
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

HAVOSS: A Maturity Model for Handling Vulnerabilities in Third Party OSS
Components

Nikbakht Bideh, Pegah; Höst, Martin; Hell, Martin

Published in:
Product-Focused Software Process Improvement

DOI:
10.1007/978-3-030-03673-7_6

2018

Link to publication

Citation for published version (APA):
Nikbakht Bideh, P., Höst, M., & Hell, M. (2018). HAVOSS: A Maturity Model for Handling Vulnerabilities in Third
Party OSS Components. In Product-Focused Software Process Improvement (pp. 81-97). (Lecture Notes in
Computer Science; Vol. 11271). Springer. https://doi.org/10.1007/978-3-030-03673-7_6

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/978-3-030-03673-7_6
https://portal.research.lu.se/en/publications/14b7a34a-5f2e-415a-b7e8-346e37b6aac6
https://doi.org/10.1007/978-3-030-03673-7_6

HAVOSS: A Maturity Model for Handling
Vulnerabilities in Third Party OSS Components

Pegah Nikbakht Bideh1, Martin Höst2, and Martin Hell1

1 Lund University, Department of Electrical and Information Technology, Sweden
{pegah.nikbakht bideh, martin.hell}@eit.lth.se

2 Lund University, Department of Computer Science, Sweden
martin.host@cs.lth.se

Abstract. Security has been recognized as a leading barrier for IoT
adoption. The growing number of connected devices and reported soft-
ware vulnerabilities increases the importance firmware updates. Matu-
rity models for software security do include parts of this, but are lacking
in several aspects. This paper presents and evaluates a maturity model
(HAVOSS) for handling vulnerabilities in third party OSS and COTS
components. The maturity model was designed by first reviewing indus-
try interviews, current best practice guidelines and other maturity mod-
els. After that, the practices were refined through industry interviews,
resulting in six capability areas covering in total 21 practices. These were
then evaluated based on their importance according to industry experts.
It is shown that the practices are seen as highly important, indicating
that the model can be seen as a valuable tool when assessing strengths
and weaknesses in an organization’s ability to handle firmware updates.

Keywords: Maturity model · Software security · Software maintenance
· Firmware updates · Vulnerabilities

1 Introduction

Software maintenance focuses on issues such as adapting systems to changed
functionality requirements, changed environments and corrections of faults. Iden-
tified security vulnerabilities can be seen as one type of fault that has received
more attention in the last decade, following a number of attacks impacting large
organizations, customers, and the society. Attacks have also become more sophis-
ticated and the increasing number of software intensive systems, in IT systems
and in the shift towards cloud computing and IoT devices, have resulted in more
attack targets. The number of security vulnerabilities reported and recorded in
the NVD CVE (National Vulnerability Database, Common Vulnerabilities and
Exposures) database has for many years been relatively stable, ranging between
approximately 4,200 to 7,900 between 2005-2016 [15]. In 2017 the number in-
creased to about 14,700. New companies producing connected devices, as well
as older mature companies adjusting their products to the current trend of con-
nectivity, increases the competition on the market. Meeting this competition

requires high functionality and fast time-to-market. Using open source software
(OSS) instead of developing all code in-house decreases development time, and
software maintenance for OSS can focus more on updating the software when
new versions are released. However, urgent updates as a result of security vulner-
abilities can be very costly for the organization. Thus, it is important to handle
the process of identifying and evaluating new vulnerabilities, and subsequently
update the software, in an accurate and efficient way.

A maturity model can be seen as a tool that helps organizations improve the
way they work, typically by introducing and implementing changes in the orga-
nization. This is often a slow process, requiring efforts and resources throughout
the organization. The change, to be effective, must have support both from man-
agement and the work force, and internal communication processes must be well
implemented in order to support the change management required for imple-
menting improvements. The maturity model will help the organization identify
the issues in need for improving and prioritizing the efforts. It will also help
the organization in ensuring that no important aspects are neglected. However,
it will typically not in detail describe how the changes should be implemented
since this can vary widely between organizations and depend on size, type of
organization, business domain, regulations etc.

