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Multiple polynomial regression method for
determination of biomedical optical properties
from integrating sphere measurements

Jan S. Dam, Torben Dalgaard, Paul Erik Fabricius, and Stefan Andersson-Engels

We present a new, to our knowledge, method for extracting optical properties from integrating sphere
measurements on thin biological samples. The method is based on multivariate calibration techniques
involving Monte Carlo simulations, multiple polynomial regression, and a Newton–Raphson algorithm
for solving nonlinear equation systems. Prediction tests with simulated data showed that the mean
relative prediction error of the absorption and the reduced scattering coefficients within typical biological
ranges were less than 0.3%. Similar tests with data from integrating sphere measurements on 20
dye–polystyrene microsphere phantoms led to mean errors less than 1.7% between predicted and theo-
retically calculated values. Comparisons showed that our method was more robust and typically 5–10
times as fast and accurate as two other established methods, i.e., the inverse adding–doubling method
and the Monte Carlo spline interpolation method. © 2000 Optical Society of America

OCIS codes: 120.3150, 120.5820, 170.7050, 170.1470, 160.4760.
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1. Introduction

In the field of biomedical optics, determination of the
optical properties of various biological materials is
essential, not only for diagnostic purposes, e.g., whole
blood analysis,1–4 but also in therapeutic applica-
tions, e.g., in the development of tissue light propa-
gation models for various types of laser therapy.5,6

The optical properties,7 i.e., the absorption coefficient
a, the scattering coefficient ms, and the anisotropy

parameter g, are often determined by measurement
of the total diffuse reflectance R and the diffuse trans-
mittance T of a thin sample in an integrating sphere
setup. However, it is only possible to determine ma
and the reduced scattering coefficient m9s 5 ~1 2 g!ms
from pure R and T measurements. To separate m9s
into ms and g, one often includes measurements of the
collimated transmittance Tc as well. Because accu-
rate Tc measurements are difficult to perform, the
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similarity principle is often applied in conjunction
with integrating sphere measurements; i.e., only ma
and m9s are determined. R and T measurements may
be carried out with either a single- or a double-sphere
setup. In the latter, R and T can be determined
simultaneously without moving the sample; however,
the obtainable accuracy is decreased compared with a
single-sphere setup, owing to optical cross talk be-
tween the two spheres.11

Several methods have been applied to solve the
problem of extracting ma and m9s from R and T mea-
surements, e.g., methods based on Kubelka–Munk
theory12 and diffusion theory.13 Although both
these methods provide analytical expressions for
R~ma, m9s! and T~ma, m9s!, the inverse problem of deter-

ining ma~R, T! and m9s~R, T! has no analytical solu-
tions. Furthermore, the analytical solutions of
R~ma, m9s! and T~ma, m9s! are not accurate; thus most
contemporary approaches are based on numerical
methods, which provide more accurate calculations of
R~ma, m9s! and T~ma, m9s!, e.g., the inverse adding–
doubling ~IAD! method14 or methods involving Monte
Carlo simulations.2–15 For all the above methods it
is common that ma~R, T! and m9s~R, T! have to be
determined by iterative numerical calculations.
This may prove to be to slow in some cases, e.g.,
applications involving real-time multiwavelength
analysis. In this paper we present a method, which
is both fast and accurate and thus suitable for such
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applications. The method is based on Monte Carlo
simulations,16 polynomial regression, and a Newton–
Raphson algorithm17 for solving nonlinear equation
systems. For brevity we denote the method MPR
~multiple polynomial regression!.

In the following sections we first explain the steps
of the MPR method in detail. Next, we present and
discuss simulated and measured test results. Fi-
nally, we compare the performance of the MPR
method with that of the IAD method and another
Monte Carlo-based method, the so-called Monte
Carlo spline interpolation ~MCSI! method.5

2. Methods

The purpose of the MPR method is to extract ma and
m9s from integrating sphere measurements of R and T
on thin turbid biological samples. This involves sev-
eral numerical and experimental methods, which we
describe in the present section.

