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Populärvetenskaplig sammanfattning 

Akut myeloisk leukemi (AML) är en typ av blodcancer som uppkommer i omogna 
blodceller som ger upphov till vårt medfödda immunförsvar. AML är en heterogen 
och komplex sjukdom som orsakas av specifika genetiska förändringar i vårt DNA. 
Dessa förändringar gör att omogna blodceller, som skapar mogna blodceller, delar sig 
okontrollerat och förlorar förmågan att mogna. Dessa omogna celler ackumulerar i 
benmärgen och förhindrar blodets normala funktion, vilket bland annat leder till 
blodbrist och infektioner hos patienterna. 

De genetiska förändringarna i AML-cellerna används till att klassificera patienterna 
och styra behandling, eftersom de påverkar sjukdomens utveckling och prognos. De 
senaste åren har sekvensering av DNA från patienter lett till en större kunskap om de 
genetiska förändringarna och hur de påverkar sjukdomen. AML-patienter behandlas 
med intensiv kemoterapi bestående av cytostatika-läkemedel som inte har förändrats 
nämnvärt de senaste årtiondena, och överlevnaden har främst ökats med hjälp av 
bättre patientvård. Då cytostatikan inte dödar alla leukemicellerna finns det en stor 
risk för patienterna att återfalla i leukemi. Benmärgstransplantation användes till de 
patienter som har den sämsta prognosen i AML, men denna behandling är associerad 
med stora risker. Därför finns det ett stort behov av att hitta sårbarheter i AML som 
kan utnyttjas för att ta fram nya behandlingar som botar patienter. 

Leukemicellerna i AML expanderar främst i benmärgen, där de omvandlar miljön till 
fördel för sin egen överlevnad. I denna miljö finns proteiner som tillväxtfaktorer och 
cytokiner, ansvariga för cell-cell kommunikation. Dessa proteiner påverkar cellernas 
beteende genom att binda till receptorer på cellytan, som aktiverar signalering, vilket 
förändrar cellens genetiska uttryck. Interaktioner mellan leukemiceller och externa 
molekyler öppnar möjligheter att rikta behandlingar mot signaler som är viktiga för 
deras överlevnad. 

Målet med denna avhandling var att hitta och karakterisera nya sårbarheter i AML. I 
artiklarna I och III utvecklade vi ny metodik för att identifiera cytokiner som 
påverkar AML-celler. I artikeln I undersökte vi effekten av 114 cytokiner på normala 
omogna blodceller och leukemiceller samtidigt. Interleukin 4 (IL4) hade den största 
negativa effekten på AML-cellerna. IL4 inducerade celldöd i AML men påverkade 
inte normala benmärgsceller. När vi behandlade leukemiska möss med IL4, minskade 
leukemicellerna i benmärgen, vilket ledde till ökad överlevnad. Transplantation av 
leukemiceller som utsöndrar höga nivåer av IL4 resulterade i kraftig minskning av 
AML-celler i benmärgen och längre överlevnad. 
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I artikeln IV studerade vi effekt av IL4 i djurmodeller av AML i mer detalj. I möss 
med bristfälligt immunförsvar saknades den antileukemiska effekten av IL4, vilket 
indikerar att IL4 stimulerar immunceller som attackerar AML-celler. Vi upptäckte en 
ökning av makrofager i benmärg och mjälte när IL4 överuttrycktes. Makrofager är en 
immuncell som normalt äter upp bakterier och skadade celler genom en process som 
heter fagocytos. Kombinerad blockering av CD47, en molekyl på cellytan, och IL4-
stimulering, gav kraftigt ökad fagocytos av AML-celler.  

I artikeln III sökte vi efter cytokiner som påverkar AML-cellernas leukemi-
initierande förmåga. Vi utvecklade en teknik för att markera cellerna med en genetisk 
streckkod som tillät oss att efter transplantation av leukemiceller till möss spåra 
effekter till specifika cytokiner. Vi hittade att TNFSF13 hade en positiv effekt på 
AML-initiering, eftersom den gav ökad celldelning och minskade celldöd. 

I artikeln II fokuserade vi på ytreceptorn TLR1, och identifierade att uttrycket är 
högre på AML-celler än i normala blodstamceller. TLR1 binder normalt molekyler 
som kommer från bakterier, och aktiverar immunsignalering. Vi visade att aktivering 
av TLR1 i AML resulterade i utmognad av cellerna och celldöd. 

Sammanfattningsvis, i denna avhandling har jag studerat och karakteriserat tidigare 
okända mekanismer som AML-celler är beroende av och identifierat sårbarheter som i 
framtiden förhoppningsvis kan utnyttjas för att utveckla nya botemedel för AML. 
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Resumen divulgativo 

La leucemia mieloide aguda (LMA) es un tipo de cáncer que afecta a las células 
sanguíneas encargadas de nuestras respuestas de defensa innata. La LMA es una 
enfermedad clínica y biológicamente heterogénea, cuyo origen se da en las mutaciones 
que ocurren en el ADN de estas células. Estas mutaciones provocan que las células 
encargadas de formar la sangre, o células madre hematopoiéticas, se dividan de forma 
incontrolada y se detengan en fases precoces de maduración, dando lugar a una 
acumulación de células inmaduras en la médula ósea llamadas blastos. Esta 
acumulación compromete el normal funcionamiento de la médula ósea y la 
producción de sangre, ocasionando que los pacientes sientan fatiga derivada de un 
estado anémico y tengan un elevado riesgo de infecciones y hemorragias.  

Las mutaciones que ocurren en las células hematopoiéticas albergan información que 
se usa para clasificar y tratar a los pacientes, ya que afectan al pronóstico y desarrollo 
de la enfermedad. En los últimos años, las técnicas de secuenciación de ADN han 
experimentado un gran desarrollo que nos permite conocer con más detalles los 
cambios mutacionales que ocurren en las células leucémicas y las implicaciones que 
estos tienen en la enfermedad. Sin embargo, también han puesto de manifiesto la 
complejidad de la LMA, así como la necesidad de mejorar su tratamiento. Los 
pacientes de LMA reciben una quimioterapia intensiva que apenas ha cambiado en las 
últimas décadas, y el incremento en supervivencia se ha debido principalmente a la 
mejora de las condiciones de hospitalización. Además, esta quimioterapia no erradica 
por completo las células leucémicas, por lo que el riesgo de recaída en pacientes de 
LMA es alto. En casos con pronóstico poco favorable, tras los ciclos de quimioterapia 
se realiza un transplante de médula ósea, pero este tratamiento conlleva altos riesgos 
asociados. Por ello, hay una necesidad de descubrir nuevas vulnerabilidades que se 
puedan traducir en tratamientos más efectivos que puedan ayudar a curar por 
completo la LMA. 

Las células leucémicas residen en la médula ósea, donde transforman el 
microambiente que las rodea para su propia supervivencia. En este espacio también se 
encuentran moléculas como los factores de crecimiento o las citocinas, encargadas de 
la comunicación entre células. Estas moléculas afectan al comportamiento de las 
células a través de receptores de superficie específicos, que traducen el mensaje en 
señales intracelulares que afectan a la expresión genética. Por tanto, estas interacciones 
abren la posibilidad de dirigir los tratamientos contra las señales que permiten la 
supervivencia de las células de LMA. 
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En esta tesis, el principal objetivo ha sido encontrar y caracterizar nuevas interacciones 
de moléculas y sus receptores en las células de LMA. Con este fin, en los artículos I y 
III se ha llevado a cabo un cribado de citocinas para describir nuevas dependencias de 
las células leucémicas. En el caso del artículo I, se evaluó el efecto de 114 citocinas en 
la proliferación de células hematopoiéticas normales y células de LMA. La interleucina 
4 (IL4) mostró el mayor efecto negativo en células leucémicas, mientras que no tuvo 
efecto en las células hematopoiéticas. La estimulación de células de LMA con IL4 
activa señales que inducen a la muerte celular programada, denominada apoptosis. El 
tratamiento de ratones con LMA con IL4 resultó en una reducción de células 
leucémicas en la médula ósea, que se tradujo en un incremento en su supervivencia. 
Además, cuando se forzó a las células de LMA a expresar IL4 en los ratones, el efecto 
fue más marcado, con un aumento drástico del tiempo de supervivencia y la 
desaparición casi completa de la leucemia.  

Por ello, en el artículo IV estudiamos más en profundidad este efecto de IL4 in vivo. 
Usando modelos de ratones con un sistema inmune deficiente, el efecto de IL4 se vio 
reducido, indicando que la IL4 estimula al sistema inmune para atacar a las células 
leucémicas. Analizando la composición de la médula ósea y el bazo de los ratones que 
expresan la IL4, detectamos un incremento en el porcentaje de macrófagos, un tipo 
celular encargado de combatir infecciones y limpiar los tejidos de células dañadas 
mediante un proceso de ingestión y digestión denominado fagocitosis. Además, al 
bloquear la molécula de superficie CD47 en las células leucémicas, los macrófagos 
estimulados con IL4 fagocitaron más eficientemente a las células de LMA. 

En el artículo III, realizamos otro cribado de citocinas, pero en este caso se evaluó su 
efecto in vivo. Para ello, desarrollamos una técnica para marcar las células leucémicas 
mediante códigos de barras genéticos, que nos permiten identificar las células a 
posteriori según el efecto del tratamiento recibido y su desarrollo en ratones. De este 
modo, identificamos la citocina TNFSF13 como una molécula que afecta 
positivamente a la iniciación de la LMA, promoviendo la división celular y 
suprimiendo el mecanismo de apoptosis en las células leucémicas. 

En el artículo II, estudiamos el receptor de superficie TLR1, ya que su expresión es 
mayor en células leucémicas que en células hematopoiéticas normales. TLR1 es un 
receptor encargado de detectar la presencia de moléculas bacterianas, activando 
señales inmunológicas. Al estimular TLR1 en las células de LMA con una de estas 
moléculas, las células activan mecanismos de apoptosis y de diferenciación celular. 

En conjunto, esta tesis ha estudiado y caracterizado nuevas dependencias y 
vulnerabilidades en LMA que resultan de la estimulación de receptores en las células 
leucémicas. Con un mayor conocimiento de la biología de la LMA, se abre la 
posibilidad de desarrollar nuevos tratamientos que ayuden a mejorar el pronóstico de 
los pacientes. 
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Hematopoiesis 

“The modern haematologist, instead of describing in English what he can see, prefers 
to describe in Greek what he can’t.” – Richard Asher (1959).* 

To carry out the diversity of functions that our blood is responsible for, different 
populations of cells are needed to ensure optimal performance under both normal 
physiological conditions and during stress. The cells in our blood carry oxygen, 
defend us from pathogens and help us to heal our wounds, to name a few of their 
tasks. Therefore, a high cell turnover is needed to maintain and produce the different 
cell populations. This process is termed hematopoiesis, from the old Greek αἷµα, 
blood, and ποιεῖν, to make. 

