynamics is charac-
terized by linear equations, the criterion is a gquadratic function,

and the disturbances are gaussian. In the previcus chapter the process
dynamics was also described by an external model. This model was &a
difference equation which related the process output to its input and
the disturbances. In this chapter the process model will instead be
described by an internal model, A set of variables which completely
specifies the past development of the system called atafe variables

are thus introduced. The mathematical model is then a difference
equation which describes the future development of the state variables.
The model is still assumed to be iinear. The criterion is the expected
value of a general gquadratic form. The prcblem is thus slightly more
general than the problem discussed in the previous chapter. The
development of the theory is also analogous to that of the previous
chapter. The mathematical models used are discussed in Section 2. The
prediction problem is then sclved in Section 3 and the control problem
is solved in Section 4.

When external models are used it was natural to use the theory of
polynomials and rational functions. For the internal medels it is
instead natural to use matrix theory. The relations beween the two
approaches to the problem are discussed in Section 5 and Section 6
Geals briefly with applications. Since the LQG theory is covered in
detail in text bocks, the treatment 1s here kept fairly brief,

2, MATHEMATICAL MODELS

Process Dynamics and Disturbances

For simplicity only discrete time systems will be considered, It is
assumed that time T is the set of integers {...-1, 0,1, ...}. Let the
input u, the state x, and the output y be vector valued time
functions of dimensions P, n, and r. It is assumed that the system
and its environment can be describad by the linear difference eguations

x(t+l) = Ax{t)} + Bu{t) + v(t)
(2.1}
y{t) = Cx(t) + e(t), termT,
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where the "process noise" {v(t), t €T} and the "measurement noise"

{e(t), £t €T} are sequences of independent gaussian random vectors. It
is assumed that

{v(t}} and

their covariances are given

cov {vi{t), vis)

cov  vi(t), e(s}

cov ef{t}, e(s)

1

B { Ry t=
0 t#
=0
Ry ¢ =
s

The ipitial condition x(tq)

mean value m

and covarianc

condition is independent of

®{t) 1is independent of
The model (2.1}

the control u
state at time

covariance Ry

at time t

b

s

e

fe(t)} have zero mean values and that

¥

of {2.1) is assumed to be gaussian with
Ry. It is also assumed that the initial

{vit)} and {e(t}}! or equivalently that

{vit)} and {e(t)}.

tells that given the wvalues of the state

X

{2.2)

and

then the conditicnal distribution of the
t+1 is gaussian with mean wvalue Ax{t) +Bu(t)

and

The eéuation (2.1) alsc tells that the conditional

distribution of the measurement vy(t)} given x(t} is gaussian with

mean Cx(t} and covariance

R2'

Notice that it is frequently necessary to introduce extra vari-

ables in crder to arrive at a model having the form (2.1). For example

if the envircnment is characterized by a disturbance having the

spectral density

1

¢(w) =

1+a?-2a cos w

it can be characterized by the difference egquation

E{t+l) = ag{t} + n(t),

where {n(t}!}

is white noise. It is then necessary to include

£

a component of the state vector. Similarly a constant disturbance

acting on the system can be described by the difference eguation

G(t+1l) = d(t}.

Such a disturbance can be included by augmenting the state vector.

The Criterion

In the linear guadratic gaussian problem it is assumed that the
purpese of the control can be exXpressed as to minimize the loss

function

as
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T Nloq T
V, = min E { XAMQEX (W) + T xt (£)Qyx(E) +u” (£)Q,ult) } {2.3)
t=t,

Time Varying Models

The matrices A, B, C, Rl' R2, Ql’ and Qz may vary with time ¢t.

3. KALMAN FILTERING AND PREDICTION

The filtering problem will be sclved before the optimal control
problem is discussed, it is assumed that the outputs y(to},....y(t)
have been observed and the problem is to predict x{t+l) as well as
possible. Let Vt denote the co-algebra generated by y{t},...,y(to).
The prediction problem is clearly solved if the conditional distribu-
tion of x({t+l} given Vt can be determined. The solution is given
by the following theorem.

THEOREM 3.1

Let the gaussian process {x(t)} be generated by (2.1} with u = 0,
The conditional distribution of {x({t+1})} given ¥y 1is gaussian
(R(£+1), P(£+1)) where

Rk+1) = aRk) + KGO [y () - cnt) 1, K=tgr..., t
Q(tu) = m (3.1
Kix) = ap(k)cIcp(k)cT + R, (3.2}
P(k+1) = AP(k)AT-rﬂl-AP(k)CT[CP(k}CT-fRZ]-l ce(k)al =
= M—KUﬂC}PmHF+Ry K=tgmee, t
Pltg) = Ry. (3.3)
Froof:

The proof consists of a repeated use of the following well known
property of gaussian random variables. If the vector

x ]
y
is gaussian with mean value

mx
hei}

Y
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and covariance

then the conditional mean of x given y is

Elxly] = m_ +

-1
" ny RY (y—my).

Full details are given in the references.

Remantk 1

The theorem has a strong intuitive appeal. The term Aﬁ{k) ia the
apriori estimate of x(k+1} and the correction to the priox
K(k)[y(k)-—cﬁ(k)] is proportional to the deviation of the measurement
y{k}) from its prior Cﬁ(k).

Remark 2
The covariance P(k) does not depend on the measurements.

Remank 3

The result of the theocrem can easily be extended to include a control
signal different from zero in {2.1}, If u(t) is measurable with
respect to y, for each t then it is easily shown that the condi-
tional distribution of x(t+l} given y, 1is gaussian (X(t+l), P(£))

where

A A a)

x{t+l) = AX(t) + Bult) + K{t)Ily{t) - Cx(t)] (3.4)
and K({t) and P(t) -are given by (3.2} and (3.3).

Remaafl 4

The theorem can be extended to the case when the random processes

{v(t}} and {e(t)} are assumed to be second order processes only.
The best f{ncaxr prediction is then given by Q{t+1).

Iinnovations Representations

Theorem 3.1 allows for an alternative representation of the stochastic
process {y(t}}. It follows from the proof of Theorem 3.1 that the
variables

i) = y() - cx(y) (3.4)

are gaussian random variables with zero mean values and the
covariances
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- R = {cr{t)cT +Rr,) t=s
EY(t) ¥(s) = { z . (3.5)
0 t £ 5.

Since ;(t) is gaussian it then follows that {y(t), t€T} is a
seguence of independent gaussian random variables. The following
theorem is then cobtained.

THEQOREM 3.2
Consider the stochastic process {y(t}} defined by (2.1) where u{t}
is measurable with respect to Yy- The process {y{t)} then has the

representation

X(e+1) = ak(8) + Bu(e) + R(t) F(t) -
R N (3.6)
¥ty = Cx(t) + y({t),

where (¥(£)} is a sequence of independent gaussian {0, R) random
variables where K(t) is given by (3.2) and R by (3.5).

Duality
Let x and y be gaussian random vectors. The space obtained by
introducing the scalar product

<x,y¥y>» = E xT ¥
can be shown to be the dual of a Euclidean space. By using
this concept of duality it can be shown that the Kalman filtering
preoblem is the dual of a deterministic control problem,

To see this consider the problem of estimating aTx(tl) linearly
in y(tl-l),...,y(to) and m in such a way that the criterion

Ela™x(t)) - a™%(t;) 12 (3.7)

is minimal.