A. General Principles

In mathematical terms the first step of the MPR
method is to perform two bijective mappings of a
relevant subset of the @ma, m9s# space onto their images
in the R and the T spaces, respectively. Such map-
pings may of course be obtained from a series of R and
T measurements on phantoms are performed with
known ma and m9s values. However, it is faster to
apply a proper light-propagation model, e.g., Monte
Carlo simulations.

The next step is to create a calibration model, i.e.,
to find a mathematical description of the R~ma, m9s!
nd T~ma, m9s! mappings. A regular and a smooth

appearance of simulated R and T images, i.e., Rsim
and Tsim, indicated that these may be fitted well by
elatively simple mathematical functions. Thus we
ested and used double polynomials with the generic
orm

P~ma, m9s, m! 5 ~a0 1 a1ma 1 a2ma
2 1 · · · 1 amma

m!

3 ~b0 1 b1m9s 1 b2m9s
2 1 · · · 1 bmm9s

m!,
(1)

where ~a0, a1, a2, . . . and b0, b1, b3, . . . ! are fitting
coefficients determined by least-squares regression
and m is the order of the double polynomial. The
esulting polynomial fits to Rsim and Tsim were de-

fined as

Rfit 5 PR~ma, m9s, m!,

Tfit 5 PT~ma, m9s, m!. (2)

he final step of the MPR method is to solve the
nverse problem of extracting ma and m9s from real
ntegrating sphere measurements, i.e., Rmeas and

Tmeas. For this we used a Newton–Raphson algo-
rithm. First, we defined

F~ma, m9s! 5 Rfit 2 Rmeas,

G~ma, m9s! 5 Tfit 2 Tmeas. (3)
hen we performed converging iterative calculations
f ma and m9s, using the algorithm in Eq. ~4!:

2FF~ma,k, m9s,k!
G~ma,k, m9s,k!

G 5 3
]F
]ma

]F
]m9s

]G
]ma

]G
]m9s

4Sha,k

hs,k
D

Sma,k11

m9s,k11
D 5 Sma,k

m9s,k
D 1 Sha,k

hs,k
D 6 ,

k 5 0, 1, 2, 3, . . . , (4)

here ha and hs are correction terms of ma and m9s.
The calculations were continued until ha and hs sat-
isfied predefined accuracy requirements. Finally,
ma,k and m9s,k were read.

B. Simulations and Numerical Analysis

We used the Monte Carlo code provided by Wang et
al.16 to generate calibration and simulated prediction
data sets. To provide a detailed calibration model,
we first generated two 20 3 50 matrices of Rsim and
Tsim, where Tsim includes both the collimated and the
diffuse transmittance, whereas Rsim represents dif-
use reflectance only. The values of ma and m9s in

these matrices were incremented in steps of 0.1 and
1 cm21, respectively, within the typical biological
ranges18,19:

0.1 cm21 # ma # 5 cm21,

1 cm21 # m9s # 20 cm21,

g 5 0.9,

n 5 1.4, (5)

here n is the refractive index. Note that both g and
n were kept fixed in the simulations. The sample
geometry of the simulations was a semi-infinite slab
with thickness dsample 5 0.5 mm. The slab was
placed between semi-infinite glass slides with thick-
ness dslide 5 1 mm and refractive index nslide 5 1.52.
The slab was irradiated by a collimated beam with
the diameter rbeam 5 1 mm. In each simulation, 1 3
06 photons were traced. This extensive Rsim and

Tsim data set was used in the evaluation of the MPR
technique to extract ma and m9s from Monte Carlo
simulated prediction data.