The hematopoietic hierarchy and blood lineages 

Blood cell populations have been classified differently depending on diverse criteria. 
One historical classification was based on the colour of the blood cells after 
sedimentation by centrifugation: white blood cells, also referred to as leukocytes, and 
red blood cells, also named erythrocytes. The former includes nucleated blood cells 
that carry out defence functions against infections, while the latter comprises 
enucleated cells that carry oxygen. This division was based on the mere observation of 
blood cells, and provides a broad separation based on their function.1 This 
classification was also the basis for what later was called “leukemia”, combining the 
Greek words λευκός, white, and αἷµα, blood. 

A more precise and scientific classification of blood cells is based on their origin and 
maturation. Again, two broad populations are defined: lymphoid cells, which include 
T cells, B cells and natural killer (NK) cells; and myeloid cells, which include 
monocytes, granulocytes, thrombocytes/platelets and erythrocytes. These two 
branches of blood cells arise from hematopoietic stem cells (HSCs), but were initially 
thought to split early in the hematopoietic process and remain separated along their 
differentiation into mature cells. However, this hypothesis has recently been 
challenged. 

                                                        
*Richard Asher (1912-1969), British endocrinologist and haematologist. 
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Figure 1. The hematopoietic tree. Hematopoiesis is a hierarchical process with HSCs located at the 
top. HSCs differentiate into the progenitors of each blood lineage (black lines), which recently has 
become more complicated as new differentiation pathways have been revealed (red lines). Full names 
for abbreviations can be found on page 10. 

Hematopoiesis has classically been depicted as a hierarchical tree in which HSCs are 
at the top, and as the cells go down and branch apart, they differentiate into more 
restricted lineage progenitors (figure 1). With more advanced assays that have allowed 
us to study the process at higher resolution, it has become evident that cellular fate 
decisions are more intricate than first anticipated. The HSCs are characterized by 
their self-renewal capacity, which ensures that at least one daughter cell remains a 
HSC after cell division. More specifically, self-renewal of HSCs can occur by 
symmetrical cell divisions, generating two HSCs, or asymmetrically, with one of the 
daughter cells differentiating into the next stage of development.2 Downstream of 
HSCs are multi-potent progenitors (MPPs),3 which have a limited life-span, as 
evaluated by transplanting the cells into sublethally irradiated immunodeficient mice. 
Previously, MPPs were thought to split into two major progenitors types: the 
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common lymphoid progenitor (CLP)4 and the common myeloid progenitor (CMP).5 
However, recent studies have described a progenitor cell type that is primed towards 
the lymphoid potential, but it is also able to produce cells of the myeloid lineage.6-8 
This progenitor population has been named as lymphoid-primed multipotent 
progenitors (LMPPs)6, and have redefined the classical view of hematopoiesis. Hence, 
the dichotomy between lymphoid and myeloid cells now seems to take place at a 
more committed stage than previously thought. 

The myeloid cell development, or myelopoiesis, has also been revisited recently. 
CMPs have been shown to not be the only cell type capable of generating 
megakaryocyte precursors, which can arise also directly from HSC populations.9-11 
Therefore, CMPs have been redefined as a more restricted erythroid-myeloid 
progenitor (EMP) that generates erythrocytes and certain granulocytes. 
Megakaryocyte-erythroid progenitors (MEPs) and granulocyte-macrophage 
progenitors (GMPs) were thought to arise from CMPs, but now these progenitor 
populations are hypothesized to come from different populations. GMPs can arise 
from LMPPs, and are the progenitors for neutrophils and monocytes.12 

Within the lymphoid branch, CLPs arise from LMPPs, and give rise to more mature 
lineage restricted progenitors generating mature lymphoid cells.13 It is worth noting 
that the final steps of maturation of lymphoid cells, with the exception of NK cells, 
take place out of the bone marrow: B cells migrate to the spleen and lymph nodes, 
whereas T cells migrate to the thymus.  

Studying hematopoiesis 

The hierarchical organization of hematopoiesis has been defined by transplanting 
various cell populations into irradiated mice and studying their repopulating capacity, 
and also by studying their differentiation fate in vitro. To identify and characterize 
various hematopoietic cell populations, it has been instrumental to identify cell 
surface markers that distinguish the various cell populations. 

Cell surface markers 

The plasma membrane contains a variety of molecules responsible for functions such 
as cell communication, attachment to the extracellular matrix, or recognition by other 
cells in the organism. Some of these molecules are displayed in a cell type-specific 
manner, allowing for the identification of cell populations by detecting their 
immunophenotype using antigen specific antibodies. This is the basis for a method 
termed fluorescence-activated and cell sorting (FACS), in which antibodies specific 
for cell surface molecules are conjugated to fluorescent dyes that allow for staining 
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and separation of cells. When combining several antigen-specific antibodies, FACS 
allows for the identification of very specific and rare cell populations. 

Since HSCs are undifferentiated cells, they are enriched within lineage negative (Lin–) 
cells as they lack expression of markers that define mature cell populations. HSCs 
express CD34,14 but this marker is also expressed on a variety of progenitor cell 
populations. Therefore, there have been many efforts aimed at elucidating a 
combination of markers that best isolates HSCs, and currently human adult HSCs are 
defined as Lin–CD34+CD38–CD45RA–Thy1+RholoCD49f+, as these cells are able of 
long-term engraftment and multi-lineage repopulation of immunodeficient recipient 
mice.15 More mature populations lose or gain markers, allowing for the detection of 
cell populations in different maturation steps. 

A major challenge this phenotypic classification encounters is to define whether the 
cell population is truly pure, consisting of only HSCs, for example. Therefore, FACS 
should ideally be combined with prospective isolation of cell populations that can be 
functionally characterized. Single cell studies coupled to cell surface markers have 
advanced our knowledge of hematopoiesis, in combination with transplantation 
experiments that assess their clonal capacity, and with genome sequencing analysis, 
which helps elucidate their gene expression programs critical for their functions. 

Mice and transplantation assays 

Mice are an indispensable tool to study hematopoiesis, and as many other techniques, 
we have improved and tailored them to our needs. Mice can be used as recipients of 
human cells, establishing what is termed a xenograft (from the Greek ξένος, alien): a 
tissue from one species transplanted into another. 

To allow for the repopulation of human cells in recipient mice, the host immune 
system from the mouse needs to be defective, as otherwise the human grafted cells 
would be attacked and destroyed, in a similar process as human immune cells attack 
transplanted organs in graft-versus-host disease.16 The severe combined immune 
deficiency (SCID) strain of mice has been key to much of the success of 
xenotransplantation models. The lymphocytes in these mice are arrested at an early 
step of development due to a mutation in the Prkdc gene affecting the recombination 
of the T cell receptor (TCR) and immunoglobulins (Ig), making them susceptible to 
infections but also to transplantation of foreign tissues across species barriers.17 
Further crossing of these mice with nonobese diabetic (NOD) mice, which have a 
partial deficiency in NK cells18 and decreased macrophage activity,19 generated the 
NOD-SCID strain with a more severely compromised immune system. 

The NOD-SCID mouse model allows for engraftment of human hematopoietic 
cells,20 but residual immune activity still dampers the reconstitution. By crossing of 
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NOD-SCID mice with mice mutant for the interleukin (IL) 2 receptor gamma-chain 
(IL2Rg), the NOD-SCID-γc

null (NSG) mouse strain was generated.21 The mutation in 
the IL2Rg gene disrupts the signalling of multiple interleukins that are important for 
immune cell development, allowing for higher engraftment of human cells. A 
challenge with xenograft models that limits the repopulation of human cells in mice is 
a partial lack of cross-reactive murine growth factors needed to fully support human 
cells. Although some cytokines that regulate cell communication are cross-reactive 
between species, many are species specific, which means that critical signals 
supporting human cells are lacking. To this end, transgenic NSG mice expressing 
human cytokines have been developed to enhance human cell engraftment and in 
particular myeloid cell reconstitution.22-24 

Table 1. Mouse strains and immune cell functions. 
Mouse strain Immune cell function 

 B cell T cell NK cell Macrophages 
C57BL/6 ✓ ✓ ✓ ✓ 
SCID ✗ ✗ ✓ ✓ 
NOD ✓ ê ê ê 
NOD-SCID ✗ ✗ ê ê 
NSG ✗ ✗ ✗ ê 
✓: functional; ✗: impaired; ê: decreased function. 

Regulation of hematopoiesis 

Hematopoiesis is a tightly controlled process, regulated both by external (extrinsic) 
and intracellular (intrinsic) factors. To ensure optimal function under various 
conditions, hematopoietic cells respond to a variety of regulators that define their 
final output. In steady (or normal) state, HSCs are mostly quiescent and rarely divide. 
Instead, the generation of mature blood cells is maintained by the progenitors that 
divide rapidly and ensure a continuous output of cells.25,26 This organization is 
important because HSCs are a rare long-lived population that is in charge of 
maintaining the whole hematopoietic system throughout the life of an individual, and 
by delegating this task to more mature and transient progenitors, they ensure that 
errors that originate from DNA replication and stress are kept at a minimum at the 
HSC level.27,28  

Extrinsic regulators of HSCs 

Adult HSCs are physically located in the bone marrow surrounded by multiple other 
cells and structures, which provides a microenvironment often referred to as the bone 
marrow stem cell niche.29 Within the bone, HSCs are found in the trabecular zone in 
close proximity to the endothelium of small capillaries and mesenchymal stromal 
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cells,30,31 anchored to their niche by cell surface molecules. In addition, a number of 
other components also regulate HSCs, such as nerve fibres,32 osteoclasts,33 and 
osteoblasts.34 The composition of the HSC niche is still not completely resolved, and 
many aspects remain elusive because of the challenges associated with studying the 
niche without disruption of its structure and the difficulties associated with localizing 
the rare HSCs.31 

A variety of molecules from different cell types of the niche play a crucial role in 
signalling to HSCs, either by keeping them dormant or activating their cell cycling. A 
major type of communication between cells are cytokines, molecules that are secreted 
and bind to cell surface receptors on target cells. The pairing of the cytokine with its 
receptor activates a signal transduction in the cells that affects their behaviour, mainly 
by modifying gene expression. One example of an important cytokine for HSC 
maintenance in the bone marrow is CXCL12 and its receptor CXCR4, which are 
essential for hematopoiesis. CXCL12 is secreted by stromal cells in the niche, and 
binds to CXCR4 on the surface of HSCs, resulting in retention of HSCs in the bone 
marrow.35,36 

Under stress conditions that require increased blood cell output, such as infections or 
bleedings, HSCs are stimulated by danger signals that along with other mediators 
ensure an increased production of certain cell types that provides protection.37,38 
These signals can directly act on HSCs, such as stimulation of Toll-like receptors 
(TLRs) by microbial particles,39 or indirectly, by pro-inflammatory cytokines such as 
interferons and IL1.40 However, if these signals are sustained for a long time, e.g. 
during chronic inflammation, HSCs are altered and can lose their self-renewal 
capacity and produce more myeloid cells, which might set a founding ground for 
hematopoietic malignancies.41 

Intrinsic regulators of HSCs 

Gene expression is a tightly regulated process that defines not only the cellular 
response to environmental cues but also its fate and development. One of the main 
regulators of gene expression are transcription factors, proteins with the ability to 
bind to specific DNA sequences and control gene expression. 