The goal of this paper is to define, evaluate, and present a maturity model
(HAVOSS – HAndling Vulnerabilities in third party OSS) focusing on managing
vulnerabilities in third party libraries and code, and the subsequent software
update activities that are required to limit a product’s exposure to attacks. We
target all practices related to this aspect of software maintenance for embedded
systems. The model builds upon existing models for software maintenance and
security, interviews with industry, and recently published guidelines and rec-
ommendations for security in IoT devices. An initial version has been iterated
using feedback from industry representatives, and has then been evaluated by
industry. The evaluation shows that the proposed practices are highly relevant.

The paper is organized as follows. In Section 2 we first present related work
and maturity models focusing of secure software. In Section 3, we describe the
methodology used when defining and evaluating the model, and in Section 5
the different maturity levels are defined. Then we present the results of our
evaluation in Section 6 and the paper is concluded in Section 7.

2 Related Work

The Capability Maturity Model for Software, CMM, and CMMI (e.g. [18]) have
been very influential in how to support process improvement in software engi-
neering. The models guide an organization through five maturity levels where
process standardization (level 3) is seen as more mature than project level pro-
cesses (level 2), and experience based improvement (level 4 and level 5) is a
natural continuation after that type of standardization. The idea of standard-
izing approaches in the organization, and after that to improve through ex-
periences, has influenced the model presented in this paper. There is also the

Software maintenance maturity model (SMmm) [1] addressing unique activities
of software maintenance, and there are maturity models for process improvement
implementation [14].

There are several well-known maturity models focusing on software security
and the software development life cycle.

The Building Security in Maturity Model (BSIMM) [10] is based on actual
practices in a large number of companies. It thus represents the current state
of software security. It can be used to assess the Secure Software Development
Lifecycle (SSDL). BSIMM covers 12 practices divided into the four main domains
Governance, Intelligence, SSDL Touchpoints, and Deployment.

OWASP Software Assurance Maturity Model (SAMM) [2] is an open frame-
work developed by OWASP, with the aim to help organizations evaluating their
existing software security practices throughout the whole organization. SAMM
is a flexible model that is designed to be utilized by both small, medium, and
large companies. SAMM is built on business functions of the software develop-
ment life cycle, and each business function is tied to three security practices. The
business functions are Governance, Construction, Verification, and Operations.

The Systems Security Engineering – Capability Maturity Model (SSE-CMM)
[9] is intended to be used as a tool to evaluate and assess security engineering
practices. It allows organizations to establish confidence in their own capability,
but it also helps customers to evaluate a provider’s security engineering capa-
bilities. The model is based on the idea that organizations need a repeatable,
efficient and assured mechanism to improve their security engineering practices.
SSE-CMM has been developed to address these needs by reducing the cost of
delivering secure systems. The model contains a number of base practices which
are organized into in total eleven process areas.

The Microsoft Security Development Lifecycle (SDL) [12] is another security
assurance process focusing on secure software development. The purpose of SDL
is to reduce the number and severity of vulnerabilities in software and it aims
to guarantee security and privacy during all phases of the development process.
Education, continuous process improvement, and accountability are three main
concepts of SDL which emphasizes ongoing activities within the whole software
development lifecycle. SDL is built upon five capability areas which correspond
to different phases of the software development lifecycle, and each area con-
sists of a collection of security activities. SDL defines four levels of maturity for
these areas, namely Basic, Standardized, Advanced, and Dynamic. The basic
level means little or no processes related to the activity, while dynamic level
corresponds to complete compliance across an entire organization.

The Cybersecurity Capability Maturity Model (C2M2) [3] is designed to help
organizations of any type and any size to evaluate and improve their cybersecu-
rity programs. The model can be used to strengthen cybersecurity capabilities
and also to prioritize actions to improve organization’s cybersecurity processes.
The model is organized into 10 domains and each domain has a set of cybersecu-
rity practices. Practices in each domain will help organizations to achieve more
mature capability in the domain.

Problem
understanding

First evaluation
round

Second
evaluation
round

Definition of
first model

- Interview study
- Literature

- Mapping other
models
- Interview study

- Qualitative
experiences from
assessing own
organization

- Collected metrics
on importance and
importance for
completness

Scoping of model First version
Evaluation +
second version Evaluation

Fig. 1. Research steps

The most important features for vulnerability handling such as vulnerabil-
ity identification, vulnerability assessment, vulnerability tracking and disclosure
policy are included in some of mentioned maturity models. Vulnerability identi-
fication through software development process exists in BSIMM [10], SAMM [2],
SDL [12] and SSE-CMM [9] and only in SMmm [1] it exits in maintenance phase.
Assessing vulnerabilities only includes in SSE-CMM [9]. Vulnerability tracking
by incident response team exists in almost all of them. None of them has any
communication or disclosure policy except C2M2 [3]. We tried to gather all of
these vulnerability handling features in our maturity model and make a complete
maturity model for vulnerability handling. Being highly focused on handling vul-
nerabilities in third party code, our proposed maturity model should not be seen
as a replacement for the other models. HAVOSS is intended to be used as a
complement to other, more general, maturity models.

