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Abstract

Computer generated imagery is vital to the entertainment industry in the produc-
tion of games and films, for example. It is also increasingly important for visual-
ization in design, architecture, engineering, and medicine, to name a few. Improve-
ments to rendering techniques come from a combination of improved algorithms
and more powerful hardware. Typically, hardware developments introduce new
challenges and opportunities for algorithms that better fit the platform. Recently,
these developments involve a widening gap between memory bandwidth and com-
pute capabilities, wide SIMD units, and shared memory between CPU and GPU.
The focus of this thesis is on improved algorithms for visibility queries that are
used in graphics, motivated by challenges introduced by recent hardware devel-
opments. Geometry sampling lies at the core of rendering techniques, both for
real-time and offline rendering, and generating images of higher quality generally
involves taking more samples. Performance and quality improvements for visibil-
ity samples can thus enable higher quality rendering within a smaller time budget.
This thesis presents five published papers with new solutions for visibility queries
in the two major rendering paradigms in use today: rasterization and ray trac-
ing. Two-dimensional rasterization is common in real-time graphics because of its
computational efficiency. Multiple point samples are usually taken for each pixel
to get high-quality images without aliasing artifacts. When rendering thin curves,
many samples will typically be required to achieve acceptable quality. In this con-
text, we propose that thin curves can be rasterized in high quality on a graphics pro-
cessor using spatial line samples and curve-specific intersection tests. Further, we
propose that the recent advent of shared memory between CPU and GPU can allow
for MSAA computations to be offloaded to idle CPU cores. In three-dimensional
rasterization, specifically rasterization with motion blur, we introduce a way to
render practically noise- and alias-free images with competitive performance us-
ing semi-analytical line-based visibility queries on a multi-core CPU.
Ray tracing, common in offline rendering, is a flexible rendering technique that
can model how light propagates in a scene. Challenges in ray tracing include how
a ray can be efficiently tested against a scene. Tests are accelerated by building
a spatial hierarchy over the scene and our work in ray tracing specifically targets
the process of traversing rays against a bounding volume hierarchy (BVH). The
first contribution involves a flexible BVH traversal algorithm that executes with-
out storing the traversal state in a stack, which may be beneficial in cases where
storing a stack is expensive. The second contribution is an efficient algorithm for
traversing large streams of rays against a BVH while making use of wide SIMD.
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1. INTRODUCTION

Figure 1: Moving chess pieces with motion blur, procedural textures, and a simple
occlusion-based light model.

1 Introduction

The focus of this thesis is on advancements of visibility queries, which are used
extensively in computer graphics, and more specifically in computer generated
imagery (CGI). Computer generated imagery is the process in which computer
graphics is used to create images, printed media, video games, films, and television
programs, to name a few. An example of such an image is shown in Figure 1.
In order to generate an image, a model of some virtual space to be converted to
imagery is needed. The process of converting the model to a final image is usually
denoted rendering. In this work, the focus is on rendering virtual spaces with three
spatial dimensions, with the possible addition of time as an extra dimension (see
Section 5.2 for details). The final image is typically made up of a rectangular grid
of individual pixels, where each pixel contains a color value for its portion of the
grid. This representation is known as raster graphics. In the case of rendering
videos or interactive applications, a single image is referred to as a frame.
In a three-dimensional space, a model is needed for virtual objects, their appear-
ance in the scene (i.e., how light interacts with their surfaces) as well as a camera
model that describes how light is received by the virtual camera sensor. A simple
example is shown in Figure 2. A common representation for an object is a collec-
tion of triangles, which is often denoted a mesh. Triangles are common since it is
the simplest polygon in three dimensions that make up a surface, with the added
benefit that this surface always is planar. The mesh representing one of the chess
pieces is shown in Figure 3.
How the appearance of an object is modelled depends highly on how light is simu-
lated in the scene. In real-time rendering [3], which is used in games for example,
performance is of outmost importance with a typical time budget of 16 millisec-
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INTRODUCTION

Camera

Figure 2: A model of a three-dimensional scene consisting of three objects and
a camera. The result of rendering the scene from the camera’s point of view is
shown to the right.

Figure 3: Left: the triangular mesh representation of a chess piece. Back facing
triangles are hidden. Right: the same mesh after rendering.

onds per frame. Here, it is common to project triangles to the camera’s point of
view and determine what is directly in front of each pixel in the image, a process
known as rasterization. Projection is performed by transforming the vertices that
define the triangles (three points per triangle) using a 4×4 matrix. The rasteriza-
tion stage then determines overlap between pixels of the image and the triangles.
The output is one fragment for each triangle-pixel pair that overlaps. Each frag-
ment contains the information necessary to compute the color for that specific part
of the triangle. On modern graphics hardware, determining the color of a fragment
amounts to running a specialized shader program [29], thus allowing for a great
deal of flexibility in how materials are modelled. When multiple triangles over-
lap the same pixel, the rendering pipeline needs to determine which fragment is
closest to the camera. In conventional two-dimensional rasterization, this visibil-
ity problem is usually solved using a z-buffer [7, 34]. As an optimization, testing
against the z-buffer can often be performed before shading, thus reducing the num-
ber of fragments to shade. While programmable shading allows for a wide range
of materials to be modelled, they are ultimately limited by the strict timing require-
ments imposed by real-time rendering. Offline rendering can, on the other hand,
spend hours rendering a single frame, and may thus afford more involved models

2



1. INTRODUCTION

Figure 4: Top: rasterization - geometry is projected on the image plane. Polygon
to pixel overlap can then be determined using simpler tests in two dimensions.
This is a very efficient method for determining what is immediately in front of
each image pixel. Bottom: ray tracing - rays are sent from the camera through
pixels in the image plane. Each ray determines overlap with the scene in three-
dimensional space. This is often a more expensive, but also more flexible, way of
determining visibility. When tracing rays, it is possible to continue the path of the
ray in the scene randomly in order to simulate how light interacts between objects.
This easily captures effects such as diffuse interreflections and soft shadows, for
example.

for light transport within a scene. While forms of rasterization still are important
in this context, they typically involve higher-dimensional stochastic rasterization,
described in Section 5.2. The trend seems now to be a push for more ray tracing
based solutions in offline rendering since it allows for more realistic, albeit more
expensive, lightning models. In this paradigm, rays of light are simulated in the
scene and can be used to transfer energy between surfaces, naturally accounting
for effects such as reflections, indirect illumination, shadows, and caustics. During
simulation, each ray sent must determine the closest visible surface along its path
in order to continue its interaction with the scene. The high cost of this method
comes from the large number of rays that need to be traced randomly through-
out the scene in order to converge to a visually noise-free image. An illustration
showing the conceptual difference between rasterization and ray tracing is shown
in Figure 4.
In physically based rendering, materials are typically described by the bidirectional
reflectance distribution function (BRDF) [25] and many different material models
exist in this framework. The focus of this thesis is not the subject of materials, but

3
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how to quickly and efficiently answer questions on the form, “Which triangle is
visible in this pixel?” or “Which surface lies in front of this ray?”. When time
is added to the equation, the question becomes more complex and involves over
which interval(s) in time a triangle lies in front of a pixel or ray.
Rendering is a sampling problem at its core and generating images of higher qual-
ity usually involves taking more samples (in addition to improving the sampling
strategy itself). Thus, fast visibility queries for each sample is paramount to the
performance of any rendering system.

2 Measuring Image Errors

The quality of visibility samples will usually show in the final rendered images in
obvious ways. Faster algorithms often introduce approximations which can lead
to errors such as noise, aliasing, and inaccuracies. This is, however, not always
the case. When proposing a new algorithm with approximations, it is therefore
necessary to compare both rendering time and image quality to previous work in
the field. In order to evaluate image quality in an objective manner, a ground
truth image is rendered using some brute force method, that is known to provide a
correct result. These runs can take a very long time to complete. The alternative
algorithms also render the same image, but preferably much more quickly. The
result is a set of images, one for each algorithm, and a reference image that is
assumed to be perfect. In order to quantify the likeness between one image and
the reference, a formula for computing the error between them is necessary. While
several metrics exist, this thesis makes use of the metric outlined below.
The mean square error (MSE) is first computed by squaring the difference for
each pixel between the reference image and the image to compute the error for,
normalized to the total number of pixels, which can be expressed as

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

(
P(i, j)−Pre f (i, j)

)2
, (1)

where m,n indicate the image dimensions and P,Pre f give the pixel value at a lo-
cation for the algorithm and reference respectively. If the image contains multiple
color channels (commonly red, green, and blue), the MSE is computed for each of
them and the result is averaged together.
In order to arrive at a more pleasant metric for image errors, the MSE is normalized
by inverting and multiplying by the squared maximum intensity of the image (2552

in an 8-bit image). The result is a ratio that gets higher as the two images gets
more alike. By computing the 10-logarithm of this value, and multiplying by 10,
the resulting unit is decibel (dB). This measurement is known as peak signal-to-
noise ratio (PSNR) and is commonly used to benchmark lossy image compression
algorithms. The resulting formula can thus be written as
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3. HARDWARE PLATFORMS

PSNR = 10 · log10

(
MAX2

I

MSE

)
. (2)

When using PSNR as a metric, it is important to note that a single PSNR value
cannot account for all aspects of image quality. For example, an image could be
perfect in most places but exhibit unreasonable artifacts in others. Therefore, when
making comparisons, it is important to inspect images and note any obvious arti-
facts manually. In addition, since the difficulty of a scene can impact the absolute
PSNR value, it is not meaningful to compare values between different rendered
scenes.
PSNR values alone are often not so interesting since many slow algorithms can
generate high quality images given enough time. However, by aggregating the
time it takes to generate an image with the achieved image quality, meaningful
conclusions can often be made. A strong case can generally be made for an algo-
rithm that is both faster and of equal or higher quality in a variety of situations.
The structural similarity index (SSIM) is another approach to measuring similar-
ity between images that have been claimed to be consistent with human percep-
tion [38]. While such metrics can be very useful, SSIM may accept systematic
changes to an image that preserves structure, such as contrast-stretching and mean-
shifting the color channels, which is usually not desired in visibility computations.
In addition to being more difficult to compute, a more complex algorithm can also
make the resulting score harder to reason about.

3 Hardware Platforms

Different hardware platforms exist to support rendering algorithms. The two major
ones are central processing units (CPUs) and graphics processing units (GPUs).
CPUs are capable of running general purpose instructions to support a wide range
of programs, while GPUs are often a bit more restricted in flexibility to support a
more parallel programming model. While CPUs are optimized for a few, possibly
different, parallel instruction streams, GPUs are optimized for having thousands of
data items executing a relatively small kernel in parallel. In addition, GPUs often
include fixed function hardware specifically targeted at graphics workloads. In
this work, we make extensive use of their particular strengths and will thus briefly
introduce them before presenting the contributions of this thesis.

3.1 CPU

A CPU is central to most computing platforms and is used in most systems running
general purpose software. While they come in various configurations and sizes, we
focus on modern desktop/laptop CPUs in this work. In particular, the focus is on
modern x86 processors [20].
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Several CPU cores per chip have been an increasing trend in recent years. In the
best case, this leads to a linear scaling in performance with respect to the number
of available cores. However, Amdahl’s law [21] tells us that the possible speedup
will be limited by single threaded portions of the application as the number of
cores increase, so more cores is only a partial solution. Key challenges for multi-
core CPUs involve cache coherence and synchronization. At the software level,
algorithms need to be carefully designed to be split into independent parts that can
be executed in parallel. While this is a natural fit to some problems, others require
elaborate schemes to run efficiently.
While thread level parallelism is suitable for coarse grained task-based distribu-
tion of work, a finer grained form of parallelism exists at the instruction level. By
performing the same computation on several data items using single instruction
multiple data (SIMD) execution, a vector of results can be computed in the same
time it takes to otherwise calculate a single value. The extra performance scales
linearly with SIMD width for suitable algorithms and is very power efficient. Cur-
rent trends indicate that SIMD width will continue to increase in the future. For
example, contemporary CPUs have a SIMD width of 256 bits, and this will likely
be extended to 512 bits in the near future. The many-core Xeon Phi architecture
already features 512-bit SIMD, and most GPUs have a width of 1024 or 2048 bits.
Algorithms need to have low instruction level divergence in order to efficiently
utilize increasing SIMD width. For example, if some parts of the vector wants to
perform a different computation in some cases, efficiency will be lowered for those
cases.
CPUs have also developed a variety of techniques to improve performance of
scalar instructions without changing existing programs. By rearranging instruc-
tions, they are able to find inherent parallelism in a single instruction stream [21].
Superscalar execution makes it possible to execute multiple instructions simultane-
ously on different functional units and pipelining is used to issue new instructions
each clock cycle. Each pipelined instruction can have different latency, which is
typically longer than a clock cycle. The strength of this setup is that high through-
put can be achieved with independent instructions. When the CPU is unable to
issue a new instruction, e.g., due to dependencies between instructions, a bubble is
created in the pipeline that does not do any real work. To counteract this, instruc-
tion scheduling is performed to try to avoid these issues, both when compiling a
program to machine code, and as stated above, by the actual hardware during ex-
ecution. However, without enough independent instructions, this scheduling will
not succeed in eliminating the pipeline bubbles. To take full advantage of a modern
CPU, algorithms should therefore strive to provide enough parallel work within a
single instruction stream.
Another key challenge is that when compute capabilities increase, more pressure
is put on the underlying memory subsystem. To reduce latency and bandwidth to
main memory, CPUs are equipped with a large cache hierarchy in combination
with sophisticated hardware prefetchers that detect memory access patterns, and
prefetch memory into a cache before it is needed. Nonetheless, an instruction that
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3. HARDWARE PLATFORMS

incurs a cache miss, and have to go out and accesses main memory, have a latency
of several hundreds of cycles. Because of this, data layout and access patterns are
perhaps the most important design aspects of algorithms on modern CPUs.

3.2 GPU

GPUs were historically dedicated for real-time graphics workloads. Initially they
were limited to fixed function hardware without programmability that included
two-dimensional rasterization with a fixed transformation pipeline and fixed func-
tion fragment shading with support for textures and per-vertex light computa-
tions [1]. Visibility among rasterized fragments was (and still is) handled using
a z-buffer [7, 34]. In the case of transparency, composition is performed using
blending hardware. With time, support for multi-texturing and register combiners
were added to improve the flexibility of the pipeline, ultimately ending up in user-
defined shader programs at different stages of the pipeline. The first shader stages
to be added were a vertex shader stage, that controls how vertices are transformed
before rasterization, and a fragment shader stage, that computes the color of each
fragment after rasterization [29]. Rasterization, texture filtering, and blending of
fragments is still mostly fixed function today.
Other shader stages have been added with time and now there is a geometry shader
for generating or changing geometry (such as triangles), as well as shaders for con-
trolling tessellation (hull shader and domain shader). As support for increasingly
complex shader programs was realized, the set of possible GPU applications ex-
panded. With the advent of compute centric platforms, such as CUDA [31] and
OpenCL [27], the GPU was transformed into a platform for general compute prob-
lems on its highly parallel shader cores. In our work, we make use of the existing
graphics pipeline for rendering and utilize compute programs to efficiently imple-
ment some of our algorithms.
Similarly to modern CPUs, the shader cores in a GPU are SIMD machines where
the same instruction is performed on multiple data items during program execu-
tion. The fundamental design differences between a CPU and a GPU is how they
handle memory access latency and how they execute parallel code. A CPU is opti-
mized for a few parallel threads of execution, trying to minimize memory latency
using large caches. GPUs are instead designed to tolerate long latency and focus
on high throughput. This is accomplished by keeping hundreds or thousands of
threads active at any instance in time. When a high latency operation, such as a
read from main memory, is initiated, the shader core simply switches thread and
continues to compute. If enough threads are active, the memory fetch will be done
by the time execution resumes the originally suspended thread. While caches do
not serve the same purpose for a GPU, they are still present to reduce memory
bandwidth usage.
Since the number of active threads on a GPU is very large, each thread can only
use a limited amount of resources. For example, the register file is divided among
all threads running on a single processor on the GPU, meaning that a single thread
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cannot use more than 64-128 registers without reducing parallelism, and thus loos-
ing efficiency. The same is true for shared caches and fast on-chip memory that
can be used for synchronization.
Although a GPU needs to keep many threads active in order to tolerate latency,
most threads are idle at any given moment and do not progress forward. For this
reason, traditional synchronization techniques used for multi-core CPUs, such as
mutexes, become unusable and would result in deadlock. Current programming
models for GPUs are inherently data parallel and allow the user to believe that
scalar code is being written. The premise is that the code will then run for many
data items in parallel. This parallelism comes from both thread level parallelism
and SIMD execution. Behind the scenes, the compiler generates SIMD instruc-
tions so that a SIMD-width of data items essentially work in lockstep.1 This real-
ization is crucial for optimizing many applications as data items within a SIMD-
width can have very efficient synchronization and communication. It is also impor-
tant that lanes within the same SIMD-width do not diverge, i.e., if there is control
flow in the program, all SIMD-lanes should take the same branches. Otherwise
efficiency will be reduced, much like how SIMD behaves for CPUs. In fact, as
CPUs are getting wider SIMD, higher computational throughput and more regis-
ters, a software scheduling of many independent CPU instructions can effectively
hide memory latency to similar effect as how a GPU hides latency using threads.
It can therefore be argued that the two platforms are converging in program be-
havior. However, for real-time graphics, the additional fixed function hardware in
GPUs have proven hard to match with a pure software implementation of similar
functionality.

3.3 Shared Memory

As small form factors for computers and low power consumption have become
increasingly important, GPUs and CPUs have been integrated on the same chip
in order to improve performance, power consumption, and reduce cost. These
architectures typically share the same memory subsystem, which presents unique
challenges and opportunities for work sharing. Currently these architectures are
common in cell phones, tablets, and increasingly so in laptop computers.

4 Contributions and Methodology

This thesis presents a collection of algorithms that can be used to speed up or im-
prove the quality of visibility queries in graphics. Here, we will review my main
contributions and connect back to the introduction. More details will be presented
in the following sections. I will also discuss my part in co-authored papers, and
would like to start by saying that my main supervisor, Tomas Akenine-Möller,

1In GPU parlance, the term “thread” is often used to refer to individual SIMD lanes, which is
confusing when compared to a CPU, where a single thread supports multiple SIMD lanes.
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has been actively involved in all papers presented in this thesis, including algo-
rithmic design, illustrations, and text authoring. My work specifically target fast
algorithms for rendering on currently available hardware, i.e., no hardware simu-
lations have been performed. As such, our main evaluation methods have involved
rendering time, typically milliseconds per frame, and image quality, using PSNR.
In some cases, we have looked at memory requirements and memory bandwidth
usage.
My early work was focused on alternative methods to stochastic point sampling
for higher-dimensional visibility problems and difficult geometry when using ras-
terization. Paper I presents an approach for semi-analytical visibility coverage in
time over spatial line samples. This allowed for noise- and alias-free rendering of
images with motion blur, such as the one shown in Figure 1. In addition, it was
faster than our stochastic software rasterizer while also generating higher quality
images when measuring PSNR. In this paper, I focused on the overall system de-
sign and implemented the visibility engine and shading system. The first author,
Carl Johan Gribel, focused on the tessellated surface between a moving triangle
and a line sample plane. Paper II introduces a new way to render anti-aliased thin
curves, such as hair. In this paper, I once again focused on the system design, and
worked on the efficient GPU implementation. I also developed the heap based in-
terval resolve procedure to quickly determine visible curve segments. Carl Johan
focused on generating high-quality intersection points between a Bézier curve and
the line sample plane.
After the first two papers, my focus shifted from analytical line-based algorithms
towards improving methods for performing traditional point sampled visibility.
Paper III targets ray tracing and discusses a way to perform arbitrarily ordered ray
traversal of a binary tree without a stack, which can be beneficial when storing
a stack is expensive. Paper IV introduces a way to use shared memory between
CPU and GPU to perform anti-aliasing on idle CPU cores in a rasterization based
renderer. The GPU rendered the scene using a single point sample per pixel in
a traditional hardware accelerated pipeline. In parallel with the GPU, the CPU
detected difficult pixels and used an optimized software rasterizer to render only
those pixels in high quality, while using resources generated by the GPU in shared
memory. Paper V discusses how large packets of rays can be traversed simultane-
ously against a bounding volume hierarchy, in order to increase the available data
parallelism. The resulting algorithm was able to improve the performance of ray
traversal by up to 50% on a modern laptop CPU compared to a set of ray traversal
kernels that can be considered state of the art.

5 Visibility Determination

Visibility determination is the process of computing overlap between one primitive
with respect to another in some space. The answer can be as simple as a boolean
indicating whether a hit between a ray and a triangle occurred or as complex as a
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three-dimensional surface representing the overlap between a plane and a moving
triangle. In this section, I will discuss visibility in different rendering algorithms,
and how they relate to my work. In particular, two types of rasterization will be
introduced, and the related subject of anti-aliasing, followed by a discussion about
ray tracing.

5.1 Two-Dimensional Rasterization

The simplest useable camera model is that of a pinhole camera. It has no lens area,
meaning that depth of field effects can be ignored. In addition, the shutter interval
is infinitely short, resulting in that no time-dependent effects, such as motion blur,
can happen. Each location on the camera sensor will thus correspond to a single
direction of light from the scene, with all light coming from the same instance in
time (assuming light is modelled as traveling infinitely fast). While these assump-
tions my sound unrealistic, they are excellent for real-time games where it is hard
to know where the player’s eyes are focused for proper depth of field during play.
It can, however, be used to great effect to guide the player’s attention during cin-
ematic sequences. Motion blur is generally something favorable but its effect is
mostly limited to fast moving objects (relative to the camera), which is why it can
be reasonable to ignore or approximate it in real-time rendering. The real benefit
of these assumptions is that they allow rendering with a computationally efficient
algorithm.
The basic goal of two-dimensional rasterization is to determine what lies in front
of each pixel from the camera’s point of view. Instead of having a camera, like in
the real world, where a sensor gathers light from the environment, light paths are
modelled in reverse. One way to think about this is to trace straight lines, i.e., rays,
from the camera sensor out into the scene and what each ray hits in the scene deter-
mines the color at that point on the sensor. The pin hole camera model guarantees
that all rays are directed coherently and allows the problem to be reformulated
as a rasterization problem. Instead of tracing rays in three-dimensional space, an
equivalent result can be achieved by projecting all triangles to the image plane and
perform point vs. triangle tests in two dimensions [32]. This concept was shown in
the upper part of Figure 4 in the introduction. The following paragraphs will intro-
duce a typical modern two-dimensional rasterization pipeline with programmable
vertex and fragment shading. This relates to our work on thin curve rendering in
Paper II and, even more so, to our work in Paper IV where an optimized software
implementation of a complete two-dimensional rasterization pipeline was devel-
oped. A subset of the problem introduced in Paper I, in particular the visibility
resolve in ltz-space, can be directly mapped to a two-dimensional rasterization
problem. Geometry shaders and tessellation are intentionally left out of the dis-
cussion as my thesis have made no use of geometry shaders and very little use of
tessellation (it can be found as competing algorithm in Paper II).
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Figure 5: A projection matrix defines a frustum with a near and a far plane (left).
Anything outside the frustum is not drawn. Each point inside the frustum gets
mapped into a box (right). The coordinates in this space is commonly referred to
as normalized device coordinates. Note that the coordinate system used here is
only an example and certain implementations my have different conventions. For
example, the z-axis in the frustum is commonly directed the other way and the
z-axis in normalized device coordinates may span [−1,1] instead of [0,1].

Overview

The input to a typical rasterization pipeline is a list of vertices and a list of indices
organized in batches, called draw calls. The result of rendering operations are
stored in an offscreen buffer known as the frame buffer, which ultimately contains
the final image once rendering is complete. Each draw call will have associated
with it a vertex shader and a fragment shader. The vertex shader transforms the
individual vertices before rasterization, including projecting them to the image
plane, while the fragment shader determines the color that ultimately ends up in
the frame buffer. Three consecutive indices make up a triangle by addressing into
the list of vertices in order to facilitate reuse when vertices are shared by multiple
triangles. Each vertex describes the position of the vertex as well as other possible
attributes that are needed during vertex shading, e.g., visual attributes to be passed
on to the fragment shader when computing the color. Examples of vertex attributes
are surface normals and per-vertex color information.