In the context of HSCs, transcription factors are key regulators of quiescence and 
differentiation. Transcription factors often act in complexes comprising several 
regulatory networks, including multiple transcription factors that together instruct 
the fate of the cells.42 For example, during hematopoietic development the 
transcription factors GATA-1 and GATA-2 antagonize the myeloid transcription 
factor PU.1 to favour megakaryocyte/erythrocyte lineage development.43 In addition, 
the order in which different transcription factors are expressed is critical for cell 
differentiation.44 However, recent findings suggest that the HSC behaviour is more 
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complex, highlighting HSCs as a more heterogeneous cell population than previously 
anticipated. How HSC fate decisions are made is partially an elusive process, as recent 
studies show that HSCs are biased towards certain differentiation pathways.45,46 It is 
likely that these fate decisions are influenced in vivo by a balance between the 
temporal and dosage conditions of transcription factors and external signals. 

Another level of HSC gene regulation comes from epigenetics, inheritable changes in 
gene expression that are not a result of variations in the DNA sequence.47 Epigenetic 
changes are caused, for example, by methylation of cytosine residues that can change 
transcriptional activity, histone acetylation that opens the chromatin to facilitate 
transcription, or RNA-mediated gene regulation.48 The rapid advancements of 
sequencing techniques in recent years, such as chromatin immunoprecipitation 
sequencing and bisulfite sequencing, allows for studying these processes in more 
detail, and thereby increasing our understanding of how epigenetics shape cellular 
fates. For example, DNA methylathion is maintained by a group of enzymes named 
DNA methyltransferases (Dnmt), and defects in the function of these enzymes alter 
the behaviour of HSCs.49 Loss of Dnmt1 abolishes the lymphoid potential of HSCs 
because expression of myeloerythroid genes cannot be suppressed,50 and mutations in 
Dnmt3a impair differentiation and causes expansion of HSCs in bone marrow as a 
result of genomic hypomethylation.51 

Malignant hematopoiesis 

Despite regulation of hematopoietic stem and progenitor cell (HSPC) activity and 
repair mechanisms during DNA replication, genetic alterations in the DNA strand of 
HSPCs occur. Whereas most genetic alterations do not give a proliferative advantage 
to the cells, others might eventually lead to transformation of a normal cell into a 
malignant clone. The cell of origin in these diseases can be a HSC, as in the case of 
most myeloid malignancies; or at more mature stages, as in most B cell 
malignancies.52 This thesis focuses on malignancies arising from HSCs. 

Clonal hematopoiesis 

As we age, DNA alterations are acquired in cells during replication and accumulate 
over time. If a genetic alteration causes a certain benefit to the cell, then the progeny 
will have a selective advantage, for example by providing protection against apoptosis 
or increased proliferation. As these cells expand, they can acquire new mutations that 
might provide an even stronger selective advantage, e.g. by acquisition of self-renewal 
or immune evasion; and thus causing diseases such as cancer. A group of cells that 
originate from a single HSPC is termed a clone, as they share the same cellular origin. 
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If a mutation happened at that HSPC, then the descendant cells will inherit that 
mutation in their DNA, allowing for tracing of the cells that originated from the 
same precursor. 

Clonality and barcode tracking 
To study the dynamics of blood cell production over time from individual HSCs, 
either single cell transplantations of HSCs or genetic labelling can be applied in a 
transplantation setting. For genetic labelling, molecular barcodes can be introduced 
into HSCs that are unique DNA sequences that will allow for tracing of daughter 
cells from single HSCs by sequencing.53 Such clonal tracking experiments have 
allowed for a more detailed understanding of hematopoiesis, and have highlighted the 
heterogeneity that exists at the HSC level; such as lineage biases from individual 
HSCs.54 By analysing the clonal output over time, different HSC dynamics have been 
described. After transplantation of barcoded HSCs, a first wave of lineage-biased 
clones deriving from short-lived HSCs arises. At later times, balanced multilineage 
populations arise from single long-term HSCs.55,56 

Clonal hematopoiesis of indeterminate potential 

In recent years, several studies have performed sequencing-based detection of 
somatically acquired mutations to study clonal hematopoiesis in humans.57 In older 
individuals, mutations characteristic of hematological diseases can be detected in up 
to 10% of healthy individuals over 60 years old.58,59 These mutations, such as 
DNMT3A and TET2, confer a proliferative advantage to the HSCs resulting in 
increased clonal output. This is what has been termed clonal hematopoiesis of 
indeterminate potential (CHIP).60 Therefore, CHIP is correlated with an increased 
risk of hematological cancer, but surprisingly, these individuals have also been found 
to have a higher risk of ischemic stroke, heart disease and overall mortality.58 This has 
been associated with deficiencies in the mature cells descending from the mutated 
HSCs, as for example TET2 mutated macrophages secrete higher levels of IL1β, 
which is a key cytokine in the development of artherosclerotic plaques.61 These 
findings pose then the question whether these individuals should be regarded as 
healthy, and whether screening programmes to identify them should be initiated.62 

CHIP is strongly correlated with the age of the individual.63 The most commonly 
mutated genes in individuals with CHIP is DNMT3A, followed by TET2, ASXL1, 
JAK2, TP53 and SF3B1.58 These genes are as well among the most commonly 
mutated genes in acute myeloid leukemia (AML) and myelodysplastic syndromes 
(MDS), suggesting that these mutations provide a founding ground for the 
development of hematological diseases. Moreover, the majority of these genes are 
associated with the epigenetic state of the cells, highlighting alterations in epigenetics 
as a regulatory and permissive mechanism of malignant transformation. As discussed 
before, DNMT3A mutations lead to hypomethylation of the genome, whereas TET2 
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leads to hypermethylation. Interestingly, recent studies have shown that mutated 
TET2 activity can be repaired by pharmacological treatment with vitamin C, 
restoring the normal epigenetic state, as it acts as a co-factor for TET2 enzymatic 
activity.64 This finding suggests that pharmacological protection against malignant 
transformation might be possible, hampering potential leukemia development. The 
evolution from CHIP to an overt hematological malignancy will probably become a 
topic of intense research in the coming years, as questions remain such as how CHIP-
associated HSCs acquire secondary cooperating lesions leading to disease or other 
mechanisms contributing to malignant transformation. 

Myelodysplastic syndromes 

MDS are a group of diseases in which malignant clonal hematopoiesis with abnormal 
morphology, or dysplasia, results in low blood cell counts, also referred to as 
cytopenias.65 About one third of patients with MDS progress into acute myeloid 
leukemia,66 showing the close relationship between the two diseases. Indeed, many of 
the mutations found in MDS are also characteristic of AML, such as TET2, 
DNMT3A, ASXL1 and IDH1.67 However, certain mutations such as splicing factor 
mutations are more prevalent in MDS than in AML. 

Most of MDS patients present with 1–4 oncogenic driver mutations.67 Many of these 
mutations occur in genes that are part of the spliceosome or related to epigenetic 
regulation.66 Interestingly, by studying how mutations occur in the cells, certain 
patterns emerge. Mutations that affect the same pathway tend to be mutually 
exclusive, either because they are redundant or lethal to the cells. But mutations that 
happen in different pathways can also be mutually exclusive if they affect the same 
oncogenic processes. For example, TET2 and IDH2 mutations are exclusive of each 
other, as both affect DNA methylation.68 Patterns of mutational co-occurrence also 
emerge, and can be associated with disease outcome. As an example, mutations in 
SF3B1 and SRSF2 affect RNA splicing, but they differ in their set of co-mutated 
genes and result in different disease phenotypes.67 This suggests that mutations in the 
same pathway can have different functional outcomes that are further defined by 
other mutations. Understanding the mechanistic basis for such interactions might 
reveal new treatment opportunities allowing for targeting of cancer cell dependencies. 

Leukemia 

The term leukemia refers to a group of cancers that are manifested in various mature 
and immature blood cell populations. When the transformed cells belong to the 
lymphoid lineage, it is referred to as a lymphocytic/lymphoblastic leukemia; whereas 
if the cells belong to the myeloid lineage, then it is a myeloid leukemia. Acute 
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leukemia develops fast, with a rapid increase in immature blood cells; whereas chronic 
leukemia progresses over months or years, with a slight accumulation of somewhat 
mature cells over time.  

Lymphocytic leukemia 
Acute lymphoblastic leukemia (ALL) is the most common form of cancer in children, 
representing about one third of all childhood cancers. Today the survival for children 
with ALL is around 90%, but infants (children below 1 year of age) and adults do 
worse.69 ALL affects B cells or T cells, with B cell precursor ALL (BCP-ALL) being 
the most common type in children, accounting for about 85% of the cases. 