3 Methodology

The model has been designed iteratively based on feedback from presenting it to
practitioners in the field. A first problem-understanding was achieved through
an interview study with practitioners [8] where it was clear that there is a need to
support these processes in industry. In that study, 8 companies in the IoT domain
were interviewed about how they handle vulnerabilities in OSS and COTS code
in their developed and maintained products, and what challenges they see in
that. It was clear that there is a need to support these activities, meaning that
the scope of the model was decided to include all activities that are relevant to
identifying and solving vulnerabilities in third party (OSS and COTS) code. A
literature study with a comparison to available models also showed the need for
this type of model.

3.1 Research Steps

The maturity model was defined through a series of research steps as described
in Fig. 1. Based on the identified need, a first version was designed. One im-
portant source was the previously conducted interview study with industrial
practitioners on how they handle vulnerabilities [8]. In that study it was clear

that many organizations do not have defined processes, neither for identifying,
analyzing, or taking care of vulnerabilities in third party code in the products
they develop and support. Another input source was already available models,
as presented in Section 2. Many of the models include aspects that are related
to the capability areas in our model. However, the available models are more
general and not as complete in managing third party software vulnerabilities as
this model. For example, BSIMM [10] includes “Software Environment” which
is related to product knowledge in our model, and it includes “Configuration
Management & Vulnerability Management” which is related to evaluating and
remedy of vulnerabilities in our model. It is similar for the other models. They
include relevant areas, but they are not as focused on vulnerability management
for included third-party software where sources of vulnerabilities must be iden-
tified and monitored. Based on these input sources, a first version of the model
was defined.

The model was decided to consist of capability areas, each consisting of a set
of practices that can be used to identify improvement proposals in assessments.
Each practice is represented as a question in order make it easier to interpret in
an assessment. The final resulting capability areas and questions are presented
in Section 4.

When the first version was available it was iteratively improved through eval-
uations with practitioners, in two main evaluation rounds. Helgesson et al. [6]
identify three ways of evaluating maturity models when they are designed, either
off-line by the authors alone, off-line by including practitioners, or on-line, i.e.,
in actual process improvement. Both evaluation rounds in this study can be clas-
sified as off-line by including practitioners, since all evaluations are carried out
based on practitioners’ opinions and experiences of trying to assess their organi-
zation. However, at this stage we have not actually conducted any improvement
activities guided by the model where a before/after scenario could be analyzed.

In the first evaluation round, refinement of the model was conducted through
feedback from practitioners. This was done in several sub-steps, where we in
each sub-step sent the model to a contact person in industry who individually
assessed their own processes with the model. When they had done that we had a
meeting with the organization where we discussed general feedback on the model
and we discussed a number of feedback questions, e.g. about if there were any
misconceptions from researchers, if the questions were hard to answer, if there
were any questions missing, and if the respondent had any thoughts about the
answer alternatives. All meetings were held in a way resembling a semi-structured
interview where audio was recorded, so the information could be accessed in the
analysis. This type of feedback was obtained from two companies, which resulted
in a number of adaptions of the model.

In the second evaluation round, feedback was received with other feedback
questions than in round 1, now focusing more specifically on every practice of
the model. As in the first evaluation round, the model was sent to practitioners,
but in this step they were asked to consider not just the answer of each question,

but they were also asked to assess the practice with respect to the following two
dimensions:

– Importance of practice: For each question the participant was asked to judge
how important the practice described by the question is in management of
vulnerabilities. Possible answer alternatives were 1 – 5.

– Importance for completeness: For each question the participant was asked to
judge how important it is to include the practice for the completeness of the
questionnaire. Possible answer alternatives were 1 – 5. The given motivation
was that some practices can be overlooked if they are not included in a
model like this. A high score represents that the practitioner thought that
it is easily overlooked if it is not included in the model. In the same way a
low score means that the practice would probably be solved also without a
model like this, i.e. the practice can be considered “obvious”.