As the estimate is linear we have

tl—l
a™(t) =~ x uT(w) yo) + bTm . (3.8)
t=t,

The ﬁinus sign is introduced in order to cbtain the final result in a
nice form. The estimation problem is Ehus a problem of determining the
vectors b,u(tl—l},u(tl-2h..., u(to). Now determine the u:s in such a
way that the criterion (3.7) is minimal. To do 80, introduce the

vectors z(t) defined recursively from
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z{t) = ATz {t+1) +Clu({t+l} (3.9)

with the initial condition

z(t,-1) = a.
Hence h
-1
aTx(t)) = 2 (e ~1)x (k) = 27 (-1 k() + T {27 (B)x(e+1) - 27 (e=L)x () L.
=t (3.10)
It follows from {2.1i) and (3.9} that
2Tty (E41) = zL (£)Ax(E) + z  (£)v(t)
2T (b-1)x(£) = 20 (£)Ax(t) + ul(t)Cx(t).
Introducing this in (3.10), we f£ind
tl—l
aTx(t)) = 2 (gmDx(ty) + ¥ [zh{t)vie) -l (e)ex(e) ], (3.11)
t=t
0
Eguations (2.,1) and {(3.8) give
. t3-1 -1
a3ty = - £ WToye) +pTm = - T T (oyex(t) +uT(tet)] +pTm.
ety t=t, {3.12}
Hence
-1
aTx(ty) -aTR(t)) = 27 (t~Lix(ty) b m + £ 2T (t)vie) -ul(vren)].
=t
0

Sguaring and taking mathematical expectations, the criterion (3.7} can

e expressed as follows:

Ela"x(t)) - a"k(£) 17 = [a(te-1) - b) mI% + 2% (- IRy (£4-1) +
t.-1
1 T T
+ I [z (t)Rlz(t)-+u (t)R2u(t)]. (3.13;

To minimize the critericon, the parameter b must be chosen equal to
z(to—l) and the u:s should be determined in such a way that the
functicn
t,-1
T . 1 P - :
z  (ty~1)Rgz(tg-1) + Ei [z (t)Rlz(t)-+u (t)Rzu(t}] {3.14)
0

is as small as possible.
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It has now been shown that the problem of finding a linear predictor
which minimizes (3.7) is egquivalent to finding a control signal u for
the system (3.9) such that the criterion (3.14) is minimal.

4, OPTIMAL CONTROL

Having solved the prediction problem we will now return to the optimal
control problem. A system described by (2.1) is considered. The problem
is to fipnd an admissible control such that the criterion (2.3} is
minimal. The following result is useful in the solution of the probiem.

LEMMA 4.1
Consider a system described by the difference equation

x(t+1) = Ax{t) + Bult) + v{t), {4.1)

Assume that the difference equation

]

S(t) = ATS{t+1)a +0, - ATS(t+l)B[Q2 +8Ts(t+1)B17 ! 8Ts(t+)a (4.2)

with the initial cecndition
S5(N) = s} {4.3}

has a sclution S(t) which is non-negative definite for th £t <N
and such that

a(t) = q, + BTs(e+1)B (4.4)

is non-singuiar for all ¢, Let

Lit) = [0, +B7s(e+1)B17 % 8Ys(t+1)a, (4.5)
Then
N-1
< mogx + 5 xT(0xce) +uT(rout) = x" (£0) Sty x(ky) +
t=tﬂ
N-1 S
L uh) AL x(e) ]TIBTS (t+1)B + 0,1 [ult) +L(t)x(t) ] +
0
w1
+ I {v (£)S(t+1) [Ax(t) +Bult)} +
t=t0

+ [Bx(t) +Bult) 128 (£+1) v (&) +VT(t}S(t+l)v{t)} ) (4.6}

+




Proo4:

30

The‘proof is straightferward. We have the following

2T (W) Qx (W) =

LM R = X () Bl x(tg) +
N1 g T
+or [xT(e+l) s (e+1) x(£+1) - x (B)S(thx(E) ],
t=t
0

Consider the different terms of the sum. We have

xT(t+l)S(t+1)x{t+l) = [Ax(t)‘+Bu(t)<+v(t)]TS(t+l)[Ax(t)-%Bu{t)-*v(t)l

and
XL () S(t) x(t)

Hence

= xT(e) {aTs (£+1)a +0) - 1T () [BTS (611 B + Q) 1L (£) Ix v) -

T T N-1 T
x (N)Qox(N) = X (tG)S(tU)x(tD} + T {[Ax(t) +Bult)] s{t+i)v(t) +

t=t0

+ oI () s(t+1) [Ax(t) +Buit)] + vI(DIS(E+D) viv) } +
N1 T T

+ ¢ {u {£)[B S(t+1)B +g,luie) +
t=t0

+ uT(t}BTS(t+l)Ax(t) + xT(t}ATS{t+1)8u(t) +

+ 1T (0 TS (4B + 0, L (E) x(8) = X7 (B)0yx(t) -

aT (v o uie) i,

where the term uTQzu has been added and subtracted in the last sum.

Rearrangement of the terms now completes the proof of the lemma.

The Lemma 4.1 is a useful tool for sclving the optimal control problem

3

because it shows directly how the loss function ig influenced by the
value of the control signal at time t. The optimal control problem

will now be solved for some different choices of the admissible

controls.

Complete State Information

It is first assumed that the admissible controls are such that ult)
is a function of x{t). The solution to the optimal control problem

is then given by
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THEOREM 4.1

Consider a system described by (2.1}, Let the admissible controls be
such that ult) is a function of x{t). Assume that the eguation
(4.2) with initial conditions (4.3} has a non-negative solution such
that Q(t) defined by (4.4) is positive definite for ¢, < t < N.

o]
Then the criterion (2.3) is minimal for the contrel law

ul{t) = - L{t)x{t), (4.7}
where L is given by (4.5). The minimal loss is

N-1

min V = m'S(tgim+tr S{Ey)Ry + I tr S(t+1)R (1) . (4.8)
ot
Praoof: -
Let x be gaussian {m,Ri. Then
ExTQx = mTQm‘FE(x-m)TQ(x~m) = mTQm-FE tr(x—m)TQ(x—m) =
= miOm+E tr O(x-m) {x-m)® = m'Om+tr OR .
It follows from Lemma 4.1 that
W1
el xT0o.xm + 5 xT o x(t) +ul (8 o.ult) ] =
{ 0 1 20t |
=t
T n-1
=m S{to)n1+ tr S(tG)RU + E tr S{t+1)Rl(t) +
t=t
0
+ 5 [ult) + () x(£) 170 () [u(t) +Lit)x(t) ], (4.9)

because v{t) is independent of x({t) and u(t).
Since (Q{t) was assumed to be positive definite the right hand

side is minimal for the control law (4.7) and the vroof is completed.
o

Incomplete State Information

The admissible controls are now assumed to be such that u{t+l) is a
function of yjt),...,y(to) or more precisely for each t uf{t+l) is
assumed to be measureable with respect to the v-algebra ¥, generated
by y(t),...,y(to). To obtain the result in this case a measure
selection theorem will be used.

ILet x and y be random variables which take values in R"  and

RF. TLet f£(x,y,uz) be a loss function £: ROTPIC g, We have
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LEMMA 4.2
Let Ei-ly] denote the conditicnal mean given y. Assume that
fily,u) = E[f-(x|qu) |Y]

has a unique minimum with respect toc u, attained for' u = ue(y).
Then the minimum of E&{x,y,u{y}} with respect to all uly} which
are measurable with respect to y is given by

min E2(x,y,u(y)) = EE(y,u’(y)).
Proog:
The proof is given in Astrém [2], p. 261. o

The solution to the control problem with incomplete state information

is now given by

THEQREM 4.2 (Separation Theorem)

Consider a system described by (2.1). Let the admissible controls be
such that for each t u(t+l) 1s measurable with respect to Vt.
Assume that the equation (4.2) with initial conditions (4.3} has a
non-negative solution such that Q{t) given by {(4.4) is positive
definite for tﬂ < t £ N. Then the criterion (2.3) is minimized for

the control law
n(t) = -L(£)X(t) (4.10)

where L 1is given by (4.5} and g(t) is the conditional mean of
x(t) given Y¢_1 +9iven by the Kalman filter (3.4). The minimal loss
is given by

M1
min E V = mTS(tD)m +£r S(EIRy + I tr S(t+1)Ry (£) +
t=-"t0
N1 o
+ T tr P(E)LT(E)O(E)L(L) . (4.11)
t=t0

Prood:
It follows from Remark 3 of Theorem 3.1 that the conditional distribu-
tion of x(t+l} given Vt is given by (3.4} where the conditional
covariance does not depend on the control signal.

