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New Upper Bound on the First-Event Error Probability 
For Maximum-Likelihood Decoding of Fixed Binary 

Convolutional Codes 

MATS CEDERVALL, MEMBER,  IEEE, ROLF JOHANNESSON, 
MEMBER,  IEEE, AND KAMIL SH. ZIGANGIROV 

Abstract-An upper bound on the first-event error probability for maxi- 
mum-likelihood decoding of fixed binary convolutional codes on the binary 
symmetr ic channel is derived. The bound is evaluated for rate 1 / 2 codes, 
and comparisons are made with simulations and with the bounds of Viterbi, 
Van de Meeberg, and Post. In particular, the new bound is significantly 
better than Van de Meeberg’s bound for rates above Rcomp. 

I. INTRODUCTION 

Several authors have  addressed the problem of analyzing the 
performance of a  maximum likelihood (ML) decoder  for convolu- 
tional codes.  Viterbi [l] made  clever use  of signal f lowchart 
techniques to derive his famous upper  bound  on  the first-event 
error probability of ML  decoding of fixed convolutional codes.  
Van de  Meeberg  [2] obtained a  significant improvement of 
Viterbi’s bound  for large signal to noise ratios, while Post [3] 
using quite a  different technique, der ived a  bound  that is slightly 
better than these two bounds  for low signal to noise ratios. 
Furthermore, Post [4] showed how to calculate the union bound  
exactly. Finally, Schalkwijk et al. [5] presented a  method for 
exact calculation of the event  error probability. However,  this 
method is feasible only for short codes.  
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In this cor respondence we derive tighter upper  bounds  of both 
Viterbi- and  Van de  Meeberg- type for binary convolutional codes 
on  the binary symmetric channel  (BSC). Our  bound  is signifi- 
cantly better than Van de  Meeberg’s bound  and  general ly also 
better than Post’s bound  for rates above  the computat ional 
cut-off rate R,,, . 

Viterbi used  %  e  union bound  in his derivation. While the 
union bound  is quite tight when  there are few channel  symbols in 
error, it is rather loose when  we have  many  errors among  the 
channel  symbols. Thus, let us  separate the error event  into two 
disjoint events corresponding to few (F) and  many  (M) errors, 
respectively. If we  let E denote the event  that the first informa- 
tion symbol is erroneously decoded  by maximum-likel ihood de-  
coding on  the binary symmetric channel  (BSC), we have  

P[E] =P[EIF]P[P] +P[EjM]P[M] 

I P[ EIF]P[P] +  P[M] 

=P[E,F] +P[M]. (1) 
In Section II we will use  a  random-walk argument  to upper  

bound  the probability that we have  many  channel  errors, P[ M]. 
The  union bound  is used  in Section III to obtain a  good  upper  
bound  on  the probability that the first information symbol is 
erroneously decoded  and  that we have  few channel  errors, 
P[ E, F]. These two bounds  are combined in Section IV to a  
tighter Viterbi-type bound,  and  in Section V we give an  improved 
Van de  Meeberg- type bound.  Finally, in Section VI we discuss 
some numerical results. 

II. MANY CHANNEL ERRORS-RANDOM WALK 

To obtain an  upper  bound  on  the probability that we have  
many  channel  errors P[ M], we use a  random-walk argument  that 
is based  on  a  lemma given by  Gallager [6, p. 3121.  

Let z1,z2, . . . be  a  sequence of statistically independent  iden- 
tically distributed discrete random variables. Then  for any  X I 0  
such that 

E[2”$] I 1, 

and  for any  f, 

P min i zi I -f 5  2Y 
[ n  i=l 1 (3) 

Let us  accrue a  metric s, when  we have  a  channel  error and  a  
metric s, when  the channel  symbol is correctly received. Then  the 
cumulative metric a long the correct path is a  random walk with 
P[zi =  s,] =p and  P[z, =  sc] =  q =  1  -p, where p is the 
crossover probability of the BSC. 