BCP-ALL arises early in life, with the genetic lesion often occurring already in utero. 
After birth, additional genetic changes transform the cells into BCP-ALL.70 The 
mechanistic basis for the mutational changes still remain unclear, but might be related 
to a defective RAG-mediated recombination. However, a recent model for BCP-ALL 
suggests that infections might play a dual role in its development: early-life infections 
would have a protective role, as the immune system is trained to trigger normal 
immune responses; while exposure to infections later in life, without early pre-
exposure, create a defective immune response that correlates to BCP-ALL 
development.70 Epidemiological studies support these findings, as children who 
attend day-care early in life and are exposed to common infections have a decreased 
risk of ALL.70 

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults and 
affects mature B cells. Most CLL patients have a favourable outcome and can live 
many years even without treatment, but the disease is heterogeneous and some 
develop a rapid fatal disease.71 CLL cells are dependent on signals from the 
environment, such as B cell receptor stimulation, to escape apoptosis and survive.72 
Hence, treatments targeting B cell receptor signalling are effective and improve 
patient outcome.71,72 

Myeloid leukemia 

Chronic myeloid leukemia (CML) arises when a HSC harbours a chromosomal 
translocation between chromosomes 9 and 22, giving rise to the BCR/ABL1 fusion 
gene. This alteration disrupts the maturation process of the HSCs and leads to a 
clonal expansion and accumulation of immature myeloid cells in the bone marrow. 
The introduction of tyrosine kinase inhibitors (TKIs) blocking BCR/ABL1 has 
dramatically increased the survival of the patients. Without treatment, CML 
progresses from a chronic phase into blast crisis, which is an acute leukemia with 
rapid proliferation of immature cells. With TKIs, CML patients have a normal 
lifespan but are generally dependent on lifelong treatment.73  
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The BCR/ABL1 fusion protein has constitutive kinase activity and activates multiple 
downstream signalling pathways, which results in reduced apoptosis and increased 
growth-factor independent proliferation.74 As the CML cells are dependent on the 
kinase activity of BCR/ABL1, blocking this activity by TKIs inhibits the effects of the 
fusion protein, leading to disease remission. However, resistance to treatment can 
emerge as certain mutations that affect the kinase domain of BCR/ABL1 render the 
TKIs ineffective. To also target resistant clones, second and third generation TKIs 
have been developed. In patients failing multiple TKIs, allogeneic HSCT is 
considered.75 

Blast crisis is manifested in the myeloid lineage in two thirds of cases, but it can also 
be manifested in lymphoid cells, as well as cells with phenotypes of both lineages.75 
This strongly suggests that malignant transformation occurs in a HSC with potential 
for both lineages. How CML develops into blast crisis is still poorly understood, but 
it has been associated with additional genetic alterations and BCR/ABL1-induced 
genomic instability.74 Despite the efficacy of TKIs, CML stem cells are resistant to the 
treatment by mechanisms still unclear. Therefore, although many patients achieve 
disease remission, treatment cannot be discontinued as this would lead to disease 
relapse.76 
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Acute myeloid leukemia 

“Science and everyday life cannot and should not be separated.” – Rosalind Franklin.* 

AML is characterized by increased proliferation of immature myeloid blast cells, and 
is the most common form of acute leukemia in adults. Each year, around 350 new 
cases of AML are diagnosed in Sweden, with an incidence of 3.7 new cases per 100 

000 inhabitants per year in Europe.77 The five year overall survival is around 30% and 
treatment has remained similar for decades. Hence, there is a strong medical need to 
develop new treatments. To this end, we need to better understand the mechanisms 
of leukemogenesis and the vulnerabilities of leukemia cells. 

Clinical features 

In AML, myeloid-committed hematopoietic cells are arrested in different stages of 
differentiation, with immature blasts accumulating in the bone marrow and blood, 
hampering normal blood production.78 When the myeloid blast count reaches 20% of 
the cells in bone marrow or peripheral blood, it is diagnosed as AML, otherwise, the 
disease might be diagnosed as MDS depending as well on other features such as 
dysplasia.79 The risk of AML increases with age, accounting for about 80% of the 
acute leukemias that occur in adults, and it has a 5-year survival rate of approximately 
50% for patients below 60 years of age, and around 25% for those over 60 years.80 

Similar to other types of leukemia, AML is associated with several vague symptoms in 
patients caused by reduced numbers of normal blood cells. These range from 
vulnerability to infections and sensitivity for bruising in the early stages, to fatigue 
and anemia at later stages. Ultimately, the diagnosis of AML requires a bone marrow 
biopsy to determine not only the percentage of blasts but also the mutations they 
carry. The major risk factor for AML is age, but previous exposure to chemotherapy 
related to previous diseases such as MDS also increases the risk of developing what is 
termed as secondary AML.81  

 
                                                        
* Rosalind Franklin (1920-1958), British chemist and crystallographer. 
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Classification of AML 

AML is a heterogeneous disease and diverse classification efforts have been made to 
stratify patients according to clinical features.82 In the early 1980s, a group of French, 
British and American (FAB) hematologists proposed a classification based on the blast 
morphology, differentiation stage and myeloid cell type affected, termed FAB groups 
M0–M7 (table 2).83 However, although this classification also incorporates certain 
cytogenetic features, it does not take into account the diversity of genetic alterations 
present in AML. 

The world health organization (WHO) classification system for AML is more 
complex but carries more prognostic information than the FAB system. The WHO 
system includes multiple recurrent genetic abnormalities found in AML that have 
prognostic value, as well as other factors related to AML development such as prior 
hematological malignancies or therapy (table 2).84 The improved WHO classification 
has been possible due to advancements in sequencing techniques that have allowed 
researchers and clinicians to better understand the impact these genetic alterations 
have on patient outcome. Nevertheless, due to the high mutational diversity of AML, 
some patients do not fall into any of the WHO categories, and therefore the FAB 
classification is still used for these cases, although it provides less prognostic 
information.85 

Genetic alterations in AML 

Due to advances in next generation sequencing (NGS) techniques, and efforts such as 
the Cancer Genome Atlas, a heterogeneous mutational landscape of AML has been 
revealed. In around 50 to 60% of AML patients, structural chromosomal changes are 
detected, whereas the remaining patients have a normal karyotype. 

Chromosomal alterations 

Cytogenetics, and more recently RNA sequencing, are useful tools to identify 
chromosomal abnormalities in AML. Chromosomal changes in AML include 
insertions and deletions such as del(5q),86 trisomy in chromosomes 8 and 21,87 or 
inversion of chromosome fragments. In AML, around 10% of the cases present with a 
complex karyotype, harbouring 3 or more chromosomal aberrations, which is coupled 
with poor prognosis.88 
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Table 2. Different classification systems of AML.  

FAB classification   

M0 Undifferentiated acute myeloblastic leukemia  

M1 Acute myeloblastic leukemia with minimal maturation  

M2 Acute myeloblastic leukemia with maturation  

M3 Acute promyelocytic leukemia  

M4 Acute myelomonocytic leukemia  

M5 Acute monocytic leukemia  

M6 Acute erythroid leukemia  

M7 Acute megakaryoblastic leukemia  

WHO classification   

AML with recurrent genetic abnormalities Fusion gene name 

 AML with t(8;21)(q22;q22) RUNX1/RUNX1T1 

 AML with inv(16)(p13.1q22) or t(16;16)(p13.1;p22) CBFB/MYH11 

 Acute promyelocytic leukaemia with t(15;17)(q22;q12) PML/RARA 

 AML with t(9;11)(p22;q23) MLLT3/MLL 

 AML with t(6:9)(p23;q34) DEK/NUP214 

 AML with inv(3)(q21q26.2) or t(3.3)(q21;q26.2) RPN1/EVl1 

 AML (megakaryoblastic) with t(1:22)(p13;q13) RBM15/MKL1 

 AML with mutated NPM1  

 AML with mutated CEBPA  

AML with myelodysplasia-related changes 

 Therapy-related myeloid neoplasms  

 Acute myeloid leukaemia, not otherwise specified  

Proposed genomic classification by Papaemmanuil et al., 2016  
AML with NPM1 mutation  

AML with mutated chromatin, RNA-splicing genes, or both  

AML with TP53 mutations, chromosomal aneuplody, or both  

AML with inv(16)(p13.1q22) or t(16;16)(p13.1;p22) CBFB/MYH11 

AML with biallelic CEBPA mutations  

AML with t(15;17)(q22;q12) PML/RARA 

AML with t(8;21)(q22;q22) RUNX1/RUNX1T1 

AML with t(x;11)(x;q23) MLL fusion genes 

AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2) GATA2, MECOM (EVI1) 

AML with IDH2R172 mutations and no other class-defining lesions  

AML with t(6;9)(p23;q34) DEK/NUP214 

AML with driver mutations but no detected class-defining lessions  

AML with no detected driver mutations  

AML meeting criteria for ≥2 genomic subgroups  
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The most common chromosomal abnormalities found in AML are translocations, 
leading to rearrangement of the genome and the creation of fusion genes. Many of 
these rearrangements are recurrent and used for classification of AML, and carry as 
well prognostic information (table 2). Of these chromosomal abnormalities, the 
translocation t(15;17)(q24;q21), which gives rise to the PML/RARA fusion gene that 
encodes a protein that can be therapeutically targeted, is a paradigm for the efficacy of 
targeted therapies. 

The presence of the PML/RARA fusion gene classifies the subgroup acute 
promyelocytic leukemia, or M3 according to the FAB classification. This subtype of 
AML used to have the worst survival, mainly because patients suffered of severe 
bleedings.89 Mechanistically, PML/RARA decreases the levels of the myeloid 
transcription factor PU.1 and the tumour suppressor PTEN, leading to a 
differentiation block and leukemia initiation, respectively.90 Today, these patients 
have an overall survival of nearly 80% due to the introduction of a targeted therapy 
against PML/RARA.91 By adding all-trans retinoic acid into the chemotherapy 
treatment, the differentiation block of the leukemic blasts is rescued, facilitating the 
maturation process and rendering the blasts sensitive to chemotherapy.92 Retinoic 
acid restores the levels of PU.1, which is crucial for myeloid differentiation, and this 
consequently restores the levels of PTEN, thereby neutralizing the oncogenic activity 
of PML/RARA.90 Thus, this treatment is an example of the success of targeted 
therapies for a specific subtype of AML. However, targeted therapies directed to 
mutated proteins are not expected to be effective in other subtypes of leukemia, in 
which leukemogenesis is driven by loss of function mutations. 

Gene mutations 

In normal karyotype AML, leukemogenesis is driven predominantly by point 
mutations in genes. Although AML has a heterogeneous mutational landscape, it is 
one of the cancers with the lowest mutational burden per patient; on average 13 gene 
mutations.93 Despite the diversity in genes that are found mutated in AML, only 23 
are so far identified as recurrently mutated, including genes such as DNMT3A, FLT3, 
NPM1, IDH2, and TET2. 