Proceed in the same way as for the proof of Theorem 4.1 to obtain
equation (4.9). Use Lemma 4.2 to minimize the right hand side of {4,9).
The minimum (4.11) is then cobtained for the control law (4.10),
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Remarf 1

Notice that the different terms in the minimal loss function all have a

nice physical interpretation. The term mTS(tO)m is the contribution

due to the off set of the initial state. The term tr S(tOJRU is the
contribution due te the initial uncertainty of the iritial state. The ;

term I trS(t+l)Rl(t) depends on the process neise that is acting on
the system and the term Z'trP(t}LT{t)Q(t)L(t) depends on the
uncertainty in the state estimation. A calculation of the relative

3! magnitudes of the different terms will give good information about
the nature of the difficulties in solving the control prcoblem.

Remanh 2

Notice that the optimal control law is a linear feedback from the
conditicnal mean. The linear feedback gain L is the same as for the
problem of Theorem 4.1 with complete state information. This motivates
the name ceatadinty equivafence theosrem which is sometimes given to
Thecrem 4.2.

Theorem 4.2 gives valuable insight into the natuye of the optimal
feedback. The feedback can be thought of as being composed of two
parts. See Fig. 5. One part is a dynamical system {a Kalman filter)
which generates the conditional mean of the state vector from the
measured process outputs. The other part is a static linear system

which simply generates the control as a linear function (4.10) of the
estimated state variables. See Fig. 5. Notice that the matrix L(t)
in (4.10) only depends on A, B, Ql' and Qq and that it is independent
cf the stochastic elements of the model. The gain K of the Kalman
filter depends on A, C, RO, Rl' and R2 but it is independent of the
loss function, This motivates the name separation theorem, which
expresses the fact that the control problem can be split ap into two
parts: a deterministic control problem to obtain L and a Kalman
filtering problem to obtain K. Alsc notice that the conditional
covariance dces not depend on the measured data.

To use Theorem 4.1 or Theorem 4.2 it must be asserted that the
equations {3.,3) and (4.2) have solutions. The conditions 02 and
R, being positive definite and the system (2.1} being completely ;
reachable and completely observable are sufficient to ensure this, |
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Conditional mean Environment
!
I
\\& e.v
% U y
u=- % Process

Kalman filter

Fig. 5 - Block diagram which illu-
strates the feedback given by~
Theorem 4.2.

Staticonary Solutions

In many cases the matrices A, B, C, Ql’ Q2' Rl, and R2 which appear
in the problem formulation are constant. Under weak additional assump-
tions it can then be shown that if N -+ = then the Xalman filter gain
K and the feedback gain L will converge to unigue constant soiutions.
A sufficient condition is that QZ andg R2 are positive anéd that the
system (2.1} 18 completely reachable and completely observable. In

such a case the optimal feedback shown in Fig. 5 is simply a linear
time invariant dynamical system. There are, however, cases where the

stationary solutions are not unigue. An example is given below.
EXAMPLE 4.1
Consider the system

-a 1
x{ttl) = x{t) +

It is easy to show that if |b,| > |b;| then the equation (4.2) has

the following two positive solutions as N - w.
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az(bg-bf)
sy =1+ 5
(abl-bz)
2.2 ;
. __ alby-ky) ;
2 = Z
(abl—bz)
2 .2
. - by - by
3 2 -
(ab; =~ b,)

The corresponding feedback gains are

1
Ly=:-(-a 1)
1 bl -
and
ab, - b
L, = 2 L. -a 1)
bz(abl—bz) o

5. COMPARISON WITH MINIMUM VARIANCE CONTROL

The problem discussed in Chapter 2 can be regarded as a special case
of the linear quadratic contrel problem. To see this consider a system
with one input and one output described by {(2.1). Let the criterion be
N
V = min F % E yz(t).
t=1
Change the coordinate system in such a way that the matrix A is in
companion form. Applying the Theorem 3.1 it is then found that the
equation (2,1} can be written as

~ay 1 ...0 b1 kl
A —a, 0 ... 0 A b2 k2
x(t+l) = : x{t) + s u{t) + : e (t)

T8 0 --e 2 Ppm1 K

—a, 0 ... 0 bn kn

A

y(t) = xl(t) + e(t). (5.1)
It is easy to show by direct comparison that the relation between the

input u and the output y <can be written as
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vt} + aly(t-ll to..+a ylt=n) = byu(t-1) Fe.otboule-n) + e{t) +
+ eqe{e-1) teaot o elt-n), {5.2)"
where %
ey = a; + kg, i=1,2,...,n. (5.3) .

Equation (5.2) is, however, a CARMA model and the equivalence is thus
obvious.

6. APPLICATIONS

The linear quadratic gaussian theory is freguently referenced in
engineering literature and sometimes alsc in economics. It 1s, however,
difficult to find good stralghtforward applications of the theory,
Apart from the cases where minimum variance criteria apply it is not
easy to find examples where the quadratic criterion {2.3) is well
motivated physically. One rare case is the steering of ships where

the average increase in drag due to steering c:n be expressed as

%{3 = (w2 ey +282(8) ] at,

k
T

O o,

where ¢ 1is the heading deviation and & the rudder angle,

Another difficulty is to obtain appropriate models for the
process dynamics and the environment. In spite of this it is frequently
attempted to use the LQG theory to solve control problems because the
structure of the sclution is very appealing intuitively.
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CHAPTER 4 - CONTROL OF MARKOV CHAINS

1. INTRODUCTION

The previous chapters have dealt with linear systems only. In this i
chapter a nonlinear problem will be discussed. To make the analysis H
simple a model where the process dynamics is approximated by a markov
chain will be investigated. The analysis follows the pattern of the
previous chapters. The mathematical models of the process ang its
environment are discussed in Section 2. The solution to the filtering
problem is given in Section 3 and the optimal control problem is
solved in Section 4.

2. MATHEMATICAL MODELS

Internal descriptions on state models will be investigated. If it is
attempted to generalize the model given by equation (2.1) in Chapter 3
to the nonlinear case it will be necessary to describe the conditional
probabiiity distribution of x{t+l) given x(t} and of the measure-
ment y{t) glven x(t). Such a description will be simplified if the
state space is simple. It will therefore be assumed that the state
vector x and the measurements y can assume finitely many values
only. The stochastic process {x{t),t=0,1,...} thus becomes a markov
chain.

It is assumed that the initial probability distribution of the
states is given by

pg = Pr {x{(0) =4} , 1% 1,2,...,0. (2.1)

The dynamic development of the state is described by the transition
probability

pij(u.t) = Pr {x{t+l) =3|x{t) =i} , i,j =1,2,...,n. {2.2)

The transition probabilities may depend on time t and the control u.
The transition probabilities have the properties

n
pij(u;t)- > 0, E Pij(u't) = l. {2.3})
=l
The measurement process {y(t),t=0,1,...1 is similarly characterized

by the probabilities
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qij(u.t) = Pr {y{t) =jfx(t) =1}, (2.4}
where
m
qij(u.t) z 0, jil qi]\urt) =1. (2.5}

The dynamics of the process and its environment are thus characterized
by the matrices P = {Pij’ i,3=1,...,n} and Q = {qij’ i=1,...,n,
34=1,...,m} and by the initial distributicn of the states.

It is assumed that the purpese is to control the system in such a
way that the following loss function is as small as possible.

N

J =E ¥ glx{t)ult),tl], -

=0
where g 15 a function which assumes real values.

The admissible controls are assumed to be such that ul(t) is a

function of ¥, = [y(t),y(t-1),...,v(0)] for each t.

3. OPTIMAL FILTERING

To sclve the prediction problem we require the conditional probability

distribution
wi (€)= Pr {x{t) =ijy.,}, (3.1}

If this probability distribution is known then many different predic-
tors like the conditional mean, the value with highest prcbability etc.
can easily be determined. In analogy with the linear case a recursive
equation will be given for the predictor. This recursion is given by
the following result.