To perform prediction tests on data from integrat-
ing sphere measurements on phantom models as
well, we generated a second calibration model. Re-
ferring to the results from the prediction tests on
simulated data, the number of simulations used in
this calibration model were reduced to include only
117 ~9 3 13! Rsim and Tsim simulations. The geom-
etry of these simulations were adapted to the single
integrating sphere setup geometry in Fig. 1, and the
optical properties of the simulations were chosen to
1 March 2000 y Vol. 39, No. 7 y APPLIED OPTICS 1203
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cover the phantom optical property range sufficient-
ly:

0 cm21 # ma # 3 cm21,

4.4 cm21 # m9s # 21.8 cm21,

g 5 0.92,

n 5 1.33. (6)

xcept for the Monte Carlo simulations, all numeri-
al analysis and algorithms in this paper were car-
ied out with Matlab 5.2. Thus all matrix
anipulation, least-squares fitting, etc., is based on

tandard Matlab routines.

C. Experimental Setup and Measurements

To carry out MPR tests on experimental data, we
measured Rmeas and Tmeas of 20 liquid phantoms,
ach with a distinct set of ma and m9s, using the inte-
rating sphere setup shown in Fig. 1. The phantoms
onsisted of green food dye and 1.9-mm polystyrene

spheres suspended in water. During the measure-
ments the phantoms were contained in cuvettes, con-
sisting of two glass slides separated by a black plastic
spacer.

As illustrated in Fig. 1, some of the transmitted
and reflected diffuse light is lost in real integrating
sphere measurements, owing to the limited diameter
of sample port. During the prediction analysis we
therefore corrected Rsim and Tsim to take these trans-
versal losses into account before the polynomial fits
Rfit and Tfit were calculated. We did this by ignoring
alues of Rsim and Tsim for radial distances r . 0.5

rsample. Furthermore, we also had to carry out cor-
ections due to losses through the ports and the re-
ective coating of the integrating sphere. The
easured intensity at the detector Pout in an inte-

grating sphere setup is the result of multiple reflec-
tions in the sphere originating from the first

Fig. 1. Setup for Rmeas and Tmeas phantom measurements. The
sphere is an 8-in. ~;20.3 cm! IS 080 SF from Labsphere, and the

arameters are rbeam 5 1 mm, dsample 5 2.2 mm, dslide 5 1 mm,
rsample 5 23 mm, rdetector 5 12.5 mm, and l 5 633 nm. Note,
during Rmeas measurements, the sample is placed at the port to the
right-hand side.
204 APPLIED OPTICS y Vol. 39, No. 7 y 1 March 2000
interaction of the incident light with the sample.
This relation is given by

Pout 5 P0dd rw (
n50

`

~aw rw 1 as rs 1 ad rd!
n

5 P0

dd rw

1 2 aw rw 2 as rs 2 ad rd
, (7)

where r denotes diffuse reflectance coefficients and a
denotes normalized areas relative to the total sphere
area. The subscripts w, s, and d denote wall, sample,
and detector, respectively. The initial reflected or
transmitted intensity at the sample is P0 5 rsPin or

0 5 tsPin, respectively, where Pin is the intensity of
the incident laser beam and rs and ts are diffuse reflec-
tance and transmittance coefficients of the sample, re-
spectively. Note that the specular reflectance Rspec
leaves the sphere through the entrance port and that
the collimated transmittance Tc ,, Ttotal; thus both
are ignored in this particular setup. To avoid direct
exposure of the detector from P0, it was pulled back
from the detector port; thus only diffuse reflectance
from a portion of the opposite sphere wall was de-
tected. The normalized area of this portion is denoted
dd in Eq. ~7!. Using a well-defined reflectance stan-
dard as a reference in conjunction with Eq. ~7!, we
extracted rs and ts from the phantom measurements
and used these as input to the MPR method during the
prediction analysis, i.e., Rmeas 5 rs and Tmeas 5 ts.