Vertex Transform and Clipping

The first step in processing a draw call is to run the vertex shader on all its ver-
tices. This shader will transform vertices from object space, in which the vertices
are defined, to the image plane. A three-dimensional camera with perspective rep-
resents a non-affine transform in three-dimensional space. In order to express a
projection using a linear transform, the transformation pipeline is based on four-
dimensional homogeneous coordinates that introduces an additional component,
w. In this homogeneous coordinate space, a point scaled by a constant represents
the same point. This system allows a projective transform to be defined as a 4×4
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Figure 6: A triangle rasterized using 1 point sample per pixel. Hierarchical ras-
terization tests each 2×2 pixel quad and rejects those trivially outside. Otherwise,
inside and possibly depth tests are performed for each sample. Shading is usually
performed at the center of the pixel for quads where at least one sample overlaps
the triangle. In practice, each quad may be bigger than 2×2 pixels.

matrix where the projected position is given by scaling the vector by 1/w. The
camera frustum defines a near and far plane along its z-component and the region
between them are mapped into a box-shaped three-dimensional space, sometimes
called normalized device coordinates, through the division by w (see Figure 5).
Before division by w, care must be taken so that only triangle regions that really
should be visible are projected to the screen. This intermediate space is known
as clip space. Part of that condition requires that visible regions should be inside
the near and far plane of the camera frustum. To ensure that this is the case,
triangles beyond those planes will be discarded, and triangles straddling them will
be clipped. In general, triangles are clipped so that all points fulfill 0 < z < w,w >
0, when normalized device coordinates have a z range of [0,1]. Triangles that lie
between the near and far planes can also stretch far outside the visible camera
frustum in the x- and y-directions. Generally, a rasterizer can efficiently skip parts
of triangles that are outside the screen, but there is usually a fixed precision that the
rasterizer supports. If triangles extend too far outside the frustum, this precision
may overflow. In order to handle this, additional clip planes are added outside the
frustum to guarantee that the rasterization precision is enough.

Rasterization

After clipping and projecting triangles, the next task is determining which pixels
each triangle overlaps. The x and y coordinates in normalized device coordinates
can be directly mapped to image pixels. The problem thus becomes determining
overlap between pixels and two-dimensional triangles. There are multiple ways to
do this.
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The conventional method of rasterization involves taking point samples to approx-
imate visibility over a pixel. The simplest method simply takes a single sample at
the center of a pixel. While being very fast, this may lead to low quality images
with aliasing artifacts. Here we assume this method is being used. More elaborate
methods will be discussed in the anti-aliasing section below.
One approach to determine visibility over pixels involves rendering scan lines from
the leftmost edge to the rightmost edge, one row at a time. A more parallel al-
gorithm, usually employed by graphics hardware, involves computing half space
equations for each edge of the triangle that together determine if a point sample
(usually the pixel center) is overlapped [32]. By extending the half space equa-
tions, whole regions of pixels can be tested at a time [2], which forms the basis for
hierarchical rasterization. The process of hierarchical rasterization is illustrated in
Figure 6.
A modern rasterization pipeline rasterizes a potentially visible triangle into one
or more quad fragments. Fragments may then be depth tested, as described be-
low, and, if they pass the depth test, proceed to be shaded by a fragment shader.
Finally, visible fragments are composited to the frame buffer using a blend opera-
tion. These steps are described in detail below.

Hidden Surface Removal / Depth Testing

In cases where multiple triangles cover the same pixel, a way is needed to deter-
mine which triangle is in front of the others. One way, known as the painter’s
algorithm, is to sort the triangles so that the closest triangle is drawn last, and thus
overwrites the previous triangles rendered before it. Sometimes, however, a sorted
order cannot be established for a set of triangles, such as three mutually overlap-
ping triangles or two intersecting triangles. In this case, triangles must be clipped
against each other, usually by building a binary space partitioning (BSP) tree. BSP
trees were common in early real-time graphics applications and could be generated
offline for static geometry.
A conceptually simpler approach, known as z-buffering [7, 34], involves storing
the closest depth value for each point sample and discarding samples that are far-
ther away. The depth value for a sample can be interpolated from the z-values of
the individual vertices that make up a triangle in normalized device coordinates.
The depth test often allows for efficient culling of fragments before fragment shad-
ing. At the time when the algorithm was invented, it was considered expensive be-
cause of the memory requirements [7]. Since memory is inexpensive today, it has
become the de facto standard for resolving depth order between opaque fragments.

Fragment Shading

Fragment shading is often one of the most expensive operations in rendering and
it determines the color of fragments that will be composited to the frame buffer. A
fragment shader program computes everything related to a fragment’s appearance,
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which usually involves the geometrical properties such as normal and tangent,
surface properties such as roughness and color, and for each light source, light
properties such as position, fall-off, and shadow map. More generally, fragment
shading involves interpolating visual attributes from vertices, looking up filtered
data in textures, and performing computations to arrive at a final color.
Two-dimensional textures are rectangular grids of pixels, much like the image that
we are trying to generate, that can be mapped onto triangles to add visual richness.
These textures can be authored offline or be generated by a previous rendering
pass. In the context of textures, pixels are usually referred to as texels. A two-
dimensional texture lookup in a shader passes a set of texture coordinates to the
texture unit and receives a filtered sample. Different filtering modes exists. The
simplest filtering mode simply returns the color of the texel closest to the coordi-
nate. This can, however, lead to a pixelated appearance if a texture is magnified.
Bilinear filtering will, on the other hand, look up the four texels around the co-
ordinate, and then perform linear interpolation between them, which leads to a
smoother appearance.
Both of these methods will, however, perform poorly when an image is reduced
in size. During minification, the sampling frequency of the texture gets too low,
typically resulting in aliasing, and flickering during movement. One way of re-
ducing the issue is to take multiple texture samples over the footprint of an image
pixel. This is, however, a very expensive way to solve the problem as a pixel can
potentially cover many texels in a texture. The typical way to solve the problem in
real-time graphics is to provide a set of pre-filtered versions of the texture such that
each additional image contains the previous image filtered to half the resolution.
A texture lookup may then select a texture in the set with an appropriate sam-
pling frequency. This technique is known as mip-mapping and was introduced by
Williams in 1983 [39]. A sharp transition between mip-map levels can be avoided
by performing two lookups at different levels and then interpolate between their
results.
In order to determine a suitable mip-map level, the footprint of the pixel in texture
space is needed. This footprint depends on the rate of change of the coordinates
used to look up in the texture with respect to the pixel position on the image being
rendered. As such, if the texture coordinates are given by (u,v), and the pixel
position is described by (x,y), the quantities that are needed are du

dx , du
dy , dv

dx , and
dv
dy . It is possible to compute these derivatives analytically for attributes that vary
over a triangle, but if the result from one texture lookup is used to offset the lookup
of another texture, analytic derivatives get problematic. This is one of the reasons
that fragment shading typically is performed in quads. Quads of four or more
pixels allow the shader to efficiently map shading work to a SIMD machine, which
includes both CPUs and GPUs as described in Section 3. The additional benefit of
quad shading is that derivates are very easy to approximate. If the SIMD machine
provides some simple horizontal operations over its SIMD lanes, the derivatives
of a quantity can be approximated using a simple finite difference. It is, however,
worth noting that diverging control flow among SIMD lanes may introduce severe
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errors in the derivative computations as some lanes may be masked out. While
convenient, quad fragment shading can lead to problems when triangles become
very small. If a single triangle only covers one or two pixels on average, the
amount of unnecessary shading gets expensive and increases as larger shading
quads are used. This problem and possible solutions have been explored in recent
work [8, 12].
A problem with isotropic mip-mapping is the fact that the pixel footprint may not
be a square in texture space. Thus, the user is forced to choose between over-
blurring and aliasing. Methods to address these issues involves anisotropic texture
filtering, where one approach is to take multiple texture samples at a suitable level
in the mip hierarchy.
In addition to two-dimensional textures, shaders often support one- and three-
dimensional textures as well. The above filtering methods typically apply to them
in an analogous way.

Blending

Once the color of a fragment has been determined through shading, multiple frag-
ments may overlap the same pixel and must be composited into a final image.
Often fragments are opaque, and in this case, the colors of the front-most sam-
ples determine the final color of the image pixel. However, if multiple fragments
overlap and they are transparent, their values must be combined according to their
properties. This is usually accomplished by conceptually writing a fragment at a
time to the frame buffer, while blending the result with the previous value already
in the frame buffer. Graphics hardware typically include fixed function hardware
for performing blending between fragments and the content of the frame buffer.
How this hardware works ties into how ordering is performed between fragments.
Often the result of blending, and even depth testing, depends on the order in which
fragments are processed. In order to guarantee deterministic behavior for render-
ing, fragments from triangles must generally be processed in the order they were
submitted to the rasterization pipeline. A parallel rasterization pipeline can be
characterized depending on where ordering is enforced [30]. Possibilities include
sort-first, sort-middle, and sort-last. The systems most actively in use today are
sort-middle and sort-last architectures.
In sort-middle, order is enforced after geometry processing but before rasteriza-
tion and fragment processing. This is accomplished by dividing the screen into
multiple bins (also called tiles) and distributing triangles to bins they overlap af-
ter projection. Each bin can then be rendered in parallel. Such architectures are
currently common in mobile devices and other low power systems. Advantages
include that all blending and depth tests can be performed in fast on-chip memory,
alleviating the need to go out to external memory when accessing the depth and
frame buffers. Downsides include bin spread when a triangle overlaps multiple
bins. The buffer for each bin may also overflow, which makes it debatable whether
sort-middle architectures can be efficient when geometry is highly detailed, such as
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Figure 7: A triangle rasterized using 4 visibility and one shading sample per
pixel (4× MSAA). Four inside and depth tests are here performed per pixel, and
the covered samples are used to blend shading between the background and the
triangle. While not completely eliminated, aliasing along the triangle edges have
noticeably improved compared to Figure 6.

when making heavy use of tessellation. When these architectures perform blend-
ing, a single graphics core is typically working on a tile. It is thus easy to perform
blending in software, and these platforms often provide support for programmable
blending for exactly this reason.
Sort-last architectures are usually found in high-end graphics processors. Here,
everything is completely parallel up to fragment blending. Fragments are there-
fore generated and shaded out of order. At the very end of the pipeline, large
reorder queues are used to ensure that blending happens in order. Blending is here
performed using fixed function hardware and is thus limited to a set of predefined
blend operations.

Anti-Aliasing

The simplest form of rasterization checks if the center of a pixel is contained within
a triangle. This can lead to aliasing artifacts along edges of triangles and have
been mentioned as one of the biggest problems in real-time graphics [5]. Higher
quality rasterization exists that take the fractional coverage of the triangle into ac-
count. The simplest form of anti-aliasing is super-sampling, where multiple sam-
ples are taken inside each pixel. Each sample can hit different triangles and, when
weighted together, they provide a better approximation of what the entire pixel
covers. Super-sampling is, however, prohibitively expensive since it requires not
only more visibility tests within a pixel and additional depth buffer storage for or-
dering, it will also shade each sample using the fragment shader. The most promi-
nent approach in real-time rendering is called multi-sample anti-aliasing (MSAA).
MSAA is an attempt to reduce the cost of anti-aliasing, compared to full super-
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sampling. This is accomplished by decoupling visibility samples from shading
samples. While multiple visibility samples and depth tests are performed, only a
single shading sample is taken for each triangle overlapping a pixel. That is, if all
visibility samples in a pixel overlap a single triangle, a single shading sample will
be taken. This is likely the most common case for scenes with large to moderately
sized triangles. Along edges and other aliased parts, multiple shading samples will
be weighted together. An illustration of rasterization with MSAA is shown in Fig-
ure 7. Recently, MSAA was extended to support shading less than once per pixel,
which can be beneficial for high density displays [37].
Other, more elaborate, ways to solve the aliasing problem include trying to ana-
lytically solve for coverage instead of taking multiple samples. In Paper II, we
analytically solve for coverage over spatial line samples in order to render thin
curves in high quality. Our software GPU implementation was comparable in
quality and speed to a hardware accelerated pipeline with tessellation and fixed
function rasterization with MSAA.
In Paper IV, our A4 algorithm attempts to reduce the overhead of MSAA by only
focusing on pixels that are likely aliased. While the GPU renders a scene using a
single sample per pixel, the CPU detects silhouette edges and proceeds to render
them in high quality in parallel with the GPU. Shared memory allowed for data
generated by the GPU to be easily accessed by the CPU during rendering.

5.2 Higher-Dimensional Rasterization

In two-dimensional rasterization, visibility is determined by sampling over the im-
age x and y coordinates. If, like in the real world, the camera captures light over a
finite time interval, objects can move as light reaches the image sensor. This time
interval is usually referred to as exposure time or shutter interval. With this setup,
fast moving objects will appear blurred as they move across pixels in the image. It
does, however, introduce complexity to our rendering model. First, an additional
dimension, time t, is added. This means that we now have a three-dimensional
sampling problem over x, y, and t. The second complexity is how motion of ob-
jects are modelled. Here, multiple options exist. The simplest method is to con-
sider linear vertex motion, which means that all vertices store two positions: one
position q at the start of the shutter interval and one at the end of it, r. Positions
of a vertex at time t is then given by the linear combination p(t) = (1− t)q+ tr,
when 0 ≤ t ≤ 1. This approach is illustrated in Figure 8. By looking carefully
at the figure, a problem with linear motion becomes apparent. The triangle may
appear to shrink during motion, even though it has the same size at the start and
the end of the shutter interval. The problem generally gets worse as the amount of
motion increases and it is particularly visible when objects are rotated by large an-
gles. In this case, entire objects composed of many triangles can appear to shrink.
Ways to remedy these problems include approximating motion using higher order
polynomials [17]. In this work, however, the focus has been on linear motion with
the assumption that the amount of motion is relatively small, or that large motion
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Figure 8: Triangle with per-vertex linear motion. Two positions, q and r, are
defined per vertex and they are linearly interpolated to get the triangle at a specific
time. The result of three-dimensional (x,y, t) rasterization of the triangle (with
black color) is shown at the bottom. Note that the triangle appears smaller at
t = 0.5. This can be seen as a limitation of this method.

has been refined using piecewise linear motion.
Rasterization can also be extended to even more dimensions. In order to model
how depth of field works in a camera, the area of the lens must be included in
the sampling space. A common model is to parameterize the lens using u and v.
Together with time, the resulting problem is referred to as five-dimensional raster-
ization as the sampling space now has five dimensions, namely, x,y,u,v, t. While
five-dimensional rasterization is a very interesting research topic, it is outside the
scope of this thesis. The work related to ray tracing is, however, directly applicable
to these higher-dimensional sampling problems (see Section 5.3 for details).
Specific methods for performing three-dimensional rasterization is outlined below,
including a brief introduction to my work in semi-analytical three-dimensional
rasterization.

Stochastic Point Sampling

Five-dimensional rasterization can be realized by randomizing point samples over
the five-dimensional domain. In 1987, Cook et al. [9] introduced the REYES ren-
dering system using rasterization of motion blur and depth of field with stochastic
point sampling. Akenine-Möller et al. [4] introduced the concept of stochastic
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rasterization using time continuous triangles. Other work focus on small trian-
gles (micro-polygons) with motion blur and depth of field [13]. Ragan-Kelley et
al. [33] present a method to decouple shading from visibility samples with motion
blur and depth of field, which is similar to what multi-sample anti-aliasing does
for xy-samples.
Stochastic three-dimensional rasterization using time-continuous triangles was us-
ed as competing algorithm in Paper I. In this paper, we also introduced a simple
shading cache to decouple point sampled shading from visibility across all trian-
gles in the scene. It tried to achieve a uniform number of shading samples per
image pixel by determining required resolution using screen space differentials of
mapping coordinates. Shading storage of appropriate resolution was lazily allo-
cated during shading.

Analytical Methods

Gribel et al. [16] used spatial point samples and analytical visibility in time. A list
of time intervals with depth and color information was generated for each spatial
point sample and was resolved analytically to get the final color. This resulted in
noise-free motion blur, but aliased edges on static geometry. Earlier, Jones and
Perry used spatial line samples to get high-quality anti-aliasing for static geome-
try [24].
In Paper I, visibility was analytical over spatial line samples and in time, thus
combining the ideas of Gribel et al. with the work of Jones and Perry. Moving
triangles intersecting line sample planes traced three-dimensional surfaces in ltz-
space, where l is the dimension along the line. These surfaces were approximated
using triangles and visibility was resolved to get the front-most triangles over space
and time. Each line thus essentially became a two-dimensional rasterization prob-
lem with an orthographic projection. To get analytical visibility in ltz-space, we
used a BSP-tree to get depth sorted polygons and applied a clipping algorithm
introduced by Catmull in 1978 [6]. Here, each edge clips the existing polygons
into two groups recursively in order to compute the exact polygon coverage. The
term “semi-analytical visibility” used in the paper comes from two approxima-
tions. First, the intersection surfaces between triangles and a line sample plane are
tessellated. Second, a full analytical solution over the xy-plane was not achieved
since analytical visibility was restricted to lines. Still, practically noise- and alias-
free images were achieved with favorable performance.
Additional work on line sampled visibility include the work on depth of field by
Tzeng et al. [36] and the analysis of line sample patterns by Sun et al. [35].

5.3 Ray Tracing

Ray tracing is typically more flexible than rasterization. Instead of projecting ge-
ometry to the screen to reduce the dimensionality of the problem, rays are traced
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and tested against the scene in three dimensions. Each ray can typically be traced
independently of others and may depend on the result of previously traced rays. It
is thus quite easy to arrive at results similar to full five-dimensional rasterization
by generating rays from the camera using different (x,y,u,v, t)-samples. It is also
possible to implement adaptive sampling schemes that emit more rays in difficult
regions of the image. The most attractive feature of ray tracing is, however, that
it can accomplish much more than primary visibility from the camera. Once a
camera ray hits a surface, the incoming radiance can be estimated at that point by
sampling its surrounding. This sampling is typically performed by sending one or
more rays. The process can happen recursively and allows the renderer to arrive at
a global illumination solution where, e.g., diffuse interreflections and shadows are
accurately captured.
There exists multiple algorithms for computing global illumination using ray trac-
ing. Path tracing [25] is one of the simpler ones that lets each initial ray from the
camera continue its path in the scene randomly until a termination criteria is met.
This method will, however, have trouble capturing pure specular light paths from
small light sources, such as caustics from a point light, because a ray has very low
(or even zero) probability to sample a small point light directly. Bidirectional path
tracing [26] allows light paths to be sent from both the camera and light sources in
order to better handle difficult light conditions, but still cannot handle pure spec-
ular light paths. Algorithms such as photon mapping [23] and progressive photon
mapping [18] handle this case by shooting rays from light sources in one pass
and then issuing an extra pass to gather them from the camera. Recent work in
the field include ways to combine features of both bidirectional path tracing and
photon mapping into more robust methods [14, 19].
While the focus of this thesis is not on the topic of light transport algorithms, what
is common between all these algorithms is that rays are generated and traced. Test-
ing a ray against all primitives in a scene is typically prohibitively expensive since
a scene can contain many millions of triangles. Fortunately, the problem can be
made manageable using a spatial data structure to speed up the query. Using a spa-
tial data structure, it is possible to quickly prune parts of the scene not overlapping
a ray in a hierarchical manner. The hierarchical pruning is commonly referred to
as traversal. While many different spatial data structures exist [10], the bounding
volume hierarchy (BVH) is currently very popular due to features such as ease
of implementation, predictable memory requirements, and high performance. In
this thesis, the contributions to ray tracing focus on algorithms for traversing a
BVH for efficient ray tracing. In the following section, a brief introduction to the
BVH and its construction is given, followed by an overview of our novel traversal
algorithms.

BVH Construction and Traversal

A BVH arranges geometry in a tree structure where each leaf node contains the
primitives (e.g., triangles) to be rendered. Each internal node in the tree stores a
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bounding volume that encloses all geometry in its subtree. It is thus possible to
skip an entire subtree if a ray does not intersect the bounding volume. There are
multiple choices for bounding volumes, such as spheres, axis-aligned bounding
boxes, oriented bounding boxes, and even general convex polyhedra. More com-
plex bounding volumes are generally tighter, but also require more expensive com-
putations when determining overlap with a ray. A good tradeoff between culling
efficiency and computational cost is the axis-aligned bounding box, and as such,
it is currently the most popular bounding volume. Each internal node often has
two children. However, a so called multi-BVH [11], where each internal node has
more than two children (such as 4 or 8), can be useful to support SIMD execution
when traversing a single ray against a BVH. In this case, all bounding volumes of
the children can be tested simultaneously using vector instructions.
A BVH is generally constructed by optimizing a heuristic cost metric, such as
the surface area of all bounding volumes [15, 28]. The algorithm can proceed
in a bottom-up, top-down, or insertion-based manner. Bottom-up construction
starts with all nodes as leaf nodes and tries to merge the best pairs. Top-down
builders partitions all primitives recursively into subtrees. Insertion-based methods
starts with an empty tree and iteratively adds the best node to the tree using some
heuristic.
Independent of how a BVH is built, traversal works in the same way. In conven-
tional ray traversal, a single ray is traversed against a BVH at a time and a stack
is used to keep track of nodes that are still to be traversed. When a binary BVH is
traversed, and a ray intersects both children of a node, a choice needs to be made
which node to start traversing, and which node to postpone traversal of by pushing
that node to the traversal stack. This choice can have great impact on the resulting
rendering performance. If the closest hit is needed, such as for general light paths,
it is natural to start with the closest node first. In case a hit is registered in the closer
node, the farther node can often be culled from processing. For shadow rays, when
a simple boolean indicating whether a hit occurred or not is required, an efficient
heuristic involves the probability for a ray to be occluded inside a node [22]. In
Paper III, a method to perform single ray traversal of a binary tree without a stack
was introduced. It was found that the traversal state could be stored in two integers
with only one bit of storage per level of the tree. In contrast to previous stackless
traversal approaches, our method is able to support arbitrary traversal order.
In Paper V, we introduced an efficient way to traverse large packets of rays against
a BVH that allowed wide SIMD units to be efficiently utilized. The goal was to
provide enough parallel work, even for incoherent rays. As such, each ray was
allowed to choose its optimal traversal order. Rays taking the same path in the
tree was then grouped and executed in a streaming manner. In contrast to previous
approaches leveraging large ray packets, our method allowed for dynamic traversal
order and high efficiency for highly incoherent rays.
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6 Conclusions and Future Work

The area of visibility queries is certainly not fully explored. In this thesis, differ-
ent techniques targeting various visibility problems have been proposed. Motion
blurred triangles were rendered on a multi-core CPU with semi-analytical cover-
age over time and spatial line samples. Thin curves were rasterized in high quality
on a graphics processor using spatial line samples and curve-specific intersection
tests. For point-sampled two-dimensional rasterization, MSAA computations were
offloaded to idle CPU cores in a shared memory architecture. The contributions
to ray tracing involve a flexible BVH traversal algorithm that runs without a stack,
and an efficient algorithm for traversing large streams of rays against a BVH while
making use of wide SIMD.
In the future, it will be interesting to see if analytical solutions will get more trac-
tion. A limitation of analytical solutions is the difficulty to generalize the rendering
algorithm to incorporate more dimensions, without reworking the entire algorithm.
Algorithms based on stochastic point-sampling can often use more samples that
are distributed in a higher-dimensional space. It might be interesting to investigate
hybrid algorithms that combine stochastic sampling with analytical samples. For
analytic solutions, level of detail becomes very important. If objects are too finely
tessellated, an analytical solution may process a lot of visibility information in a
single image pixel. Stochastic methods have the advantage that they can easily
discard triangles that lie “between samples”. To this end, compression schemes
that reduce the data have been proposed [16, 36], and it will be interesting to see
what happens in this space.
For ray tracing, ways to generalize ray traversal to wider SIMD is certainly inter-
esting, and I believe that our dynamic ray stream traversal algorithm is a step in that
direction. Shading efficiency is still an open problem in ray tracing, and shading
entire streams of rays using SIMD execution would be an interesting avenue for
future work. If ray streams are to be adopted in production, scheduling of streams
must be transparent to the shading system. It would be very interesting to explore
systems where shaders can send multiple rays recursively, and even wait for the
result of ray queries to perform adaptive sampling, while still batching up rays in
streams behind the scenes. In shared memory architectures, ray streams could be
offloaded to the GPU to improve performance. Since shared memory architectures
have a shared memory subsystem, it may be beneficial to reduce its strain by using
a stackless traversal algorithm, thus avoiding the storage and bandwidth associated
with storing a stack.
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ABSTRACT

We present a novel visibility algorithm for rendering motion blur
with per-pixel anti-aliasing. Our algorithm uses a number of line sam-
ples over a rectangular group of pixels, and together with the time di-
mension, a two-dimensional spatio-temporal visibility problem needs
to be solved per line sample. In a coarse culling step, our algorithm
first uses a bounding volume hierarchy to rapidly remove geometry
that does not overlap with the current line sample. For the remaining
triangles, we approximate each triangle’s depth function, along the
line and along the time dimension, with a number of patch triangles.
We resolve for the final color using an analytical visibility algorithm
with depth sorting, simple occlusion culling, and clipping. Shading
is decoupled from visibility, and we use a shading cache for efficient
reuse of shaded values. In our results, we show practically noise-free
renderings of motion blur with high-quality spatial anti-aliasing and
with competitive rendering times. We also demonstrate that our al-
gorithm, with some adjustments, can be used to accurately compute
motion blurred ambient occlusion.