A recent study by Papaemmanuil et al.94 that analysed the mutational landscape in a 
total of 1540 patients, the largest patient cohort to date, identified new associations 
between molecular alterations and prognosis. The study proposed 11 AML subgroups 
with distinct phenotypic and clinical features, of which 3 are groups with a 
heterogeneous set of mutations (table 2). Moreover, this study highlighted the 
importance of co-mutations that occur in AML and the profound effect they have on 
patient survival. One such example is the interaction between NPM1, FLT3 and 
DNMT3A mutations. In the presence of coexisting NPM1 and DNMT3A mutations, 
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the acquisition of internal tandem duplications in FLT3 conferred a much worse 
prognosis to patients compared to cases with only one of the genes mutated. These 
findings suggest that patients should be exhaustively evaluated regarding the 
mutations present in their AML cells. This knowledge can then be used in 
translational efforts to improve patient outcome, tailoring the treatments available to 
the prognostic information conferred by the mutations. 

Epigenetic regulators 

The focus on epigenetics is increasing with advances in sequencing technologies, and 
it is now accepted that epigenetic deregulation is a hallmark of AML.95 Interestingly, 
this deregulation in AML cells is found even in cells that lack a mutation in known 
epigenetic regulators,93 highlighting the importance of these processes in AML 
biology. 

DNA methylation represses gene expression by the addition of a methyl group to 
cytosine residues of the DNA. This can either prevent the binding of transcription 
factors or the recruitment of proteins that silence gene expression. Hypermethylation 
in AML is associated with silencing of tumour-suppressor genes,48 and mutations that 
result in loss of DNMT3A cause hypomethylation resulting in expression of genes 
that facilitate AML development.96, 97 DNA methylation patterns differ among AML 
patients, and similar to genetic alterations they can be used for classification of 
specific subtypes.98 

Epigenetic changes can also occur by modifications of histone proteins that regulate 
chromatin accessibility. Histone acetylation opens the chromatin to facilitate 
transcription in a process regulated by acetyltransferases and deacetylases that 
associate with transcription factors.48 Histone methylation on the other hand does not 
activate or repress transcription per se, but act as a mark for the recruitment of 
methyl-binding proteins. Different patterns of methylation are associated with 
different stages of transcription.99 For example, methylation of histone 3 on lysine 4 
(H3K4) is a marker of transcriptional activation regulated by the KMT2A gene, also 
known as MLL.* 

MLL-rearranged leukemia 

Chromosomal rearrangements affecting MLL are present in about 10% of all acute 
leukemias, and more than 130 fusion partners to MLL have been identified as of 
today, of which 9 represent more than 90% of the MLL-rearrangements (MLL-R).100 
                                                        
* The name MLL will be used throughout this thesis and in the articles included. MLL is the traditional 

name, standing for Mixed-Lineage Leukemia due to the presence of translocations affecting this gene 
in leukemias with mixed phenotypes. KMT2A is now the official gene name, standing for Lysine-
specific Methyltransferase 2A, referring to its protein function.  
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MLL fusion genes act as oncogenes that give rise to an aggressive disease associated 
with poor prognosis. MLL-R are found in both ALL and AML, and certain fusion 
partners are more prevalent in one of the diseases, as well as in certain age groups. For 
example, MLL-R account for up to 80% of infant ALL cases, where MLL-AF4 is the 
most common fusion gene.101 In adult AML, MLL-R are found in 10% of the cases, 
with MLL-AF9 being the most common translocation.102 

The fusion gene encodes a fusion protein in which MLL has lost the domain 
responsible for H3K4 methylation and is frequently fused to proteins of the 
elongation complex.48 The MLL fusion protein is recruited into a complex that 
contains the methylase DOT1L, which methylates histone 3 on position 79, a mark 
for transcriptional activation.103 This leads to a deregulated expression of MLL target 
genes, including certain HOX genes, critical for HSC biology.104 

Treatment of AML 

Chemotherapy is the first treatment given to AML patients, termed induction 
therapy, and is used to achieve complete remission, defined as less than 5% blasts in 
the bone marrow.80 The chemotherapy consists of a continuous infusion of cytarabine 
for 7 days, in combination with an anthracycline, usually danorubicin, for the 3 first 
days.105 These drugs disrupt DNA replication and therefore selectively target rapidly 
dividing cells but have substantial toxic side-effects also to normal cells. 

Complete remission is achieved in about 80% of the patients below 60 years of age, 
but in patients over 60 years of age, only around 60% will achieve complete 
remission.80 In addition, due to the toxic side effects of chemotherapy, not all patients 
are eligible for standard treatment, especially among the elderly. In these cases, low 
doses of cytarabine are given, and hypomethylating agents such as azacitidine have 
also been approved recently for this patient group.106 

Measurable residual disease (MRD) is another parameter that is used to evaluate and 
stratify patients post-therapy as it allows for a more robust assessment of treatment 
outcome. MRD measures the presence of leukemia cells in a range of 1 to 104–106 
bone marrow cells.107 MRD in AML is measured by either flow cytometry or by PCR 
in cases with known genetic abnormalities. Moreover, NGS approaches are being 
explored as they allow for detection of the genetic lesions with high sensitivity.108 

Despite achieving complete remission, many patients will relapse without further 
consolidation treatment. Therefore, post-induction therapy is given, either as 
additional chemotherapy courses for favourable risk patients, or as hematopoietic 
stem cell transplantation (HSCT) for the high risk groups.109 In patients with 
complete remission, post-induction therapy reduces the relapse rate to about 50% of 
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the patients, translating to a cure rate of approximately 45% for patients diagnosed 
with AML.80 

HSCT is only considered for patients with a poor prognosis because it is associated 
with a high mortality risk. The transplantation might trigger a graft-versus-host effect, 
a life-threatening condition in which the donor’s immune system reacts against the 
host.16 Moreover, to improve engraftment and suppress the disease, patients undergo 
an immunosuppressive treatment prior to HSCT. The aim of the treatment is to 
achieve a graft-versus-leukemia effect, in which the donor immune cells will attack 
and destroy the malignant cells.110 The graft effects are mediated mainly by T cells,111 
which by peptides displayed on major histocompatibility complexes (MHC) 
recognize self from foreign. Each person generally has a different set of MHC 
molecules inherited from their parents, and these need to be properly matched 
between donor and host to reduce the potential side-effects. This setting of 
transplantation is termed allogeneic HSCT.  

In patients that do not receive HSCT, IL2 and histamine can be used to activate the 
immune system and deplete residual AML cells in post-induction therapy.112 This 
treatment activates NK and T cells that are suppressed by the leukemia cells,113 and 
clinical trials show special efficacy in monocytic forms of AML, as these blasts express 
histamine receptors that impact the effectiveness of treatment.114 

Resistance and relapse in AML 

Relapse rates remain high in AML patients, with 50% relapsing after treatment.80 Not 
all AML cells present at diagnosis are equally sensitive to chemotherapy,115 and in 
some cases the cells that have relapse potential can be found already at diagnosis.116 
Different hypotheses have been postulated to explain the therapy resistance of 
relapsing cells in AML. A recent study showed that one of the main characteristics of 
relapsing cells is that they retain stem cell-like transcriptional programs,117 
highlighting this mechanism as a potential therapeutic target to reduce relapse. In 
addition, evaluation of these stemness markers could allow for patient stratification in 
different risk groups.118 However, other mechanisms have also been proposed for the 
arise of resistance, such as microenvironment protection119 or drug efflux from the 
cells by membrane pumps.120 In particular, p53 aberrant function, either by 
mutations in its gene TP53 or by deregulation through other pathway members,121 
protects AML cells from chemotherapy-induced apoptosis. TP53 mutations are 
present in around 8% of AML cases, and are coupled to complex karyotypes, and 
associated with the worst survival outcomes.93,94 
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Malignant transformation 

Cell of origin and leukemia stem cells 

Leukemia stem cells (LSCs) are defined as cells that can give rise to leukemia when 
transplanted into an irradiated murine host. LSCs are responsible for disease 
maintenance, and are often a more immunophenotypic immature subpopulation of 
cells within the cancer that has the ability to self-renew.122,123 This ability suggests that 
leukemia might arise from HSCs, which also have self-renewal capacity and 
accumulate mutations prior to malignant transformation.123-125 The stemness gene 
expression signature observed in AML cells with relapsing capacity also supports this 
theory, as they can give rise to leukemia again after treatment demonstrating self-
renewal capacity.117 Hence, treatments that would efficiently target LSCs could cure 
AML patients by eradicating the source of relapse (figure 2). 

 

Figure 2. Targeted therapies against LSCs. Conventional chemotherapy is uneffective in eradicating 
LSCs, which are the source for relapse. Novel therapeutic agents that can target and eradicate LSCs 
would be able to cure patients and restore normal bone marrow function. 

Experimental studies have demonstrated that also progenitors can be transformed into 
a LSC by acquisition of self-renewal properties.126 For example, the fusion gene MLL-
AF9 has been shown to transform both HSCs and GMPs into leukemic cells with full 
leukemogenic capacity, but the AML arising from each population had different 
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phenotypic properties, as the HSC-derived leukemias were coupled with worse 
prognosis and a different gene expression.127 

The LSCs and their progeny are as well organized in a hierarchy, similar to normal 
hematopoiesis,128,129 and therefore eradicating LSCs harbours potential for AML cure. 
As for HSCs, the vast majority of LSCs are CD34+CD38–, but they have more 
plasticity as in some patients leukemia-initiating cells can also be found in the 
CD34+CD38+ and CD34– compartments, showing a less defined hierarchy.130 For 
example, CD34– LSCs are enriched in patients with NPM1 mutations.131 

Temporal order of mutations 

Mutations arise mostly randomly in the genome, and accumulate over time creating a 
unique set of mutations for a given cell and its progeny. When a mutation confers a 
selective growth advantage to the cell, it is termed an oncogenic driver mutation, and 
this constitutes the first step of transformation.132 

Mutations in epigenetic regulators associated with AML can sometime be found in 
older individuals with CHIP, and most of these will not develop AML.59,133 These 
mutations are rarely found alone, suggesting that they arise early in time in AML 
patients but are not enough to completely transform an hematopoietic cell into a 
leukemic state.94 With time, cooperating driver mutations will appear in the same cell, 
progressing into a leukemic clone.134 In AML, the most common initiating driver 
mutations are DNMT3A, TET2 and ASXL1; whereas mutations in genes like IDH1, 
NPM1 and FLT3 are cooperating driver mutations that arise as secondary events 
(figure 3).125,135 In the case of chromosomal translocations that encode fusion genes, 
these aberrations are often so aggressive that fewer extra cooperating mutations are 
needed for the development of AML.93 

Besides the driver mutations, most mutations occur outside coding regions and will 
not confer any advantage or disadvantage to the cell. These mutations are termed 
passenger mutations, and are captured in the genome when a leukemic clone arises 
and develops.125,134 Because mutations are random events, a complex evolution of 
subclones can emerge, creating heterogeneity in the tumour, recognized as an 
important prognostic factor for patients.136 

Clonality and tumour heterogeneity 

The acquisition of additional mutations in cancer cells creates subclones that can 
evolve independently. Over time, such subclones can develop into a dominating 
clone, while others will remain as a small population of cells. The progression of these 
clones depends on how the mutations affect survival and clonal fitness.123 
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Tumors evolve in an analogous manner to organism populations, being affected by 
the local environment, creating a selection process. The best adapted subclone will 
outcompete other subclones based on the ‘survival of the fitness’ principle.137 In solid 
tumours, this is reflected by a genetic heterogeneity within the mass of the tumour, 
with up to 70% of the detected mutations not present in the dominating major 
clone.138 Tumour heterogeneity has a negative impact on patient survival,139 not only 
because subclones might support disease progression,140 but also because it can affect 
treatment selection. When sampling a tumour, the detection of certain biomarkers 
can provide relevant prognostic information. However, if such a biomarker is 
representative only of a subclonal population, then the treatment selected might not 
be effective against the majority of cancer cells. 