3. Results and Discussion

A. Calibration Model

Figure 2 depicts the two simulated Rsim and Tsim data
sets of the calibration model that we used in the MPR
evaluations on simulated prediction data. As we
stated above, the overall appearance of the Rsim and
the Tsim plots is smooth and regular and thus well
suited for polynomial fitting. Figure 3 shows the re-
sulting fitting errors when two fifth-order double poly-
nomials are used to fit the Rsim and Tsim plots in Fig. 2.
The speckled appearance of the absolute error plots in
Figs. 3~a! and 3~b! indicates that any systematic fitting
errors due to the fitting algorithm are less significant
than errors introduced by the random intrinsic noise of
the Monte Carlo simulations. The relative errors of
Rfit in Fig. 3~c! are significantly higher for low m9s val-

es. This is because the low absolute levels of Rfit in
his region ~see Fig. 2! are more easily afflicted by the
onte Carlo noise and that the applied least-squares

egression algorithm optimizes the fit on the basis of
he absolute—and not the relative—errors. Various
reprocessing of Rsim and Tsim before fitting might

reduce the latter error source.
To test the performance of the Newton–Raphson

algorithm separately, we also did predictions tests,
using the original calibration data sets as input to the
Newton–Raphson method, i.e., Rmeas 5 Rfit and
Tmeas 5 Tfit. The results showed that the mean rel-
ative calculation error of both ma and m9s was approx-
imately 1 3 1026. Furthermore, the Newton–
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Raphson algorithm converged in all cases; thus the
specific contribution of the algorithm to the total pre-
diction errors of the MPR method is negligible.

B. Numerical Prediction Tests

We tested the overall prediction performance of the
MPR method, using a simulated prediction set of a

Fig. 2. Total diffuse reflectance R ~a! and transmittance T ~b! as
function of the absorption coefficient ma and the reduced scatter-

ing coefficient m9s for a thin slab geometry. The R and T data for
he plots were generated with Monte Carlo simulations.
100 Rmeas and Tmeas data based on random ma and m9s
values within the ranges defined in relation ~5!. Fig-

re 4 shows the actual random distribution of ma and
m9s in the prediction set. All results discussed in the
present subsection are based on this prediction set
and the large 20 3 50 calibration set described in
Subsection 2.B. Furthermore, all reported errors
are relative prediction errors:

Err 5 100% Umpred 2 mref

mref
U , (8)

where mpred is the predicted value and mref the true
value of either ma or m9s. The prediction errors of ma
or m9s are denoted Erra and Errs, respectively.

1. Order of Polynomials
Table 1 gives the prediction errors using Rfit and Tfit
fitting polynomials of orders 3, 4, and 5, respectively.
The iterations of the Newton–Raphson algorithm
were stopped when both ha and hs , 1 3 1026 @see
Eq. ~4!#. This criterion was typically satisfied after
–15 iterations, leading to almost identical calcula-
ion times in all three cases. It is evident that the
rediction accuracy of the fifth-order polynomials are
uperior to the third- and fourth-order polynomials.
ixth-order polynomials were also tested but caused
ank deficient problems in the regression algorithm
nd were therefore rejected.

. Large-Error Analysis
he cases in which the prediction errors of ma andyor
9s, i.e., Erra andyor Errs were larger than 0.5% with

the fifth-order fits from Table 1 are depicted in Fig. 4.
It appears that the Errs values are largest when R is
low, whereas the largest Erra values occur mainly
when R is low and T is high ~see discussion in sub-
ection 3.A!. To analyze the Monte Carlo noise con-
ribution versus the fitting-error contribution to the
otal prediction error, we generated 10 identical but
ndependent Rsim and Tsim sets for each of the 14

marked large-error cases in Fig. 4. The results from
this analysis are shown in Fig. 5. In cases 1–6 both
Erra and Errs . 0.5% ~i.e., the triangles in Fig. 4!,
whereas in cases 7–14 only Errs . 0.5% ~i.e., the open
circles in Fig. 4!. In each of the 14 cases in Fig. 5 the
left-hand bar indicates the maximum deviation from
the true value, the middle bar is a measure of the
prediction precision error, and the right-hand bar is a
measure of the prediction accuracy error. By com-
paring the middle and the right-hand bars, we can
conclude that the errors in cases 1–6 are mainly due
to MPR fitting errors in the calibration set, whereas
the errors in cases 7–14 are not due to limitations of
the MPR method in general but rather to the Monte
Carlo noise in the prediction set. Thus only one of
the latter eight cases were off by more than 0.5%,
when we, in each case, calculated the mean of the ten
independent predictions, i.e., the right-hand columns
of Fig. 5.
1 March 2000 y Vol. 39, No. 7 y APPLIED OPTICS 1205
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3. Calculation Speed versus Accuracy
The applied Newton–Raphson algorithm was imple-
mented in Matlab and run on a 166-MHz Pentium
personal computer. As shown in Table 1, one single
prediction of ma and m9s was calculated in ;60 ms. If
he algorithms were implemented and compiled in,