Suppose we choose metrics 

s, =  log :, 

and  

where p < a  < 1  is a  parameter to be  chosen later. Then  condi- 
tion (2) will be  satisfied for those X such that 

P($” + q(ig 5  1. (6) 
Noting that X = - 1  causes (6) to be  satisfied, we have  from (3) 
that 

P min 2  zi I -f 
[ 

I 2-‘. 
n  i=l I 

(7) 
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Let Sk denote the cumulative metric for the first k channel  
symbols, and  suppose we have  j, errors among  them. Then  

Sk = jks, +(k - j,)s,. (8) 

Now we can more precisely state what we mean  by “few” and  
“many” errors. Those error patterns for which Sk. stays above  the 
barrier at -f contain few errors, and  those error patterns for 
which the cumulative metric hits or crosses the barrier contain 
many  errors. Few errors, i.e., min,S, >  -f, is equivalent to 

jk 

A 

or 

jkse +(k -jk)sc >  -f, for all k  (9) f 

Sc-Se 

jk 
<-++k-9 f s  

rk 1 for all k. 
s,. - s, s,. - s, (10) _ _ - 

In Fig. 1  we illustrate inequality (10). 
From inequality (7) we have  

Fig. 1. Barrier at rk which separates paths with many and few errors. 

P[M] = P minS, 5  -f 5  2-‘, 
[ 1 (11) 

Let us  introduce 
k ,3 VP 

where f is a  parameter to be  chosen later. The  bound  (11) will be  po = T)p + q -5p (20) 
exploited in Section IV. 

It is interesting to notice that our  choice of the metrics s, and  
and  

S, is closely related to the Fano  metric [7]. To  see this, let q. be  qoP1-po=-II- 2 q. (21) the solution of VP + 4  

vR = Eo(cp), (12) Substituting (20) and  (21) into (19) and  rearranging (19) we get 

where E,(q) is the Gallager function. If we choose a  particular 
value of a, viz. p[Ek;,jk < rkl 5 (~)“(~)k~~~~(~)P~q~~‘~~t~kiljkl. 

a  = pl/(’ +y( p’/(’ +coj +  q’/(l +q  

(c.f. [6, p. 1461)  we obtain from (4) and  (5) 

se  = vo/(l +  cpo)( log2p - R) 

and  

(13) (22) 
Overbounding by  summing over all 0  I j, 5  k, we have  

(14) 
p[Ek;,h < lkl 5 ( $)rk( t)*‘[EkiIpo, (23) 

3, = cpo/(l + cpo)(WQ - R), (15) where p[&, lp, is the probability that a  decoding error is caused 
which differ by  a  factor exactly cpo/(l +  cpo) from the corre- by  a  path of length k and  weight i on  an  improved BSC with 
sponding Fano  metrics. crossover probability po. 

Using the Bhattacharyya bound  [8] we obtain from (23) 
III. FEWCHANNELERRORS-UNIONBOUND 

To upper  bound  the probability that we make an  error when  
we decode  the first information symbol and  have  few channel  
symbol errors, P[ E, F], we use the union bound  and  obtain 

P[E,F] ICCP[-%,,FI, (16) 
k i 

where Ekr is the event  that a  path of length k and  weight i is 
causing a  decoding error. 

A path has  few channel  errors only if it stays below the barrier 
in Fig. 1  for all k. If we  take all paths of length k with jk <  rk 
channel  errors we will get all paths with few channel  errors 
together with the paths with many  channel  errors that take one  or 
more detours above  the barrier. Hence we have  

(17) 

and  

D=zJpo%. 

(25) 

(26) 

(27) 

where Finally, we combine (16) and  (17) with (25) and  obtain the 
following upper  bound  on  the probability of having few channel  

p[Eki,jk < rkl = c 
symbol errors and  making an  error when  decoding the first 

p’“qk-‘“p[Ekr(jk]. (18) information symbol: 

//(.~,-s,) 

Using the definition of rk given in (14) and  rearranging 
get 

where 

L = 4 p40 s,/(sc-~~e) 

( 1  40  PO4 
3  

(24) 

(24) we 

If we multiply the sum in (18) by  ~-(~k-Jk), 0  <  n  I 1, we obtain c c uki LkD’ 
the inequality k i 

j~~~(~)(nP)“q*JkP[liilhl. 
//(.~,-s,) 

p[E,,, j, <  rk] 5  111’~ T(D,L), (28) 

(19) where ski is the number  of paths of length k and  weight i 
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Fig. 2. Factor of Van de Meeberg’s bound. 
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10-I 

lo-? 