THECREM 3.1

Introduce the linear maps Aj defined by

n
(Ajw)i = kzlqij Pry ¥ i=1,...,m {(3.2)

and introduce the norm
n
Jawll = = (a.w, . (3.3)
4 i=1 1t

Then the conditional distribution w(t) defined by (3.1} satisfies
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A wit)
w(t+l) y {t+l) (3.4)
|2y (eary wied 1l
and
I Agwit) || = Pr {y{e+1) =3]y}. (3.5)
Proog:
It follows from the multiplication rule for probabilities
Pr {x{t+l) =i|Vt+l} = Pro{x(t+1) =ify,, y(t+1)} =
Pr {x{t+l) =1,y(t+1) =3|y.}
Pro{y(t+1) =3|y}
Furthermore the eguations (2.2) and {2.4) give
n
Pr {x(t+l) = i, y(t+1} =let} = kil 94 Py w, (t) = (Ajw)i
and
n n | I
Pr {y(e+l) =j|¥.} = L I q.. p., w (t) = || Aw(t) |
t im1 kel 13 ki Tk 3
and the proof is complete. o

4. OPTIMAL CONTROL

Having solved the filtering problem the optimal control problem will
now be discussed. A functional equation which characterizes the
optimal solution will first he derived. The properties of the func-
tional equation will then be discussed.

The Bellman Equation

Assume that the control u can take values in a finite set U only,
The minimum of the loss function will then always exist. Introduce
the functien V: RPaR defined by

N
ve(wity) = min E { L g{x(k), ulk}, k)lvt}. (4.1)
ult), u{t+1), k=t

Then
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n N
v, (w(t}}) = min { I gli,mt)w, (t) + min E [ b2 Q(x(k)ru(k),k)lyt]} =
t w ti=1 ult+1), . Ll
= min {< glu,t),wi{t) > + E [Vt+l{w(t+l))lyt]}.
where <g,w> denotes a scalar product and gfu,t) is a vector with

components g(i,u,t). It follows from Theorem 3.1 that conditioned on
Vt, w(t+l} can assume m different values

A wit)
wit¥l) = —3J4 — 5 =1, ... m
A.wi(t) -
EEICK
with probabilities IEAjw(t) 1. Hence -

m
vi(wit)) = min [<g(u,t),w(t) >+ jil i Agw (t) ! Vt+l(Ajw(t)/E§ Ajw(t) ||)].

(4.2}
We now have

THEOREM 4.1

A necessary condition for the minimum is that the function Vt(w(t})
satisfies the Bellman eguation (4.2).

Proog:
It has been shown that i{f u is a minimizing feedback then there is a
function V which satisfies (4.2). Conversely let v be an admissible

control wv: R%a (. Introduce the function W defined by
N

W (w(t)) = E { T g(x{k), v(w{k)),k){yt}.
k=t

Then W satisfies the recursion
m
W (wit)) = <glv,t), w(t) > + jil lFagwtey v, (ywie /il agwer ).

It is now straightforward to show that
Wy lw) > Vitw).

This is obviously true for t=¥% and it follows for ¢t <N by
induction. B

The equation {2.4), which is called the Beffman egquation, plays the
role of the Hamilton-Jacobi equation in stochastic control theory.
When solving the Bellman equation two functions are obtained:
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v: R' = R
and
u: RY - if = {the set of possible controls}.

Structure of Optimal Feedback

The function u is a map from the conditional probability distribu-
tions to the controls. The structure of the optimal feedback is thus
as shown in Fig, 6. It is composed of a filter which computes the
conditional preocbability density of the states given the past controls
and the past measurements. The filter is described by the eguation
(3.4) . The other part of the feedback is the function u which is
obtained from the solution of the Bellman egquatiocn.

Obtained . from

solution of Environment
Bellman eguation

e

I'—3 u=u{wl Process

—- Filter

Fig, 6 - Block diagram of the optimal
requlator. The filter computes the
conditional distribution of the states
given at past data VY.

Properties of the Bellman Equation

We have

THECREM 4.2

The solution V of (4.2) is concave.

Proof:
An cutline is given below. The full details are glven in Astrdm [1]3.

The function

vy = min <g{y, t), wit) >
u
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is concave because it is the minimum of linear functions. Now use

£41 Cconcave. Then Vt is also concave because

it is obtained by adding concave functions with positive weights and

induction, Assume V

minimizing, a

Computational Aspects

The Bellman equation can rarely be sclved analytically. It is thus
necessary tc resort to numerical solutions. This is not trivial. To
soive the equation (4.2) numerically it is necessary to store the
functions V.. This is a substantial burden if the number of states
is large. Assume that there are n states. Because the components of
w are probabilities the argument of the function can be characterized
by n-1 wvariables in the range 0 < W, < 1. Assuming that the compo-
nents of w are guantized in 10 levels each. It is then necessary to
use lOn—1 cells to store the function V.o For n=11 the number is
prohibitive even for the largest computers available today. It is then
necessary to find good approximations of the function which are more
economical storage wise.

The solution to the stochastic control problem is thus useful in
the sense that it gives valuable insight into the structure of the
optimal feedback. The solution is, however, not very practical in the
sense that the computational effort to obtain the optimal feedback is
prohibitive if the number of states is large.

5. AN EXAMPLE

An example is used to illustrate the properties of the sclution.
Consider a case where the transition and observation matrices are
defined by

0.9 0.1 0.8 0.2

P = r o = ’ u =1
g.1 0.9 0.2 0.8
0.8 6.2 G.85 0,15

P = ' 0 = u = 2
6.2 0.8 0.15 G.85
0.6 0.4 0.9 0.1

P = + Q = ’ u =3
Q.4 6.6 0.1 0.9
0.4 0.6 0.9 0.1

P = ' Q = P u = 4
0.6 0.4 0.1 0.9
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0.2 0.8 G.85 0.15
P = ’ Q = ' u =25

0.8 0.2 0.15 0.85
0.1 0.9 0.8 0.2

P = ; Q = ) u = 6,
0.9 0.1 0.2 0.8

The loss function is assumed to be given by
g=(1 0]

It is thus desired to keep the process 1in the second state., The condi-
tional distribution can be chosen as the conditional probability for

the proceses to be in state ¥ 1. The Bellman equation was in this case
solved numerically by quantizing this probability intc 10 sﬁeps. The
control law u{w) obtained is given below.

~ 0.05 0,15 0,25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
step
10 1 1 1 1 1 6 6 6 6 6
9 1 1 2 2 3 4 5 5 3 6
8 1 1 2 2 3 4 5 5 6 6
7 1 1 2 2 3 4 5 5 6 6
1 1 1 2 2 3 4 5 5 6 6
I

The solution obtained for a finer duantization of 20 steps is given by

SERCLNALARENENESPREQERE

\ o © —~ M o N M M < o o N W e~ I~ 00,
t c o 0o ococdocoooocooooaao o
10111111111 1666666666 6 Q
9111112 22 2334455505666 6 |
g8 1111222 2333444555566 &
7111222223 344556555%66 6

6 |1 11 22223 33444655505¢6F6 6

5] 1112222 2334455505566 6
4111122222 3344565556566 6
3{11122222 3344555655866 6

2 {11122 2223344555505 66 6
111122222 334455%5505€66 6
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In the last step t = 10 the solution is obvious if the probability
of being in state # is less than 0.5, then the contrel #1 is
chosen. This means that the probability of the state being unchanged
is as large as possible., Otherwise contrel # 6 is chosen which
means that the probability for a switch is maximized.

For step 9 the same policy is used provided that the probability
of being in state ## ! is very small or very large. When the proba-
bility of being in state # is between 0.2 and 0.4 the optimal control
is however u = 2. This means that the probability for a switch is
higher than for u = 1. The measurements will, however, be more
accurate which will benefit the conditional probabilities in the next
step. If the probability of being in the state # 1 is between 0.4 and
0.5 it is beneficial to choose u = 3 which gives an even bhetter
measurement accuracy.