Fig. 3. @~a! and ~b!# Absolute and @

Fig. 4. Solid curves, contour plots of constant Rsim and Tsim val-
ues as a function of ma and m9s. The curves with positive slopes are

sim plots, and the curves with negative slopes are Tsim plots. The
arkers depict the random distribution of ma and m9s values in the

simulated prediction set. The gray dots indicate cases with pre-
diction errors less than 0.5%. The open circles are cases in which
Errs exceeds 0.5%, and the triangles are cases in which both Erra

and Errs exceed 0.5%.
206 APPLIED OPTICS y Vol. 39, No. 7 y 1 March 2000
.g., the C programming language, the calculations
ould run even faster. In contrast, it took days to
enerate the Monte Carlo data for the 20 3 50 calibra-
ion model we used. However, the total Monte Carlo
alculation time may be reduced by means of either
racing less photons in each simulation or using less
imulations to generate the calibration model. The
alculation time might also be reduced with the Monte
arlo techniques suggested by Pifferi et al.20 Table 2

shows the resulting prediction errors of four equivalent
fifth-order calibration models based on four Rsim and

sim sets with two different numbers of simulations
and two different numbers of photons per simulation.
The results showed no significant increase in the mean
prediction errors when either the number of photons or
the number of simulations was reduced. Only when
both the number of photons and the number of simu-
lations were reduced simultaneously did a significant
increase in the prediction errors occur. Conse-
quently, the total calculation time of the calibration set
may be reduced at least 10 times without any signifi-
cant increase in the average prediction errors.

4. Similarity Principle
When no collimated transmittance data Tc are avail-
able during integrating sphere measurements, the
similarity principle is often assumed. However, this
assumption is strictly valid only for large sample ge-
ometries and for g . 0.9.8–10 We tested the validity of
the similarity principle, using our calibration model
~g 5 0.9! on a series of simulated Rmeas and Tmeas with
constant m9s but varying g. For constant m9s 5 10 cm21

d ~d!# fitting errors of Rfit and Tfit.
~c! an
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Table 1. Prediction Errors, Number of Iterations, and Prediction Calculation Times for Polynomial Fits of Orders 3, 4, and 5

ced N
we found that the prediction values of m9s deviated ap-
proximately 22.5% at g 5 0.8 and 12.5% at g 5 0.99,
espectively. To determine g in conjunction with R
nd T measurements, it is necessary to perform Tc

measurements also. Because of the practical difficul-
ties involved in Tc measurements, the resulting mea-
surement errors are often more severe than the errors
arising from calibration models with a fixed g. How-
ver, the MPR method can be readily extended to in-
lude determination of ms and g as well by generation
f calibration models for various g values and applica-
ion of a simple algorithm for choosing the appropriate
odel during each prediction.

. Comparisons with other Methods
e also compared the MPR method with the MCSI
ethod5 and the IAD method.14 Both the latter

Fig. 5. Analysis of prediction errors greater than 0.5%. The up-
per graph ~a! shows Erra, and the lower ~b! shows the correspond-
ng Errs. In each single case the three bars indicate the following:
eft, maximum deviation of ten identical simulations from the true
alue; middle, average deviation from the mean of the ten simu-
ations; right, deviation of the mean of the ten simulations from the
rue value.

Orders

Erra ~%!