In leukemia, there is not as much spatial limitation for tumour growth as in solid 
tumours. Therefore, it was thought that subclones would arise and dominate through 
selective sweeps, a model of cancer known as linear evolution.141 However, with 
advances in NGS techniques allowing for detection of small subclones, leukemia has 
emerged as a complex cancer with a mixture of subclones, resembling the model of 
branching evolution observed in solid tumours.142,143 These subclones can also 
influence the dominant clone resulting in a more aggressive disease, for example by 
secreting pro-leukemic factors that nurture the dominant clone.144 

 

Figure 3. Evolution of AML over time. A HSC acquires a driver mutation (•) that causes a slight 
proliferative advantage giving rise to CHIP. The progeny of this cell can acquire passenger mutations 
(o), that will be captured in the genome when a secondary driver mutation (Y) transforms the cell into 
a LSC. Subclones with additional mutations (!) will arise during AML development, which might 
survive treatment and cause relapse, as depicted here. 

Chemotherapy treatment puts a selective pressure on the subclonal populations that 
will eradicate only those cells that are sensitive to the treatment, but resistant 
subclones will remain and contribute to relapse. The clone contributing to relapse can 
either be a dominant clone of the primary AML that has acquired relapse-related 
mutations, or it can be a subclone already present in the primary cancer that survived 
treatment and then expanded (figure 3).116 This once more highlights the importance 
of monitoring subclonal populations for determining patient treatment and thereby 
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improve outcome, by targeting common vulnerabilities.145 Moreover, recent studies 
have also shown that the pre-leukemic CHIP clones persist after treatment and that 
their presence is correlated with a higher incidence of relapse in patients.146,147 

Microenvironment 

Upon AML development the bone marrow microenvironment is altered, promoting 
leukemia cell growth over normal HSCs.148 The leukemia cells are in part responsible 
for this alteration, by remodelling the microenvironment to their own benefit.149,150 
Both autocrine151 and paracrine152 aberrant cytokine secretion supports leukemia cell 
survival, creating a selective expansion of malignant cells over normal HSCs. 
Deregulated expression of cytokine receptors on the cell surface of AML cells also 
contributes increased sensitivity to cytokines promoting their survival, such as IL1 
receptor accessory protein (IL1RAP) and IL1 signalling.153,154 However, this also 
opens up possibilities for targeting the AML cells by attacking their dependencies, 
and several approaches have been developed, as discussed in the next chapter. 

Non-hematopoietic cells in the bone marrow microenvironment also show alterations 
that might be permissive for leukemia progression, and even create favourable 
conditions for leukemia initiation.155,156 How the microenvironment can promote 
AML is not well understood, but might be related factors such as hematopoietic stress 
and chronic inflammation.157 Moreover, the microenvironment plays an important 
role on LSC survival during chemotherapy, adding more complexity to the resistance 
mechanisms that favour AML persistence and relapse.119 

Functional studies in AML 

Patient-derived xenotransplantations 

Transplantation of AML samples from patients into mice has allowed for the study of 
many aspects of leukemia biology that cannot be directly assessed in humans. For 
example, this has been key for the definition of LSCs as cells capable of initiating 
leukemia upon serial transplantations122. However, only about two thirds of AML 
samples engraft in NSG mice. Notably, samples from high-risk AML patients 
generally show higher engraftment capacity in xenotransplantations, in particular 
cases with mutated FLT3. In contrast, low-risk AML samples show generally lower 
engraftment in these assays and are associated with long disease latency.158 By 
transplantation into NSG mice expressing human cytokines supporting myeloid cell 
development, improved engraftment can be achieved.159 Hence, the ability and 
dynamics of AML in the transplanted mice seem to reflect patient outcome, with 
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patients in which AML samples engrafted in NOD-SCID mice showing poorer 
survival than those that did not engraft.160-162 

An interesting application of xenografts is the possibility of drug testing on tumour 
samples in mice prior to treatment of patients (figure 4).163 Some studies have 
transplanted large numbers of AML samples into mice to test drug efficacy across a 
panel of leukemias with different genetic backgrounds, mimicking a clinical trial.164-166 
This approach allows for prospective investigation of AML sample characteristics that 
can predict drug response and disease development across a heterogeneous set of 
samples, in order to tailor clinical trials to improve patient outcome.167 In other 
approaches, tumour samples from a single patient have been transplanted into 
different mice in order to test multiple drugs separately, allowing for subsequent 
personalized treatment for the patient.168,169 

Nevertheless, patient-derived xenografts have several limitations. As mentioned 
before, only the most aggressive forms of AML show robust engraftment.170 
Moreover, as it often takes several months to achieve high engraftment and test drugs 
in mice, this is still too long to translate findings into a personalized treatment for the 
patients. Furthermore, the inter-species barrier might bias tumour development. This 
has been partially solved with the generation of humanized mice that express human 
cytokines,23 whereas other approaches have tried to create scaffolds seeded with 
human stromal cells in order to mimic the human bone marrow niche.171 In addition, 
the immunodeficient nature of the recipient mice makes them less suitable for testing 
of immunotherapies depending on immune cell recruitment. 

 

Figure 4. Use of patient-derived xenografts for drug testing. Big scale transplantation of multiple 
patient sampes allows for assesment of drug efficacy, whereas multiple xenografts from a single 
patient allows for drug testing in a strategy to find a personalized treatment. 
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Mouse models of AML 

Although xenograft models allow for work with primary samples from human AML, 
they are limited by low access to patient samples and species incompatibilities. 
Instead, syngeneic mouse models of AML can be used to study other aspects of AML 
biology. Several methods have been used to develop models of AML, in which 
different genetic lesions giving rise to the disease are introduced in hematopoietic 
mouse cells.  

Transgenic mice harbour the genetic alterations in their genome and produce 
offspring that carries the same genetic alteration.172 In such models, the mice have 
often been engineered to express the gene in a tissue specific and/or inducible 
manner. For example, an inducible model of MLL-AF9 AML was used to study the 
cell of origin for AML.173 By sorting different hematopoietic cell populations and 
transplanting them into wild type mice, the MLL-AF9 transgene could be expressed 
at different stages of development. As previous work had suggested,127 the MLL-AF9-
induced AML arising from HSCs was more aggressive than those arising from GMPs. 

Another approach to introduce genetic lesions into hematopoietic cells are retroviral 
transductions. In this strategy, a replication-deficient retrovirus is used to deliver and 
express a copy of the gene of interest following viral integration in the genome of the 
transduced cells. The cell population to be studied needs to be purified and cultured 
ex vivo during the time of transduction, and then transplanted in recipient mice. 
Although this method poses some issues, such as cell manipulation, non-physiological 
gene dosage, and a risk of insertional mutagenesis; it is widely used as it is fast and 
convenient, and can be applied to both human174 and mouse126 hematopoietic cells. 

MLL-AF9 driven AML model 
Much of the work in this thesis has been done using a mouse model of AML driven 
by the MLL-AF9 fusion gene. This model of AML has been widely used and 
characterized.126,175 Mouse GMPs are transformed by retroviral delivery of MLL-AF9, 
retaining a gene expression pattern similar to their normal counterparts, but with the 
addition of HSC-related genes that conferred self-renewal capacity to the cells. In 
addition to the bone marrow, AML cells with LSC activity can also be found in the 
spleen of transplanted mice.176 Upon serial transplantations, this MLL-AF9 AML 
model gives rise to AML with shorter latency, possibly because the cells with stem cell 
activity are enriched.177,178 
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Novel therapeutic approaches in AML 

“If you know the enemy and know yourself, you need not fear the result of a hundred 
battles. If you know yourself but not the enemy, for every victory gained you will also 
suffer a defeat. If you know neither the enemy nor yourself, you will succumb in every 
battle.” – Sun Tzu.* 

The modest improvement in AML treatment warrants the development of new 
therapies that improves the survival of patients. New treatments strategies exploit 
different approaches, ranging from targeting the molecular alterations to directing the 
immune system towards the AML cells. 

Molecularly targeted therapies 

With increased understanding of AML pathology, and with the success of retinoic 
acid treatment in AML cases harbouring PML/RARA fusion genes, major efforts in 
developing new treatments that target the molecular aberration driving the disease 
have been explored. However, this approach is challenging in AML as it is a 
heterogeneous disease both genetically and immunophenotypically.179 Despite these 
difficulties, a few new drugs have recently been approved for AML patients. 

For de novo AML cases harbouring FLT3 mutations, midostaurin has recently been 
approved for treatment. Midostaurin is a multi-target protein kinase inhibitor that 
decreases the constitutional kinase activity caused by the mutations.180 The 
combination of midostaurin and chemotherapy resulted in an increased 4-year overall 
survival in patients with FLT3 mutations,181 present in about 28% of AML patients.93 

In cases of relapsed AML with IDH2 mutations, enasidenib has recently been 
approved. Mutations in IDH2 and IDH1 are found in around 20% of AML 
patients,93 and affect cell metabolism creating an oncometabolite, 2-hydroxyglutarate, 
that inhibits epigenetic enzymes like TET2, altering the epigenetic landscape of the 
cell.182 Enasidenib is administered as a monotherapy in patients with relapsed AML 
and inhibits the mutated IDH2, restoring its normal function and resulting in 
differentiation of the AML blasts.183 Because of the promising results observed in 

                                                        
* Sun Tzu (6th century BC), Chinese military strategist and philosopher. 
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patients with IDH2 inhibitors, where good responses were observed and survival was 
prolonged with enasidenib treatment, IDH1 inhibitors are also being developed.184 

Despite the success of midostaurin and enasidenib, other targeted approaches have 
not shown similar efficacy when translated to patients from pre-clinical models. Such 
an example are DOT1L inhibitors in MLL-R AML cases, where treatment of patients 
has shown only modest effects.185 To improve these type of targeted therapies, it is 
hypothesized that targeting multiple AML pathways with different drugs that act 
synergistically could improve treatment,179,186 and recent studies suggest that this 
strategy has great potential.145,164,187 Thus, combination therapies might improve AML 
outcome, possibly by minimizing the risk of drug resistance. 

