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Correspondence 

On the Error Probability of General Trellis Codes with 
Applications to Sequential Decoding 

ROLF JOHANNESSON, MEMBER, IEEE 

Abstract-An upper bound on the average error probability for 
maximum-likelihood decoding of the ensemble of random L-branch 
binary trellis codes of rate R = l/n is given which separates the 
effects of the tail length T and the memory length M of the code. 
It is shown that the bound is independent of the length L of the in- 
formation sequence when M 2 T + [nEvu(R)]-’ log, L. The im- 
plication that the actual error probability behaves similarly is in- 
vestigated by computer simulations of sequential decoding utilizing 
the stack algorithm. These simulations confirm the implication 
which can thus be taken as a design rule for choosing M so that the 
error probability is reduced to its minimum value for a given T. 

I. INTRODUCTION 

Massey [I] has defined the class of random trellis codes as a 
generalization of the type of convolutional code used in Viterbi 
decoding. He has also proved random upper bounds on the av- 
erage probability of error for maximum-likelihood decoding of 
these codes for codes rates less than Ro, where Ro is less than 
capacity C  of the channel. 

In Section II of this correspondence, we extend Massey’s bound 
for trellis codes to all rates less than capacity, but we do this in 
the context of a more general class of trellis codes for which a 
distinction can be made between “memory length” and “tail 
length.” The bounds obtained suggest that it is advantageous to 
use a memory length which is a specified amount greater than the 
tail length, this amount depending on the length of the trellis. In 
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Section III, we report sequential decoding simulations which 
confirm this suggestion and which should be useful guides in the 
design of future sequential decoding systems. 

II. UPPER BOUNDSFORRANDOMTRELLISCODES 

We define an R = l/n,L,T,M random trellis code to be a tree 
code of length L + M in which each channel input symbol is 
chosen independently according to a specified probability dis- 
tribution and with the property that 

i) if the preceding M information digits on the paths leading 
into two nodes at the same depth in the tree coincide, then 
the same further encoded sequence results whenever the 
same further information sequence is applied starting from 
either node, and 

ii) all digits on all of the last M-T branches have the same 
common value. 

In other words, the memory or dependence on the past infor- 
mation bits is limited to the M previous information bits, but the 
useful tail of the tree is only T,rather than M branches in length. 
By allowing T < M, we are able, as shown in the sequel, to de- 
marcate rather precisely the different effects of the tail length 
T and the memory length M on decoding error probability. 

Our  artifice of requiring all of the digits on the last M-T 
branches of each path in the trellis to coincide renders these digits 
“useless” and hence it is unnecessary to transmit them over the 
discrete memoryless channel being considered. This artifice not 
only results in a true tail length of only T branches, but also al- 
lows us to use with only slight change the bounding techniques 
normally used for the “usual” trellis codes with M = T [2], [3]. 
Hence, we give the following Theorem without further proof 
[41. 

Theorem: The average probability of error for maximum- 
likelihood decoding of the ensemble of binary R = l/n,L,T,M 
trellis codes on a discrete memoryless channel satisfies 

p[,l < c2-nTEvu(R) 
1 _ 2-n(M-T)EvuUU 

1 - 2-nEvuUU 
+ (L + T - M)2-~W~)EvuW 1 , (1) 
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Fig. 1. Decoding error probability obtained from sequential decoding simulations versus tail length of convolutional code (100 000 decoded 

frames). 

where T I M and where Evu(R) is Viterbi’s upper bound ex- 
ponent [2], namely 

Ro, O_cR<Ro 
EvdR) = (2) 

SUP EO(P), RO -< R < C, 
P 

where the supremum is taken over p such that 0 I p 5 1 and Eo(p) 
> pR, and where 

2-nEvLm 
C= 1 - pGO(PhR)~ 

The “constant” c depends on R but is independent of L and 
T. Upon observing that, since T 5 M, 

In the special case when T = M, the bound of Corollary 1 is 
identical to Viterbi’s well-known upper bound for the ensemble 
of time-varying convolutional codes. 

Next, we note that the first term within the brackets in (1) is 
independent of L, whereas the second term can be made arbi- 
trarily small, for a given L, by increasing M. Thus by choosing 
that value of M which, for a given L, makes the second term less 
than one, we have the following. 

Corollary 2: The average probability of error for maximum- 
likelihood decoding of the ensemble of binary R = lIn,L,T,M 
trellis codes satisfies 

p[,l < C’2-~~~~~(R), (5) 

provided 
1 - 2-n(~-T)Evu(R) 

1 - 2-+w(R) IM-T (3) M 1 T + [nEvu(R)]-l logs L, (6) 
where 

we can state the following. 
Corollary 1: The average probability of error for maximum- 

likelihood decoding of the ensemble of binary R = Ifn,L,T,M 
trellis codes satisfies 

2c c’ = 
1 - 2-nEva(R) (7) 

P[c] < Lc2--nTEvu(R), 

where Evu(R) is given in (2). 