Mean Max. Mea

Third order 1.0 7.8 0.8
Fourth order 0.4 3.1 0.4
Fifth order 0.2 1.4 0.3

Table 2. Prediction Errors with Fifth-Order Polynomial Fits and a Redu

1 3 105 PhotonsySimulatio

Erra ~%! Er

Mean Max. Mean

100 Simulations 0.3 1.2 0.5
1000 Simulations 0.2 1.5 0.3
methods are capable of extracting the full set of op-
tical properties, i.e., ma, ms, and g. To do this, they
are designed to be fed with collimated transmittance
data Tc in addition to the R and T data. In the case
of the IAD method it is possible, though, to assume a
g value and then use R and T data only. We chose to
feed both the MCSI and the IAD method with Tc data
calculated with the Beer–Lambert law and the
Fresnel law. Table 3 shows the prediction errors,
the prediction calculation time, and the number of
outliers of the MPR, MCSI, and IAD methods, respec-
tively. The outliers—which we defined as predic-
tions with errors greater than 10%—were excluded
from the mean prediction error calculations. All
three methods were tested on the same computer.

It appears that the MPR method is significantly
faster and more accurate than both the IAD and the
MCSI methods. As stated in Subsection 2.B, we ap-
plied a finite light source in these experiments. In
fact, the IAD method implies uniform illumination;
i.e., it is capable of handling one-dimensional light
propagation only. This may to some degree account
for the lower accuracy. Furthermore, we used only
four quadrature points in the IAD calculations.
Thus the accuracy of the IAD method may be im-
proved by use of more quadrature points at the ex-
pense of the calculation speed.

Although the MCSI and the MPR methods are both
based on databases of Monte Carlo simulations, the
MPR method yields significantly better accuracy and
robustness than the MCSI method. This may be at-
tributed to the fact that the MPR method is less sen-
sitive to the Monte Carlo noise embedded in the
databases. The MCSI method is based on spline in-
terpolation of a selection of a few juxtaposed R or T
points from the Monte Carlo database. Thus the
MCSI fit will pass exactly through all of the selected
data points and track any local variation, including
intrinsic Monte Carlo noise. Owing to the local vari-
ability ~i.e., noise! in the Monte Carlo data ~see Fig. 3!,
the interpolated fit may even oscillate widely to pass

rs ~%!
Iterations

Mean
Calc. Time ~ms!

MeanMax.

6.2 11 54
3.5 11 56
1.1 11 60

umber of Photon Packets andyor Simulations for the Calibration Model

1 3 106 PhotonsySimulation

! Erra ~%! Errs ~%!

Max. Mean Max. Mean Max.

2.1 0.2 2.0 0.3 1.6
1.4 0.2 1.4 0.3 1.1
Er

n

n

rs ~%
1 March 2000 y Vol. 39, No. 7 y APPLIED OPTICS 1207



a
t
g

Table 3. Prediction Errors, Prediction Calculation Times, and Number

1

through all data points and thereby produce unrealis-
tic intermediate values. In contrast, the MPR
method is based on two immediate fits including all R
nd T data points of the Monte Carlo database. In
his case the fits are optimized with least-squares re-
ression; thus any local variability in the R and T data

will be smoothened out, which in turn will reduce the
interference from the random Monte Carlo noise.

C. Phantom Measurements

To further validate the method, we also tested it on
Rmeas and Tmeas data from phantom measurements.
In these experiments we used the small 9 3 13 cali-
bration set described in Subsection 2.C. Assuming
that the scattering due to the dye in the phantoms
was negligible, we determined the actual ma of the 20
phantoms from collimated transmittance measure-
ments of pure dye solutions, using the Beer–Lambert
law. Also assuming that the absorption in the poly-
styrene spheres in the phantoms was negligible, we
calculated the actual m9s of the phantoms, using Mie
theory.21