For each question in the model the participants were allowed to give free text
comments in a separate field in the form they received.

The conducted research was influenced by design science. Compared to the
framework according to Hevner et al. [7] it identified the needs and the problems
in the environment e.g. through the interview study, and the evaluations were
conducted with people from the same environment. The developed model was,
as described above, based on available models and it represents a contribution
to the available knowledge base.

3.2 Participating Companies and Practitioners

The participants in evaluation round 1 and evaluation round 2 are summarized
in Table 1. The second row shows if the company participated in evaluation
round 1 (!= yes) and the third row shows how many practitioners from each
company who individually answered the questions on importance and impor-
tance for completeness in evaluation round 2. The companies are working with

Table 1. Participating practitioners

Company A B C D E F G

Evaluation round 1 ! !
Participants in evaluation round 2 12 2 4 1 1 1 2

software engineering and they represent different size, age, and maturity. Com-
panies A, D, and F are large companies, while the other are smaller. Company E
is an example of a startup while the other companies are more traditional com-
panies. Company G offers consultancy services to other companies, while the
other companies work with traditional in-house development. All companies but
company C are working in the area of embedded software for IoT systems. All
involved practitioners were in some way responsible for security and/or working

with security-related questions in the organization. In company A most com-
munication was held with the main security responsible. Other persons were
working within development roles.

3.3 Validity

The goal has been to obtain good validity of the research by considering typical
threats to validity (e.g., [17]). Construct validity denotes to what extent the
operational constructs are interpreted in the same way by the researchers and
the involved practitioners. Care was taken to use as general terms as possible,
not to focus on wrong specific meanings of terms in the organizations. This risk
can never be ruled out completely, but it can be noticed that some terms in
the model were changed in the first evaluation round, in order to not give too
specific (and not completely right) meaning to the company practitioners.

Reliability denotes to what degree the analysis is dependent on the specific
researchers. This is always a threat, but care has been taken to do the analysis in
the whole group of researchers. The analysis has also considered feedback from
members of the industrial participants. For example, both company A and B
were involved in both the first end second evaluation round.

Internal validity denotes the risk that other factors than the ones known by
the researchers affect the result. This is not a typical controlled study where
factors are controlled, but still there may be some factors that affect the results
such as ongoing and general improvement attempts with respect to security. Care
has been taken to understand the situations of the participating organizations,
and many of them have been involved in previous research studies with the
researchers. Basically, we see the situation of the participating companies as
typical examples of industrial organizations, and no major internal threats.

External validity denotes the possibility to generalize the results. All orga-
nizations are Swedish or has a Swedish origin and all participants are employed
in Sweden, but they operate on an international market and most of them have
mainly international customers. We do not classify them as particularly typical,
but more as general examples of organizations in general, at least in the area of
embedded systems and IoT systems, when it comes to their approach to man-
aging vulnerabilities. However, in this type of study care must be taken when
generalizing to other organizations.

4 Capability Areas and Practices

In this section our proposed vulnerability management maturity model is pre-
sented in detail. The six capability areas consist of in total 21 practices. In the
assessment sheet, the practices are formulated as questions, e.g. A1, “Tracking
maintained and used products” is formulated as “How do you keep track of
which type of products are maintained and/or used?”3. The capability areas are

3 The assessment sheet, together with evaluation data are available at https://

zenodo.org/record/1340623#.W2wP7RixWkB

Fig. 2. The capability areas included in the proposed maturity model.

product knowledge, identification and monitoring of sources, evaluating vulner-
abilities, remedy of vulnerabilities, delivering updates and communication. The
areas and the relation between the areas is depicted in Fig. 2. Product knowledge
is a prerequisite for the other areas and practices. Without this, it is not possible
to efficiently, or even at all, handle vulnerabilities. Identifying, evaluating, and
remediating vulnerabilities, as well as deploying updates, can be seen as areas
of practices that are carried out in sequence. Finally, communication of vulner-
abilities and related information can, and often should, be done in parallel with
the practices and activities in the other areas. In the following subsections, each
capability area and the practices are given in more detail.