This example clearly illustrates some interesting properties of
the solution ta the nonlinear stechastic control problem. The control
law may generate control acticns that will drive the process away
from its target provided that this will result in a more accurate
estimate of the state. This property is called duaf controf,

Also notice in the tables above that the control law converges
after a few steps only.
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CHAPTER 5 - NONLINEAR STOCHASTIC CONTROL

1. INTRODUCTICHN

In this chapter the results of Chapter 4 will be extended to systems
where the statespace is continuous. It will be shown that the problem
formulation includes many interesting control problems. For example

it is possible to treat adaptive contryol systems using these models.
The theoretical results that are available are unfortunately fairly
weak. Very little is known about existence. The order of presentation
is the same as has been used in the previous chapters, The mathematical
models used are discussed in Section 2. It is _shown that the interest-
ing cases of linear systems with drifting parameters and linear
systems with constant but unknown parameters are included as special
cases. The filtering problem is analysed in Section 3. A recursive
equation is derived for the conditional probability density of the
state variables. It is shown that the conditional densities are
gaussian in particular cases. In Section 4 the control problem is
investigated. The Bellman equaticn is derived formally. Unfortunately
neither the recursive egquation for the conditional density nor the
Bellman equaticn are suitable to solve practical problems because

of the excessive computational requirements. The analysis gives,
however, interesting insight into the nature of the optimal solution.
This insight can then be exploited to cbtain different useful approxi-

mations. Some approximations are discussed in Section 5.

2, MATHEMATICAL MODELS

When analysing nonlinear problems it is frequently easler to work
with internal descriptions. It is assumed as in Chapter 3 that the
state x, the input wu, and the output y take values in Rn, RP,
and RY respectively. A general nonlinear generalization of the
linear model discussed in Section 2 of Chapter 3 is then given by

{ x(t+1) = £(x(t), ult), vir))

{2.1)
yit) = g{x(t), ult), e(t)),

where {v{t}} and {e(t)} are sequences of random variables. The
probability distribution of the initial state is characterized by

po(x) dx = Pr {x(to) € x + dx}, (2.2)

where dx is an infinitesimail neighborhood of x.
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To complete the characterization of the model it is necessary to
specify the probability distributions of the disturbances v and e.
if the medel {(2.1) should represent a state model in the sense that
the conditional distributicns of x{t+l) and y{t) given =x(t) are
the same as the conditional distributions of x{t+l} and y{t) given
x{t), x(t-1}), ... then {vi(t)}] and {e(t)} must be sequences of
independent random variables. The stochastic process {x{t)} is then
a Markov process. Instead of using the description (2.1} it is then
natural to work directly with the probabilities

£}
£},

Pr {x(t+l) € x+dx|x(t)

{ p{g,x)dx
(2.3)

g(E,yldy

1

Pr {y(t) € y+dylx(t)

It is assumed that these densities exist. The densities p and g
will also depend on t and u(t}. This dependence is suppressed to
simplify the notations. If the probability distributions for v{t) and
e(t) are known the densities p and g can be determined. In the
sequel it is therefore assumed that p and g are known.

The medel {2.1) or (2.3) includes several special cases that are
cf great interest. Some will be discussed below.

EXAMPLE 2.1 (Linear Systems with Stochastic Parameters)
Consider a linear system characterized by the input=-output relation

¥ (t+1) +al(t)y(t)+...+an(t}y(t—n+1) = bl(t}u(t)+...+bn{t)u{t—n+l) +el(t).
(2.4}

Introduce

ei(t) = al(t),...,en(t} = an{t},en+l(t) = bl€t),...,82n(t) = b (t)

and assume that the parameters are governed by

8(t+l) = @6{t} + v(t}, (2.5)

where {v{t)} 1is a sequence of uncorrelated gaussian random variables
and the initial state G(ta) is gaussian (m, Ryl . Introducing the

vector

wit) = [-y(t) «i. -y {t-n+1) u(t) u(t=-1) ... u{t-n+1)]

the model (2.4} can then be written as

y{t+l) = p{t)1 (L) +elt). {(2.4")

The system described by {2.4) and (2.5) is clearly of the form
(2.1}. A special case is when ® =TI which means that the parameters

ai(t) and bi(t) are discrete Wiener processes. in specific
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applications it may not be realistic to assume that a model like (2.4)
can be given for the parameter fluctuations. The case ®=1I can

however serve as a generic case.

EXAMPLE 2.2 (Systems with Constant but Unknown Parameters)

It is freguently possible to assume that the eguaticn which describes
the process dynamics can be described by models having parameters
which are constant but unknown. Such systems can be included into the
form {2.1) by introducing the unknown parameters 06 as extra state
variables governed by the state equation

8 (t+1) = 8(t}).

Consider for example a linear system governed by (2.4) where the
parameters are constant. Such a system can be described by equations
(2.4} anéd (2.5} with ®=1I. The initial distribution of the state of

(2.5) reflects the prior knowledge of the parameters. a

3. OPTIMAL FILTERING

The optimal filtering problem will now be solved for the model (2.3).
Since it is not possible to find a universally acceptable criterion
the full conditional probability distribution of the state will be
determined. It is thus assumed that the outputs y{t),y(t—l),...,y(to)
have been observed. The problem is to determine the conditional
probability distribution

Pr {x(t} € AlY ), (3.1)

where Vt is the values of all observed outputs or more precisely the
o-algebra generated by y(t), y(t-1),..., y{t;)} ana x({tg). Assuming
that the distribution (3.1} has a density denoted as

wix,t)dx = Pr {x(t) ¢ x+dx|¥.],

we find from the properties of conditional densities that

a{x,y{(t+1)} {p(£,x)w{E,t)dE
wix,t+l) = (3.2)
Jfa(x,y (t+1) )p{E,x)w(E, t) dxdE

wix,tg) = p¥(x).

The expression can be simplified somewhat if the linear positive
operator A is defined by
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(A w) (%) = q(x,n) fplE,xiwik, tydE . (3.3

Notice that A depends on u and t. Define the norm of a positive

function w as
Hwied]] =] wix,t)ax . (3.4)

Then the formula for updating the conditional density can be written

as

wir,t+l) = Ay{tm"’"'.’ﬂ’/“Ay(t+1)w“rt)“- {3.5)

This formula is clearly a generalization of equation (3.4} in Chapter
4 for the markov chain case and we get

THEOREM 3.1

Consider a stochastic process defined by (2.2) and (2.3). The condi-
tional density of the state x{t) given past data Vt is given by
the recursive equation (3.5} with initial condition

_ 0
w(to) =p .

Furthermore
Pr {y(t+l) € n+dn[vt} = [EAnw(-,t)Hdn . {3.86)

Even if the equation (3.5) looks innocent it regquires extensive
computations. Since w is a probability density over R" the probiem
of storing the function is substantial. It is therefore interesting to
consider special cases where the conditional density is simple, Such

cases are discussed below.

THEOREM 3.2

Consider a linear system with random parameters described by (2.4) and
(2.5) where {v{t})} and {e(t)} are sequences of independent gaussian
(O,Ri) and (O,Rz) random variables. Let the initial parameter
distribution be gaussian (m,RO). Then the conditional distribution of
the parameters 0(t} given V_ is gaussian (3(t),?{t)) where

Bit+1) = @B (e) +K(t) Iy (t+1) - w(t) B (k) ]

K(t) = oP(e)o” () [o(t)2(t)oT (1) +RyI7

P{t+l) = [0-K(t)p(t)]P(t)aT + R,

A
G(tG) m

Bt

0} Ry » (3.7
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Furthermore the conditional density of y{t+l) given Vt is gaussian
(o(t) 8 (1), 0% (£)) where

£) = R, + @(t)P{)e’ (L), (3.8
Prood:

The system given by {(2.4) and (2.5} is clearly a special case of (2.3).
It follows from (2.4) that the density p{E,x) is gaussian (oE,Rl)
and that the density ql(&,y) is gaussian (@f,R,}. It was further-
more assumed that the prior density was gaussian {m,Ro). Repeated

use of (3.2) then shows that the conditional density is also gaussian.
The formulas (3.7) and (3.8) are verified simply by computing the
density in the same way as was dons when deriving the Kalman filter

theorem in Section 3 of Chapter 3. a

Remark |
Notice that the distribution of y(t} is not gaussian.