10-2 

10-4 

New Viterbi 

Fig. 3. New Viterbi type bound compared with Viterbi’s bound and simula- 
tions for R = l/2, m = 2, ODP code with G(l) = 5 and Cc*) = 7. 

stemming from the root node. T( D, L) is the generating function 
for the output sequence weights and lengths. 

IV. A TIGHTER VITEREH-TYPE BOUND 

We now show how to combine the bounds (l), (15), and (28) to 
obtain a new upper bound on the first-event error probability, 

/As,-%) 
T( D, L) + 2-‘. (29) 

The bound (29) is valid for all f. By taking the derivative of the D=zJp,q, (35) 

P[El 

1' 

1 o-1, 

10-2, 

10-3, 

10-4. 

ClO-’ R 
1 I p-p 

10-2 
’ l P 

Post's bound 

Van de Meeberg's 

Viterbi's 

Fig. 4. New Van de Meeberg type bound compared with Van de Meeberg’s 
and Post’s bounds and with simulations for R = l/2, m = 2, ODP code 
with G(t) = 5 and G(‘) = 7. 

right side of (29) we find that its minimum is obtained for 

logT(D,L) -loglogE 

(30) 
Inserting (30) and rearranging (29) give the upper bound 

P[ E] I 2h(“)T( D, L)‘, (31) 
where h(y) is the binary entropy function and 

log $ 

Y -‘=I+-. 
s --s (32) 

c e 

Finally, we use (4) and (5) and obtain a new Viterbi-type 
bound, 

where 

P[ E] 5 inf inf 2h(y)T( D, L)‘, 
O<po<pp<a<l (33) 

log 2 

Y -‘=I+ 
log q” 

(34) 

P(1 - a) 



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-30, NO. 5. SEPTEMBER 1984 765 

P[El P[El 

1 

10-l. 

10-z 

lo-! 

1 o-4 

C 
L 

New Van de Meeberg 
type bound ____, \ 

lt 
Simulations- 

\ 

)-’ R ,comp 

Post’s boun l-t-- 
Van de \\I - Meeberg ’ s 
bound 

-2 

-P 1 

10-l 

10-z 

10-3 

10-4, 

1 

t 

Fig. 5. New Van de Meeberg type bound compared with Van de Meeberg’s 
and Post’s bounds and with simulations for R - l/2, m  = 4 code with 
G(l) = 72 and Cc*) = 62. 

and 

L=4 p40 ( 1 
Wq/(l -awIv3[q~/P(I-a)l 

40 PO4 
(36) 

The new bound (33) is significantly better than Viterbi’s origi- 
nal bound for rates Rcomp < R < C. The latter bound can be 
obtained by choosing p. = p rather than minimizing over p. on 
the right of (33). 

We have derived the bound (33) only for the BSC, but our 
argument generalizes in a straightforward way to any symmetric 
binary-input discrete memoryless channel. For the BSC, however, 
the bound (33) can be improved. 

V. A TIGHTER VAN DE MEEBERG-TYPE BOLJND 

Let Pi be the error probability for two binary codewords at 
distance i [l]. Van de Meeberg [2] used the fact that Pzi = P2,-1 
to tighten the Bhattacharyya bound and showed that 

P 21 5 26; l 2-2”(2&7’, 
( 1 

where 

Van de Meeberg used the inequality 

I I 
4 5 1. 
4-p (39 

c10-1 R  
I I , camp 

New Van de Meebesg 
type bound Van de 

Meeberg ’ s 
bound 

/ 

1-2 
-P 

Fig. 6. New Van de Meeberg type bound compared with Van de Meeberg’s 
bound and simulations for R = l/2, m  = 8, ODP code with G(l) = 557 and 
G(*) = 751. , 

We notice that 

qi -.# 
-= 

4-P 
q’l ;(p2/p4ji < (&)‘i-&. (40) 

For p I 0.38 and d, > 4 (see Fig. 2) the bound (40) is tighter 
than (39), and we have (for all practical values of p and d, 
slightly improved) the Van de Meeberg-type bound 

p.< 26-1 21 
( 1 6 

g&m2i. 