4.1 Product Knowledge

Product knowledge assesses companies’ knowledge of their products’ compo-
nents. A higher maturity level in this area indicates higher knowledge about the
components. This capability area is divided into five practices:
A1. Tracking maintained and used products. Organizations should track
maintained products by themselves and also products used by customers regu-
larly, in order to be able to identify their active products.
A2. Tracking included third party OSS and COTS components in-
cluded in products. Developing companies use many OSS components. This
reduces the time-to-market and allow a more cost-efficient development and
maintenance organization. Development is largely reduced to selecting the ap-
propriate component to use, while maintenance is reduced to updating it when
needed.
A3. Tracking used OSS or COTS versions in the included components.
In addition to tracking used OSS and COTS components, it is also of importance
to track the versions used in released products and firmware. Version tracking
allows an efficient identification of potential vulnerabilities.
A4. Tracking possible threats that products are facing. Threats are
possible dangers that might exploit a vulnerability in software products. To avoid
critical dangers, and to facilitate correctness in the evaluation of vulnerabilities,
it is necessary to track possible threats in software products.
A5. Specifying product usage, operating environment, and end-of-life.
By specifying intended usage and operating environment, customers can better
understand the intended use of a product, and it also provides important pa-
rameters when evaluating the threats and identified vulnerabilities. Specifying

an end-of-life informs customers the duration for which they can expect feature
and security updates for products. Note that end-of-life for feature updates and
security updates can differ.

4.2 Identification and Monitoring of Sources

New vulnerabilities are found on a daily basis and there are several sources for
information regarding these. A well defined and efficient process for identifying
and monitoring sources of vulnerability information allow both faster and more
robust management of vulnerabilities and maintenance of products and devices.
The practices in this capability area focus on three aspects.
B1. Determining external sources to use for identifying new vulner-
abilities. New vulnerabilities are typically recorded and identified through the
CVE numbering scheme [13] and further detailed in NVD [15]. While this central-
ized database contains most vulnerabilities, and some other information related
to them, it is also worthwhile to monitor new academic results through con-
ference proceedings and journals, as well as monitoring security advisories and
the most well-known mailing lists where software security and vulnerabilities are
discussed.
B2. Receiving and following up on vulnerabilities reported to the com-
pany by external parties. In some cases, new vulnerabilities are disclosed
directly to the organization. This can be the case if a third party researcher or
professional analyzes the product and reports the results to the manufacturer
through a responsible disclosure process.
B3. Monitoring the identified sources of vulnerabilities. Having a well
defined process for monitoring vulnerability sources will help minimize the ex-
posure time for products and devices. Often, there are exploits widely available
either at the time of disclosure or very shortly after [19].

4.3 Evaluating Vulnerabilities

The goal of this capability area is to help organizations assess their maturity
in evaluating the severeness and relevance of identified vulnerabilities. This has
direct impact on the next area (remedy of vulnerabilities). Accurate and efficient
evaluation, as well as well-founded and correct decisions regarding vulnerabili-
ties, are prerequisites for timely and cost-efficient remediation. The practices in
this area thus focus on the following two aspects.
C1. Evaluating severity and relevance of vulnerabilities. After identifying
a potential vulnerability, it must be evaluated with respect to product configu-
ration, operating environment, and threat assessment. Unused component func-
tionality, network configuration or unrealistic exploit requirements might render
the vulnerability unexploitable. Methods for ranking vulnerability severity might
aid in the evaluation. A well-known metric is the Common Vulnerability Scoring
System (CVSS) [5, 11], which gives a rating on the scale 0–10.
C2. Making decisions for handling and reacting to identified vulnera-
bilities. Firmware and software is often updated on a regular basis in order to

include new functionality and patch bugs. Severe security vulnerabilities might
need immediate attention and result in updates that are not within the planned
cycle. Such updates are very costly and often engage large parts of the organiza-
tion. It is thus very important to only perform out-of-cycle updates if necessary.

4.4 Remedy of Vulnerabilities

Based on the severity, vulnerabilities can be divided into three basic categories,
namely those that need urgent changes, those that can be patched in the next
planned release, and those that need no changes or updates. This capability area
assesses the maturity level of organizations for handling these categories.
D1. Handling vulnerabilities that need urgent changes. Urgent changes
require immediate action and will impact several processes within the organi-
zation. The organization should have an action plan for handling this event in
order not to cause unnecessary and unforeseen problems.
D2. Handling vulnerabilities that are updated in a planned release.
Here, the maintenance organization must make sure that the affected component
is patched in the next release.
D3. Handling vulnerabilities that need no changes. When vulnerabilities
have been evaluated, and the results show that attacks are impossible or very
unlikely, the organization must make sure that this is well documented. If the
component is not updated to a patched version, the vulnerability will always
be present, so the organization must make sure that it is not unnecessarily
evaluated over and over. Moreover, new information might affect the status of
a vulnerability. In that case, it must be re-evaluated since updated information
(e.g., new exploits), might affect the decision.