ACM Transactions on Graphics, 30(4):54:1–54:12, 2011.





1. INTRODUCTION

49 point samples our 256 point samples

Figure 1: A chess scene with motion blur rendered with stochastic rasterization
with 49 point samples, our semi-analytical visibility algorithm in the temporal do-
main with four line samples in the spatial domain, and finally with stochastic ras-
terization with 256 point samples. Our work focuses on spatio-temporal visibility,
and for 49 samples it takes 3.8 seconds to compute visibility and simple shading
(ambient occlusion not included) at 1024× 768 pixels. With these settings, our
algorithm computes the middle image in 3.6 seconds. Note that the image with 49
samples is rather noisy, and even with 256 samples, there is still some noise, while
the motion in our image is essentially free of noise. Furthermore, the quality of
the spatial anti-aliasing (look at the static edge at the top) in our image closely
matches that of 256 point samples.

1 Introduction

Visibility computations is a fundamental core research topic in computer graphics,
and it has been active and vivid for more than 45 years. Algorithms for visibil-
ity play a central role in essentially any type of rendering including, for example,
rasterization, ray tracing, two-dimensional graphics, font rendering, shadow gen-
eration, global illumination, and volume visualization.
During the 1970’s and 1980’s, research on analytical visibility for spatial anti-
aliasing [5, 30] and motion blur [20, 6, 13] was rather popular. However, after
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Cook et al.’s stochastic point sampling approaches were presented [8, 7], such
techniques pretty much fell into oblivion. Instead, visibility was either solved
using a depth buffer [4] or using ray tracing [32], and most often with some type
of point sampling.
An interesting observation by the computer science community is that the gap be-
tween available compute power and memory bandwidth is large, and continues
to grow rapidly [18, 25]. In addition, the power consumption by a memory ac-
cess and a floating-point operation differs by at least an order of a magnitude [9].
Hence, common advice today is to refactor an algorithm so that it instead uses
more computations and fewer memory accesses. With this development of com-
puter architecture, one logical consequence is that it makes more sense to (again)
explore analytical visibility computations, which are computationally more expen-
sive than point sampling techniques.
To that end, we present a new visibility engine which is loosely based on previous
work on analytical visibility for spatial anti-aliasing [5] and on analytical motion
blur with spatial point sampling [15]. Our goal is to generate high-quality images
with near-perfect anti-aliasing in both the spatial domain and in the temporal do-
main. To reduce the dimensionality of the problem, we use line samples [19] in
screen space, and solve for analytical visibility along such lines and over time. We
present a novel visibility engine for this, and show that our algorithm can rapidly
generate practically noise-free images on many-core computers. We also show
that a variant of our technique can render ambient occlusion with motion blur.

2 Previous Work

There is a wealth of research in the visibility field, and in this section, we review
only the research that is most relevant to our work. This means that we avoid dis-
cussing approaches based on point sampling visibility, such as multi-dimensional
adaptive sampling [16], for example.
Cook et al. [7] presented the REYES rendering system using rasterization of mo-
tion blur and depth of field with stochastic point sampling [8]. Lately, much effort
has been spent on stochastic rasterization of (micro-)polygons for motion blur and
depth of field [1, 10, 23]. Ragan-Kelley et al. present a hardware architecture for
rasterizing motion blur and depth of field [27]. By decoupling shading from visi-
bility, they essentially extend the concept of multi-sample anti-aliasing to motion
blur and depth of field. While REYES’ target was offline rendering, this later line
of research is targeting interactive or even real-time graphics. In our current work,
point sampling is only used for shading.
Catmull [5] presented a visibility algorithm that processes the polygons from top
to bottom, and from left to right in order to exploit coherence of the scene. A per-
pixel clipping algorithm is applied where each edge clips the existing polygons into
two groups recursively in order to compute the exact polygon coverage, with ex-
cellent spatial anti-aliasing as a result. The algorithm by Weiler and Atherton [30]
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is rather similar, but also describes how to render shadows and transclucent geom-
etry. Korein and Badler [20] presented an analytical visibility algorithm for motion
blur, where each spatial point sample computed analytical coverage of disks over
time. After all geometry had been processed, a hidden surface removal algorithm
was applied to resolve for final sample color. The details of how this technique can
be extended to linearly moving triangles are given by Gribel et al. [15]. Korein and
Badler were also the first to present accumulation buffering, which can be used for
all sorts of point sampling on a per-frame basis. Accumulation buffering has been
used for spatial anti-aliasing, depth of field, and motion blur [17, 31].
Sung et al. [28] decouple shading from visibility on a per-object basis, somewhat
similar to Burns et al. [3], and use point sampling for spatial antialiasing, with
analytical visibility over time per point sample [20]. In our work, we also use
decoupled shading from visibility, and fall back on point sampling of shading,
with efficient reuse using a cache [27, 3].
Jones and Perry [19] presented a “near-analytic” screen-space anti-aliasing tech-
nique that uses line samples to reduce dimensionality of the problem. All poly-
gons in the scene are projected onto these lines, and visibility resolved along the
line with linear depth per polygon. They use horizontal and vertical line samples
through the center of the pixels, and blend the results of these according to the
edges inside the pixel. A similar line of work was presented by Gribel et al. [15],
where point sampling was used in screen space, and “line samples” were used to
analytically compute motion blur. They also presented a lossy compression al-
gorithm in order to handle a large number of triangles per pixel. In our work,
we combine the work of Jones and Perry, Gribel et al., and Catmull to obtain an
algorithm for high-quality spatial anti-aliasing with motion blur.
Recently, Manson and Schaefer introduced wavelet rasterization [22], which can
analytically rasterize polygons and Bézier curves in two dimensions, and also
three-dimensional meshes into voxel grids. They rasterize the primitives into a
hierarchical Haar wavelet tree representation and show that it is robust to degen-
erate input. This is really interesting work that could potentially be applied to
motion blur as well. Finally, we refer to the survey by Sutherland et al. [29] for
an overview of ten visibility algorithms pre-dating the depth buffer [4], and to the
overview by Sung et al. [28] for spatio-temporal anti-aliasing.

3 Algorithm Overview

In this section, we present an overview of our algorithm for generating images
with high-quality spatio-temporal anti-aliasing. In addition, we will first explain
some key concepts around our sampling strategy using analytical visibility compu-
tations. We assume that the geometry consists of triangles, and that each triangle
vertex can move linearly in world space over time, t ∈ [0,1].
Instead of using multiple point samples over a pixel for spatial anti-aliasing, we
choose to use a set of line samples [19]. We define a line sample as an arbitrary
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Figure 2: At the top, a configuration of three triangles (in screen space) inter-
secting a line sample (dotted line) is shown, and just below, the depth functions,
d, for the three triangles on the line sample are illustrated. To the right, we have
resolved for the closest depth segment over the parameter, l.

straight line over one or more pixels, and we will compute visibility analytically
over such lines. Over each line sample, Jones and Perry determine which triangles
overlap with the line sample, and compute the depth, d, at the end points of each
visibile segment. The depth, d = z/w, is linear in screen space [2], which means
that the depth at the end points are sufficient to store. See Figure 2 for an example.

Geometrically, a line sample can be thought of as a three-dimensional triangle
with one vertex at the camera position, and going through the end points of the
line sample in world space, and extending infinitely. Occasionally, we will refer
to the plane of this triangle as the line sample plane. A line sample is illustrated
as a blue line to the left in Figure 3. We parameterize along each line using a
parameter, l ∈ [0,1]. A core difference compared to other spatio-temporal visibility
algorithms is that we resolve visibility in the lt-space, where t ∈ [0,1] represents
the time dimension, and l ∈ [0,1] is the parameter along a line sample. For a static
triangle, the intersection between the triangle and the line sample plane will be
a single line,1 which is the same for all values of t. This is illustrated in the lt-
space to the left in Figure 3. When a triangle starts to move, however, the moving
triangle’s line of intersection will change over time, and will trace out a different
region in the lt-space. An example is shown to the right in Figure 3.
The motivation for using line samples is manifold. First, a line sample can be
thought of as infinitely many point samples on the line, and therefore has po-
tential for fast convergence. Second, as mentioned in the introduction, trading
computations for bandwidth is a general advice on today’s computing architec-
tures. Finally, using line samples instead of performing a full analytical resolve in
the xyt-space reduces the problem from three to two dimensions which makes it
more tractable. In practice, we use sampling patterns so that 2–4 line samples will

1Except when the triangle lies in the plane, in which case we will cull it from further processing.
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Figure 3: Top: a static triangle rendered over a 12× 7 pixel grid. We show a
single line sample (blue line) extending through a row of pixels. The line sample
plane is defined by the camera position and the line sample. The lt-space shows
the triangle coverage over the line sample and over time, which in this case is a
rectangle covering the entire time interval. Bottom: a triangle being translated
over t ∈ [0,1]. The triangle is visualized as green at t = 0, red at t = 1, and each
vertex moves linearly in between. As can be seen, when the triangle moves, it
traces out a different region in the lt-space. Each point, (l, t), will also have a
depth, d, but that is not visualized here—see Section 4.

intersect each pixel, and these patterns are discussed in Section 7.
On a high level, our entire algorithm works as follows. First, a bounding volume
hierarchy (BHV) is built over all geometry in the scene. A small rectangular re-
gion, called a tile, of the entire image is rendered at a time. This allows for parallel
execution on many threads since a core can render to a tile independently of oth-
ers. For each tile, the BVH is traversed so that only geometry that overlaps with
the tile is processed. In the next step, each line sample inside the tile is processed
one at a time. Every triangle that intersects a line sample is represented as a depth
patch in ltd-space, where each point, (l, t), has a depth, d. These depth patches can
form complex surfaces, and in Section 4 and in Appendix A, we present how we
construct these patches and approximate them with, what we call, patch triangles
in the ltd-space. We call our algorithm semi-analytical, since most computations
are analytical, except for the approximation of the depth patches.
The patch triangles approximating a depth patch are sent to our visibility engine
(Section 5), which resolves for depth visibility over the lt-space. This part of
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Figure 4: Left: illustration of a moving triangle intersecting the line sample plane
(gray). The triangles at time t = 0 and t = 1 have black outlines, and the motion
vectors are purple. The feature points are marked with red crosses, and are all the
intersections between the line sample plane and the triangle edges and motion vec-
tors. Middle-left: visualization of the bilinear patches that are traced out over time
with linear motion per vertex. Middle-right: the true depth patch in ltd-space. We
generated this image using point sampling. Right: for this depth patch, a possible
approximation consists of the three green triangles, called patch triangles.

our algorithm was inspired by Catmull’s analytical screen-space anti-aliasing al-
gorithm [5]. When all triangles have been processed, final visibility is resolved,
and for each pixel, the contribution of the line samples overlapping the pixel is
accumulated to that pixel’s color. In Section 6, we also show that a variation of our
algorithm can be used to compute motion blurred ambient occlusion using “line
samples” on the hemi-sphere.

4 Depth Patches

As illustrated in Figure 3, each moving triangle intersecting a line sample will
give rise to some region in lt-space. In addition, each point, (l, t), will also have
a depth, d. We call these surfaces in ltd-space depth patches. Figure 4 shows that
these depth patches can form rather complex surfaces, and it is quite obvious that
there is little hope in finding an analytical representation of these that also is fast to
process. Therefore, our approach is to approximate the exact depth patches with a
number of triangles, here called patch triangles, in ltd-space. We use the following
notation for a triangle in world space. A linearly moving vertex is denoted p(t) =
(1− t)q+ tr, and a triangle is simply three vertices, p0p1p2. Hence, the triangle
at t = 0 is q0q1q2, and the triangle at t = 1 is r0r1r2. The term motion vector is
used for ri−qi, and triangle edge for any triangle edge at t = 0 or t = 1. Next, we
describe how our patch triangles are constructed.
Note that the entire surface of a moving triangle consists of the triangles at t = 0
and t = 1, and three bilinear patches, each generated by a moving edge. The inter-
section between such a moving triangle and a line sample plane will trace out one
or more connected regions in lt-space. The boundary of such a region is called
a patch outline, and consists of connected straight lines and curves. This is il-
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lustrated in Figure 4. The straight lines originate from the intersections between
the line sample plane and the triangles at t = 0 & t = 1, and the curved segments
will be generated by the intersections between moving edges and the plane. Next,
we argue that the points in lt-space, where lines and/or curved segments are con-
nected, are easily generated. We call them feature points.
First, we observe that the triangles at t = 0 and t = 1 will intersect the line sample
plane in lines in the lt-space, and hence the intersections between the plane and
the triangle edges are feature points. Second, we note that a moving edge traces
out a bilinear patch, which is a ruled surface. This means that the intersection
curve(s)2 between a bilinear patch and a plane will be curves that start and end in
the intersection points between the plane and the four edges of the bilinear patch.
Hence, these intersection points are also feature points. Therefore, we define the
feature points as all the intersections between the line sample plane and the triangle
edges & the motion vectors. The triangles at t = 0 and t = 1 can each give rise
to at most two feature points. In addition, each motion vector can give rise to one
feature point. In total, this sums to at most 2+2+3 = 7 feature points per moving
triangle.
These feature points are marked with red crosses to the left in Figure 4, and at
each feature point, it is straightforward to compute its depth, d. Depending on the
configuration of these feature points, they need to be connected in a certain order.
This is an important implementation detail, and so in Appendix A, we describe
how the feature points are used to tessellate the true depth patch into a number
of patch triangles. In that appendix, we also describe how the tessellation can
be adapted to rapid change in the depth patch function. For the next section, we
assume that our visibility engine receives a stream of patch triangles approximating
the true depth patch in ltd-space for each moving triangle.

5 Visibility Engine

The purpose of our visibility engine is to analytically resolve visibility for a spatial
line sample and ultimately compute the color contribution from that line sample
to each pixel. As mentioned in Section 3, we process a rectangular block of pix-
els, called a tile, at a time. Our geometry is represented in a three-dimensional
bounding volume hierarchy (BVH), where each leaf node may contain one or more
moving triangles. We cull the BVH against the frustum spanned by the tile, and
we further cull the remaining geometry against the line sample plane.
At this point, we have a set of moving triangles that overlap with the line sample,
and we would like to find all visible patch triangles (Section 4) in both the spa-
tial and in the temporal domain, i.e., in the lt-space. In order to support near-z
clipping, all triangles are tested against a line sample plane in view-space. The re-
sulting patch triangles are then individually clipped against near-z, projected into

2There can be one or two such curves—see Appendix A.
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viewport-space, and mapped along the sample line into lt-space. The lt-space is
diced up into m× n uniform grid cells, where m is the number of pixels that the
line sample overlaps with, and n is a user-defined constant specifying the number
of subdivisions in the t-dimension. The grid cells are referred to as lt-cells, or sim-
ply just cells. Our visibility engine operates completely in the lt-space, and can
be divided into three stages, namely, binning, depth sorting, and pixel integration.
Next, these three stages are described in more detail.

5.1 Binning

The binning stage processes one patch triangle at a time, and finds all patch trian-
gles that overlap with each lt-cell. This is done by conservatively rasterizing the
patch triangle to the lt-cells. For all patch triangles overlapping a cell, a pointer to
that patch triangle is stored in a list of that cell. In addition, we perform a simple
variant of occlusion culling [14] in this stage. If a patch triangle is found to com-
pletely cover a cell, the maximum depth, Zcell

max, of the patch triangle over the cell
is computed. That cell is then listed as “fully covered” with Zcell

max. All subsequent
patch triangles that overlap with a fully covered cell can be occlusion culled (and
not added to the cell list) if they are farther away than that cell’s Zcell

max. In order to
occlusion cull even when triangles are not rendered strictly front to back we also
store Zcell

min. If a newly added triangle covers the entire cell and its Ztri
max is less than

Zcell
min, the entire cell can be cleared. After all patch triangles have been processed,

all potentially visible patch triangles that overlap with a cell in the lt-space are
known. It is the task of the following two stages to resolve for final visibility.

5.2 Depth Sorting

The goal of depth sorting is to deliver a list, for each lt-cell, of non-intersecting
polygons sorted according to ascending depth. In order to ensure depth order
inside each lt-cell, a local BSP-tree [11] is created from the patch triangles in each
cell’s list. The patch triangles are added to the BSP-tree in turn, which creates leaf
nodes with their splitting plane taken from the patch triangle plane. Subsequent
patch triangles may be split against these planes during insertion into the BSP-tree.
Once the BSP-tree has been built, depth sorting is simply a matter of traversing the
BSP-tree. Note that on average, our BSP-trees are small since they only cover one
pixel’s extent on a line sample, and a certain span in time. For our test scenes, we
usually have less than 100 triangles per lt-cell, and hence creation and traversal is
relatively fast.

5.3 Pixel Integration

The goal of the pixel integration is to calculate the color contribution of a sample
line to each pixel it overlaps. Once the color for all lt-cells covering a pixel is
known, the results can be weighted together to give the final color of the pixel. In
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order to integrate only the visible part of each polygon, a hidden surface algorithm
is used to eliminate occluded geometry in each lt-cell. By traversing the BSP-tree
per lt-cell, we obtain a strictly depth sorted list of polygons. This means that once
a region in an lt-cell has been found to be covered by a polygon, no other polygon
can cover that region.
The hidden surface algorithm is similar to “the pixel integrator” proposed by Cat-
mull [5]. This algorithm inserts all depth sorted polygons into a tree in order of
front to back. Each added polygon is split against the edges of the polygons al-
ready in the tree. The part to the left of the edge is added as a child to that edge
in the tree. The remaining part is split against the next edge. This is illustrated in
Figure 5.
After hidden surface removal, calculating the color of the lt-cell is a simple matter
of summing the color of each visible (convex) polygon weighted by its visible area,
possibly weighted by a filter kernel. The color of each polygon is determined by
invoking the pixel shader. We currently shade each convex polygon at its barycen-
ter, which is a natural place to put it, and this also generated high-quality images.
Hence, n is connected to both the number of cells in time as well as the shading
frequency (since shading is performed at least once for each patch triangle in each
cell) in our current implementation. Texture differentials are calculated analyti-
cally using the triangle at t = 0.

Discussion As mentioned, our visiblity engine was inspired by Catmull’s early
work [5] that operates in the spatial domain (xy) without motion blur. However,
for our work, there are a number of subtle but important differences. Our visibil-
ity engine and resolve procedure are working entirely in lt-space, which enables
motion blur to be handled. In the binning stage, we process one patch triangle at
a time until all patch triangles have been completely binned, which makes our en-
gine similar to feed-forward rasterization. This is in contrast to Catmulls’ scanline
order processing which requires sorting on l, and handling of every patch triangle
covering a scanline before proceeding to the next. In addition, we have added a
simple form of occlusion culling for better efficiency. All images in Catmull’s pa-
per [5] appear to consist of 2D layers composited with anti-aliasing, but we need
general sorting, and therefore use a BSP-tree instead of assuming already sorted
geometry.

6 Ambient Occlusion

In this section, we will show that, with some small modifications, our depth patches
(Section 4) and our visibility engine (Section 5) also can be used to compute mo-
tion blurred ambient occlusion (AO). To the best of our knowlege, this is a topic
that has received very little attention in graphics research. We start with a brief
introduction to ambient occlusion, and then describe how our algorithms can be
used for static and motion blurred ambient occlusion in subsequent subsections.
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Figure 5: A patch triangle shown inside an lt-cell. In the pixel integrator, the first
triangle edge splits the cell into a left (L) region and a right (R) region. In this
case, the next edge splits the previous right region into two new regions, and so on.
This creates a tree, and each new triangle is clipped against the edges in the tree,
and possibly inserted into the tree.

Zhukov et al. [33] define the amount of ambient occlusion, o, as:

o(p,n) =
1
π

∫
Ω

ρ (d(p,ω))(ω ·n)dω, (1)

where p is the point where AO is computed and n is that point’s normal. The
integral is over the hemisphere, Ω, with its “north pole” in the direction of n. The
distance function, d, returns the distance to the closest occluder in direction ω ,
and ρ is a distance fall-off function, which has a value between 0 (fullly occluded)
and 1 (not occluded). Intuitively, the equation computes how much of a white
hemisphere that a diffuse receiver can “see.” For high-quality renderings, one may
need a thousand rays to compute AO using point sampling [21], and for motion
blurred point-sampled AO, we expect that even more rays may be needed.

6.1 Static Ambient Occlusion

Instead of integrating over the hemisphere using point samples, we extend the
concept of line samples to the hemisphere. Here, we define a line sample as the
intersection between the hemisphere, and a plane going through the center of the
hemisphere. An example is the orange plane shown to the left in Figure 6. In
the following, we will first concentrate on a single line sample. However, note
that a number of line samples will be needed to accurately sample AO over the
hemisphere, and we will return to line sample distributions later in this section.
For all triangles above or overlapping the hemisphere base plane (going through
the “equator”), we compute the intersection (if any) between the triangle and the
line sample plane, and project the intersection onto the line sample’s hemicircle.
The next step is to project that down to the base plane as shown to the right in
Figure 6, and there we illustrate our parameterization, l, of the line sample on the
hemisphere. Note that this implements the Nusselt analog, which means that the
cosine factor of Equation 1 is included by design per line sample.
Similar to line sampling in screen space, we also use linear depth segments and
resolve for visibility with respect to depth exactly as shown in Figure 2, and de-
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Figure 6: Our approach for ambient occlusion is to use a number of line samples
over the hemisphere. In this illustration, only a single line sample is shown, but
in practice, several will be used to cover the hemisphere. Left: a line sample in
this case corresponds to a hemi-circle (red), and all triangles overlapping with the
plane (orange) through that hemicircle are projected onto the hemicircle. Right:
illustration of the projection of an intersection between a triangle and the line
sample plane in two dimensions. As can be seen, the intersection is first projected
onto the hemicircle, and then down to the black line, which is parameterized by l.

scribed by Gribel et al. [15]. However, note that depth is not linear over l in this
case. If the goal is to only compute whether the hemisphere is occluded or not,
then it does not matter that depth is not linear, since we are only interested in oc-
clusion and not depth. However, if the falloff function, ρ , in Equation 1, needs
to be taken into account, depth matters. In this case, long projections on l must
be diced up into several shorter linear depth segments, which makes for a better
approximation.
The remaining part at this point is line sample distributions over the hemisphere.
As far as we know, this is a rather unexplored topic in sampling. To the left in
Figure 7, a simple sampling pattern is shown, where all eight line samples are
passing through the “north pole” of the hemisphere. In general, we strive after
uniform distributions in xy-space, and it is quite clear that this distribution is non-
uniform. To counteract that, we instead redistribute the projection on l before they
are inserted. In this case, this amounts to a quadratic remapping function, similar
to that used for depth of field remapping [1]. Without remapping, we also measure
line density as suggested by Grabli et al. [12], where we used a measurement
radius of 0.5. Such images are also shown in Figure 7. As can be seen to the
right in the same figure, a more uniform distribution can be obtained if the line
sample planes also are allowed to tilt. This makes the mapping parameterization a
bit more complex, but we expect that it will be worth the effort.
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Figure 7: Left: a line distribution with eight rotated planes going through the
north pole of the hemisphere. The lines projected to xy, and their line density image
[Grabli et al. 2004] are also shown. Since this distribution is rather non-uniform,
we remap the coordinates along l in order to obtain a uniform distribution. Right:
a more uniform distribution of lines in the xy circle of the hemisphere. As can be
seen, the line density image is more uniform for this distribution.