Remaxnk 2
A similar result can be obtained for vector difference equatlons (2.3}.
In particular this means that if the parameters appear as elements of

the matrices A and B in the model
x{t+l) = Ax(t} + Bult) + v(t},

then the conditional density of the parameters given x(t), x{t-1},...

iz also gaussian.

4, OPTIMAL CONTROL

The optimal control of processes described by equaticns (2,2) and (2.3}
will now be investigated. It is assumed that the purpese of the control
can be expressed as to minimize the loss function

N

J = E I h{x(t) ult), t), (4.1)
t=t0

where h: Rn+p+l

+ R. The admissible controls are assumed to be such
that wuflt) is a function of y{t), y(t~1),... or more precisely that
u(t) is measurable with respect to the c=-algebra VY
y(t),y(t—l),...,y(to) and x{to).

Proceeding in the same way as in the previous chapter it is first

£ generated by

found that it is difficult to show existence of the minimum. It is

therefore assumed that the minimum exists and we will proceed formally.
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| ﬂ
- i 5gx)% L=

Introduce -

n .
v {w(*,t)) = min E { b h(x(k},u(k),k){vt}. (4.2)
t b, k=t :
we find f 1

ehesin U
vt(w(-,t)) = min {Ih(E, u t)wi(g, £)dg + E{vtﬂ(w(-,tﬂ))iyt]}-

u

It follows from Theorem 3.1 that

I

v (W) = min [<h,w>+ﬂ| A ] Ve (/1AW n)an} , (4.3)

u

where _
<h,w> = [h(E,u,t)w{f, t}aE.

The minimum is thus characterized by the Bellman equation (4.3). Notice
that the argument of the Bellman equation is a density of a prebability
distribution over R®., Even a numerical sclution is thus not possible
in the general case.

. The convexity of V c¢an be established in the same way as was
done for systems with finite states in Chapter 4.

fven if the Bellman equation can not be solved the analysis shows

that even in the general nonlinear case the structure of the feedback
is that shown in Fig. 6 of Chapter 4. The optimal feedback can thus
be thought of as being composed of twoe parts. One part is a nonlinear
filter which computes the conditional density of the state vector given
all observations. The other part is a nonlinear function which maps
the conditional density on the control variables, This function can be
precomputed from the Bellman eguation.

5. LINEAR SYSTEMS WITH RANDOM PARAMETERS

In the general case the Bellman equaticon can neither be solved analyt-
ically nor computationally. Some special cases will therefore be
investigated. The linear system with stochastic parameters given in
Example 2.1 will be investigated.

It is assumed that the criterion is to minimize the loss function

N 2
Iy = E{ T Iy} —yr(t)] }, (5.1)
t=t,

where yr(t} is a given reference value. The admissible controls are

|




52

assumed to be such that u{t) is a function of Vt = y(t},...,y(to).
The reason for choosing the criterion (5.1) is that the solution to
the control problem is known if the parameters 8 of the model are
known. In the case of constant parameter systems the solution was e.g.
given in Chapter 2. The analysis will thus illustrate the effects of
fiuctuations in the model parameters.

Even in this simple case it is not easy to establish existence of

the minimum.

The Filtering Problem

The filtering problem will first be solved. The system is described by
equations (2.4} and (2.5). It can be brought t® standard form {2.3)
by introducing a state composed of the vectors 8(t) and the vector
¢ which is defined by

@ty = [-y(t) ... =y(t-n+l) O w{t-1) ... u(t-n+l)1. (5.2)

The conditional distribution of @{t} given Vt is a peint distribu-
tion. It was shown in Theorem 3.2 that the conditional distribution of
8(t} given Vt is gaussian (ﬁ(th P(t)) for linear systems with
random parameters. The conditional distribution of the state of the

system is called the hyperstate. It can be characterized by the triple
e A
£(t) = {o(t), 8(t), P(B)], {5.3)

The equation for updating © follows directly from (5.2). The
equations for updating 6 and P are given by Theorem 3.2,

The Controcl Problem

The filtering problem is thus easily solved for the particular model
structure chosen. To discuss the control problem we will first solve
the problem in the case the parameters are known. The problem will then
be solved for the special case when the criterion {(5.1) only contains
one term. The solution of the complete problem is finally discussed.

Systems with Known Parameters

If the parameters of the system (2.4) are known it is easy to obtain
the optimal feedback. Introducing the vector ¢ defined by (5.2} the
equation (2.4} can be written as

y(t+l) = w(t)e(t) + e(t+l) = bitlul{t) + P{E)6(t) + e(t+l), 5.4

where we have introduced b{t) = bl(t). The optimal feedback is then
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given by

y {t+l) - Gle)e (L) _
u(t} = = . (5.5)

The minimal loss is given by

min JN = (N+l—t0)R2.

Notice that it is necessary to impose the condition b{t} # 0 other-
wise the control law (5,5} does not make sense. It is also necessary
to reguire that the parameters b;(t) are such that the difference

equation
hl(t)u(t—i) +hy (tlult-2) +...+b {tjult-n) =0

are asymptotically stable because otherwise the control signal will
become infinitely large! Compare with the discussion in Section 4 of

Chapter 2. A simple example is used as an illustration.

EXAMPLE 5.1
Consider a process described by

y(t+l} = y{t) +bh(B)u(t) +e(t+l). - (5.6)

This is a discrete time version of a continuous time system whose
output is the time integral of its input. Let the reference value Y,
be zero. If the parameter b 1is known then the control which minimizes

g, or J is given by
uf{t) = = BlEy {5.7)

The optimal feedback is thus a proportional regulator with gain 1/b(t).
a

Certainty Eguivalence Contrcl

When the parameters 8 of the system (2.4) are not known it is
tempting to replace the contrel law {5.5) by the control law
~ A
vy, (e} - wilt) oy

uf{t) = ’ (5.8}
Bt)

A
where ©6(t) is the conditional mean of the values 90{t}) of the

unknown parameters given Vt.

EXAMPLE 5.2

The certainty equivalence control for the process (5.6) is given by

1
(£) = - t). 5.9
u T yi{t) 5 { )
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Cauptious Control or One-Step Control

The special case when the critericn (5.1) has one term only is first

discussed. According to Thecrem 3.2 the conditional distribution of
A

y{t+l) given ¥ is gaussian with mean (t)}e(t} and covariance

R

t

, +@(£)P(e}eT (£) . Then

B {fy (641} ~y (641 12V} = [y, (e+1) - 06 8(6) 12 + R, v ot P By 0T (£)-

{5.10}
To see how the right hand side depends on the control ul(t),
introduce equation (5.4). Then
2 A ~ ~ 2
B {ly, (e+1) -y (e+1)1°]¥, ] = Ry + [y {£+1) - b(tlul{e) ~0(8)8(£) 17 +
2 ~ ~ ~T
+ u”{t)py (1) +2ult)p e Pit) L +@(t) P{t)p (b)), (5.11)

where [t is a column-vector which selects the (n+l):th row of the

matrix P i.e.

£ =col {0...0 1 0...0},
n 1

Minimization of (5.11) with respect to wu{t) gives

min E {ly, (t+1) - y{e+1 121V} = Ry + Dy (t+1) ~Fo b P 3w b
ult)

A ~ A ~ 2
[y, (t+1} -b{t)plt) 8 (L) —@(t}P(t)} L]

A% , (5.12)
b® (t) +p, () i
|
where the minimum is attained for the control law !
A ~ A ~ '
Yy, letl) - bitypltre(t) - w(t)P(t)L
u{t) = . {5.13)

B2ty + p(v)

This control law is called one-sfep confrol, because it minimizes the
expected loss over one step only. Notice that in the case of known
parameters the minimal loss is a constant. This means that the one-
-step control is optimal also for the N-step criterion. This is,

however, not the case when the parameters are unknown.
!