(4) and Evu(R) is given in (2). 
The remarkable feature of the bound (5) of Corollary 2 is that 

it is independent of the length L of the trellis. 
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Finally, we note that by taking M = L + T, the ensemble of 
R,L,T,M trellis codes becomes exactly the ensemble of R,L,T tree 
codes. We have already noted that, for M = T, the ensemble of 
R,L,T,M trellis codes becomes the ensemble of trellis codes de- 
fined by Massey [l]. HenEur Theorem is a generalization from 
which upper bounds on P[e] for both these ensembles follow as 
special cases. 

[II 
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III. RESULTSOFSIMULATIONS [41 

Although the above theory was developed for true maxi- 
mum-likelihood (i.e., Viterbi) decoding where one almost never 
uses a tail, its practical application is to sequential decoding 
where a tail is often used. The undetected error phenomenon is 
more complex for sequential decoding and, hence, we have to be 
careful with our conclusions. Nevertheless, it is well-known [5], 
[6] that, with the appropriate bias term, the exponent of error 
probability for sequential decoding is the same as that for true 
maximum-likelihood or Viterbi decoding. Thus we have con- 
ducted sequential decoding simulations to test the dependence 
of P[e] on T and M. 

[51 
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The particular sequential decoding algorithm employed was 
the stack algorithm [7], [8]. The simulations were all performed 
with rate R = l/2 optimum distance profile codes [9], [lo]. The 
simulated binary symmetrical channel (BSC) had “crossover 
probability” p = 0.045, which corresponds to R = Ro = l/2. For 
three different code memory lengths, a very large number 
(100 000) of received “frames;” i.e., complete received sequences 
of length n(L + T), were decoded so that the decoding error 
probability could be accurately inferred. 

illI 

In Fig. 1, we give the simulation results for the sequential de- 
coding undetected error probability P[e] as a function of the tail 
length T of the convolutional code. Because of the extreme 
variability of the computation in sequential decoding when M 
is large, there were occasions where the decoding had to be 
stopped, and hence, the frames had to be erased because the 
computation exceeded the alloted maximum. The number of 
erased frames is indicated in Fig. 1 and had negligible effect on 
the curves. These curves show that the actual P[c] decreases ex- 
ponentially with T having an exponent very close to that of the 
bound (5) for the range T I M - [nEvr/(R)]-l logs L + 1, while 
further increases in T beyond this point have virtually no effect 
on P[c]. 

An Improved Upper Bound on the Block Coding Error 
Exponent for Binary-Input Discrete Memoryless 

Channels 

ROBERTJ.McELIECE, MEMBER,IEEE,AND JIMK.OMURA, 
MEMBER, IEEE 

Abstract-The recent upper bounds on the minimum distance 
of binary codes given by McEliece, Rodemich, Rumsey, and Welch 
are shown to result in improved upper bounds on the block coding 
error exponent for binary-input memoryless channels. 

The range of T for which the bound becomes independent of 
L, viz., T I M - [nEvu(R)]-l logs L, is close to the range where 
the true P[c] becomes independent of L. Hence, relation (6) can 
be taken as a slightly conservative design rule for choosing M so 
that P[c] is reduced to the minimum possible for the tail length 
T that can be allocated to an encoded frame. 

IV. REMARK 

Finally, we should remark that, if we wanted solely to minimize 
the undetected error probability with sequential decoding for a 
given memory length and were not concerned with holding the 
tail size to a minimum to maximize the true rate of the trellis 
code, then the optimal value of the tail length is, of course, the 
memory length, i.e., T = M. Probably this fact has caused some 
investigators to ignore the distinction between the tail and the 
memory so that the memory length came to be honored for work 
actually done by the tail. 

Consider a binary-input memoryless channel with input al- 
phabet A = {O,l), output alphabet B, and transition probabilities 
{p(y ]x):x E A,y E B). Let e = (xi,xz, . e. ,XM) be a binary code 
of length n and rate R = n-l logs M for this channel, and assume 
that each of the M codewords is sent with probability l/M. Let 
d,in(e) denote the minimum Hamming distance between dis- 
tinct codewords, and let P,(e) denote the probability of maxi- 
mum-likelihood decoder error when the code @  is used on the 
given channel. 

Now define 

where the maximum and minimum in (1) and (2) are taken over 
the set of all codes of length n and rate R or greater. And finally 
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6(n,R) = i max d,i,(@) 

P,(n,R) = min PC(@), 

(1) 

(2) 