Immunotherapy 

Besides suppressing normal hematopoiesis, AML cells, as well as other types of cancer 
cells, evade immune destruction. The remaining healthy bone marrow cells are a 
putative source for therapeutic intervention if they can be directed against the AML 
blasts. Strategies aimed at overcoming immune evasion by reactivating the immune 
system against cancer cells comprise the field of immunotherapy. 

Immunotherapies show high clinical potential as demonstrated by HSCT in which 
donors cells of the immune system elicit a graft-versus-leukemia effect, but the 
development of new immunotherapies in AML has been challenging. The low 
mutational burden in AML results in low expression of neoantigens not found in 
healthy tissues that can be targeted, and the heterogeneity of AML gives rise to a 
repertoire of antigens that are different across patients, hindering the development of 
therapies that can be broadly applied.188,189 

Immune evasion in cancer 

The mechanisms by which cancer cells evade the immune system are diverse. 
Immunosuppressive cytokines can be secreted by both AML cells190 or other bone 
marrow cells that have been affected by the leukemogenic environment.191 T and NK 
cell mediated cytotoxicity is especially affected by this immunosuppression,192,193 
which AML cells exploit to avoid immune-mediated killing. The IL2 and histamine 
treatment for relapsed patients of AML discussed in the previous chapter is an 
example of immunotherapy that targets this immunosuppression. 

In addition to the secretion of immunosuppressive factors, AML cells also escape 
immune recognition by cell-cell interactions and cell surface molecules. This 
mechanism combines defective antigen presentation by MHC molecules and 
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stimulation of inhibitory receptors on immune cells.194,195 Therefore, other approaches 
in immunotherapies exploit the interactions between malignant and immune cells, 
mostly by blocking antibodies, to counteract immune cell inhibition and rescue their 
function.196,197 

Antibody-based treatments 

Antibodies directed to cell surface molecules can recognize targets with high 
specificity. Different therapeutic approaches have been developed that involve 
antibodies, ranging from blocking cell-to-cell interactions to antibody-drug 
conjugates. An ideal antibody target should be a cell surface molecules with higher 
expression on AML cells than on normal HSCs, in order to avoid targeting healthy 
cells and cause toxicity. 

Gemtuzumab ozogamicin is an immunoconjugate that combines an anti-CD33 
antibody with a chemotherapeutic drug. Upon binding of the antibody part to 
CD33, the whole molecule is internalized and the drug is released internally causing 
cell death.198 It was initially approved for older patients that experienced relapse, but 
subsequent studies led to its withdrawal due to toxicity and lack of improvement on 
patient survival.198 However, it was re-approved in 2017, based on studies supporting 
efficacy in newly diagnosed AML with favourable and intermediate risk.199 

Upregulation of surface molecules by AML cells renders them vulnerable for 
antibody-based targeting, as in the case of IL1RAP. This cell surface molecule is 
upregulated on CML200 and AML153 stem cells, and participates in IL1 signalling, a 
cytokine important for AML cell growth.201 Engineered antibodies targeting IL1RAP 
not only block IL1 signalling, but also recruit immune cells through the fragment 
crystallizable region, triggering antibody-dependent cellular cytotoxicity by NK 
cells.202 Thus, upregulation of this surface molecule can be targeted by a dual 
mechanism of action leading to AML stem cell clearance.  

Immune checkpoints regulate immune cell activation, preventing deregulated 
responses. Cancer cells often exploit these checkpoints to avoid immune detection, for 
example by upregulation of the cell surface molecule CD47.203 CD47 is expressed on 
the surface of every cell as a marker of self and binds to SIRPα on macrophages, 
inhibiting phagocytosis by providing a so-called “don’t eat me” signal to 
macrophages.204 Antibodies targeting CD47 are already in clinical trials for AML 
patients,205 and has potential to be effective also in solid tumours.196  

 

 

43



44 

Immune cell engineering 

Other immunotherapeutic strategies are focused on engineering the immune cells as 
living therapeutic agents against cancer cells. The most successful example are 
chimeric antigen receptor- (CAR-) T cells, which have shown remarkable efficacy in 
ALL. In this approach, healthy T cells from the patient are purified and modified ex 
vivo by genetic engineering to express an artificial receptor targeting specific cell 
surface molecules, and then the CAR-T cells are transplanted back into the patient.206 
In ALL, CAR-T cells have predominantly been directed against CD19, a marker 
exclusively expressed by B cells, leading to complete eradication of both healthy and 
malignant B cells.207 Patients receiving such CAR-T cells will experience B cell aplasia 
for an extended period of time, as the CAR-T cells are long lived and will 
continuously deplete CD19+ cells. This is manageable by transfusion of IgG 
containing antibodies effective against a variety of pathogens.208 

In AML, CAR-T cell therapies have been more challenging to develop, because cell 
surface molecules on AML cells are also found on healthy HSCs and normal myeloid 
cells.209 However, CAR-T cells against CLL-1 have shown therapeutic potential in 
pre-clinical models,210 and the first successful CAR-T cell treatment in AML has been 
reported recently this year, targeting the surface molecule NKG2D on AML cells.211 
In order to increase specificity and efficacy, CAR-T cells targeting two surface 
molecules, CD33 and CD123, have been tested, demonstrating proof of concept for 
this approach in AML.212 

Solid tumours are more challenging for CAR-T cells due to poor infiltration and 
inhibitory signals from the tumour microenvironment.213 To overcome this challenge, 
CAR-macrophages have been developed, as these cells better infiltrate solid tumours, 
and have been shown to elicit anti-cancer immune responses in xenograft models of 
ovarian cancer.214 Whether this approach could be applied as an AML therapy 
remains to be evaluated, but it shows the potential of directing the immune system 
towards malignant cells. 
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Interleukin 4 

“I didn’t want to just know names of things. I remember really wanting to know how 
it all worked.” – Elizabeth Blackburn.* 

Interleukins are a group of cytokines first described to be secreted by leukocytes for 
supporting hematopoietic cell development and differentiation. Defects in 
interleukins are coupled to a number of immune deficiencies, as they regulate key 
processes ranging from lymphocyte development to immune responses. Although the 
source and function of many cytokines still remain partially unclear, there are more 
than 40 interleukins described.215 

Interleukin 4 was first described in the context of its proliferative effect on B cells.216 
Since then, many more functions and cell types have been recognized to be influenced 
by IL4, ranging from memory and learning217 to metabolism and thermogenesis218. 
Here, the effects of IL4 on the immune system and cancer will be discussed. 

IL4 pathway 

Upon binding IL4, the IL4 receptor alpha (IL4Ra) chain dimerizes either with the 
IL2Rg, creating the IL4R complex type I, or with the IL13 receptor alpha chain I 
(IL13Ra1), creating the IL4R complex type II (figure 5).219 The IL4R complex type I 
is only found on hematopoietic cells since the IL2Rg is expressed exclusively on 
hematopoietic cells, whereas the IL4R complex type II complex also can be found on 
non-hematopoietic cells. 

Although the two IL4R complexes signal by partially different kinases, their activation 
results in STAT6 phosphorylation and activation.220 STAT6 then forms a homodimer 
that is translocated to the nucleus and regulates gene expression.221 In addition to 
STAT6, the IL4R complex type I also activates the IRS1/2 pathway due to the spatial 
conformation of the intracellular part.222 IL4 is closely related to IL13, as they share 
around 25% sequence homology and signal through a common receptor chain. 
However, only IL4 can activate the IL4R complex type I.219 

                                                        
* Elizabeth Blackburn (1948), Australian biochemist. 
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Figure 5. IL4 receptors and pathway. Upon binding of IL4 to the IL4Ra chain, the complex dimerizes 
either with the IL2Rg or the IL13Ra1, generating two distinct receptor complexes. The spacial 
conformation of the IL4R complex type I allows for intracellular binding of IRS1/2, but this is not 
possible in the IL4Ra complex type II as the IL13Ra1 chain blocks the binding sites for IRS1/2. IL13 
binds to the IL13Ra1 chain, which only dimerizes with the IL4Ra. 

Functions of IL4 

The first described function of IL4 was its proliferative effect on B cells, but since 
then IL4 has been described to have effects on almost every immune cell.223 The most 
prominent effect of IL4 is on T cells, where it promotes differentiation of CD4+ T 
cells into a T helper 2 (TH2) phenotype.222 TH2 cells secrete more IL4, creating a 
positive feedback loop and activating as well other cells that generate an immune 
response against parasites. Among the cells implicated in this response, IL4 causes IgE 
switching in B cells and granule release in mast cells. Recently, IL4 has also been 
shown to activate NK cells and enhance their cytotoxic capacity,224 but it remains to 
be determined if all NK cells can respond to IL4 or only a subset.  

IL4 has an important role in macrophage activation through a process termed 
alternative activation of macrophages.225 Macrophages exist in a continuum between 
M1 and M2 macrophages, where M1 macrophages are proinflammatory cells 
responsible for fighting bacteria and M2 macrophages are anti-inflammatory cells 
responsible for tissue repair.226 IL4 causes activation and differentiation of 
macrophages into M2 phenotypes. 
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IL4 and cancer 

The first studies of IL4 in cancer found a striking anti-tumour effect of this cytokine 
on cancer cell lines transplanted into xenograft models.227 However, further studies 
also described a pro-tumorigenic effect of IL4, as higher expression of TH2 cell-
derived cytokines correlated with tumour development.227 This contradictory role of 
IL4 might arise from the different approaches used: when IL4 was ectopically 
expressed in the cancer cells, it showed anti-tumour effects; while when its secretion 
was deregulated by the mutations present in cancer cells, it showed pro-tumour 
effects. It is hypothesized that this is due to the stronger stimulatory effect of IL4 on 
the immune cells when its secretion is enforced in the cells, but the exact mechanism 
and cell responsible for this has not been clearly elucidated.227 On the other hand, 
deregulated expression of IL4 by the mutational changes in cancer cells favours the 
maintenance of a TH2 polarization state, which promotes tumour growth.228 

In leukemia, early studies showed negative effects of IL4 in vitro on the growth of 
several subtypes of acute leukemia,229-232 but so far IL4 has not been evaluated in 
clinical trials involving patients with acute leukemia. However, IL4 has been assessed 
in clinical trials for non-Hodgkin lymphoma, where some patients exhibited partial 
responses upon treatment.233 So far, no biomarkers that could stratify the patients 
have been reported.234 Thus, the full potential of IL4 remains poorly studied, in 
particular in acute leukemia. 
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Present investigation 

“We’re like children who always want to take apart watches to see how they work.” – 
Ernest Rutherford.* 

The overall aim of my PhD studies has been to identify novel dependencies of AML 
cells by studying of ligands and receptors, and evaluate their therapeutic potential in 
mouse models and primary patient samples of AML. 