EXAMPLE 5.3
The one-step control for the process (5.6) is given by

5 (t) 52 (¢
u(t) = - 8y = - b 2 yn). (5.14)

B2ct) +p, () B2(e) +p (6) Biw)
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For the control laws, ((5.5) known parameters}, {(5.8) certainty
eguivalence}, and ((5.13) one-step), the input-cutput relation can be

expressed as
u(t) = gy lE)y(€) ... +o y(t-n+tl) + 8y (tjule-1) +.. . +B_(t)u{t-n+l).

when the parameters are known {5.5) the coefficients ai(t) and Bi(t}
are simply functions of time. But when the parameters are stochastic
the parameters a,(t} and B, (t) will depend alsc on past cbserva-
tions Vt.

Notice that the one-step control law {(5.13) reduces to the
certainty eguivalence control if the conditional wvariance pb(t) of
the estimate G(t) is zero.

The examples 5.2 and 5.3 clearly illustraéé the differences
between the one-step and the certainty egquivalence controels. In these
examples both regulatcors are simply proportional controllers, The
one-step control (5.13) has a gain which is a factor

B82(e) / 162(t) +p, ()]

lower than the gain cof the certainty equivalence control. The effect
of the parameter uncertainty is thus to reduce the gain. For this
reason the one-step control is also called the caufious regulator.

The cautious regulator does not have the dual property discussed
in Section 5 of Chapter 4. To cbtain such a regulator it is necessary
to solve the multistep optimization problem.

Multistep Optimization

Te sclve the multistep optimization problem it is necessary to solve
the Bellman equation for the stochastic control problem. The Bellman
equation can he simplified because the conditional distributions are
gaussian.

Assume that the minimum exists and recall that the conditional
distribution of the state given the measurements can be characterized
by the triplet (5.3). Introduce

~ A N
v{p(t), 8(t}, P(t), £) = min E { b [y(k}-yr(k)]zlvt}.
u k=t+1
The following recursive equation is then ocbtained.

~ A 2
v(ip(t), (L), P{t), t) = min E {[y(t+1) -yr(tﬂ)] +

u{t)

+ V(G(t+l),8(t+l},P(t+l),t+l}|Vt}, {5.15)
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To proceed it is necessary to have the eguations for the updating of
the hyperstate (5.3). It follows from (2.4') and (5.2} that

Fledl) = FT(E)CH+F @(B)B(E) + £ o(t)e(t+l),

where € is the normalized innovation

e(t+1) = [y (t+1} - @(£)0(t)] / ote),
o (t) = e(t)P(t1Q" (B) +R, ,
and
0 0 ... 0
s, o 6 6 1 ...0
cC = R Sl = . ’ £ = 1 6...0 N
0 5 0 0 ... 1
0 0D ... ¢C

It also follows from (3.7) that
A A
0(t+1l) = @0(t) +K{t)o(t)e(t+l).

~ A
The conditional densities of ©{t+l) and ©§(t+l} given Vt are thus

gaussian. Furthermore the conditional distribution of P(t+l) given

Vt is a point distribution with all mass in

P(t+l) = [2-K(tyo () 1p(r)e” + R, ,
where

K(t) = 0P (L)@  (t)o 2

(t).
The functional equation (5.15}) can then be written as
« 2
A2 2., 1 -e</2
A - —_—
V(g, 8, P,t) = min {[Yr(tH} @i1" + 0% + P _{n e ,
u {5.16)

~ A A T T
« V[oC+ f@ 8 + foe, ®0 +Xge, (®-Kp }PO +R t+1]ds},

ll
where
Al o A
we = 8 +bu
K = @Pgp g >

02 = waT-+R2.

Notice that ¢, K, P, and ¢ depend on the control u.
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The eguation (5.16) is the Bellman equation for the problem. The
equation can not be solved analytically. The equation can be solved

numerically if the order of the system is sufficiently small.

EYAMPLE 5.4

For the system described by (5.6) the conditional distribution can be
characterized by three variables y{t}, ﬁ(t), and P{t). Assuming that
¢=1 and R2 =r, the Bellman equation (5.16} then becomes

= 2
A 2 2 1 -e“/2
vi{y,b, P, t) = min {[y (£+1) —y-—gu} +r, +uP +— [ e
(y r 1] u r 2 2.“ e

uP r. P
-y (y +Gu‘+¢r2+u2P e,g + €, 2 2 + rl,t+l)ds}.
Jroy+u?p rytufp

{5.17)

o

The Bellman equation has been solved numerically for special low order
examples. The soluticons have given insight into the nature of the
optimal strategies. In particular it has been found that the character
ot the multistep optimization is different from the cautious coﬂtrol
in the sense that the optimal feedback is duaf. The optimal feedback
will thus generate contrel actions which will improve the accuracy of
future estimates at the expense of increased short term loss. The
. properties of the optimal feedback are thus similar to those found

for the markov chain example in Section 5 of Chapter 4. Another
" interesting property is that the optimal feedback may be discontinuous
in P(t). From a theoretical point of view there are, however, many
important problems that still remain unsolved. The existence of
stationary policies as N -+ o, the existence of optimal solutions

are typical examples.

Because of the difficulty of solving the Beliman equation several

suboptimal control strategies have been proposed. They have mainly
been investigated by simulations,
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CHAPTER 6 - SELF-TUNING REGULATORS

1. INTRODUCTION

Tt was shown in Chapters 2 and 3 that optimal stochastic control
probiems could be formulated and solved at least for linear systems
with guadratic criteria. It is, however, a difficulty from the point

of view of applications ‘that the models describing the process and its
environment are rarely known aprioril. Nonlinear stochastic control
problems were formulated in Chapters 4 and 5. It was shown that linear
systems with unknown parameters could fit into the problem formulation
provided that the state was measured exactly or -that the dynamics could
pe described by a controclled autoregression. The theory developed in
Chapter 5 can thus be applied to generalize someé linear problems to

. the case of unknown parameters. The results of Chapter 5 give inte-
”t'_resting insight into the structure of the optimal feedback. The resuits

"‘are, however, discouraging from a practical point of view because of

1:the computations regquired to obtain the optimal feedback. Tt is thus
' "meaningfu1 to attempt a reformulation of the control problem which
’will lead to practical solutions. The following is one possibility.
“Consider a system with constant but unknown parameters and a criterion.
LfFind a control law, which only operates on past input-output data,
-IWhich does not reguire knowledge cf the system parameters, and which
EConverges to the optimal regqulator that could be designed 1f the para-
~ meters of the process were known, Such a regulator is called a self-
;fiuning regulator. There are many self-tuning regqulators. The optimal
?aual controiler 1s clearly self-tuning., It will be shown in this
:éhapter that there are indeed self-tuning requlators at least for

. simple problems. The mathematical model of the process and its environ-
'.:ﬁent is discussed in Section 2. To keep the analysis simple only a
simple first order system is treated. The problem formulation is also
.given in Section 2. In Sectlion 3 it is shown that a solution is given
.'by a comparatively simple feedback law. The properties of this feedback
:_are analysed in Section 4.

;:2. MATHEMATICAL MODEL

©It is assumed that the dynamics of the process and its environment can
fbe described by the simple first order system

'ﬁ:f(t) + ay(t-1) = bu(t-1) + e{t) + ce(t-1), (2.1}
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where u is the control variable, y the output and {e(t)} a

sequence of independent gaussian random variables. Tt is furthermore

assumed that the criterion is to minimize the Guadratic loss function

1 N 2

J = lim E 3 F oyiin). (2.2)
N+oo t=1

The admissible contreols are assumed such that u(t} 1is a function of

all past outputs y{t), y{t-1), ... . If the parameters are known it

follows from Theorem 4.1 of Chapter 2 that the optimal control is the

proportional feedback

ult) = 52 y (). (2.3)
The problem of finding a self-tuning regulator can be stated as follows.
Find a feedback law which does not depend on knowledge of the para-
meters a, b, and ¢ which converges to the control law (2.3) as time
increases.