4.5 Delivering Updates

After updating the used components with the latest version, or applying patches
to the software, the new firmware or updated software must be deployed to the
actual devices. This does not only require a communication channel to the de-
vices, but the channel must also be secure, including verifying the authenticity of
new software. However, verifying authenticity is not enough, it is also important
to make sure that updates are actually installed on devices [4]. This capability
area is divided into two activities.
E1. The process of delivering and applying upgrades to deployed prod-
ucts. The update process can be done fully automatically if the devices support
that. In some cases, users will be notified of new updates but needs to go through
manual steps to apply them. In other cases, new firmware or software is posted
on a website, and it is up to the user to identify and apply these patches. Exactly
which process is used can be situation dependent. Although a fully automatic
approach is typically preferred, requirements on system or device availability,
and also privacy concerns, can render such an approach infeasible in some cases.
It can be noted that a recent survey [16] based on 2205 users, reported that only
14% have ever updated their router’s firmware.

E2. The process of protecting the integrity of patches while they are
delivered and deployed. Integrity protection, typically through digital signa-
tures or MACs, is needed to protect from malicious updates being installed on
devices. This in turn will require a PKI or pre-shared keys.

4.6 Communication

Communicating vulnerability and security information, internally and externally,
and have structured ways of doing this, allow a more robust and transparent
process. It will make the security awareness more visible and contribute to more
secure products. This capability is divided into six practices.
F1. Communicating internally when vulnerabilities are identified and
resolved. Informing everyone within the company that is somehow affected
by the vulnerability, its evaluation, remediation and deployment, allow a well-
managed and structured process for updating the software.
F2. Communicating externally when vulnerabilities are identified and
resolved. External communication here means e.g., producing advisories that
inform the public that the vulnerability has been identified and solved. It also
includes forwarding new information to other manufacturers or providing OSS
patches upstream.
F3. Communicating with media when vulnerabilities are handled.
Widespread and critical vulnerabilities will often come to the attention of me-
dia. Well defined processes for communicating with media can improve how the
security work within the company is perceived by the public.
F4. Communicating with important customers about critical vulner-
abilities. Very large and important customers might be particularly affected by
some vulnerabilities, requiring a heads-up when new vulnerabilities are found.
Moreover, attacks that affect important customers can have significant impact on
the manufacturer’s business. At the same time, such communication is resource
consuming, for both parts, so it should only be practiced if necessary.
F5. Informing customers about the patching status of products. In
order for customers to verify the security of their products, it should be easy
to see which software, versions, and patch levels products have. This is part
of what is sometimes referred to as a bill of materials. Processes for delivering
such information, perhaps together with specific information related to patched
vulnerabilities can ease the burden for the support team.
F6. Transferring other security related information while delivering
patches. Attaching information on patched vulnerabilities and also providing
information on how the patch should be applied, or which additional configu-
ration settings should be applied, can help the customer understand why the
patch is applied.

5 Maturity Levels

The intention of the maturity levels is that they should represent an increasing
maturity for the assessed organization when it comes to their processes for work-

Table 2. Maturity levels used in the assessment

Level Description
0 We don’t do this.
1 We do this in an ad-hoc way based on individual’s own initiatives.
2 We know how we do this, but we do it in different ways in different teams/products.
3 We have defined processes for this that are common to all teams/products.
4 We collect experience and/or metrics from our approach and base improvements on that.

ing with third-party vulnerability updates. This type of maturity can, of course,
be defined in different ways, but as described in Section 2, we have chosen a
way of viewing maturity that is inspired by the approach in CMMI for software
development. This means that an increasing maturity implies an increased defi-
nition and standardization of approaches in the organization. We argue that this
standardization is necessary in order to be able to learn from experiences and
also to be effective in managing vulnerabilities. If different parts of an organiza-
tion have individual responsibility to define and manage their processes for this
it will not be effective. This means that we can formulate the basic contents of
the levels as follows.