6.2 Motion Blurred Ambient Occlusion

Our extension to motion blurred ambient occlusion (AO) is rather straightforward.
Instead of just processing visibility along the l-axis (Section 6.1), we now compute
visibility in lt-space as described in Section 4 and 5. For static receivers of AO,
this technique works as expected. A moving sphere over a plane will cast a motion
blurred AO shadow on the static plane receiver, for example.
For dynamic receivers, this situation is more complex, because both the receiving
sample position on a surface, and its normal may change as a function of time. We
avoid this complexity by considering all motion relative to a local coordinate sys-
tem at the sample point. The occluders are transformed into this local coordinate
system at both t = 0 and t = 1. The relative motion of each vertex is approximated
as linear with respect to time, which we believe is reasonable because that is ex-
actly how vertex motion is described in our system. Note also that we clip the patch
triangles against z = 0 so that parts of patch triangles “below” the hemisphere are
not processed.
As described in Appendix B, we use a shading cache in order to efficiently reuse
shaded values over the time dimension. We note that shading caches [27, 3] are
two-dimensional over some parameterization of the rendered surfaces, and for mo-
tion blur, the time, t, is collapsed and always computed at t = 0, for example. This
has direct consequences for shadows and AO when they are point sampled in time.
Shadowing at a moving surface point will simply be evaluated at t = 0, and if the
surface point later in time changes from being in shadow to being lit, that will not
be accounted for. This can easily give rise to images with unnatural looking shad-
ows. This is a limitation of shading caches, and it may be an interesting avenue for
future work to extend shading caches to handle motion blurred shadows and AO
better.
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Figure 8: Static versus motion blurred (dynamic) ambient occlusion (AO) with 16
line samples for AO. For the static case, AO was computed at t = 0.5. Dynamic
AO renders more plausible images as seen in the close-ups.

Interestingly, our solution will not compute AO at t = 0 and reuse this value over
all samples. As described above, our algorithm will compute the AO in lt-space,
and it is the average AO over time that will be computed and put into the shading
cache. For static receivers, this generates a correct image. However, for moving
receivers, this is not strictly correct, but we believe the average over time is a better
solution than computing AO at a single instant of time and reuse. In Figure 8, we
show the difference between static AO and motion blurred AO.

7 Implementation

We have implemented all our algorithms in a custom renderer in C++, and have
the pixel processing part of the algorithm threaded in order to exploit more than
one CPU core. Our algorithm is compared against stochastic rasterization with
efficient backface and view frustum culling. In addition, we have an early-Z depth
test and a simple form of occlusion culling [14] with one Zmax-value per 8× 8
pixels. For stochastic rasterization, we use multi-jittered sampling points. In the
following, we will discuss line sampling patterns for screen space sampling, which
is not a well explored topic in graphics.
Some obvious line sampling patterns to test include using one horizontal and one
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RGSS

Figure 9: Line sample patterns for 4× 4 pixels. Left: one horizontal and one
vertical (1H1V) line sample (blue) is going through each pixel. Middle: two hori-
zontal and two vertical (2H2V) line samples. Right: a rotated grid of line samples
(RGLS), inspired by the point sampling pattern called RGSS.

vertical line sample per pixel. This is what Jones and Perry used in their inspira-
tional research [19]. Instead of creating two unique lines per pixel, we extend the
lines so they start and end at the sides of the current tile in order to better exploit
coherency. In general, this reduces the number of BVH traversals and patch trian-
gle generations needed per rendered image. For better quality, one can increase to
two horizontal and two vertical line samples per pixel. Such schemes are shown to
the left in Figure 9. However, it is well-known that humans are most sensitive to
jaggies on near-horizontal and near-vertical edges, and thereafter on edges which
are close to 45◦ [24]. This clearly motivates low-cost point sampling patterns, such
as rotated grid super sampling (RGSS). To that end, we experimented with a line
sampling pattern that exhibit similar charateristics as RGSS, but is also designed
to share long line samples across many pixels. This pattern, which we call rotated
grid line sampling (RGLS), is shown to the right in Figure 9. While RGLS perform
much better compared to using horizontal and vertical line samples, we leave the
optimization of line sample patterns for future work. This is an important topic
that we intend to revisit in later research.

8 Results

We have rendered our images using a Mac Pro 5.1 with two six-core Intel Xeon
CPUs at 2.93 Ghz and 8 GB of memory. We use a decoupled shading cache as
described in Appendix B for both our algorithm and for stochastic rasterization of
motion blur. For one core, we shade about 10% of the requested shading values
for 64 stochastic samples. This is deliberately rather high because we want high-
quality shading. For 24 threads, this increases to 21% due to the fact that some
shading computations are computed more than once (see Appendix B). Some de-
tails of our stochastic rasterization implementation are given in Section 7. In all
our renderings, we use a tile size of 32×32 pixels. Concerning tile sizes, we have
noted that our algorithm is not very sensitive to bin spread. For example, rendering
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the chess scene at 512× 512 resolution using 16× 16 tiles requires only 30-35%
more time than using 512×512 tiles, which is equivalent to sort-last. We have used
three main test scenes to evaluate our algorithm. The chess scene in Figure 1 has
29,068 triangles and procedural texturing, Sponza in Figure 11 has 66,450 trian-
gles with lighting pre-baked into textures, and breaking armadillo in Figure 12 has
88,120 triangles (see video). The majority of the triangles in chess and armadillo
are subpixel-sized at 1024× 768 pixels. In addition, we constructed two special
scenes for a detailed performance analysis; the trees scene with 273,468 triangles
and high depth complexity (see Figure 13), as well as a simple plane scene with
varying tessellation (see Figure 14).
The line sample patterns for spatial anti-aliasing in Figure 9 are evaluated in Fig-
ure 10 for one static frame in the breaking armadillo scene. As can be seen, the
RGLS scheme is superior to the other two. The main reason for this is that ro-
tated patterns are better at combating aliasing on near-horizontal and near-vertical
edges, which visually suffer the most from aliasing [24]. In general, a pattern’s
edge anti-aliasing effectiveness depends on the angle between the lines of the sam-
pling pattern and the edges of the geometry to be rendered. Furthermore, in our
case, there is a small rotated square in the middle of each pixel, and a triangle
that falls completely within this area can disappear. However, this is usually not
a problem for connected geometrical objects, but can generate artifacts for single,
disconnected triangles. In terms of performance, one horizontal and one vertical
(1H1V) line sample per pixel is about twice as fast as two horizontal and two
vertical (2H2V), which is to be expected since there are twice the number of line
samples in 2H2V. In addition, 2H2V is about 10% faster than RGLS due to the fact
there are more and longer (on average) line samples per tile in RGLS compared to
2H2V.
Since motion blurred visibility is the major focus of our paper, we first report ren-
dering times without ambient occlusion for our three test scenes, all at 1024×768
pixels with RGLS. As seen in Figure 1, we can render the chess scene in 3.6 sec-
onds (s) with our algorithm. The number of subdivisions in time (see Section 5)
was set to n = 1, which worked well due to rather low-frequency shading. An
image with 49 samples per pixel using stochastic rasterization (SR) took 3.8s to
render, and for 256 samples, 27s were needed. If we increase the amount of motion
by 50%, our algorithm renders the chess scene in 4.6s, while SR uses 4.0s. How-
ever, the SR generated image contains substantially more noise (see video) in the
regions with motion, while our image remains free of noise. Hence, if noise-free
images are needed, it is clear that our visibility algorithm is very competitive.
The Sponza scene, in Figure 11, has camera motion. For our algorithm, we have
implemented near-plane clipping, but we have not done so for stochastic rasteri-
zation (SR). Therefore, we cannot render Sponza with SR, and we note that this
actually gives SR a little speed advantage in our other timings, since clipping is
not done for SR. Here, we used n = 16 to ensure high-quality renderings. At
1024× 768, this image took 20.1s to render. In Figure 12, we show the breaking
armadillo scene. As can be seen, the break-even point compared to stochastic ras-
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Figure 10: Here we compare the line sampling pattern quality for a static frame
of the breaking armadillo. As can be seen, rotated grid line sampling (RGLS) is
substantially closer to the ground truth (256 stochastic samples) than the other
two.

terization is around 144 samples per pixel, which is much higher than for the chess
scene. This is due to the armadillo having more triangles that also are located in a
small volume of the scene.
In order to investigate how our algorithm behaves for high depth complexity in
combination with increasing motion, we measured rendering time with respect
to increasing motion for various values of n. This is shown in Figure 13. The
results suggest that performance scales linearly with increasing motion, given that
an optimal value of n is chosen. This implies that an adaptive splitting scheme in
time is worth investigating in future work.
In Figure 14, a more detailed performance analysis of the different stages of the
algorithm is shown. The plane scene is rendered using a single core with different
tessellation rates as well as different values for n. Depth sorting and hidden surface
removal are clearly the bottlenecks with high tessellation and motion when using
a low value of n. These stages are most affected by a high number of triangles per
lt-cell. As expected, increasing n greatly reduces the aforementioned stages. Patch
generation time appears to be superlinear with increasing motion. The reason for
this is that our BVH becomes less efficient for large amount of motion.
To analyze the approximation error introduced by our algorithm, we made a com-
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Figure 11: The Sponza scene with camera motion, rendered with our algorithm,
and with close-ups on both geometric edges (top right) and on a region with lots
of motion (bottom right).

parison to a stochastic rendering of the chess scene. The differences in depth, d,
were computed and expressed as a fraction of Zfar− Znear, and compiled into a
histogram as shown in Figure 15. Note that our approximation also introduces
errors in lt, i.e., the patch outline, and this may alter the geometrical silhouette,
which means that sometimes the correct geometrical object will be missed. In
such cases, the depth errors may be substantial. Nevertheless, for zero subdivi-
sions of the patch outline (described in Appendix A.1), 99.82% of the errors fall
within < 0.1% of Zfar− Znear. For three subdivisions, this increases to 99.95%.
This implies that the approximations are reasonable. The heat maps of the scene
in Figure 15 visually shows the distribution and magnitude of the errors. More im-
portantly, a direct comparison between our rendered images to the ground truth is
included. One area with high-density errors is the pedestal bottom of the tumbling
chess piece to the left. Here, depth varies significantly over time, which causes
greater errors due to linearisation, but as can be seen, visual errors are still hard to
detect.
With some adjustments, our visibility algorithm can also be used to compute am-
bient occlusion (AO) both for static and for motion blurred scenes. This is a nice
side effect described in Section 6. Except for point sampling AO in time, we are
not aware of any algorithms that specialize in motion blurred AO, and yet, the dif-
ference in the rendered images can be substantial, as shown in Figure 8 and 16.
In all our renderings with AO, we used line sampling distributions where all line
samples go through the “north pole” of the hemisphere, as shown to the left in Fig-
ure 7. As expected, doubling the number of line samples doubles the time spent
on computing AO. Renderings with different number of line samples are shown in
Figure 17. For the chess scene with eight line samples for AO and n = 4, render-
ing with static AO took 251 seconds, and with motion blurred AO, this increased
to 2075 seconds. We have seen similar increase in rendering times for the other
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Figure 12: Left: Armadillo with ambient occlusion with 256 stochastic samples.
The images to the right are close-ups of armadillo’s moving arm without ambient
occlusion. Right-top: using 144 samples per pixel with stochastic rasterization
rendered in 10.4s. Right-middle: close-up rendered with our analytical algorithm
in 9.8s. Right-bottom: ground truth with 625 samples.

scenes. The focus of our work has been on motion blurred visibility in screen
space with spatial anti-aliasing, and hence, the evaluation of AO is not as rigorous.
In future work, we will therefore compare both rendering speed and image qual-
ity of our AO algorithms (both static and motion blurred) against stochastic point
sampling, and test line sampling patterns where the planes are allowed to tilt (right
in Figure 7), and optimize the placement of the planes. In addition, we will also
optimize for rendering speed.

9 Conclusions and Future Work

To the best of our knowledge, we have presented the first visibility algorithm
that computes semi-analytical motion blur over spatial line samples, and we have
shown that essentially noise-free images can be generated with competitive ren-
dering times. By using line samples in the spatial domain, our visibility problem
for motion blur becomes a two-dimensional problem, which makes it tractable
and efficient. The approximation we have introduced is in the depth function of a
moving triangle over a line sample, and despite this, we have shown that our ap-
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Figure 13: Measurements from the trees scene, rendered with increasing panning
motion. The different lines represent n = 1, 2, 4, 8 and 16.

proximation generates high-quality images. This approximation is the reason why
we choose to call our algorithm semi-analytical. Our algorithm can also be used
for rendering of motion blurred ambient occlusion with high quality. In contrast to
our work, the previous methods we are aware of for this are based on point sam-
pling, and may require 512–1024 point samples for high quality for static scenes
alone [26].
We believe our research opens up a wide range of interesting future work to be
done. If point sampling is used in the spatial domain, we believe that our algo-
rithm can be immediately used for computing semi-analytical (SA) depth of field,
which is a two-dimensional problem. With our current algorithm, we can also
approximate visibility over a lens with a set of line samples, which is similar to
previous work [1], and also use line samples in the spatial domain. Extending with
another dimension may be possible, and would open up for even more usage areas,
such as SA depth of field with spatial line samples, or pixel area integration with
SA motion blur, or SA depth of field with motion blur with spatial point sampling.
While sampling patterns always are important in order to generate high-quality
images, our focus has not been on developing high-quality line sampling patterns.
Instead, our main focus has been on the creation of depth patches and the visibility
engine. However, this is an interesting and important topic, and we will revisit this
in future work. We would also like to integrate the occlusion culling more with the
pixel integrator so that culling will work more efficiently for micropolygons.
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Figure 14: Detailed measurements of single-core rendering of the plane scene
with increasing panning motion. The different graphs represent various combina-
tions of tessellation rate (16× 16 and 64× 64) and values for n (1 and 16). The
“cell-clip” area corresponds to clipping of binned triangles to the cell boundaries,
before depth sorting. The “other” area consists of vertex shading, BVH construc-
tion, BVH traversal, tile setup, line setup and tile to frame buffer transfer.
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Figure 15: Measurements and visualizations of introduced depth-approximation
errors compared to a stochastic rendering. The loglog-histogram displays depth
error as a fraction of the near- to far-plane distance. As is expected, the plots
have identical integrals, even though this fact is somewhat obscured in the figure
due to the logarithmic scale. Heat maps and zoom-ins of the scene then further
detail distribution and magnitude (in log-scale) of the errors, as well as visual
comparisons to the ground truth image.
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Figure 16: A close-up of the topmost pawn in Figure 1, with static ambient oc-
clusion (left) and motion blurred ambient occlusion (right). Both images were
rendered with 16 line samples for ambient occlusion. Note that in cases like this,
the difference is rather large.

8 line samples 12 line samples

16 line samples 32 line samples

Figure 17: In these images, we illustrate the effect of increasing the number on
lines samples of the hemisphere for ambient occlusion.
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Figure 18: Overview of depth patch triangulation.

A Depth Patch Approximation

In this appendix, we will describe how our patch triangles, which approximate a
depth patch, are generated. We start by deriving a formula for l(t), which describes
when a moving triangle edge intersects with the line sample plane. This function
is needed to adaptively refine the approximation of the depth patch.
Recall that a vertex is described by p(t) = (1− t)q + tr, t ∈ [0,1]. A moving
edge, defined by p0 and p1, is then a bilinear patch: b(s, t) = (1− s)p0(t)+sp1(t).
Without loss of generality, we assume that the line sample plane is y = 0, and that
the l-parameter coincides with x. By setting the y-component of b(s, t) to 0.0, we
can obtain an expression for s:

s =−
p0y

p1y− p0y
, (2)

where p0y = (1− t)q0x + tr0x, etc. Replacing s by the equation above in the ex-
pression for the x-component of b(s, t), we obtain l(t), after some simplification,
as:

l(t) =
p0x p1y− p0y p1x

p1y− p0y
, (3)

which clearly is a rational polynomial in t, where the numerator is of degree two,
and the denominator is of degree one.
An overview of our depth patch triangulation algorithm is shown in Figure 18.
Briefly, we first compute the feature points as described in Section 4. These are
then connected as described below, and if needed, additional points are added
adaptively in a refinement step. Finally, triangulation produces the final patch
triangles.
Given a number of feature points in lt, each with a certain depth, d, the goal is now
to form a triangulated approximation using these three-dimensional points. This is
carried out by considering one moving edge at a time, and based on its interaction
with the line sample plane as it moves over time, making connections between
the feature points. The final set of connections outline one or many disjoint depth
patches. In the final step, these patch outlines, shown in the middle in Figure 18,
are triangulated.
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Figure 19: Connections schemes for moving triangle edges. When there are two
feature points (green circles), the feature points are simply connected. We show
three possible situations that can occur (first three images). In the fourth image,
the moving edge has generated four feature points. In this case, the two earliest
(in t) feature points are connected, and then the remaining two. This assures that
no connection will “bridge” the singularity point where the edge is parallel to the
plane. The final image shows a situation where the facing of the triangle changes
as it moves. Here, the connections will overlap in lt-space, and to resolve this, the
patch is split by adding the intersection point.

In the following, we describe how the feature points are connected. If the triangle
at t = 0 or t = 1 intersects the line sample plane, one or two feature points are
generated. In the case of two feature points, it is obvious that they should be
connected and form an edge of the patch outline. However, we also observe that
each moving edge may intersect the line sample plane, and trace out a curve in lt,
and its corresponding feature points should also be connected to form part of the
patch outline. If a moving edge generates two feature points, they must simply be
connected. See Figure 19. When there are four feature points, the situation is a bit
more complex, and the solution is illustrated to the right in the same figure.
Four feature points is an indication that the edge initially intersects the plane, turns
parallel to it and then intersects the plane again in the opposite direction. At the
point, ts, of edge-plane parallelism, there will be no (edge is above or below plane)
or infinitely many (edge is in the plane) intersection points, thus making l(t) un-
defined for t = ts. Two feature points will reside on each side of ts, that is, at ≤ ts
(initial intersection) and≥ ts (second intersection), respectively. By connecting the
feature points on each side of ts, we avoid letting any connection span undefined
values of t. In the extreme, when the edge is precisely in the plane at ts, two feature
points will occur at ts, and will thus constitute end point for one of the connections
and start point for the other. Hence, each connection will span an interval (ta, tb)
(not including the end points) that is defined in l(t).
After all connections have been made, we have a set of lines, and we simply create
the patch outline (middle in Figure 18) by connecting lines that share feature point
vertices. In a final step, the patch triangles are created by triangulating the result-
ing polygon(s). Our approach to generate the patch triangles works really well for
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0 1REF 2 3

Figure 20: At the top left, we show a rotating white triangle rendered with 625
stochastic samples, i.e., a reference image. Below that image, we also show the
corresponding depth patches (generated using dense point sampling) for the yel-
low and blue lines in the image. For the top line sample, note how the line will
reside completely outside the triangle, during a short interval, which generates
two disjoint depth patches (shown in the middle row).

triangles that undergo moderate rotation, however, the approximation may be too
crude for extreme motion. To that end, we present an adaptive refinement proce-
dure.

A.1 Adaptive Refinement of the Approximation

Better approximation accuracy can be achieved by adding more points to the patch
outline before triangulating. This is done by exploiting that l(t) (Equation 3) is
defined, and monotonic in ∂ l

∂ t (t), within each connection range (ta, tb). Hence,
additional points can be created by evaluating l(t) at arbitrary values of t ∈ (ta, tb).
A good choice of t is one that captures as much of the curvature of l(t) within the
range as possible. In our approach, we interpolate the angle of the tangent slopes
in the end-points of the range, then solve ∂ l

∂ t (t) for this value to retrieve t, which
we use to generate a new point on the patch outline. If just one extra point is to
be obtained, the average of the two angles is used, and the theory goes as follows.
Given an interval (ta, tb) for a connection, the angles, αa & αb, of the slopes at ta
and tb are:

αi = arctan
(

∂ l
∂ t

(ti)
)
, for i = {a,b}. (4)
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Using the arithmetic mean of the angles, we then need to solve the following equa-
tion for t:

∂ l
∂ t

(t) = tan
(

αa +αb

2

)
(5)

Since ∂ l
∂ t (t) is quadratic in t, this will result in up to two solutions, but only one

can be part of (ta, tb). By evaluating l(t) for this new t, a new approximation point
is acquired. For additional points, further subdivision can be made adaptively. Ex-
amples of termination criterion are maximum number of new points, depth error
tolerance etc. As the number of subdivisions grows toward infinity, the approx-
imation outline approaches the analytical solution in lt-space. In Figure 20, we
show a triangulated depth patch for different levels of subdivision. Note, however,
that the depths will still be linearised over the interior of this outline.

B Shading Cache

We use an object-space shading cache [3] to avoid excessive shading, and we ex-
tend their cache with an image pyramid for efficient memory usage. Note that we
use the same cache for all our rendering threads, and hence need to allocate 2.0 GB
for the entire cache for our renderings. Each object’s shading values are stored in
a map, which is represented by 16×16 independent submaps, where each submap
is responsible for a region of the uv-space. Each submap consists of a pyramid
of cached shading values, which is allocated lazily. At the top of the pyramid,
a single shading sample represents the entire uv span of the submap. This is the
lowest shading resolution available. Each lower level in the pyramid has double
the resolution of the previous level.
We use the derivatives of the barycentric coordinates, u and v, with respect to
screen space, x and y, when selecting appropriate pyramid levels. This is analogous
to standard mipmapping. When a shading request is processed, the correct pyramid
level is selected based on the these derivatives, and then the uv-coordinates of the
shading request is sampled using nearest neighbor. If the cache contains a shaded
value, it is immediately returned and used. If the cache location is empty, the
pixel shader is invoked and the result put into the lowest level of the pyramid and
propagated upwards. During upward propagation, the higher levels of the pyramid
are sampled at the same uv-coordinates. If the higher level sample is empty, the
same cached value is put into that pyramid level, and propagation continues. If
the higher level sample is set, the propagation is aborted. When multiple threads
operate on the same shading cache, sampling and propagation are subject to race
conditions. We use atomic writes to the shading cache which makes it consistent,
even during propagation. Without a shading cache, our system will perform far
less shading requests than our stochastic rasterizer. The shading cache was added
both for improving performance and to make the comparison with stochastic ras-
terization more fair.

57



APPENDIX

58



Pa
pe

rI
I

Paper II

High-Quality Curve Rendering using Line Sampled
Visibility

Rasmus Barringer Carl Johan Gribel Tomas Akenine-Möller

Lund University

ABSTRACT

Computing accurate visibility for thin primitives, such as hair strands,
fur, grass, at all scales remains difficult or expensive. To that end,
we present an efficient visibility algorithm based on spatial line sam-
pling, and a novel intersection algorithm between line sample planes
and Bézier splines with varying thickness. Our algorithm produces
accurate visibility both when the projected width of the curve is a tiny
fraction of a pixel, and when the projected width is tens of pixels.
In addition, we present a rapid resolve procedure that computes final
visibility. Using an optimized implementation running on graphics
processors, we can render tens of thousands long hair strands with
noise-free visibility at near-interactive rates.
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1. INTRODUCTION

Figure 1: Our novel thin curve rendering algorithm used on a test production
model to compute accurate visibility. The model has 32,000 unique hair strands,
which consists of over one million Bézier curves with varying thickness. As can
be seen, our algorithm works at all different scales, from cases where there are
hundreds of hair strands per pixel to zooming in on the hair strands. All images
were rendered at 1024×1024 pixels with our GPU implementation. The leftmost
image took 109 ms to render, while the close-up on the face took 468 ms. The
rightmost image showcases our ability to handle thick curves. Hair model courtesy
of Weta Digital.