Since Pzi = Pziel, i 2 1, we can now rewrite our Viterbi-type 
bound (33) as 

P[ E] < inf inf 2h(y)[( 2sg ‘)&I’ 
o<p,<p p<a<l 

. $[T(D,L) + T(-D,L)] i 

+$D[T(D,L) - T(-D,L)I}Y, 

where y, 6, D, and L are given in (34), (38), (35), and (36), 
respectively. 

VI. NUMERICALRESULTS 

The generating function T( D, L) is a formal power series in D 
and L, and for relatively short codes it is easily determined by 
solving linear equations for all states [S]. This is equivalent to 
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Fig. 7. New Van de Meeberg type bound compared with Van de Meeberg’s 
bound for R = l/2, m  = 15, ODP code with G(‘) = 467724 and G(*) = 621134. 

finding an eigenvector of a sparse m&ix. For codes of moderate 
memory, say m  = 10, this is already not feasible. Therefore, we 
use the actual numerical values of D and L obtained from (35) 
and (36) and solve the corresponding numerical system of linear 
equations by iteration. The optimization is done by a straightfor- 
ward numerical method. 

We calculate our Viterbi-type bound (33) for the standard rate 
l/2 convolutional code, viz. the memory m  = 2 code with code 
generators G  (l) = 5, Gc2) = 7 (octal notation). In Fig. 3 we com- 
pare our bound both with simulations and with Viterbi’s bound, 

(43) 

Our bound is significantly better than Viterbi’s for rates above 
R comp~ 

For the same code we compare (Fig. 4) our Van de Meeberg- 
type bound (42) with simulations and with both Van de Meeberg’s 
and Post’s bounds. Our bound is similar to Post’s bound but 
significantly better than Van de Meeberg’s bound. It is interest- 
ing to note that for this code there exists a region between Rcomp 
and channel capacity C, where our new bound is slightly worse 
than Post’s bound. For channels with small crossover probability 
our bound is, of course, equivalent to Van de Meeberg’s bound. 
For a slightly longer code, viz. the memory m  = 4 code with code 
generators G(l) = 72 and G (2) = 62 (d, = 7), our bound is sig- 
nificantly better than not only Van de Meeberg’s bound but also 
Post’s bound (Fig, 5). 

We close this correspondence by showing the dramatic im- 
provement of Van de Meeberg’s bound obtained for rates be- 
tween Rcomp and channel capacity C for two slightly longer 

codes, the optimum distance profile ODP codes [9] of memory 
m  = 8 (d, = 12) and m  = 15 (d, = 18). The curves are given 
in Figs. 6 and 7. 
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Nonbinary Codes, Correcting Single Deletion or Insertion 

GRIGORY TENENGOLTS 

Abstract-111 many digital communications systems, bursts of insertions 
or deletions are typical errors. A  new class of nonbinary codes is proposed 
that correct a single deletion or insertion. Asymptotically, the cardinality of 
these codes is close to optimal. The codes can be easily implemented. 

I. INTRODUCTION 

In communications systems, the disturbance of synchroniza- 
tion can cause digits to be deleted or inserted. Binary codes that 
correct single deletion or insertion were introduced by Sellers [l], 
Levenshtein [2], and Ullman 131. Codes that correct multiple 
deletions or insertions were studied by Calabi and Harnett [4] 
and by Tanaka and Kasai [5]. 

Another class of binary codes correcting synchronization errors 
was given by Tenengolts [6]. These codes correct bit loss and 
substitution error in the preceding bit. Such errors are typical, for 
example, in tape perforation because of a fault in the tape 
transport mechanism. 

In many practical systems, groups of symbols are inserted or 
deleted (see, for example, Raibman [7]). Therefore, a synthesis of 
nonbinary codes that correct deletions or insertions is of interest. 

This correspondence considers a class of nonbinary codes, 
correcting single deletion or insertion. We will show that the 
cardinality (number of codewords) of these codes is close to 
asymptotically optimal. The codes can be easily implemented. 
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