The first level is level 0, which means that no effort is spend at all on the
activity. It may be that an organization does not work with vulnerabilities at
all. Then they are assessed at this level. The next level, resembling level 1 in
CMMI, level 1 means that the process is carried out in some way but it is often
unclear how it is done, and the responsibility is often left to developers who
happen to find the need and have the right competence and resources for it.
At the next level, level 2, there are defined approaches and routines, although
there is not a standardized approach in the organization. The next level, level 3,
represents a state where there is a standardized process in place for the practice.
That is, the same, defined, procedures are used in all teams and projects. At the
most advanced level, level 4, experiences are collected from using the standard-
ized procedures, and these experiences are used when constantly improving the
processes.

In the model presented to the participants, the maturity levels were presented
as described in Table 2. When performing an assessment of the maturity, the
intention is that every question is assessed. That is, there is one assessment result
(level 0 – level 4) for each question. The results can then be presented either as
one result for each question or a summary for each area of questions.

When improvements are identified based on an assessment it is possible to
identify improvements based on the questions with low scores. When this is done
there are some dependencies that can be identified. It is, as described in Section 4,
possible to see that capability area A about product knowledge is a pre-condition
for the other capability areas, see Fig. 2. It is therefore recommended to start
with capability area A in an improvement programme.

6 Results of Evaluations

In this section the results of carrying out the evaluations are presented.

Fig. 3. Importance of activity

6.1 First Evaluation Round

In the first evaluation round a number of adaptions were made. In the dis-
cussions it was clear that the practitioners thought that there were no major
misconceptions, and that the model included the major important aspects ac-
cording to them. However, it was clear that some terminology that was used
could be changed to terms that are more general in order to lower the risk of
confusion about company specific terms. There were also some questions, espe-
cially in capability area A that were refined in order to be more understandable.
Concerning the completeness, new questions about how to communicate with ex-
ternal sources, such as customers, were added. Also, based on the question about
answer alternatives, i.e. the maturity levels, they were presented in a clearer way
and the two highest levels in that version of the model were combined into the
current most advanced level. In the original version there was one level for col-
lecting experience and another level for using the experiences for improvement.
These changes resulted in the model that is presented in this paper (Section 4
and Section 5).

6.2 Second Evaluation Round

In the second evaluation round the focus was on understanding the important
of the questions and to what extent the questions would be handled without
any model. The results with respect to importance of activity and importance
for completeness of each question are shown in Fig. 3 and Fig. 4. Median values
have been explicitly given to avoid ambiguity in the plots.

It can be observed that almost all questions are seen as important by the
practitioners. The freetext answers reveal some more detailed perceptions. One
comment on D3 (Handling vulnerabilities that need no changes) was that this
might be easily overlooked. This captures the importance of the question but
also indicates why it has received slightly lower score overall. It is not seen as

Fig. 4. Importance for completeness

important as vulnerabilities that do require changes. Question F3 (Communi-
cating with media), which also had a relatively low score, was not present in the
initial version. It was added after interviewing company A, who viewed this as
an important aspect that was not covered by the other questions. One comment
on this question (from another company) was that this is mostly relevant for
larger companies.

Some freetext answers also suggested adding more questions. One suggestion
was to add security assessment, in which assets are identified. The importance of
such a question will depend on to which extent the company knows which assets
are actually protected. Another suggestion was to also consider how third party
components are selected. Components, and in particular their maintainers must
be trusted not to e.g., add malicious code into the software. To see if there are

a) Importance b) Importance for completeness

Fig. 5. Grouped results

differences between the capability areas, we aggregate the answers to these areas,
see Fig. 5. Again, it can be seen that the values are high, and there are only minor

differences between the areas. A Kruskal-Wallis test (non-parametric alternative
to one factor, n-levels, ANOVA) shows that no significant difference could be
found between the areas (p = 0.23 for importance), which can be expected from
the graphs.

Approximately half of the evaluation answers were from company A. We
compared the results from company A to the results from the other companies by
looking at box-plots and it seems they are not different. This is a motivation why
we analyze the results from every respondent without considering the company.
These differences were also analyzed for each question with Mann-Whitney tests,
but as expected no significant differences were found. Company A was shown
a summary of their responses and asked if they think their result would have
differed 2 years back or 2 years from now.