1 Introduction

High quality rendering of thin, curved primitives, e.g., hair, fibers, fur, and grass,
is an important ingredient in today’s computer generated imagery. This is par-
ticularly true for offline rendering for feature films, but also increasingly so for
real-time rendering in games. One approach is to model such thin curves as rib-
bons with varying width, e.g., using RenderMan’s riCurves primitive, and then
sample visibility using point sampling. A similar modeling and rendering tech-
nique was used by Marschner et al. [21] when developing an accurate appearance
model for hair. Another common approach is to rasterize lines with alpha blend-
ing to simulate line widths smaller than one pixel [19, 27]. A third approach is to
model and render hair with volumetric textures using ray marching [16].
While shading for some types of thin primitives, in particular hair [21, 24, 33, 31,
14], is well understood, computing accurate visibility rapidly for a large number of
curves remains a challenge. A major problem is that when point sampling is used,
noise is inevitable unless a very large number of samples per pixel is used. This
is especially true at a macro-scale, when the viewer is relatively far away from the
curves, and the projected width of the curve is only, say, 10% or less, of the pixel
width. In such cases, hundreds of samples per pixel may be needed for accurate
visibility. For comparison, the diameter of a hair strand is about 0.1 mm [12].
Another problem is that the ribbon model breaks down at the microscale, i.e.,
when a curve’s width project to relatively large number of pixels. In those cases, a
hair strand, for example, does not appear as a cylinder as expected.
As a solution to this challenge, we present a visibility engine based on line sam-
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pling [15] in the spatial domain. Our curves are modeled as Bézier splines with
varying thickness. We develop a novel intersection algorithm between such curves
and line samples and present a new interval resolve procedure. As can be seen in
Figure 1, our approach renders practically noise-free images at large spectrum of
scales. For rapid rendering, we have also implemented our visibility engine on a
graphics processor running in parallel.

2 Previous Work

There is a wealth of literature on the topic of simulation, animation, and rendering
of thin curves, e.g., hair strands, fur, and grass. Here, we will review the most
important references to our work, and refer to the SIGGRAPH course [12] on hair
and strands if more information is needed.
Appearance Models Kajiya and Kay [16] presented an illumination model for
single-scattering in fur and hair. The fine geometric detail of fur and hair is rep-
resented by volumetric three-dimensional textures. Illumination is calculated by
integrating diffuse and specular contributions, using a modified Phong model, by
ray marching in the texture. Marschner et al. [21] present a rich shader model
for human hair that captures more distinguished features such as inner reflection,
eccentricity and surface scales. Fibers are represented geometrically as procedu-
rally generated flat ribbons and as transparent elliptic cylinders within the shader
model. This work was extended to include multiple scattering of light using pho-
ton mapping [23]. Rendering was made using two passes: first particles were
traced through the hair to create a photon map, and then the hair was ray-traced to
compute direct illumination and indirect radiance gathered from the photon map.
Moon et al. [24] voxelize the individiual fibers into a rectilinear grid, and populate
it with aggregate data of nearby fibers using sampling of density, median direction,
and variance. By taking advantage of the smoothness of the distributed scattering
function, this approach proved faster and less memory-consuming than approaches
based on photon mapping. Zinke and Weber [32] present a shading framework for
fibers that have both near and far field solutions. Recently, Hery and Ramamoorthi
have presented an importance sampling algorithm for hair fibers [14]. Fast, but
accurate models for shading hair using a dual scattering approximation, targeting
real-time rendering, have also been presented [33, 31].
Visibility and Shadows The deep shadow mapping algorithm [20] generates a
monotonic function per shadow map texel, which represents the fractional visi-
bility for each depth from the light source. This works particularly well for hair,
fur, and smoke. Jones and Perry [15] presented line sampling in the spatial do-
main for efficient anti-aliasing. Gribel et al. [11] used a similar approach applied
to analytical motion blur with spatial point samples, instead of using it for spatial
line sampling with no motion blur. Recently, that method has been combined with
spatial line samples, for high-quality spatio-temporal anti-aliasing [10]. Tzeng et
al. [29] used line samples over the lens domain to create depth-of-field. A common
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3. ALGORITHM OVERVIEW

l=0.0

l=1.0

z

l

1.0

0.0
1.00.0

Figure 2: Left: a line sample is defined by the camera location and a line (red) in
screen space, and parameterized by l. Middle: two curves with thickness intersect
the line sample. Right: visibility is resolved in the lz-plane by finding the closest
surfaces in depth, z, along l. As can be seen, the yellow thin curve occludes part
of the green thin curve over this line sample to the right, but not to the left.

rendering technique using graphics processors, is to render the hair strands as lines
with alpha blending [19], and composite the fragments in back-to-front order [27].
An alternative is to use stochastic transparency, where multi-sampled anti-aliasing
is used to represent transparency in a pixel [8].
Offsets and Subdivision Our intersection algorithm is based on offsets for Bézier
curves and subdivision. The offset to a polynomial curve is not polynomial in
general [7]. A standard approach is subdivide the curve until the offset of each
subsegment can be represented by a simpler primitive such as a line or curve. This
can be done recursively [3] (recursive subdivision) or more sophisticated rules can
be used in order to reduce the number of subdivisions [13]. A comparison of
different curve offset methods is presented by Elber et al. [7]. Tiller and Hansen
use quadratic Bézier curves to construct the offset curve, where the edges of the
control polygon are offset [28]. A method suited for non-constant curve radius,
is to offset each control point in their respective normal direction [4]. Recently,
Ruf [26] presented a method for fast creation of quadratic bounding-Bézier offsets
of quadratic Bézier curves.

3 Algorithm Overview

In this section, we present a high-level overview and motivation of some design
choices of our visibility algorithm for high-quality rendering of thin primitives,
and we also introduce key terminology used throughout this paper.
To sample visibility, we rely on line sampling [15] rather than the commonly used
point sampling. There are several appealing aspects of the utilization of line sam-
ples when rendering a scene. As noted by Gribel et al. [10], compute power rather
than memory bandwidth is used to a greater extent, which meshes well with recent
trends in hardware development. Furthermore, sampling using lines effectively
means that scene geometry is considered through an entire dimension instead of
at discrete points, which means that there is a smaller risk of missing thin primi-
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tives with line samples. As illustrated to the left in Figure 2, a line sample can be
thought of as the triangle defined by the location of the camera and by a line in
screen space, where the triangle extends towards infinity beyond the image plane.
We will refer to these as line sample planes or simply as line samples, where each
line sample is parametrized by l ∈ [0,1]. Usually, a small number of line samples
per pixel is required to faithfully sample visibility.
In general, a thin primitive is defined by a three-dimensional Bézier spline, which
represent the “core” of, say, a hair strand. In addition, a two-dimensional profile is
swept along the curve, and this traces out the geometry that we need to compute
visibility for. We call the generated geometry a thin curve, for the lack of a better
term. A circular profile generates a shape similar to sweeping a sphere along a
curve [30], and it is also related to computing offset curves. See, for example,
the recent work by Ruf [26]. In all our examples, we will sweep a circular profile
whose radius varies along the curve, but this can be extended to other profiles.
In broad terms, our algorithm works as follows. For parallel execution of our
visibility algorithm, we employ a sort-middle approach [22], where the geometry
is binned to rectangular pixel tiles. The geometrical content within each tile is
binned once more to line samples in the tile. Next, the actual intersections between
the curves and their associated line samples are computed. This is illustrated in the
middle in Figure 2. The intersection is approximated by a set of intervals defined
by a start point and an end point in lz-space, where z is depth. When all intervals for
a line sample in a tile have been identified, visibility has to be resolved by finding
the nearest (in depth) interval segments along the entire line sample. To that end,
we present a simple, yet very efficient resolve procedure, which is substantially
faster than the resolve presented by Gribel et al. [11]. An example is shown to the
right in Figure 2. We store intervals in a binary heap ordered according to starting
points, and resolve visibility in one pass without extra sorting and no extra storage.
Shading is computed by taking point samples over the intervals. In the end, the
colors from all line samples of a pixel are weighted to get the final color of the
pixel.
Next, we present our visibility engine, which includes a description of our geom-
etry representation, intersection computations, and our new resolve procedure.

4 Visibility Engine

In this section, we describe all the involved components and algorithms in our
visibility engine for high-quality thin curve rendering. First, our representation of
thin curves is presented, and then follows our intersection algorithm between a line
sample and a thin curve in Section 4.2, which is extended in Section 4.3 to handle
situations where the projected width of a curve covers many pixels. Finally, our
novel resolve procedure is presented in Section 4.4.
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p0=(p0x, p0y, p0z)

p1

p2,q0

r0

q1

q2

p(t)

r(t)

Figure 3: A thin curve composed of two quadratic Bézier curves. A circular pro-
file is used in this example, and each control point consists of a three-dimensional
position, and a radius of the circular profile. The spatial Bézier curve to the left is
defined by {pi}, while the one to the right is defined by {qi}, i∈ {0,1,2}. Note that
to ensure G1 continuity, we set p2 = q0, and also make sure that the tangent direc-
tions at that shared position is the same on both sides. C1-continuity is obtained if
the tangents also have the same length.

4.1 Thin Curve Representation

We represent a thin curve by a quadratic Bézier spline, which is a series of con-
nected quadratic Bézier curves. In addition, the “thickness”, or radius, varies along
our thin curves. A quadratic Bézier curve segment is defined using three control
points [9]. We use both spatial control points, pi, as well as radii, ri, i ∈ {0,1,2},
to define the curve’s position, p(t), t∈ [0,1], and interpolated radius, r(t):

p(t) =
2

∑
i=0

Bi,2(t)pi, r(t) =
2

∑
i=0

Bi,2(t)ri, (1)

where Bi,2(t) are Bernstein basis polynomials. The varying radius makes it possible
for, e.g., a piece of fur to be thicker at the animal body and thinner towards the
other end. Note that the degree two of the Bézier curves was chosen to make the
intersection algorithm simpler, but in principle, a higher degree can be used at the
cost of a more involved intersection algorithm.
In general, the radius controls the size of a two-dimensional profile that is used to
define the character of the thin curve. In all our examples, we use circular profiles.
The geometry of the thin curve is defined by sweeping the two-dimensional profile
along the Bézier curve while varying the size of the profile according to the inter-
polated radius, r(t). This is illustrated in Figure 3. Instead of a circular profile,
one can use two connected straight lines, e.g., a V, which could be used to model
grass, for example.1 Exploring different profiles and developing their correspond-
ing intersection tests is left for future work. It is important to ensure (at least) G1

continuity when connecting neighboring Bézier curves. Any global optimization
1This would require extending each control point with a binormal as well in order to establish a

coordinate system for each t. This is not needed for circular profiles since they are fully symmetric.
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methods [9] can be used for this, or simpler heuristics as desired by the user.
In Appendix A, a memory-efficient representation is presented. Next, we present
our intersection method between a line sample and a thin curve.

4.2 Thin Curve/Line Sample Intersection

Our visibility engine requires us to compute the intersection between thin curves
and line sample planes. Our approach to solving this efficiently is based on using
offsets [7, 28, 4, 26]. We will use approximate offsets, and intersect these with the
line sample planes using a subdivision technique to reach a certain error tolerance.
The offset intersections are then projected to screen space (along the sample line),
connected into intervals, and fed to the visibility engine.

Offsets

The offset, o(t), of a curve can be said to represent all points being located at
a distance, r(t), in the normal direction of p(t). The normal is defined as n(t) =
p′(t)×v(t)
|p′(t)×v(t)| , where p′(t) and v(t) are the curve tangent and view-vector, respectively.
In such a setting, the two offset curves of p(t) can be described as:

o±(t) = p(t)± r(t)n(t). (2)

A consequence of the presence of the square root in the expression for n(t) is that,
even though p(t) is in polynomial form, its offsets o±(t) are, in general, not [7].
Hence, to find the intersections efficiently, we use approximations, o±a (t), of the
real offsets o±(t). The offset approximation by Cobb [4] is defined by the control
points of the original curve, offset by a constant amount, r, in their respective
normal direction, ni. Since we have varying radius along the curve, we use the
following, slightly modified version of that offset approximation:

o±a (t) =
2

∑
i=0

Bi,2(t)(pi± rini), (3)

where n0=n(0), n1=n(0.5), n2=n(1), r0 = r(0), r1 = r(0.5), and r2 = r(1). The
two offset curves, o+a (t) and o−a (t), are illustrated in Figure 4 for several examples.
Intersecting Equation 3 with a plane yields a second degree polynomial, and it
is therefore fast and simple to compute these intersections. However, similar to
Cobb’s method, it will produce approximate offsets that, in general, underestimates
the real offset. Given a relative error tolerance, ε , the offset approximation, oa(t),
will meet this tolerance at a certain t, if the following expression holds:

r(t)2(1− ε)2 ≤ (oa(t)−p(t))2 ≤ r(t)2(1+ ε)2, (4)
which simply is a more efficient calculation of the relative error test: ‖1−‖oa(t)−p(t)‖/r(t)‖≤
ε . To obtain arbitrary precision, we use a subdivision process, which is described
next.
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intersecting offset segmentp(t)

oa(t)
+

oa(t)

Figure 4: A horizontal line sample (purple) is shown together with a number of
quadratic Bézier curves, p(t), with thickness. The two offset curves, o+a (t) and
o−a (t), of p(t) are also shown. Since the offset curves are approximate, we use a
subdivision approach to refine the offsets until the error is sufficiently small. First,
an offset is created from p(t), and then, depending on curvature, it is subdivided
in order to reach the desired error tolerance. The second curve from the left has
modest curvature and requires no subdivision at all, while the rightmost, which is
strongly curved and even contains a self-intersecting loop, requires several subdi-
visions. Such cases are very rare in practice. Once one or multiple satisfactory
offset segments (fat black curves) are found, they are intersected with the line sam-
ple to produce roots outlining the silhouette of the intersection (solid horizontal
lines).

Offset Creation by Subdivision

The approximate offsets, o±a (t), are created by splitting p(t) through subdivision
into shorter segments. As the segments get shorter, the offset approximations be-
come more accurate. Hence, accuracy is traded for increased cost of subdivision
and offset generation. The nature of the approximation in Equation 3 implies that
the end-points of the offset approximation will correctly match the real offset, and
subdivision will therefore ensure convergence towards the real offset due to the
end-point interpolation property of Bézier curves [9].
To avoid unnecessary work, we cull away and abort subdivision for offset segments
that will not end up intersecting the line sample. Since the control point triangles of
o±a (t) do not necessarily bound the real offset, these control point triangles cannot
be used for this purpose. Instead, we cull against the offset bound of p(t), which
we define as the convex hull of circles of radius, ri, located at the control points,
pi. Once an offset bound is above or below a line sample, the corresponding offset
curve can be culled safely.
To be as memory efficient as possible, the algorithm subdivides successively by
maintaining a stack of t-intervals that are eligible for intersection. The starting
element of the t-stack is set to ∆t = [0,1], meaning that the entire offset is eligible
initially. We will use subdivision [9] of the Bézier curve in our algorithm, and will
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use the notation p∆t
i for the control points of a subdivided Bézier curve, derived

from pi, which is valid over ∆t. Given a curve p(t), defined by pi, and a line
sample, L, the algorithm has the following steps, applied to one side (either o+a (t)
or o−a (t)) of the offset at a time:

1. Pop the top element, ∆t, from the t-stack, and subdivide the curve using
De Casteljau’s algorithm to obtain p∆t

i . If the t-stack is empty, then exit
algorithm.

2. If L does not intersect the offset bound of p∆t
i then goto 1.

3. Create approximate offset to p∆t
i according to Equation 3.

4. If the error test, according to Equation 4, of the approximation is fulfilled:
compute intersections between the approximate offset and L and project
them to screen space. Else, split ∆t into two halves and push to the t-stack.
Goto step 1.

In a final step, intersections between the end-cap lines of the thin curve and L
are computed. The output from the intersection algorithm for a complete curve,
including both offset curves and the end-caps, is up to four intersection points. See
Figure 4.
The termination criteria in step 4 with the user-defined error tolerance, ε , is prefer-
ably complemented with a maximum subdivision depth, Nmax. The t-stack will
then contain at most 2Nmax elements, and each element ∆t can be stored using
2 ·16 bits of memory. In addition to the storage for the stack, storage is needed for
the current subdivided control points, p∆t

i , its offset approximation, and the roots
in t, generated from solving the second degree polynomial. The memory require-
ments are thus bounded and relatively small. For practical reasons, we evaluate
the error function, e(t), in Equation 4 at two discrete positions spread uniformly
over the interval ∆t. The end points of ∆t are not included since the error is zero
there. As a heuristic, we require that the error tolerance is to be met at these two
locations before terminating the subdivision. For thin curves, we have observed
that tolerances of ε = 0.5%−1% are typically sufficient. The left part of Figure 5
illustrates convergence of the offset by subdivision for a heavily bent curve.
Next, the intersection points are connected into intervals using a few simple heuris-
tics. If only two intersections are present, they are obviously connected and we are
done. For four intersections, there will be two intervals that are either disjoint or
overlapping, depending on the curve parameter, t ∈ [0,1]. See Figure 4. The inter-
vals are formed in a disjoint manner if the first two and last two intersections along
L are disjoint with respect to t (third example in Figure 4). However, if the t-spans
of the first pair and last pair overlap, the intervals are consequentially formed to
overlap, simply by connecting the first intersection point with the third, and the
second with the fourth (rightmost example in Figure 4). Overlapping intervals is
a result of curves that undergo self-intersection. Self-intersecting curves, such as
the right curve in Figure 5, may in fact give rise to as many as six intersections
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p(t)

N = 1

N = 0

N = 2

N = 12
N = 6
N = 5
N = 4
N = 3

o (t)+
a r(t)

p(t)

oa(t)
+ oa(t)

r(t)r(t)

Figure 5: Left: evolution of curve offset through subdivision. An offset curve,
o+a (t) is created by displacing the control points of the original curve, p(t), in the
normal direction. With no subdivision, N = 0, the offset always underestimates
the true offset. As N increases, the core curve is split into smaller and smaller
segments, and the accuracy of the offset increases. Right: Up to six intersections
may arise along a line sample in cases with self-intersection. Here, only four are
kept: two from the outer offset, and the outermost two from the inner offset.

along the sample line. For simplicity, our algorithm keeps only the outermost two,
limiting the number of intersections to four for the entire curve.
Though self-intersection may seem somewhat abstract and unintuitive since real-
world objects usually do not self-penetrate [28], it is nevertheless commonplace
in our setting as curves are projected from 3D to 2D. In other words: a curve with
no self-intersection in 3D-space may self-intersect when projected to 2D from a
certain point of view. It is for this reason necessary for our algorithm to robustly
handle all kinds of curve behavior.

4.3 Visibility for Large Projected Curve Widths

When the projected width of a curve covers many pixels, it should become possible
to see the geometrical shape of the curve. For example, a hair strand should look
like a curved cylinder. The algorithm in Section 4.2 only gives the endpoints of an
intersection between a thin curve and a line sample. When the projection is rather
large, this is not sufficient. Here, we present a simple extension which solves this
case.
Recall that the curve is described by a Bézier curve, p(t), and a radius, r(t). For
circular profiles, this can be interpreted as a circle with varying radius that moves
along the curve, p(t), as a function of t, and we need the intersection between the
thin curve and the line sample plane. This intersection consists of one or more
closed curves.

69



PAPER II: HIGH-QUALITY CURVE RENDERING USING LINE SAMPLED
VISIBILITY

p(t)

ts te

y
z

l

z

l
line sample plane

Figure 6: To compute the intersection between a curve whose width projects to
many pixels, and a line sample plane, the time ts and te are first computed. These
are the times when the moving circle (as a function of t) first intersects the line sam-
ple plane, and when it exits. In this case, we generate three extra circles between
ts and te, and all circles are intersected against the line sample plane. Together
these form a tessellated approximation (right) to the true intersection.

To this end, the normal used for thin curves in the previous section is replaced by
an expression that generate offset curves above and below the thin curve along the
y-axis:

n(t) =
p′(t)×

(
p′(t)× (0,1,0)

)
|p′(t)×

(
p′(t)× (0,1,0)

)
|
. (5)

Next, we use the method from the previous section to compute the first time, ts,
where the moving circle touches the line sample plane, and the time, te, when the
moving circle exits the line sample plane. This is illustrated in Figure 6. Given the
time interval, we essentially use a tessellation procedure to compute an approxima-
tion of the true intersection curve, which, in general, is a complex high-order curve.
First, n uniform t-values between ts and te, are computed, i.e., ti = (1−αi)ts+αite,
αi = i/(n−1), where i ∈ {0,1, . . . ,n−1}. In our implementation, we use n = 32.
However, any number can be used, and it may be beneficial to calculate a suitable
number based on the thickness of the curve. Next, n circles are generated centered
at p(ti), with radius r(ti), and the normal of the plane equation in which the circle
lies is p′(t), i.e., the tangent of the curve. These circles are intersected with the line
sample plane, and the points connected to form a closed tessellated curve. This is
shown to the right in Figure 6. The lines of this tessellation are inserted (as usual)
as intervals into our visibility engine. An example of possible results using this
technique is shown in Figure 7.
As discussed previously for thin curves, a single curve can create multiple disjoint
intersections with a line sample. One such example is the third curve in Figure 4.
Self-intersecting curves, such as the right curve in Figure 5, exhibits a similar
behavior except that the two intervals overlap. For thick hairs, each such interval
is tessellated independently of others.
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Figure 7: An extreme example of thin curves whose widths project to a large num-
ber of pixels (about 20 at the base). Note that each hair strand’s width transitions
to subpixel size towards their outer end points.

4.4 Interval Resolve Procedure

As described in the previous subsections, the intersection computations between
thin curves and a line sample generate a list of intervals. In order to determine
the visibility along a line sample, and ultimately determine the color of the pixels
overlapping the line sample, we need to find the (clipped) intervals closest in depth
to the camera. By replacing t (time) for l (the parameter along the line sample), it
would be possible to use the resolve procedure by Gribel et al. [11]. However, we
have devised a novel resolve algorithm, specialized for opaque geometry, which
is simpler, uses less memory, and is therefore faster. Our algorithm is described
below.
All intervals are stored in a binary heap [6], ordered by their starting interval point.
Note that the intervals are not sorted and we simply perform a build heap opera-
tion which takes O(n) time. This enables us to do efficient insertions, and re-
movals, while avoiding the dependent memory accesses inherent in any kind of
self-balancing search tree. Our algorithm performs a single sweep over the line
sample and process two intervals at a time. For each pair, the space that separates
them can be resolved immediately and accumulated to the exposed pixels. The
sweep continues with the interval closest to the camera. If the occluded interval
spans past the point of occlusion, it is reinserted into the heap at a point where it
may be visible again. The details are shown in Algorithm 1. An illustration of how
our resolve works in a simple situation is shown in Figure 8.
The most expensive parts in the resolve procedure are the removal from and the
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insertion to the heap. As such, it is very important to realize that these operations
can be performed simultaneously. We can read the minimum element from the
heap by inspecting the first value in its array. Removal moves the last element
in the array to the first position and then restores heap order. Insertion puts the
new element last and restores heap order. By delaying the removal of the mini-
mum element until the very end of the loop, we can choose whether to replace the
minimum element by the interval that is to be reinserted, or by the last element
of the heap. We can therefore get away with a single restore of heap order. This
also ensures that instruction divergence is kept to a minimum since we only need a
small branch deciding what element to put first in the heap. This property is very
important for GPUs.
Note that each interval is stored only once in the heap which means that given
n intervals, we need to store only n items. The memory requirements are thus
predictable as they do not depend on the geometric relationship between intervals.
Given n intervals, the previous resolve [11] needs to store at least 2n items, and
in the worst case, 1

2 (3n + n2) items depending on the number of intersections.
Another benefit of our algorithm is that we only intersect intervals against the
interval closest to the camera, resulting in far fewer intersections than when finding
all intersections between all intervals. The number of intersections are kept to
a minimum since our algorithm includes a form of occlusion culling. When an
interval is (partially) occluded, it will be discarded from all calculations until a
point where it may be visible again (if such a point exists). When the interval is no
longer occluded by the previous occluder, it is checked again against the interval
closest to the camera. If it is still occluded, it will be discarded again. An interval
can thus be efficiently occlusion culled even if it is only occluded collectively by
multiple intervals.
The algorithm shown here includes intersections between intervals for complete-
ness only. In our current implementation, all intervals are treated as flat, i.e., after
projection, the interval gets the average depth of the two end points. This approx-
imation is acceptable because our intervals are very thin (even for thick curves as
they are tessellated into multiple thin intervals). This makes the performance im-
provement with respect to intersections less important for our purposes. Disregard-
ing intersections, our resolve is still more efficient than the previously described
algorithm as they first need to sort all intervals and then maintain an additional
sorted list of active intervals during the sweep. In contrast, we only need a single
data structure that is manipulated very efficiently.