Aims of the study 

The main objectives of this thesis were: 

• To use in vitro cytokine screening to find selective negative regulators of 
AML cells (article I).  

• To elucidate whether upregulation of TLR1 on AML cells can be exploited as 
a therapeutic target in AML (article II). 

• To use an arrayed molecularly barcoded approach to identify cytokines 
regulating leukemia-initiating cells (article III). 

• To investigate the anti-leukemic role of IL4 in vivo (article IV). 

 

 

                                                        
* Ernest Rutherford (1871-1937), New Zealander physicist. 
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Summary of articles 

Article I 

Interleukin 4 induces apoptosis of acute myeloid leukemia cells in a Stat6-dependent 
manner 
Deregulated cytokine expression in the leukemic niche promotes leukemia 
progression while suppressing normal hematopoiesis. With an improved 
understanding of how cytokines regulate AML cell biology, new therapeutic 
opportunities might emerge. To identify new cytokines that suppress AML cells, we 
performed a competitive screen where we evaluated the effect of 114 cytokines on the 
proliferation of primitive AML and normal bone marrow (NBM) cells. We identified 
IL4 as a selective negative regulator of leukemia cells, inhibiting AML cell survival. 
Gene expression analysis revealed upregulation of Stat6 target genes as well as 
apoptosis gene signatures. Disrupting Stat6 with CRISPR/Cas9 genetic engineering 
rendered the cells partially resistant to apoptosis. We also evaluated IL4 in vivo by 
intraperitoneal injections of IL4 and transplantation of AML cells expressing IL4 
ectopically, with both approaches resulting in prolonged survival and reduced 
leukemia burden in mice. Human AML samples treated with IL4 also exhibited 
reduced cell growth and increased apoptosis, whereas NBM cells were less affected. 
These results show that IL4 harbours therapeutic potential in AML by inducing 
apoptosis and inhibiting leukemia cell growth. 

Article II 

Agonistic targeting of TLR1/TLR2 induces p38 MAPK-dependent apoptosis and NF�B-
dependent differentiation of AML cells 

Upregulation of cell surface molecules on AML cells can be exploited as selective 
targets on leukemia cells over normal HSCs. We studied the expression of TLR1 and 
TLR2 on AML patient samples and found upregulation of these molecules in 
comparison to corresponding normal bone marrow cells. Stimulating the 
TLR1/TLR2 complex in vitro with synthetic agonists induced apoptosis and 
differentiation of both murine MLL-AF9 leukemia cells and human primary AML 
samples. We studied the mechanism behind these effects and found differential 
signalling pathways being involved. Apoptosis of AML cells was dependent on p38 
MAP kinase signalling whereas differentiation was dependent on NFkB signalling. 
Agonistic stimulation of TLR1/TLR2 in vivo resulted in increased apoptosis and 
reduced leukemia burden. Altogether, we identified TLR1/TLR2 stimulation as a 
potential therapeutic target on AML cells. 
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Article III 

Arrayed molecular barcoding identifies TNFSF13 as a positive regulator of acute myeloid 
leukemia-initiating cells 

To further characterize the role of cytokines on leukemia initiation, we evaluated the 
effect of the cytokine library used in article I on AML cells coupled to an in vivo 
read-out of leukemia-initiating activity. However, this approach would require a large 
number of mice and would not be feasible with 114 independent cytokines tested in 
triplicates. To reduce the number of mice, we developed arrayed molecular barcodes 
that allowed us to study the effect of multiple ex vivo cytokine treatments combined 
with an in vivo readout of leukemia development in a single mouse by linking each 
barcode to one treatment. We sequenced the cells to determine the contribution of 
individual barcodes in the leukemia cells harvested from mice, and found that 
Tnfsf13 had a positive effect on AML cells by suppressing apoptosis and promoting 
cell cycle progression in an NFkB-dependent manner. By using Tnfsf13–/– mice, we 
found that Tnfsf13 is important for AML-initiation as well as normal myelopoiesis. 
Tnfsf13 was not secreted by AML cells but by mature myeloid cells, suggesting a role 
for the microenvironment in AML initiation. Furthermore, TNFSF13 supported the 
survival of human AML cell lines. In conclusion, we demonstrate the potential of 
arrayed molecular barcoding as a tool for evaluating stem cell functionality, and 
identified novel roles of Tnfsf13 in AML biology. 

Article IV 

Interleukin 4 induces phagocytosis of leukemia cells by macrophages 
Normal immune cells present in the leukemic bone marrow harbour therapeutic 
potential that can be directed against AML cells. In this study, we evaluated the 
effects of IL4 in vivo as a potential immunotherapy against AML. We transplanted 
IL4-secreting murine AML cells into IL2Rg-/- deficient mice, which cannot respond to 
IL4, and found that the in vivo anti-leukemia effect of IL4 that we described in 
article I was predominantly microenvironment dependent. Upon analysing bone 
marrow and spleens of mice exposed to ectopic expression of IL4, we found an 
increase in macrophages. Depletion of macrophages in mice transplanted with IL4-
secreting leukemia cells rescued the leukemic phenotype, demonstrating that 
macrophages are mediators of the in vivo anti-leukemic effect of IL4. In vitro 
differentiation assays with both murine and human monocytes in the presence of IL4 
resulted in increased phagocytosis of AML cells by macrophages. RNA sequencing of 
macrophages exposed to IL4 in vivo revealed an M2 phenotype and an enrichment of 
phagocytosis signatures. We also found an IL4-induced, Stat6-dependent 
upregulation of CD47 on AML cells. By combining CD47 blocking treatment on 
AML cells and IL4 stimulation of macrophages, we could increase leukemia cell 
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phagocytosis by macrophages, showing combinatory treatment potential. This study 
shows that IL4 has in vivo anti-leukemia potential by activating macrophages that kill 
AML cells by phagocytosis. 

General conclusions and future directions 

Although our knowledge of AML biology has increased substantially the last decade, 
this has not translated into new therapies effective in the majority of patients. In this 
thesis, we have searched for AML cell vulnerabilities that can be exploited to eradicate 
leukemia. In particular, we have focused on interactions between ligands and 
receptors and their effects on leukemia cells. We have successfully applied two 
cytokine screening approaches that have identified IL4 and TNFSF13 as new 
regulators of AML cells, and we have described TLR1 as an upregulated cell surface 
molecule that can be therapeutically targeted. In addition, we have also evaluated IL4 
as an immunotherapy that activates macrophages, and the crosstalk between AML 
and macrophages through CD47.  

As we found that stimulation of TLR1 and IL4Ra on AML cells results in apoptosis, 
the question is why leukemia cells express these molecules at all. One hypothesis is 
that they are present on the AML cells as they mirror the normal cells that are 
transformed into malignant cells, thus reflecting then the phenotype of the cell of 
origin. Alternatively, these molecules might be upregulated by the genetic events that 
give rise to leukemia, as multiple pathways are deregulated. Either way, the ligands for 
TLR1 and IL4Ra are not present in high concentrations in the microenvironment 
unless an external stimulus is present. Therefore, AML cells do not experience any 
selective pressure that would select for downregulation of these receptors, which 
opens the possibility to exploit these vulnerabilities. 

For IL4, direct administration of this cytokine is a strategy that could be exploited for 
therapeutic purposes, similar to IL2 and histamine. This approach has previously 
been explored for other diseases,233 but can be challenging. Cytokines have a short 
lifespan in circulating blood, making it difficult to achieve an optimal concentration, 
and they can lead to toxic effects such as cytokine storms. To solve this issue, we 
speculate that conjugating IL4 to an antibody directed against AML cells would 
potentially increase efficacy and reduce toxicity due to a targeted delivery. We will 
explore this strategy in future studies, findings that might translate into new 
therapeutic opportunities. 

IL4 concentration increases upon certain conditions such as allergy, asthma and 
parasitic infections. Interestingly, there are reports that all these conditions are 
associated with reduced risk of acute leukemia,235-237 but further studies with larger 
patient cohorts are needed to evaluate if the reduced risk is linked to higher IL4 levels. 
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As allergy, asthma and parasitic infections trigger complex immune responses, other 
mechanisms than IL4 might also boost cancer surveillance. As we found that IL4 
causes macrophage stimulation that results in increased phagocytosis of AML cells, 
this opens an interesting possibility to enhance macrophage-based immunotherapies 
that are currently being developed, such as CD47 blockers. 

Agonistic targeting of TLR1/TLR2 on AML cells causes differentiation and apoptosis 
of leukemia cells, but it also showed negative side effects to normal myeloid 
progenitor cells. Interestingly, there have been reports of patients that experience 
spontaneous remission of AML after sepsis,238,239 a condition in which infections cause 
a dangerous systemic immune response. Targeting TLR1/TLR2 with an agonistic 
antibody would mimic the stimulation with bacterial molecules, which could be 
further engineered as a bi-specific antibody targeting at the same time an AML-
specific cell surface molecule. This strategy would reduce the risks associated with 
TLR1/TLR2 stimulation of normal cells. 

The arrayed barcode screen used in article III in the context of cytokine screening can 
also be used to evaluate the effect of other molecules in AML initiation or other 
aspects of AML biology, and has potential to support large-scale molecule libraries. 
Moreover, it could be applied in a variety of fields, in which a competitive in vivo 
readout of ex vivo manipulated cells is needed. 

In conclusion, this thesis has identified critical interactions between receptors on 
AML cells and ligands in the microenvironment, findings that have revealed 
previously unknown vulnerabilities in AML. Moreover, this thesis highlights the 
importance of extrinsic factors for leukemia cells, and how they can be explored for 
therapeutic purposes, findings that might be translated into new treatments in the 
future. 
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