Not significantly different. If we look back a bit further, say 5 years,
most activities have definitely increased in importance. Some activities
will probably increase a bit further in the future, especially the F-section
where laws and regulations might play a part, but overall the activities
are already perceived as important. Reduced importance is unlikely in
the foreseeable future.

They were further asked if the similarity between Company A and other com-
panies were expected.

It’s expected. It indicates the increased attention to security issues is
not restricted to specific businesses and this is what we have perceived
as well.

That is, it can be seen that company A are working with improvements that are
in line with the model.

7 Conclusions

The presented maturity model aims to help organization assess their maturity in
handling software vulnerabilities in third party OSS and COTS components. The
importance of such a model is due to the increasing number of vulnerabilities
that are being reported, and the growing number of connected devices that
are bound to change the society in the near future. The model is based on
six capability areas and 21 practices. Related maturity models, i.e., those that
focus on software security are very broad and cover many aspects related both
to software development, maintenance, and organizational aspects, but they are
not detailed enough to cover all aspects of handling vulnerabilities in third party
code. Thus, this model can be seen as an important complement to other well-
known models. This is also supported by our evaluation, which shows that the
defined practices are highly relevant.

Acknowledgements This work was supported partly by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) and partly by Swedish
Governmental Agency for Innovation Systems (Vinnova), grant 2016-00603.

References

1. April, A., Hayes, J.H., Abran, A., Dumke, R.: Software maintenance maturity
model (SMmm): the software maintenance process model. Journal of Software:
Evolution and Process 17(3), 197–223 (2005)

2. Chandra, P.: Software assurance maturity model - a guide to building security into
software development. Tech. rep., OWASP (2017)

3. Christopher, J.D.: Cybersecurity capability maturity model (C2M2). Tech. rep.,
Rhodes University (2014)

4. Cui, A., Costello, M., Stolfo, S.J.: When firmware modifications attack: A case
study of embedded exploitation. In: Network & Distributed System Security Sym-
posium (2013)

5. FIRST: Common vulnerability scoring system v3.0: Specification document,
https://www.first.org/cvss/specification-document, Last accessed 2018-06-03

6. Helgesson, Y.L., Höst, M., Weyns, K.: A review of methods for evaluation of ma-
turity models for process improvement. Journal of Software Maintenance and Evo-
lution: research and Practice 24, 436–453 (2011)

7. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Quarterly 28(1), 75–105 (2004)

8. Höst, M., Sönnerup, J., Hell, M., Olsson, T.: Industrial practices in security vul-
nerability management for iot systems – an interview study. In: Proceedings of
Software Engineering Research and Practice (SERP) (2018)

9. ISO/IEC: Information technology — security techniques — systems security en-
gineering — capability maturity model. Tech. rep., International Organization of
Standardization (2008)

10. McGraw, G., Migues, S., West, J.: Software security and the building security in
maturity model (BSIMM). Journal of Computing Sciences in Colleges 30(3), 7–8
(2015)

11. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnerabil-
ity scoring system version 2.0. In: Published by FIRST-Forum of Incident Response
and Security Teams. vol. 1, p. 23 (2007)

12. Microsoft: Simplified implementation of the Microsoft SDL. Tech. rep., Microsoft
Coporation (2010)

13. Mitre: Common vulnerabilities and exposures. https://cve.mitre.org/, (visited on:
2018-05-15)

14. Niazi, M., Wilson, D., Zowghi, D.: A maturity model for the implementation of
software process improvement. Journal of systems and software 74(2), 155–172
(2005)

15. NIST: National vulnerability database. https://nvd.nist.gov/, (visited on: 2018-
05-15)

16. Powell, M.: Wi-fi router security knowledge gap putting devices and
private data at risk in UK homes. Tech. rep. (2018), available at
https://www.broadbandgenie.co.uk/blog/20180409-wifi-router-security-survey

17. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14, 131–164 (2009)

18. SEI: Capability Maturity Model Integration, Version 1.2, vol. CMU/SEI-2006-TR-
008(2008). Carnegie Mellon Software Engineering Institute (2008)

19. Shahzad, M., Shafiq, M.Z., Liu, A.X.: A large scale exploratory analysis of software
vulnerability life cycles. In: Proceedings of International Conference on Software
Engineering (ICSE). pp. 771–781 (2012)