5 GPU Implementation

Our GPU pipeline resembles a recent software sort-middle pipeline [18]. The ma-
jor difference is that our pipeline is used for rendering thin curves efficiently using
line samples, rather than rendering triangles using point samples. In this section,
we describe the different stages, namely, setup, binning, rasterization and sample
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Figure 8: Illustration of our resolve procedure (from left to right). We have two
intervals, one red and one blue, and desire to find the closest interval segments
along l. The fat lines indicate resolved color, which will be accumulated to the
final pixel color. First, all intervals are ordered in a binary heap by their starting
position along l (first diagram). The algorithms then works by sweeping l, keeping
track of the interval currently being closest to the camera, that is, with the smallest
z-value. At each encountered starting point, the closest interval is selected while
the occluded interval is moved to the next-coming starting point (diagram 2). At
intersections, the interval being occluded initially is clipped into a (potentially)
visible part (diagram 3). This way, only two intervals needs to be processed at a
time.

blend, of the pipeline. The discussion in this section refers to pixels in the context
of two line samples per pixel. A straightforward way to increase the number of
line samples per pixel is to render the image in higher resolution, and then down
sample the resulting image to the desired resolution. Our current implementation
uses either two (no down sampling) or four (2× down sampling) axis-aligned line
samples per pixel.

5.1 Setup

The input to the pipeline is a set of thin curves, defined by quadratic Bézier curves
(BCs) with varying thickness (Equation 1). Our pipeline can either use interpola-
tion of thin curves using the method in Appendix A, or directly render the curves
without interpolation. For interpolation, we use thin control curves. Each thin
control curve consists of a series of control Bézier curves (CBCs).
The purpose of this stage is to generate a record for each BC of each thin curve. A
BC is identified by a 32-bit BC identifier, where the high 24 bits identify the thin
curve index, and the low 8 bits identify the BC index. When interpolating a BC
from the CBCs, the weights and base CBC indices are fetched using the thin curve
index. To get the actual CBC indices, the base CBC indices are offset by the BC
index. Each final record stores the projected bounding box as well as BC identifier.
In the current implementation, each such record requires 16 bytes, where the last
4 bytes are used as padding to preserve alignment. If we instead opt to recompute
the bounding box when needed, we can get away with as little as 4 bytes, which
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Algorithm 1 Resolve

insert all intervals into heap ordered by start
ivala← removeMin(heap)
ls← start(ivala)
while heap 6= /0 do

ivalb← removeMin(heap)
le← start(ivalb)
accumulate ivala ∈ [ls, le] to current pixel
ls← le
if end(ivala)≤ ls or ivala occluded by ivalb after ls then

swap(ivala, ivalb)
end if
i← intersect(ivala, ivalb)
if i 6= nil and i > ls then

clip part of ivalb before i
reinsert ivalb in heap

else if end(ivalb)> end(ivala) then
clip part of ivalb before end(ivala)
reinsert ivalb in heap

end if
end while
le← end(ivala)
accumulate ivala ∈ [ls, le] to current pixel

might be preferred in cases where memory is scarce. In addition, each BC is culled
against the view frustum. If a BC is culled, it is only flagged as such to maintain a
fixed input-to-output mapping. The flagged BCs are removed in the next stage.
In order to handle thick curves, the width of a curve is estimated by calculating the
projected radius of each control point. If this radius is larger than a pixel, the curve
is flagged as thick. A parallel partition is used to make sure that all thick curves
appear before any thin curves. This order is conserved throughout the pipeline.

5.2 Binning

This stage subdivides the screen into tiles of 128×128 pixels. The BCs are binned
to per-tile lists, called bin lists. In order to avoid excessive synchronization, a large
thread block is allocated per streaming multiprocessor (SM), so that only a single
thread block is active in each SM at any given time. These thread blocks are kept
running until all input data have been processed, similar to persistent threads [1].
We use thread blocks with 16 warps, i.e., 512 threads. For each tile, a separate
bin list is kept for each SM, which allows for parallel insertion without inter-SM
synchronization. The number of SMs on an NVIDIA GTX 580 GPU, for example,
is 16, which makes this a reasonable approach. Each thread block reads chunks of
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BCs, and may compact them due to culled segments. More chunks are read until
we have 512 segments within the view frustum to process (or until all segments
have been fetched). This ensures that all threads within the thread block have work
to do. Shared memory is used to efficiently coordinate bin list insertion between
threads [18].

5.3 Rasterization

This pipeline stage is divided into two separate kernels, coarse and fine rasteriza-
tion. First, coarse rasterization is performed using the bin list of the tile, and then
fine rasterization is performed to calculate the intersections with the line samples.

Coarse Rasterization Here, the BCs in each 128×128 tile is binned to the line
samples within each tile. To determine whether a BC overlaps with a line sample,
the BC’s bounding box is simply tested against plane of the line sample.

Fine Rasterization During fine rasterization, each warp processes a single line
sample. The line sample is divided into 32 4-pixel regions associated with memory
for storing intervals overlapping that region. The current size of each list is kept
in shared memory. This memory is allocated for each thread of a warp when the
kernel is launched and is reused for each line sample processed by a warp. Typical
memory requirements for these lists can be found in Section 6.
First, all BCs corresponding to thick curves are processed for the line sample. Each
thread calculates the tessellated intersections for a single BC. The resulting inter-
vals are shaded and appended to overlapping interval lists using shared memory
atomics. Then, all remaining BCs are processed. Each thread calculates the inter-
section between the line sample and a BC. The resulting intervals are once again
shaded and appended to overlapping interval lists using shared memory atomics.
Once all BCs have been processed, each thread becomes responsible for a 4-pixel
region and its associated interval list. Each interval list is then resolved according
to the algorithm in Section 4.4 in parallel. Occlusion culling is performed both
using the bounding box of each BC as well as for each interval before it is put into
an interval list.

5.4 Sample Blend

After rasterization is complete, we essentially have two copies of the frame buffer;
one for horizontal line samples and one for vertical line samples. The purpose of
this stage is to combine the result of these sampling directions in a smart way. For
each pixel, we blend between two line samples using a similar heuristic for curves
that Jones and Perry [15] use for triangle edges. As an extension, the contribution
by a curve is multiplied by its visible length along the line sample. The purpose
of this extension is that misaligned occluded curves should not change how the
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weighting is performed. Also, we attempt to punish misaligned curves by provid-
ing a negative weight for them. Below we give the details of this weighting for the
reproducibility of our work.
If the curve tangent is projected to screen space, the angle, α , from the line sample
to the tangent influences the weight. In particular, we use the weight:

w =

+
(

sinα−sinβ

1−sinβ

)2
, if α > β

−
(

sinβ−sinα

sinβ

)2
, otherwise

, (6)

where β is the threshold were the curve is assigned a negative weight. We use
β = 15◦. This weight is integrated during the interval resolve procedure along
with the color of the interval. During sample blend, we have two weights, wh
and wv, and two colors, ch and cv, that represent horizontal and vertical line sam-
ples respectively. If any of the line samples have a negative weight, the sample
with the largest weight will be picked. Otherwise, the following formula, using a
smoothstep function, is used to blend between the samples:

cp = ch +(cv− ch) · s2(3−2s), (7)

where s = wv
wh+wv

and cp is the final color of the pixel.
Sample blending is not perfect, e.g., when a single near horizontal curve is in front
of multiple near vertical curves. In this case, both sampling directions may contain
significant error. A simple way to deal with those cases is to use more than two
line samples per pixel.

6 Results

Our implementation runs on an NVIDIA GTX 580, and all images in this paper
were rendered at 1024×1024 pixels. For all our timings, we report how much time
it took to render primary visibility and local shading. The shadows were baked into
the control points of the Bézier curves using opacity shadow mapping [17] with
line sampling. If n layers are used, we have seen that the shadow map generation
takes approximately n · t ms, where t is the time for computing primary visibility.
For simplicity, all our images were rendered with Kajiya and Kay’s phenomeno-
logical appearance model for hair [16]. In the case of thick curves, we apply a
simple normal variation that integrates to the same color as the corresponding thin
curves. Our focus in this research is on accurate visibility, but we note that other
appearance models, such as the one by Marschner et al. [21], should be possible to
use as well. In all our images, we use two horizontal and two vertical line samples
per pixel.
To make comparisons, we use two additional algorithms, namely, a modified ver-
sion of Laine and Karras’ CudaRaster [18] and OpenGL. CudaRaster is modified
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HAIRY GUY Zoom 1 (furthest) Zoom 2 Zoom 3
Our 110 ms 65.33 dB 130 ms 60.83 dB 140 ms 56.23 dB

CudaRaster 1700 ms 56.62 dB 1150 ms 53.24 dB 660 ms 49.39 dB
OpenGL 20 ms 61.33 dB 30 ms 58.51 dB 90 ms 56.22 dB

. . .

. . .

Zoom 4 Zoom 5 Zoom 6 (nearest)
140 ms 52.05 dB 220 ms 48.65 dB 250 ms 47.39 dB
550 ms 45.40 dB 670 ms 42.05 dB 800 ms 40.38 dB
80 ms 54.75 dB 140 ms 52.26 dB 160 ms 51.13 dB

Table 1: Rendering times for the teaser scene compared to other algorithms. Each
of the six leftmost zoom-levels in the image are included here. Higher PSNR indi-
cates closer resemblance to ground truth and is thus better. OpenGL is consistently
faster, but overall only by a modest factor. At far distances, our algorithm achieves
better image quality than OpenGL does. CudaRaster requires 3−15× more ren-
dering time than our algorithm, while also exhibiting lower PSNR.

to support 64 samples per pixel and, since it does not support tessellation, the thin
curves were tessellated in a separate stage and fed to the pipeline as triangles. In
this separate stage, we tessellate until the screen-space area of the triangle formed
by the control points of a curve is smaller than a threshold of 0.5 or 1, depending on
the scene complexity. We take care to only tessellate curves within the view frus-
tum in order to make the comparison as fair as possible. The time required for this
tessellation stage have been excluded from all measurements of the performance
of CudaRaster. The OpenGL implementation uses multi-sampling anti-aliasing
(MSAA) and hardware tessellation with pre-tessellation frustum culling to achieve
maximum performance. An MSAA rate of 8 was used in combination with down-
sampling from a render target enlarged 4×4, for an effective rate of 128 samples
per pixel. It should be noted that 128 is the maximum, single-pass sampling rate
available for OpenGL, due to size restrictions of the render target. To reach a com-
parable curve quality, we implemented adaptive tessellation to sub-pixel size (0.25
pixel). We measure the quality of the algorithms by calculating peak-signal-to-
noise (PSNR) figures between ground truth images and images produced by each
of the algorithms. For ground truth, we use OpenGL with tiling to increase the
sampling rate to 8192 samples per pixel.
In Figure 1, we show that our visibility algorithm can render practically noise-free
visibility of a complex model from many different distances. The hair strands in
this model are each unique, i.e., the thin control curve interpolation method in Ap-
pendix A was not used. As mentioned in the caption, the image to the left (where
the camera is farthest away) renders in 110 ms, and the most detailed close-up of
the face renders in 470 ms. Note that the leftmost image is relatively difficult to
process quickly since there are many hair strands per pixel, which increases inter-
section computations. The rightmost image showcases our ability to render thick
curves. Rendering times and PSNR figures for the different algorithms for this
scene is shown in Table 1. It is clear that our algorithm outperforms CudaRaster in
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Figure 9: Some different types of fur rendered with our algorithm. From left to
right, these models contain 50k, 100k, and 150k fur strands, where each fur strand
consist of 8, 16, and 16 Bézier curves, respectively. The rendering times were (left
to right) 78 ms, 358 ms, and 531 ms. Zoom in the pdf to explore the quality of the
visibility.

MINK
Our 140 ms 56.24 dB 360 ms 41.37 dB 130 ms 44.19 dB

CudaRaster 1420 ms 48.70 dB 1200 ms 34.91 dB 690 ms 38.58 dB
OpenGL 60 ms 53.49 dB 230 ms 43.30 dB 140 ms 50.63 dB

Table 2: Rendering time comparisons for the middle ball of Figure 9 at various
distances. Up close (right), our algorithm is able to cull large parts of occluded
geometry and performs faster than OpenGL, even though PSNR is lower. At a
distance (left), however, while being slower than OpenGL, our rendering has better
PSNR.

every case, both concerning PSNR and rendering time. OpenGL is usually better
than our algorithm, but it is worth noting that we gain performance as we zoom in
to the image. Our quality is also better when looking at the model from far away.
It should be noted that when the model is far away, PSNR increases by default due
to the presence of more white pixels.
In Figure 9 and 10, we show some renderings of different fur with different shader
parameters with many fur strands per object. These models use the interpolation
technique from Appendix A with 5,762 thin control curves. The fur ball to the right
can be seen as a stress test for our algorithm, since it consists of 16 ·150k= 2,400k
Bézier curves. We show a detailed performance comparison of the ball in the
middle in Table 2 at different zoom levels. From far away, we have better PSNR
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Figure 10: Closer rendering of the fur shown to the right in Figure 9.

than OpenGL, but OpenGL is faster. In the close up, OpenGL is slower, but have
better PSNR. CudaRaster performs worse than the other algorithms in all cases.
It is clear that OpenGL outperforms our algorithm in almost every scene. We
are, however, very close and would like to stress that it is quite remarkable that a
software-only approach can be this close performance-wise to a pipeline acceler-
ated by fixed-function tessellation & rasterization units, and by color & depth com-
pression units (which our algorithm cannot use, nor can CudaRaster). If the same
algorithms were implemented on a CPU, we argue that the performance would be
more comparable to the comparison between our algorithm and CudaRaster. Still,
the fact that our algorithm runs extremely well on a GPU shows that it lends itself
well to massive parallelization.
We investigated how our algorithm performs with respect to image resolution. For
the fur ball to the right in Figure 9, we obtained the following rendering times:

512×512 768×768 1024×1024
328 ms 422 ms 531 ms
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Figure 11: Our algorithm renders the GRASS scene, containing 150k straws with
a total of 3 million curve segments, in 406 ms.

As can be seen, the time per pixel decreases with higher resolutions. In fact, the
time per pixel for 1024×1024 is less than half of that for 512×512, for example.
This is to be expected since there will be fewer intervals per pixel the higher reso-
lutions we use, and also better parallel utilization of the GPU. The rendering time
of a frame is typically divided into about 2.5% for coarse rasterization and 97% for
fine rasterization, while the sum of the other stages (setup, binning, sample blend)
is negligible. Hence, it is clear that it is the fine rasterization stage that should be
optimized for improved performance. We leave this for future work.
Below we show the memory usage of our pipeline when rendering the fur ball in
the middle in Figure 9:

BC records Bin lists Tile lists Interval lists Total
25.9 MB 9.7 MB 150.7 MB 38.4 MB 225MB

Here, BC records are the records created in the setup stage, bin lists represents
the memory used for binning, tile lists represents the memory used for coarse
rasterization, and interval lists represents the memory used for storing intervals
during fine rasterization.
Another test scene rendered with our algorithm is shown in Figure 11.
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7 Conclusions and Future Work

We have presented a novel visibility engine for thin curve rendering. Contrary
to previous work, our method uses a single, continuous geometric representation
from all view directions and at all scales. Our new resolve procedure for inter-
vals contributes significantly to high performance, while using our intersection
algorithm between thin curves and line samples contributes to high-quality visi-
bility. There are many avenues for future work. First, it would be interesting and
challenging to extend our approach to handle motion blur, perhaps with a method
similar to how motion blur was dealt with for line sampled triangles [10]. Using
stochastic simplification [5] of the thin curves, so that fewer, but fatter curves can
be rendered from far away also seems worthwhile to explore, since performance
would increase. It is clear that hair, especially blond hair, is transparent, and we
believe that the method by Gribel [11] for resolving for visibility could be used
off the shelf for this. However, we would also like to research faster methods for
transparent resolve. Finally, we will also continue working on extended shadow
mapping techniques. If the intervals are compressed, it should be possible to use a
line sampled shadow map.
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APPENDIX

i1

i2

i0

(u,v,1-u-v)

Figure 12: Part of a triangular control mesh is shown where the grey curves are
thin control curves defined at the vertices of a darker yellow triangle. Given the
thin control curves, a new thin curve (brown) can be represented by thin control
curve indices, (i0, i1, i2), and barycentric coordinates, (u,v,1−u−v) within that
triangle. This is an extremely compact representation which is valuable when
rendering large numbers of thin curves.

A Compact Representation

Here, we present a method that makes thin curve representation more memory ef-
ficient. To do this, we define thin curves by interpolating thin control curves that
emanate from the vertices of a triangular control mesh. This means that there will
be a thin control curve defined at each vertex of the triangle, and thin curves gen-
erated “over” the triangle using interpolation of the three thin control curves. An
interpolated thin curve is represented by three thin control curve indices, (i0, i1, i2),
and barycentric coordinates, which are used to compute the starting point inside
the triangle and to blend the thin control curves. See Figure 12. This is similar
to the approach taken by Nguyen and Donnelly [25], with the exception that we
keep this efficient representation throughout the rendering pipeline as well, rather
than only using it for simulation. Conceptually, the triangular control mesh can be
thought of as the scalp when performing hair rendering, and the landscape mesh
when performing grass rendering, for example. With this approach, geometry is
amplified by interpolating the thin control curves, which causes nearby curves to
clump and align with each other. This behavior can be observed in, e.g., hair [2].
In practice, interpolated thin curves are generated by distributing point samples
over the triangular control mesh. It should be noted that this compact representa-
tion is not a requirement for our visibility algorithm. Instead each, e.g., hair strand,
can be defined as a complete thin curve without interpolation. In Section 6, both
methods are used.

86



Pa
pe

rI
II

Paper III

Dynamic Stackless Binary Tree Traversal

Rasmus Barringer Tomas Akenine-Möller

Lund University

ABSTRACT

A fundamental part of many computer algorithms involves travers-
ing a binary tree. One notable example is traversing a space partition-
ing acceleration structure when computing ray traced images. Tra-
ditionally, the traversal requires a stack to be temporarily stored for
each ray, which results in both additional storage and memory band-
width usage. We present a novel algorithm for traversing a binary tree
that does not require a stack and, unlike previous approaches, works
with dynamic descent direction without restarting. Our algorithm will
visit exactly the same sequence of nodes as a stack-based counterpart
with extremely low computational overhead. No additional memory
accesses are made for implicit binary trees. For sparse trees, parent
links are used to backtrack the shortest path. We evaluate our algo-
rithm using a ray tracer with a bounding volume hierarchy for which
source code is supplied.
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1. INTRODUCTION

Figure 1: CHESS scene rendered using our stackless binary tree traversal algo-
rithm.

1 Introduction

Traversing a binary tree is a fundamental operation for many computer algorithms.
One notable example, related to computer graphics, is traversing a space partition-
ing acceleration structure when performing ray tracing [5]. The traversal usually
requires a stack to be temporarily stored that contains nodes that are still to be
processed. However, in some cases, a stack is prohibitively expensive to main-
tain or access [4], e.g., for highly parallel architectures with many active traver-
sal states. There may also be situations where the traversal state is suspended
and resumed [1], in which case storing or transferring the full stack is expensive.
For these reasons, stackless algorithms have been explored. Hughes and Lim [2]
demonstrate stackless traversal for dense implicit kd-trees. Their approach re-
quires a k-by-3 matrix to be stored in constant memory, where k is the depth of
the tree. When traversal ascends in the tree, additional heuristics are needed to
know which child to continue traversing, requiring additional knowledge of the
data structure. Another approach that is not restricted to kd-trees involves using
a short stack and encoding a restart trail in a bit mask [4]. When the short stack
is insufficient, traversal restarts from the root node and descends along the stored
restart trail. Hapala et al. [1] use parent pointers to achieve stackless traversal by
backtracking. Their algorithm needs to determine traversal order among two sib-
lings again when ascending in the tree. This is prohibitively expensive for anything
but a simple ordering heuristic. As a result, the traversal order in their bounding
volume hierarchy is based solely on ray direction. Computing the actual distance
to the siblings’ bounding boxes, and sorting them based on distance, would require
re-intersecting both nodes to determine the traversal order.
In this paper, we introduce low overhead stackless traversal algorithms for binary
trees that, unlike previous approaches, support dynamic descent direction without
restarting. In particular, we introduce two algorithm variations for implicit binary
trees, and one variation for sparse trees. Our algorithms will visit exactly the same
sequence of nodes as a stack-based counterpart with extremely low computational
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Figure 2: An example of a complete binary tree with the depths, d, of each level
shown to the left. The node number is shown inside each node circle. For the
blue node at the bottom, we have levelStart = 2d = 23 and levelIndex = 2, which
makes it possible to compute the node number as 23+2−1= 9. For the blue node,
we also have swapMask = 010 (in binary), which indicates the path from the root
down to the node, where 0 is a descension in to the left child, and 1 is in to the
right child. The swapMask is used in Algorithm 3.

overhead. No additional memory accesses are made for implicit binary trees. For
sparse trees, parent links are used to backtrack the shortest path.

2 Implicit Traversal Algorithm

For implicit binary trees, we store the nodes in each level sequentially in mem-
ory, i.e., the root node at location 0 and its left and right children at location
1 and 2, respectively. In general, the nodes at a depth, d, are enumerated as
{2d−1, . . . ,2d+1−2}, where d = 0 indicates the root level. As such, the relation-
ships between different nodes is explicitly known. Given the address of a node, it
is possible to calculate the address of the parent, children, and sibling.
The trees for, e.g., bounding volume hierarchies are generally not perfectly bal-
anced. In those cases, we simply leave gaps in the memory layout for unused
nodes. They will never be accessed so it is enough to allocate the address space
for them. CPUs can utilize virtual memory to reserve the entire address space for
the tree but only map pages that actually contain nodes. This reduces the memory
overhead associated with filling out the gaps. In Section 3 it is shown that the
algorithm can be extended to sparse binary trees with parent pointers.
We start by describing a simplified traversal algorithm that assumes that the left
child in a tree is always traversed first, i.e., a typical depth-first traversal order.
Then, we extend this algorithm to support tree traversal in any order.
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2.1 Left-first Traversal

Knowing that we always choose the left child during traversal, we can keep track
of the traversal state using two integers. We need one bit for each level of the
tree and 32 bits is thus enough for reasonably balanced trees. However, for the
purpose of our algorithm, integers of any size can be used. The algorithm is shown
in Algorithm 2, where the first integer, levelStart, stores 2d , where d is the current
depth of the traversal. This variable is used to calculate the address of the first
node in the current level, which is given by levelStart − 1. The second integer,
levelIndex, stores the current node relative to the first node of the current depth
level. The index of a node is thus given by levelStart + levelIndex− 1. This is
illustrated in Figure 2.