3. A SIMPLE SELF-~TUNING REGULATOR

If it 1s attempted to solve the problem formulated in Section 2 using
the methods discussed in Chapter 5 the filtering problem must first be
solved. The state of the system 1s y{t} and the parameters a, b,

and c, For the filtering problem a prior distribution for a, b, and ¢
must be assumed. Recursive equations for the conditional distribution

¢ ©an then be obtained, This distribution
can be simplified a little by cbserving that the conditional distribu-

of a, b, and ¢ given V

tion of a and b given ¢ and ¥ 1is gaussian. It can be character-
ized by two mean values {Q, Q} and three covariances (pa, pab' and
pb). The conditional distribution of a, b,and ¢ given Vt can thus
be characterized by the conditienal distribution of ¢ and 5 real
variables (3, S, Py Papr and pb). The problem is simplifiegd
considerably if the parameter < 1is known because the conditional
density of a and b given Vt is then gaussian as was shown in
Theorem 3.2 of Chapter 5.

Assuming that the filtering problem is solved it can then be
attempted to solve the Bellman equation. This may perhaps be done
computationally in the case ¢ isg known because the state can then
be characterized by 5 real variables. It is thus clear that even in a
simple case like this it is not possible to compute the optimal dual
control law if ¢ is unknown.

K
L
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Since the parameters of the process are constant it can be
expected that the conditional distributions of the parameters a, b,

and ¢ given Vt will converge to point distributions. For large ¢
it can then be expected that reasonably good self-tuning strategies
can be obtained from centrol laws that are computed from parameter !
estimates only.

It will be shown that there are indeed simple self-tuning control
laws. One possibility is given by the following control law

u(t) = 8Oy (), (3.1)
where g(t) is the least sguares estimate of the parameter 8§ in the
model

vit) + By (t=1) = u(t-1} + e(t) - (3.2)
based on data available up to time t i.e. yit), y(E~1), ..., ¥ (1),

A
u(t-1}, ui{t-2}, ..., u{l). The least squares estimate 0 is glven by

A t-1 1,
ety = —[ T [y(k+i) = u(k)} y(k)] I oye(k). (3.3)
- k=1 k=1

] The control algorithm given by (3.1) and (3.3) can be expected to
. work nicely for the system {2.1) if c =0 and b = 1. TIn this case

.;the least sguares estimate 3 wiill converge to a as t-w« and the
::control law (3.1} will converge to

fult) = ayit),
which is the desired control law.
It is a remarkable property of the feedback law described by (3.1)

©‘and (3.3) that it will converge to the optimal law (2.3) also when
‘¢ #£0. This is illustrated in the following example.

CEXAMPLE 3.1
Consider a system (2,1) with a=-1, c=-0.7, and b =1. With these
“numerical values the optimal feedback is

TU) = 0.3 yit) .

' .Fig. 7 shows a simulation of the regulator (3.1}, (3.3) applied to
ﬂthe system. From the simulation it appears that the parameter estimate
ibonverges to the value 6 =-0.3 (which is the gain of the optimal
fﬁeedback).

o To compare the self-tuning regulator (3.1) (3.,3) with the optimal

_fegulator in the case of known parameters the accumulated loss defined
by
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Fig. 7 - Parameter estimate 6 obtained in
a simulation of the self=-tuning regulator
(3.1}, (3.3) applied to the system (2.1) with
a=-1, ¢c==0,7, and b = 1. -
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Fig., 8 - Accumulated loss functions for the
self-tuning regulator (3.1), (3.3} and the
optimal regulator based on known parameters.

£ 2
vit) = I y°(k}
k=1

has been calculated for the self-tuning regulator and the optimal
regulator

ul(t) = =0.3 y(t).

The results are shown in Fig. 8. It is clear from this figure that
there is mot a large difference between the performance of the two

tﬁl
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regulators. In particular it is seen in Fig. 8 that the loss functions
gf will be virtually the same if the first 20 steps are neglected. .
The example shows that the simple self-tuning feedback {3.1), {3.3)
will perform very well. After a short transient it will give almost the
same performance as a regulator based on exact knowledge of the system
parameters. It is therefore of interest to analyse the performance of
the simple regulator described by the equations (3.1) and (3,3).

4., ANALYSTS

The control law {3.1), (3.3) is a nonliinear feedback. It will now be

analysed what happens when the regulator is applied to a process

“ described by

Cy(e+1) + ay(t) = ult) + n(t), (4.1)
‘where n is a disturbance.

If the @disturbance is bounded in the sense

L
r n°(k), (4.2)
k=1

Tthen the mean square output of the closed loop system

r y- k) (4.3}

This statement is shown by contradiction. Agssume therefore that
is not bounded. Equations (3.3} and {4.1) give

t t 2 t
= —{ I [yik+4) - uik)] y(k)]//z ¥9ik) =a- ¢
k=1 =

£ o2
n{k)y(k}/i ¥ (k).
k=1 k=1 k=1

Schwartz’ ineguality gives

oy y — +
Bt - a s/[%znz(k)H%Zyz(k)]/%}:yz(k) =/%zn2(k)//%2y2{k).

_Since (4.2) is bounded and since it was assumed that (4.3) was
sunbounded then & is arbitrarily close to a for large t. The
‘closed loop system is then given by

Y+l + la-B(e1] yit) = nie).

The solution to this linear eguation can be written as
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=1
Y(8) = Uit ty) ylEg) + T pitk+1) n(k),

[\

where the fundamental solution ¢ 4is given by

1 k=t
Yie k) =4 el

n {a=9{i}] k < t.

i=k

Since 8{t) is arbitrarily close to a for large t, we have

e, k] < e, £ k.

If n 1is bounded in the mean square sense then y is also bounded in
the mean square and we have a contradiction. -
The self-tuning regulator (3.1), (3.3} will thus always stabilize
the system (4.1) in the mean square sense. It can be shown in this
case that the parameter estimate g(t) will alsc converge, If Q{t)
converges as t - 1t is easy to find the convergence point. The
ncrmal equations can be written
t t

t
I yik+l)yik) = 3(t+1) b3 yz(k) + I yik)ulk},
k=1 k=1 k=1

Equation (3.1) now gives
t

t
I oy(k+l)yik) = % b3 [8@t+1) ~B ] Yz(k) .
k=1 k=1

e

A
The right member converges to zero as t -+o because 6 (t} converges
and {(4.3) is bounded, It is thus shown that if the parameter estimates
converge then

t

I y(k+l)y(k) = 0. {4.4)
k=1

lim

1
toe
The self-tuning regulator (3.1}, (3.3) thus attempts to make the
correlation of the closed system output zero at lag 1. Assuming that
the process to be controlled is given by (2.1) it now follows that it
is only one value of 0§ for which (4.3) is bounded and (4.4) holds,
namely

6 = a=c,.

It has thus been established that the regulator (3.1}, (3.3) is self-
-tuning for the system (2.1) and the minimum variance criterion. The
analysis can be extended to the case when b # 1, The condition

required is that 0 < b < 2. The results can be extended to control
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of an n:th order CARMA process. Addlticnal conditions are then required
both for stability and convergence. There are also cases where the

parameter estimates do not converge.

5. CONCLUSIONS

The self-tuning regulator givern by (3.1} and (3.3) is much simpler than
the optimal dual regulator. The performance of the dual regulator will
be better than the self~tuning regulator. It will, however, be worse
than the performance of the regulator based on exact knowledge of the
system parameters. In the simple example there is a difference in the

“transient pexformances of the different regulators say in the first 20

':steps in Fig. 8. After about 20 steps there is, however, little
dlfference between the accumulated loss of the self~-tuning regulator
'and the regqulator based on exact knowledge of the parameters and
onsequently little room for improvement.

©: There are many different possibllities to design self-tuning
frégulators. Other recursive parameter estimation schemes than least
.éduares can be used. They car be combined with many different proce-

‘dures for control design. It is also possible to take uncertainties of

fHe estimates into account and also to incorperate some approximative

d@al control features. Some progrezs has been made towards the
hélysis and understanding of such control laws. There are, however,
§ti1l many open problems.
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