Figure 6 shows correlation plots of the actual opti-
cal properties versus optical properties determined
from integrating sphere measurements with the
MPR method. In this case a few prediction outliers
occurred when we used a fifth-order model, whereas
a fourth-order model caused no such problems. This
is probably because the higher-order models, al-
though they are more accurate in general, may be
more sensitive to the inevitable noise in measured
prediction data and thus be less robust than lower-
order models. As a compromise between accuracy
and robustness we therefore used fourth-order mod-
els for the predictions presented in Fig. 6. The
means of Erra and Errs were 1.1% and 1.7%, respec-
tively. In contrast to the errors reported in Subsec-
tion 3.B ~see Eq. 8!, these errors are relative to the
dynamic ranges of ma and m9s in the phantoms:

Err 5 100% U mpred 2 mref

mref,max 2 mref,min
U . (9)

We used the definition in Eq. ~9! in this case, because
ma includes zero values, leading to division by zero if
Eq. ~8! is used instead. Although the prediction er-
rors of the measurements are relatively small, they
are slightly higher than the errors obtained from sim-
ilar simulated tests on this model ~mean Erra ; 0.7%
and mean Errs ; 0.2%!. This is mainly due to un-
certainties, partly in the determination of the exact
sphere compensation parameters and partly in the

of Outliers

Methods
Erra ~%!

Mean
Errs ~%!

Mean
Calc. Time ~ms!

Mean
Outliers

~%!

MPR 0.2 0.3 60 0
MCSI 1.3 2.0 1350 9
IAD 1.6 2.5 350 9
208 APPLIED OPTICS y Vol. 39, No. 7 y 1 March 2000
stated values of the applied optical properties of mi-
crospheres, glass, water, etc. Furthermore, the
Monte Carlo simulations employ the Henyey–
Greenstein phase function to calculate the scattering
properties of the calibration data. However, the
Fig. 6. Correlation plots of theoretical calculations of ma ~a! and m9s
~b! versus ma and m9s values predicted by the MPR method from
phantom measurements.
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Henyey–Greenstein phase function is an approxima-
tion to the more correct and complex phase function
obtained from Mie theory calculations. Conse-
quently, this may also account for some of the minor
discrepancies between the predicted and the true val-
ues of ma and m9s in Fig. 6.

4. Conclusions

The above results show that the MPR method is accu-
rate, fast, and robust. The minor increase in the pre-
diction errors for low-reflectance levels may be reduced
by preprocessing of the calibration data before the fit-
ting is performed. However, if this particular region
is of main interest, it would be better to apply a larger
sample thickness to increase the reflectance signal
level and thereby reduce the effect of the interference
from Monte Carlo noise and measurement noise.

It appears that the similarity principle is not
strictly valid in the above experiments. Conse-
quently, g variations lead to increased but systematic
m9s prediction errors of the MPR method. However, if
necessary, the MPR method could readily be ex-
tended to include direct determination of ms and g as
well, and thus circumvent any similarity problems.

The calculations of the data for the calibration
model suffer from the same advantages and draw-
backs as all other Monte Carlo-based methods. The
main advantages are the flexibility in sample geom-
etry and the potentially high accuracy. The major
drawback is the calculation time needed to obtain
this high accuracy. However, the results showed
that the MPR method maintained a high level of
accuracy when the number of simulations or traced
photons in the calibration data set was significantly
reduced, i.e., 10 times. In our case this meant that
the calculation time of the calibration data could be
reduced from days to hours.

The predicted values of ma and m9s with the MPR
method on data from real integrating sphere mea-
surements showed good correlation with theoretically
calculated values. These experiments also showed
that, when MPR predictions involve real measure-
ment data, it is essential to include proper compen-
sation for the various radiation losses in the setup.
Furthermore, it may be necessary to decrease the
order of the polynomial fits to obtain robust results on
measured ~i.e., noisy! data compared with similar
experiments on simulated data.

In conclusion, it is evident that, once the calibra-
tion model has been implemented, the prediction
speed, the accuracy, and the robustness of the MPR
method is sufficient for a wide range of real-time
spectroscopic analysis applications with integrating
sphere measurements.
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