Algorithm 2 Left-first Implicit Traversal
levelStart← 1
levelIndex← 0
repeat

node← levelStart + levelIndex−1
if node is leaf then

process leaf
else

test node
if accepted then

levelStart← levelStart� 1
levelIndex← levelIndex� 1
continue

end if
end if
levelIndex← levelIndex+1
up← ctz(levelIndex)
levelStart← levelStart� up
levelIndex← levelIndex� up

until levelStart ≤ 1

When the algorithm descends into the left child of a node, we recalculate the two
integers to point to the left child in the next depth level. This is accomplished using
simple shift operations.
If we decide to skip a node, or have found and processed a leaf node, we either
need to traverse into the right sibling, or ascend upward in the tree. This is where
we would normally need a stack containing the next node to process. However,
since we always traverse into the left child first, we simply need to ascend in the
tree when the right child of the parent node has been processed. This is equivalent
to the criteria that levelIndex needs to have the same number of trailing zeros,
as the number of levels to ascend in the tree. This approach is similar to what
Knoll et al. [3] used for finding the leftmost root of implicit functions. The main
difference is how they used intervals and a loop with floating-point division to
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Figure 3: The result of applying various combinations of fn(x) to a list of indices,
x. Top: f0. Middle: f1. Bottom: f0 ◦ f1.

achieve the stackless traversal. Our approach can be implemented using a single
count-trailing-zeros instruction (CTZ), which is common in many architectures.
The integers are then adjusted by this amount using right shifts.

2.2 Generalized Traversal

When traversing a binary tree, it is often beneficial to start with a certain child
based on a dynamic heuristic. For example, for efficient visibility computations
using ray tracing, it is important to traverse into the child node whose content
is most likely to shorten the ray, making traversal into the sibling unnecessary. A
common heuristic is to start with the bounding volume that is closest. The traversal
technique in Section 2.1, however, always traverses into the left child first, and if
used in a ray tracer, performance would suffer substantially since rays would not
benefit from early occlusion.
One way to enable arbitrary descension order (left or right child) is to actually
traverse exactly as in Section 2.1 with the exception that the left and right children
are swapped when traversal into the right child is preferred. It is, of course, not
feasible to actually swap the memory of the nodes in the tree.
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Algorithm 3 Generalized Implicit Traversal
levelStart← 1
levelIndex← 0
swapMask← 0
repeat

node← levelStart + levelIndex−1
+swapMask−2(levelIndex∧ swapMask)

if node is leaf then
process leaf

else
test children of node
if any accepted then

levelStart← levelStart� 1
levelIndex← levelIndex� 1
swapMask← swapMask� 1
if right child first then

swapMask← swapMask∪1 {bitwise OR}
end if
if rejected one child then

levelIndex← levelIndex+1
swapMask← swapMask⊕1 {bitwise XOR}

end if
continue

end if
end if
levelIndex← levelIndex+1
up← ctz(levelIndex)
levelStart← levelStart� up
levelIndex← levelIndex� up
swapMask← swapMask� up

until levelStart ≤ 1

Instead, we define a function fn(x) that swap the indices of each node at a certain
level in the tree:

fn(x) = x+2n−2(x∧2n), (1)

where ∧ represents bitwise AND. If the previous level took a right turn, the rela-
tive index would not be levelIndex, but rather f0(levelIndex). Some examples of
applying this function to a list of indices is shown in Figure 3.
Since any level can take a right turn, we need to be able to apply composite func-
tions to describe an arbitrary path through the tree:

( fi ◦ f j ◦ ...)(x), (2)

where i, j, . . . are the levels where the traversal took a right turn and (g ◦ f )(x) is
the same as g( f (x)).
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Algorithm 4 Optimized Generalized Implicit Traversal
levelStart← 1
levelIndex← 0
levelIndexdynamic← 0
repeat

node← levelStart + levelIndexdynamic−1
if node is leaf then

process leaf
else

test children of node
if any accepted then

levelStart← levelStart� 1
levelIndex← levelIndex� 1
levelIndexdynamic← levelIndexdynamic� 1
if right child first then

levelIndexdynamic← levelIndexdynamic +1
end if
if rejected one child then

levelIndex← levelIndex+1
end if
continue

end if
end if
levelIndex← levelIndex+1
up← ctz(levelIndex)
levelStart← levelStart� up
levelIndex← levelIndex� up
levelIndexdynamic← levelIndexdynamic� up
levelIndexdynamic← levelIndexdynamic +1−2(levelIndexdynamic∧1)

until levelStart ≤ 1

From Figure 3, one can see that the result is independent of the order of composi-
tion, i.e., fi ◦ f j(x) = f j ◦ fi(x), which suggests that the entire composite function
can be expressed in a very simple manner. Let d denote the current depth of the
traversal. If we create a bitmask, called swapMask, where each bit i is set if level
d− i−1 took a right turn, then the entire composition becomes:

fcomp(x) = x+ swapMask−2(x∧ swapMask). (3)

Given fcomp(x), we are now ready to describe the generalized traversal algorithm.
We need one more integer to store swapMask. Besides some simple bookkeeping
for swapMask, all we need to do is apply Equation 3 to levelIndex. The general-
ized traversal technique is shown in Algorithm 3.
In this algorithm, we essentially compute the dynamic descent levelIndex from a
left-first levelIndex at each iteration. It is also possible to incrementally update
the dynamic levelIndex. Denote the dynamic levelIndex as levelIndexdynamic. It is
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obvious that any dynamic descent can incrementally update levelIndexdynamic by
assigning it the child traversed. We also observe that any ascension in the tree is
independent of descent order; the parent at a given level is the same whether we
traversed the left or the right child. The problem becomes which child to continue
traversing after ascension. This is easy to answer since levelIndexdynamic indicates
which child has already been traversed. We simply need to switch to the sibling of
levelIndexdynamic after ascending in the tree. These observations are summarized
in Algorithm 4. The main difference compared to Algorithm 3 is that the swap
only occurs at the current level after ascending in the tree.
Even though Algorithm 3 indicates separate variables for levelStart and levelIndex,
it is possible to combine them into one. The start of the current level, levelStart, is
always represented by a single set bit that is higher than any set bit in levelIndex.
By introducing index = levelStart + levelIndex, we can replace all instances of
the variables with index. This works because all operations on levelIndex are
unaffected by the high bit from levelStart. This optimization reduces the num-
ber of state variables to two, and avoids one addition and two redundant shift
operations. The same optimization can be introduced in Algorithm 4 by setting
index = levelStart + levelIndexdynamic.

3 Sparse Traversal Algorithm

Sometimes the restrictions of an implicit binary tree cannot be met, e.g., when
the tree is badly balanced or when the implicit memory layout cannot be used.
In those cases, a stackless algorithm can still be used [4, 1]. It turns out that
Algorithm 4 is actually well suited for sparse trees as well, given that there is a
method to ascend in the tree. Assuming the existence of parent pointers that allows
us to backtrack [1], we replace both levelStart and levelIndexdynamic with a single
node pointer. The node pointer is updated analogously to levelIndexdynamic. When
descending in the tree, the node pointer simply follows the appropriate child link.
When ascending in the tree, instead of jumping to the appropriate parent using a
shift instruction, we backtrack using the parent pointers until the destination level
is reached. The swap function at the end of the loop is replaced by an analogous
function that determines the sibling of a node. It can either be implemented by
calculating the sibling directly, or, by taking a round trip to the parent, depending
on the memory layout of the tree. The algorithm for sparse trees is shown in
Algorithm 5.

4 Results

Our three algorithms, referred to as IMPLICIT-A (Algorithm 3), IMPLICIT-B (Algo-
rithm 4) and SPARSE (Algorithm 5), were implemented in a simple single-threaded
CPU ray tracer written in C++. All tests were performed on an Intel Core i7 pro-
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Algorithm 5 Sparse Traversal
levelIndex← 0
node← root
repeat

if node is leaf then
process leaf

else
test children of node
if any accepted then

levelIndex← levelIndex� 1
node← left or right child
if rejected one child then

levelIndex← levelIndex+1
end if
continue

end if
end if
levelIndex← levelIndex+1
while levelIndex∧1 = 0 do

node← parent(node)
levelIndex = levelIndex� 1

end while
node← sibling(node)

until node = root

cessor clocked at 2.66 GHz and with 8 GB of 1067 MHz DDR3 RAM. The target
compiler was Apple Darwin LLVM GCC 4.2.1. For reference, a conventional
stack based traversal, STACK, was included. For comparison to other stackless
approaches, we implemented the algorithms by Laine [4] and Hapala et al. [1],
referred to as LAINE and HAPALA respectively. For LAINE, we investigate differ-
ent short stack sizes and denote them LAINE-x, where x indicates the size of the
short stack. The ray tracer uses a bounding volume hierarchy (BVH), contain-
ing axis-aligned bounding boxes (AABBs), optimized using surface area heuris-
tic (SAH) for the first 8 depth levels, and median split along the longest axis of
separation for the rest in order to get a reasonably balanced tree. The different
traversal algorithms use exactly the same BVH. The implicit traversal algorithms,
IMPLICIT-A/B, will, however, move all nodes to their predetermined memory loca-
tion, including leaving gaps for unused nodes. Note that while IMPLICIT-A/B and
SPARSE will visit exactly the same sequence of nodes as STACK, HAPALA will not
due to its need for a simple traversal order heuristic. While the other algorithms
will start with the closest child node, HAPALA will base its order on the ray direc-
tion along the split axis of a node. Although LAINE-x uses the same traversal order
as STACK, it performs restarts from the root node. In the test setup, we used the
CHESS scene shown in Figure 1 rendered at a resolution of 800×300 pixels, and
the HAIRBALL scene shown in Figure 4 rendered at a resolution of 512×512 pix-
els. Both scenes use 16 eye rays and 256 ambient occlusion (AO) rays per pixel.

96



5. CONCLUSION AND FUTURE WORK

Figure 4: HAIRBALL scene with
2.8 million triangles.

CHESS HAIRBALL

STACK 24.6 s 149 s
SPARSE 26.5 s 157 s

IMPLICIT-A 27.5 s 164 s
IMPLICIT-B 26.2 s 160 s

HAPALA 35.8 s 189 s
LAINE-0 44.7 s 368 s
LAINE-1 31.6 s 232 s
LAINE-2 28.1 s 191 s
LAINE-4 26.4 s 166 s
LAINE-8 26.1 s 155 s

Table 1: Table showing the time required for
each algorithm to render the test scenes.

The times required to render the scenes for the different algorithms are shown in
Table 1. A more detailed performance break-down is shown in Figure 5.1

It is clear that our stackless algorithms are very competitive in terms of perfor-
mance while maintaining a small traversal state. This is true for both the simpler
CHESS scene, containing 64k triangles, as well as the more complex HAIRBALL
scene containing 2.8M triangles. For the CHESS scene, IMPLICIT-B performs best
of our algorithms and is only outperformed by a full stack (STACK) or a longer
short stack (LAINE-8), while using a fraction of the memory for its traversal state.
In HAIRBALL, SPARSE becomes faster than IMPLICIT-B, even though it backtracks
using parent pointers. One explanation is the padding of the implicit BVH; the ex-
tra pages creates more cache misses in the translation lookaside buffer. IMPLICIT-B
is consistently faster than IMPLICIT-A due to a lower traversal cost. LAINE-x gets
worst performance for x = 0 in both test scenes due to frequent restarts. As the
short stack increases in size, the performance approaches STACK at the cost of a
larger traversal state. From Figure 5, it is clear that even LAINE-0 have larger
traversal state than the other stackless algorithms. The performance of HAPALA is
in the lower end of the performance spectrum in our tests.

5 Conclusion and Future Work

We have presented stackless traversal algorithms for both implicit binary trees and
sparse binary trees with parent pointers. These algorithms use efficient bit ma-
nipulation and have low computational overhead. At the same time they support
dynamic descent direction without having to re-evaluate sibling order or restarting.
Our algorithm for sparse trees with parent pointers has been shown to perform well

1The intersection and traversal ratios have been measured by prohibiting the compiler from inlining
the intersection tests, and sampling using a profiler (Instruments 4.5 Time Profiler). The ratios are thus
based on a slightly different workload.
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Figure 5: Bar charts showing detailed performance measurements from CHESS
(top) and HAIRBALL (bottom). Each algorithm shows the performance of eye and
AO rays. Additionally, a time break-down into triangle intersection, traversal and
AABB intersection is illustrated within each bar. Below each algorithm, the size of
its traversal state is shown. The state size is based on the number of state variables
needed (4 bytes each). A non-zero stack size adds an extra state variable for the
stack head, and 4 bytes for each entry. The algorithms are ordered according
to increasing rendering time. Note that the ordering is biased toward AO ray
performance since they represent the majority of rays traced.

while requiring only a minimal traversal state of two variables. Of our two algo-
rithms for implicit trees, Algorithm 4 is most performant in our tests and should
generally be preferred. A possible exception would be if the direction bit mask
maintained by Algorithm 3 is useful for other purposes. In the future, we would
like to investigate more uses for implicit binary trees, e.g., solving mathematical
optimization problems where each node can be seen as an interval over an objec-
tive function. As a concrete example, our implicit traversal algorithm can be used
to find the closest point on a curve evaluated using interval arithmetic. Another
promising avenue for future work is investigating how stackless traversal algo-
rithms can be employed by specialized ray tracing hardware. They can potentially
be very useful for dynamic ray reordering during traversal in order to increase
memory locality.
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ABSTRACT

Edge aliasing continues to be one of the most prominent prob-
lems in real-time graphics, e.g., in games. We present a novel algo-
rithm that uses shared memory between the GPU and the CPU so that
these two units can work in concert to solve the edge aliasing problem
rapidly. Our system renders the scene as usual on the GPU with one
sample per pixel. At the same time, our novel edge aliasing algorithm
is executed asynchronously on the CPU. First, a sparse set of impor-
tant pixels is created. This set may include pixels with geometric sil-
houette edges, discontinuities in the frame buffer, and pixels/polygons
under user-guided artistic control. After that, the CPU runs our sparse
rasterizer and fragment shader, which is parallel and SIMD:ified, and
directly accesses shared resources (e.g., render targets created by the
GPU). Our system can render a scene with shadow mapping with
adaptive anti-aliasing with 16 samples per important pixel faster than
the GPU with 8 samples per pixel using multi-sampling anti-aliasing.
Since our system consists of an extensive code base, it will be released
to the public for exploration and usage.

ACM Transactions on Graphics, 32(4):100:1–100:10, 2013.





1. INTRODUCTION

1 Introduction

Geometric aliasing is still one of the major challenges in real-time rendering, as
noted by Andersson [6] among others. Supersampling anti-aliasing (SSAA) is
expensive both in terms of memory bandwidth usage, and in terms of fragment
shading since each visibility sample is shaded individually. Multi-sampling anti-
aliasing (MSAA) is less expensive, since the fragment shader is only executed
once per pixel per primitive even though there are more visibility samples. Still,
this incurs a lot of overhead in terms of rasterization, color & depth buffer memory
bandwidth, and shading usually increases along triangle edges (see Section 2 for
more information about this). At the same time, we note that many desktops and
laptops have four or more CPU cores, and often, only a fraction of them are active
during game play. A major goal of our research has been to develop an adaptive
anti-aliasing (AA) algorithm where the CPU cores and GPU cores join forces to
solve this problem using a shared memory architecture.
Already in 1977, Crow suggested to apply more expensive anti-aliasing techniques
only to pixels being covered by the geometrical edges [13]. Algorithmic variants
based on the same underlying idea have been proposed [25, 2] after that, but there
is still no practically useful algorithm that also generates high image quality with
high performance. Based on Crow’s observation that only a sparse set of pixels
needs high-quality edge anti-aliasing, we present a novel algorithm for solving the
geometrical edge anti-aliasing problem.
Our algorithm leverages idle CPU cores to perform anti-aliasing for a sparse set
of pixels, while allowing the GPU to render the entire scene quickly using a single
sample per pixel (spp). There are several merits to this approach. First, since ac-
curate anti-aliasing is calculated for limited parts of the frame buffer, the workload
is control flow divergent. A current CPU is thus a better fit than current GPUs
to perform such calculations. Second, since anti-aliasing is decoupled from the
GPU rendering pipeline, we can anti-alias only the most important pixels, which
is often less than 5% in our experience, and in the worst case early-out in order to
guarantee a certain frame rate. Third, our target architecture exploits shared mem-
ory between the CPU and GPU, which makes it possible for the sparse fragment
shader evaluation done on the CPU to directly (without copy) access render tar-
gets already generated by the GPU, and also sparsely update the final image with
high-quality anti-aliased pixels. Together this makes our algorithm extremely fast.
A high-level illustration of our algorithm can be seen in Figure 1.

2 Previous Work

There is a wealth of literature on the topic of post-process screen-space anti-
aliasing. The first technique in this area is called morphological anti-aliasing
(MLAA) [24], where the idea was to analyze the rendered image, detect edges,
and cleverly filter over them with the goal of approximating an anti-aliased im-
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Figure 1: Our system generates high-quality edge anti-aliasing. Two render tar-
gets are rendered (top) with one sample per pixel (spp)—a shadow map and a
rendering of the scene using the shadow map. In addition, our algorithm generate
edges (bottom) and perform sparse rasterization, anti-aliasing (AA), and shading
(bottom) for the edge pixels in the scene (but not in the shadow map). What is
unique about our system is that all the squares in the middle are located in shared
memory, the passes at the top are executed by the GPU, and the passes at the
bottom are executed on the CPU, and together they generate a high-quality anti-
aliased image (right) with 16 spp for the edges.

age. Since then, many intelligent edge-blur techniques have been proposed, and
they are widely used in the game industry, since they are fast and power-efficient.
We refer the interested reader to the excellent SIGGRAPH course on this topic by
Jimenez et al. [20]. We note that these techniques are not robust to all kinds of
scenarios.
Point sampling techniques, such as SSAA and MSAA (mentioned in Section 1),
are commodity features in graphics architectures today. One potential disadvan-
tage of MSAA is that shading along edges increases. For example, if a pixel is
intersected by an edge (does not need to be a silhouette) shared by two triangles,
and if there is at least one sample inside each triangle, then shading will be exe-
cuted twice, for such pixels, and it will be done on a per 2×2 pixel basis. This can
be particularly expensive for highly tessellated geometrical objects. Fatahalian et
al. [14] present a hardware-based approach to solve this, where fragments are gath-
ered and merged in order to avoid unnecessary shading. In coverage-sampled AA
(CSAA) [27], each pixel stores at most 2n colors in a per-pixel palette, and each
sample may point into this palette using an n-bit index. For high-quality visibility,
the number of coverage samples per pixel is higher than the number of colors in
the palette, e.g., a pixel may have 4 colors and 16 coverage samples. When more
than 4 colors appear in a pixel, a heuristic is needed to reduce that set of colors
down to 4 colors again. Note that these techniques, including SSAA, MSAA, and
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CSAA, are still rather brute-force approaches, since anti-aliasing is not directed
only towards the pixels that are in need of it.
Carpenter’s A-buffer [10] is another type of MSAA, where shading is decoupled
from color and depth samples. Each rendered polygon stores a fragment per pixel,
where a fragment consists of a coverage mask, i.e., a bitmask, as well as a color
and some depth representation. A pixel can store any number of fragments in order
to capture transparency effects etc. In addition, merging of fragments can be done
in some situations for more efficient processing.
Crow [13] suggested that more effort should be spent on edges, and in particular on
geometrical edges. For such pixels, analytical methods would be used to compute
the area of coverage, and accumulated to the pixel color. However, this assumed
non-overlapping polygons, and hence no handling of depth, which makes its usage
less influential. Based on Crow’s observation, however, Sander et al. [25] rendered
the scene using 1 spp, and then overdrew the discontinuity edges with anti-aliased
lines. This requires the lines to be rendered in back-to-front order for correct
blending, and depth may not be resolved correctly on these lines, since the depth
buffer is not multi-sampled. Aila et alia presented a hardware mechanism called
the delay stream [2]. One of their applications was adaptive AA on geometrical
edges, also based on Crow’s observation. However, the delay stream is not yet
implemented in any hardware to our knowledge. Our approach is also based on
spending more AA efforts on geometrical edges, but our approach is based on
introducing a sparse rasterizer & shader, and our method exploits shared memory
to efficiently implement complex shading.
Greene et al. presented hierarhical Z-buffering [18], where a quad tree of depths is
maintained, and each node stores the maximum depths of its childrens’ depths. An
object-space octree of the scene geometry is used for hierarchical culling against
the Z-pyramid. Greene and Kass [17] extended the previous method to render
scenes with guaranteed error bounds. An octree of the geometry is traversed in
front to back order, and occluded geometry is culled against the quadtree. Poten-
tially visible polygons are inserted into the quadtree that contains conservative Zmin
and Zmax of the geometry in the node. Finally, the hierarchical tiling algorithm for
high-quality rasterization by Greene [16] uses a coverage hierarchy. Classification
of the polygon during traversal of the hierarchy is divided into inside, outside, or
intersecting the nodes. Similarly, a quadtree node may be marked as fully covered,
vacant, or active. Polygons are traversed in a strict front-to-back order using a
BSP-tree with a Warnock-style [26] tiler for rasterization.

3 Algorithm Overview

Our algorithm is divided into two parts, where one is executed on the graphics
processing unit (GPU), and the other on the CPU cores. The idea is to take any
application, e.g., a game, and render the entire scene, as usual on the GPU, using
either OpenGL or DirectX, at one sample per pixel (spp). The fragment shaders
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Figure 2: In this example, we assume that n render targets, with one sample per
pixel (spp), are rendered by the GPU, and that for the final rendering on the GPU,
all render targets are read and used in the fragment shader for the final image.
One or more post-processing passes may follow. The work of the GPU is shown at
the top, the work done by the CPU cores is shown at the bottom, and the shared
memory, which glues together the work done by the CPU and the GPU, is shown in
the middle. Note that the CPU rendering pipeline consists of three stages, namely,
silhouette edge detection, sparse rasterization, and sparse anti-aliasing. The CPU
pipeline works on a sparse set of important pixels (see Figure 1) that are in need
of high-quality anti-aliasing. One reason that our algorithm is fast is that it can
exploit the render targets created rapidly by the GPU, and sparsely read from
these render targets directly from the CPU, thereby avoiding the often expensive
copy from GPU to CPU. In the same way, the CPU can update a sparse set of
pixels directly into the final image since the memory is shared.

used for rendering can include all conventional rendering techniques, such as local
illumination, texture mapping, environment mapping, screen-space ambient occlu-
sion, G-buffer passes for deferred rendering, light accumulation, shadow mapping,
shadow volumes, etc. Most rendering engines consists of several passes, where
each pass may generate one or more render targets (RTs). The user of our algo-
rithm can choose to apply high-quality anti-aliasing to any subset of the render
targets, and we call these high-quality render targets (HQRTs). The high-level
idea of our approach is to first render to the RTs and the HQRTs as usual using the
GPU with one spp, and then let the CPU refine the pixels, in the HQRTs, that are
in need of high-quality anti-aliasing.
While the GPU is no more occupied than usual, our novel contribution is to run our
adaptive anti-aliasing algorithm asynchronously on the CPU cores for the HQRTs.
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Our CPU rendering pipeline consists of three stages, namely, i) silhouette edge
detection, ii) sparse rasterization, and iii) sparse anti-aliasing. The number of
pixels containing silhouette edges in an image is relatively small (often less than
5% in our experience), and more expensive, higher-quality anti-aliasing will be
applied to only this sparse set of important pixels. The fragment shading for the
sparse set of pixels is done on the CPU, where the render targets are accessed via
shared memory. This makes our CPU shading extremely efficient. Finally, the
high-quality versions of the sparse set of important pixels are written back to the
HQRT, also located in shared memory.
In our experience, it is often sufficient to let only the final render pass (before any
post-processing techniques, such as tone mapping, etc, are applied) render to an
HQRT and let all other render targets be rendered at one spp on the GPU. This
makes the impact of our algorithm very small. An illustration of such a setup
is shown in Figure 2, where the final render pass uses an HQRT. In this setup,
the fragment shader in the final render pass also accesses all previously generated
render targets. Note that this is just an example—there are essentially an endless
number of variations possible.

4 GPU Rendering Pipeline

The task of the GPU is simply to render all RTs and all HQRTs as usual with only
1 spp. As we will see in Section 5, the RTs and HQRTs may be accessed from the
fragment shader running sparsely on the CPU, and in addition, the HQRTs will be
updated sparsely with high-quality anti-aliased pixels. Hence, the RTs and HQRTs
need to be shared between the CPU and the GPU. In the worst case, sharing re-
sources means copying data from the GPU to the CPU every frame, and in the best
case, it simply means reading from the same memory pointer as the GPU pipeline
uses. The latter is a reality when working with a shared memory architecture,
such as the Intel Ivy Bridge [22] with an integrated graphics processor. Therefore,
our algorithm is designed around an architecture that can share the address space
between the CPU and the GPU.
Even without shared memory, a duplication of static vertex buffers and textures
generally works well. However, rendering gets substantially less efficient when
there is a frequent use of render targets. We elaborate on this in Section 5.3.

5 CPU Rendering Pipeline

As mentioned in Section 3, the purpose of the CPU rendering pipeline is to detect
a sparse set of important pixels that contain geometrical silhouette edges, and then
sparsely apply a high-quality anti-aliasing algorithm to only these pixels. Our CPU
pipeline is heavily optimized for rasterizing triangles to this sparse set of impor-
tant pixels, and in this section, we describe the algorithmic side of our approach,
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while the implementation details, which depends on the target architecture, are de-
scribed in Section 6. The three stages of our CPU rendering pipeline are silhouette
edge detection, sparse rasterization, and sparse anti-aliasing, and these stages are
executed for all HQRTs. The following subsections contain descriptions of these
stages.
Similar to the GPU pipeline, the input to our pipeline is organized into draw calls.
Each draw call contains information about a group of vertices with the same for-
mat and rendering state, connected into triangles by an implicit relationship, or
explicitly by a list of indices. The following subsections will refer to vertices and
triangles in the context of all draw calls.

5.1 Silhouette Edge Detection

Here, we describe a straightforward silhouette edge detection mechanism, illus-
trated by the three leftmost gray boxes at the bottom in Figure 2, used in our algo-
rithm. First, the clip-space positions for all vertices are computed. Note that we
avoid computing other per-vertex attributes, and defer them until they are possibly
needed. As will be seen later in Section 5.3, the vertex attributes are only com-
puted sparsely for the vertices that are accessed. Next, the triangle edges are tested
to determine whether they are geometrical silhouette edges. The usual convention
is to treat an edge as a silhouette if the edge is shared by one front-facing and one
back-facing triangle for closed models, or if the triangle edge is only connected to
a single front-facing triangle [12, 9]. As a side effect, we mark edges as silhouettes
whenever there is a difference in attributes on the edge, since the vertices are then
distinct in the vertex buffer. For example, all edges of the quadrilaterals of a cube
will be marked as silhouettes because the normals of the quadrilaterals differ.
All silhouette edges are then clipped against the canonical clip-space volume. The
silhouette edges, which possibly have been clipped, are then conservatively ras-
terized into an image, called the importance map, with the same resolution as the
HQRT. Note that we use the term important to indicate that a more sophisticated
anti-aliasing algorithm should be applied to those pixels. Hence, it suffices with
a single bit per pixel in the importance map, where zero indicates no further need
of anti-aliasing. For conservative line rasterization, we use the two-dimensional
version of Amanatides and Woo’s DDA algorithm [5].
Although geometrical silhouette edges are unable to capture aliasing from inter-
secting triangles, a trivial extension can allow additional important pixels to be
specified from, e.g., discontinuities in the color buffer, where there is no discon-
tinuity in depth. Another possibility is to allow an artist to paint importance on
objects and rasterize those to the importance map. Yet another is simply to mark
an entire triangle or object as important. This may be useful when the sampling
rate needs to be locally higher for an entire object. We refer to these additions
to the importance map as manual additions. Manual additions represent a spe-
cial case because some optimizations cannot be applied when performing shading
culling, as described in Section 5.3. In particular, we cannot assume that there are
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Figure 3: The input from the edge detection phase is an importance map (left),
with one bit per pixel indicating whether there is at least one silhouette edge
overlapping the pixel. Here, the resolution is 16× 16, but in reality, it may be
2048×1024, for example. Tree construction is done bottom up (illustrated as left
to right in the figure). The bit of a parent is the logical OR of all children’s bits.

no intersecting triangles that are in need of AA.

5.2 Sparse Rasterization

This subsection describes how our sparse rasterizer, corresponding to the fourth
and fifth gray boxes at the bottom in Figure 2, works. Early rejection of candidate
triangles is one of the most important design principles of our CPU rasterizer,
which makes this stage extremely important.
The sparse rasterization stage commences by creating a quadtree of the importance
map from the edge detection phase (Section 5.1). Recall that the importance map
contains one bit per pixel, and the bit is set to one if there is at least one silhouette
edge overlapping the pixel. We call the resulting quadtree a hierarchical impor-
tance map (HIM), which is a full tree since the input is the entire image. The HIM
will be used in the sparse rasterizer to stop traversal if a triangle does not overlap
any pixels that are important. In our case, the bit of a parent is set to one if at
least one children bit is one. An example is shown in Figure 3. Note that we have
chosen a quadtree, but any hierarchical tree would work.
Next, we describe our sparse rasterization algorithm. The purpose is to find, for
each pixel, a list of triangles that may possibly affect the final pixel color. Note that
it does not suffice to loop over triangles with silhouette edges, because a triangle
without a silhouette edge may still be visible within an important pixel, and can
therefore affect the final color of the pixel. A typical example is a background
triangle, and a silhouette edge cutting through a pixel. Therefore, all triangles are
rasterized against the HIM in this stage.
In theory, sparse rasterization is simply the process where a triangle is traversed
against the quadtree of the HIM. Traversal continues down into a child node if the
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triangle overlaps with the spatial extents of the child node, and the corresponding
bit in the HIM is set to one, i.e., there is at least one important pixel in the subtree
of the child node. The overlap test between a quad and a triangle can be done
with an efficient tile test using only additions [23, 3]. In the following, we will
use the term tile to denote a 2n× 2n region of pixels, where n ≥ 0, and n can be
adjusted for different performance trade-offs. When a node, whose size is equal
to the tile size, is reached during traversal, a pointer to that triangle is added to
the tile’s triangle list so that the sparse anti-aliasing procedure (Section 5.3) knows
which triangles to process in the important pixels. This means that a triangle list
will be created for each tile, and these triangles are a superset of the triangles that
may affect the final color of the pixels in that tile. In practice, the entire traversal
can be done in a more efficient manner, depending on the target architecture. Our
current implementation is described in Section 6.
Occlusion culling is very important to performance, and our approach is similar
to zmax-culling used in graphics processors [21, 18], where conservative tests are
used. For each tile, a ztile

max-value is first initialized to ∞. If an opaque triangle is
processed, and it covers the entire tile, the triangle’s maximum depth, ztri

max, inside
the tile is computed as the maximum of the triangle depths at the four corners of
the tile. If ztri

max < ztile
max then the maximum depth of the tile is updated: ztile

max = ztri
max.

Note that all triangles behind ztile
max can be safely culled for opaque geometry. For

all triangles that are processed during sparse rasterization, a ztri
min-value is also com-

puted as follows. The zverts
min is computed as the minimum of the triangle vertices,

and zcorner
min is computed as the minimum of the depths of the triangle plane at the

four corners of the tile. A tight, conservative estimation of the minimum depth
of the triangle in that tile is then ztri

min = max(zverts
min ,zcorner

min ) [4]. This ztri
min-value is

stored with the triangle for that tile. All incoming triangles are culled against the
current ztile

max, i.e., if ztri
min > ztile

max then the triangle is not added to the triangle list of
the tile.
Note that our traversal and data structure (HIM) resemble the work of Greene et
al. [18, 17, 16]. However, in our case, the quadtree is built once and used for the
remainder of the process, while their quadtrees are updated continuously during
rendering of the scene. In addition, our data structure represents a sparse set of
pixels in need of anti-aliasing, and we do not require a strict front-to-back traversal
of all triangles [16].

5.3 Sparse Anti-Aliasing

This subsection describes how our sparse visibility computations, culling, and
shading are done (rightmost gray box at the bottom in Figure 2). The purpose
of this stage is to efficiently resolve visibility among the triangles of a tile and ulti-
mately calculate the color of each important pixel within. All triangles within a tile
are processed in submission order. This stage defines sequence points where the
blend mode, z-mode, or other pixel back-end state changes. All triangles contained
within the same sequence points are treated as a continuous triangle sequence,
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vertex

attributes
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(SIMD)

gather
fragments

to be
shaded

shade
fragments
(SIMD)

silhouette
edges

pixels
containg edges

Figure 4: Left: two triangles belonging to the same draw call request that some
fragments be shaded since they have silhouette edges in several pixels. Note that
one pixel needs to shade both the yellow and the blue triangle. Right: the shad-
ing pipeline. First, the vertex attributes are gathered into an input buffer, and
then these are shaded in parallel using SIMD execution. Next, the fragments to be
shaded are gathered, and finally, these fragments are shaded (which includes at-
tribute interpolation). Note that in reality, more triangles are usually present. For
example, one triangle would usually exist between the blue and yellow triangle–we
excluded it to make the figure clearer.

even if triangles belong to different draw calls.
Our current approach to high-quality anti-aliasing is simply adaptive multi-sampled
anti-aliasing (MSAA), where several visibility samples are used per pixel and tri-
angle, but only a single shading sample. We have found 16 visibility samples per
pixel to be sufficient for most scenes, but this can be specified on a per-pixel level,
and can even vary across the image. First, inside testing is performed against the
edge equations of a triangle, and for each visible sample, a depth value is computed
and a triangle pointer is stored.
Shading is delayed to a point where it is absolutely necessary, generally reducing
the amount of shading performed. In the case of opaque geometry, the resolve
defers shading within the tile until a triangle sequence with a transparent blend
mode starts, or until all triangles within the tile have been processed. In the case
of transparent geometry, fragments are shaded for a small group of triangles at a
time, e.g., 4 or 8. They are then blended with the tile’s samples in submission order.
More details about the shading pipeline can be found in Section 5.3. However, first,
we describe a number of different culling methods that we use before shading is
done.

Culling

Depending on the rendering state of the triangle sequence, different optimizations
can be applied. In the common case, where a triangle sequence represents opaque
geometry with depth testing enabled, all optimizations are active. First, all trian-
gles whose ztri

min > ztile
max are removed from the triangle list of the tile. The remaining

triangles are reordered to maximize occlusion culling within each pixel. In our im-
plementation, the triangles are sorted based on ztri

min.
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To allow for occlusion culling at the pixel level, a zpixel
max -value, representing the

maximum depth of the samples in a pixel, is maintained. Once all samples in
the pixel have been covered by opaque geometry, the value is used for occlusion
culling. When a triangle in a triangle sequence is found with ztri

min > zpixel
max , the

rest of the triangle sequence can be discarded since the triangles are sorted along
ztri

min. This scheme allows for efficient occlusion culling even when using highly
tessellated models.
For opaque geometry, there are also a number of methods to avoid unnecessary
shading, and hence can be seen as shading culling techniques. For example, if a
single fragment is to be shaded for an important pixel, CPU shading is omitted
since it would result in the same shading as already generated by the GPU. As
a consequence, the pixel is discarded. Similarly, if there are two fragments that
belong to two front-facing triangles sharing an edge, which obviously is not a sil-
houette edge, the corresponding important pixel is discarded. Finally, if there are
multiple fragments, but none of the fragments belong to a triangle with a silhouette
edge, then there cannot be any visible silhouette edge within the pixel. Hence, the
important pixel is discarded. The last optimization assumes that there are no in-
tersecting triangles in need of AA. Therefore, it cannot be applied if the important
pixel is a manual addition.
Note that there is a small risk of increased aliasing when the optimizations from
the previous paragraph are used. Since fragments are created from discrete sam-
ples, there is a possibility that a small triangle ends up between samples when our
algorithm is used. The GPU pipeline, on the other hand, might sample this small
triangle, and hence produce an aliased pixel, which is different from the resulting
pixel from our high-quality rasterizer. The risk of this happening can be reduced
to numerical differences by specifying one of our sample points to coincide with
the sample location used by the GPU. However, this issue is ultimately a sampling
problem that can be solved by increasing the sample rate of our CPU pipeline.

Shading

Self-contained fragment shaders, such as those using static textures and uniforms,
are trivial to implement in the CPU pipeline. More advanced shaders, in particular
those that use render targets (RTs), may require a more elaborate solution, depend-
ing on the underlying architecture. When memory is shared between the GPU and
the CPU, RTs (created by the GPU pipeline) are directly accessible to the CPU
pipeline. However, when the CPU and the GPU are separated by a relatively slow
memory bus, issuing transfers of all RTs from the GPU to the CPU each frame,
is prohibitively expensive. One solution is to evaluate RTs lazily when they are
accessed by a CPU shader. However, even though the evaluation becomes sparse,
it would become expensive with many RTs. It is also unclear how lazy evaluation
could be implemented in a feed-forward rasterizer. For these reasons, we focus on
shared memory architectures in this paper, and we note that with a shared mem-
ory architecture many more different flavors of an algorithm are possible and can
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become efficient.
When possible, shading is performed for all deferred samples within the tile simul-
taneously. This enables SIMD execution over fragments from different important
pixels and will thus have better efficiency than traditional quad rendering in our
sparse setup. Initially, the samples within each pixel are compacted into per-pixel
per-triangle fragments with a sample mask. These fragments are then sorted based
on draw call, triangle, and pixel, in that order. All fragments belonging to the same
draw call are processed simultaneously so that a single shader invocation can be
performed for all draw call fragments. First, all vertex attributes for the draw call
triangles are fetched into an input buffer. Then, all attributes are shaded using a
single attribute shader invocation. Note that the attributes for each triangle are
shaded exactly once within a tile. The resulting shaded attributes are then inter-
polated to the individual fragments. Finally, the interpolated attributes are used as
input to a single fragment shader invocation that calculates the color of each frag-
ment. The resulting colors are then distributed to the individual samples and they
are marked as shaded. An example of our shading pipeline is shown in Figure 4.
When all triangles have been processed in a tile, the final pixel color is computed
as the mean of all the samples’ color, which is the last step of our pipeline.
Next, we describe how derivatives are computed in our pipeline. A common way
to compute attribute derivatives for, e.g., texture mip map selection, is to render
quad fragments and estimate the derivatives as the differences between the sam-
ples. In our setup, this would be very inefficient since we are rendering a sparse
set of pixels. Therefore, we employ analytical derivatives of the barycentric coor-
dinates. These derivatives can simply replace the ordinary barycentric coordinates
for attributes that are to be differentiated, rather than interpolated, before frag-
ment shading. One issue that this fails to deal with is derivatives of indirect texture
lookups. In this case, we resort to performing multiple lookups inside the fragment
shader in order to perform the differentiation explicitly.

6 Implementation

This section describes our high performance CPU pipeline that implements all
the pipeline stages described in Section 5. It is written specifically for the x86-
64 architecture targeted at multicore CPUs supporting SSE 4.1 instructions at a
minimum. Most of our implementation is independent of the architecture’s SIMD
width and simply process more data in Struct of Arrays (SoA) fashion. This means
that the same algorithm can use either 4-wide SSE or 8-wide AVX, as well as future
SIMD widths, without much adjustment. The inputs to our pipeline, such as vertex
buffers, contain regular Array of Structs (AoS) data. Therefore, we make frequent
use of register transpose to convert loaded AoS data to SoA form.
Our pipeline makes use of a rasterizer based on two-dimensional edge equations
from projected and grid-snapped vertices, with similarities to Larrabee rasteriza-
tion [1]. While this makes it possible to perform rasterization using fixed point
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math, we still resort to AVX floating point computations for efficiency. This is fine
as long as all floating point values are within ranges that guarantee an exact result.
For example, a 32-bit IEEE 754 floating point value can represent a 24-bit fixed
point value exactly (not counting the sign bit). In the future, we will investigate
using AVX2 since it extends integer arithmetic to 256 bits.
In order to distribute work among multiple CPU cores, the pipeline splits the dif-
ferent stages of Section 5 into various tasks that are consumed by a pool of worker
threads. The main thread can queue multiple independent tasks for processing.
Each task has a number of work items that represent the basic unit of work dis-
tributed to the worker threads. The work items in each task have a global order;
the first work item of the second task is numbered immediately after the last work
item of the first task. This allows all worker threads to acquire their work in a
lock-free fashion by using an atomic increment of a shared counter. Each task can
spawn new tasks when finished and can thus implement dependency chains. The
main thread have the ability to wait for all tasks to finish in order to synchronize
different stages.
The vertex position shading stage is trivially implemented by processing multiple
vertices simultaneously in SIMD fashion. Each task consists of a single draw call,
and each work item consists of a subset of vertices to shade. Once a vertex shad-
ing task completes, it immediately queues a task for performing triangle setup for
each triangle. Triangle setup tests for trivial rejection against the view frustum,
performs clipping, snaps its vertices to a two-dimensional grid, determines its fac-
ing, computes a bounding box, and sets up edge equations. The facing information
is used to speed up the silhouette detector, which follows in the dependency chain.
The silhouette detection task checks front facing triangles for silhouettes by testing
the facing of adjacent triangles. The resulting silhouette edges are clipped against
the view frustum and conservatively rasterized to the importance map. In order
to avoid the synchronization necessary to set individual bits in the importance
map, each entry is instead byte sized. Note that vertex shading, triangle setup,
and silhouette detection are performed independently for all draw calls without
any synchronization. Before starting the next stage, the main thread waits for all
outstanding tasks to finish. Once all draw calls have been shaded, and all silhou-
ettes have been rasterized to the importance map, the HIM is built. First, a task
that builds tiled subsets of the HIM is executed in parallel. Then a single thread
builds the highest levels of the tree over the generated tiles. The HIM is used when
binning triangles in the next stage.
The sparse rasterization stage creates one task for each draw call, where a sub-
set of a draw call’s triangles are processed in each work item. Each work item
reads 4 or 8 front facing triangles at a time, depending on the SIMD width of
the CPU, and stores them in vector registers in SoA form. Active triangles are
indicated by a lane mask, which is updated as triangles get rejected. A bound-
ing box is then computed around the active triangles, in order to allow for an
immediate jump to the lowest possible level in the HIM. This is done efficiently
as int lvl=32-clz(max(bbw-1,bbh-1)), where bbw and bbh are the bound-
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ing box width and height, respectively, and clz() is an instruction that counts
the number of leading zeroes. Note that level 0 is the highest resolution level in
the HIM. All active triangles are then simultaneously traversed against the HIM,
while maintaining active triangles in the lane mask. When the tile level is reached,
ztri

min and ztri
max are computed and all triangles, which are currently active in the lane

mask, are written to the tile’s triangle list, after testing for occlusion. In order to
avoid synchronization, each thread has its own per-tile triangle list.
Once all triangles have been binned to tiles, the sparse anti-aliasing stage creates
a single task with work items corresponding to a tile each. Each work item starts
by reserving and clearing samples for all important pixels within the tile. Then,
the draw call triangles overlapping the tile are read in submission order, by pick
sorting from the per-thread triangle lists created in the previous stage. Once a
whole triangle sequence have been read, and possibly reordered, the triangles are
sample tested. First, the edge equations for a SIMD width of triangles are read.
Then, a lookup table, containing the result of evaluating the edge equations at
the local sample positions, is set up in order to accelerate the sample tests. For
each important pixel, all loaded triangles are conservatively tested against the pixel
extents in parallel. Then, each triangle, possibly overlapping the pixel, is sample
tested one at a time. Inside- and depth testing is performed at the sample locations
using the previously computed lookup table, offset by the edge equations evaluated
at the pixel. This is done in parallel over samples. Shading is computed exactly as
described in Section 5.3. Note that since the CPU cores work in parallel with the
graphics processor, our AA algorithm does not increase the frame latency, which
is a highly desired feature.
Our code base is rather extensive, and in order for others to be able to reproduce
the results and make use of our algorithm, the source code of our CPU rasterizer
is released under the MIT license.

7 Results

For all our results, we have used an Intel Ivy Bridge Core i7 (3770K) at 3.5 GHz
with four cores (eight threads) and with an integrated graphics processor (HD
Graphics 4000) containing 16 EUs (execution units) for unified shading. The EUs
are capable of a theoretical 166.4/294.4 GFLOPS without/with Turbo, while the
CPU cores have a theoretical peak of 224/249.6 GFLOPS. The thermal design
power (TDP) for this chip is 77 W, including both the CPU and the GPU. Our
machine uses Windows 7 as operating system, and we have implemented our al-
gorithm using DirectX 11 with the DirectResourceAccess1 extension for shared
memory from Intel.
Four different scenes have been used for our experiments. These are Chess, Sponza,
Buddha, and Hairball. Chess and Hairball both have Phong shading and shadow

1Also called InstantAccess.
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mapping with one light source. Sponza also has Phong shading and one shadow
map, but also texturing and alpha-textured transparent flowers. Silhouette detec-
tion was disabled for the flowers, because their textures are transparent towards
the edges. This is optional, however. The Buddha scene has four Phong shaded
light sources, each with an individual shadow map. Percentage-closer filtering
(PCF), for shadow mapping, was implemented in the shader by interpolating four
nearest neighbor samples.2 We compare our asynchronous adaptive anti-aliasing
algorithm, which is denoted A4 and is described in Sections 3-6, against both the
integrated GPU and against WARP [15], which is an optimized software rasterizer
used as a fallback in Windows 7. For the GPU and WARP, we use MSAA with
4 and 8 spp, where 8 spp is the highest setting for these two renderers. For A4,
results are shown for both 8 and 16 spp. We have used sampling patterns which are
digital nets for high quality. For example, for 16 spp, we use a (0,4,2)-net in base
2. The results have been generated for 1280×800, 2048×1280, and 2880×1800
resolutions, where the latter is the native resolution of a Macbook Pro 15” (2012).
We use WARP as a reference for software rendering performance. In practice, A4
has the advantage of letting the GPU render all shadow maps. In order to make the
comparison more informative, we do not count the time WARP needs to render the
shadow maps. Note that this gives WARP an advantage over A4 in that it does not
need to wait for the GPU to finish shadow map rendering.
Our main results are shown in Table 1. For A4, we have used a tile size of 8×8,
since that size gave best results for all scenes and resolutions. One row in the
table says “A4 16 spp 100%”, which means that we deliberately set all pixels to
be important in our algorithm. As a consequence, all pixels are rendered using the
CPU pipeline for that setting. It is interesting to see that with 16 spp, A4 100% is
about on par with WARP 4 spp for Chess, but for the rest of the scenes, A4 100%
is significantly faster, despite the fact that WARP does no shadow map rendering
and A4 has overhead for silhouette detection, HIM generation & construction, and
is optimized for sparse rendering & shading. In addition, A4 100% has 4× as
many spp. For the hairball, A4 100% is more than twice as fast. Note also that
our adaptive A4 algorithm with 16 spp is between 3.9–7.1× faster than WARP at 4
spp, for the first three scenes, and for the hairball, this is reduced to 2.6-2.7× faster.
Hence, our method generates higher quality images and is faster than WARP.
The other interesting results are just below the A4 100% row, where the numbers
for our A4 algorithm are shown together with MSAA numbers for the GPU. Note,
for example, that A4 with 8 spp always is as fast or faster than the GPU with 8
spp, for all resolutions and all scenes, and the gap is bigger, the higher resolution.
In fact, for the highest resolution, A4 is 1.2–2.3× faster than the GPU. Comparing
A4 with 16 spp vs. GPU with 8 spp, it can be seen that A4 is faster or about the
same. Also, our algorithm scales better than the other algorithms with increasing
resolution. This is expected since the percentage of the pixels with silhouette edges
decreases with higher resolution. We also note that A4 with 8 spp is exactly as fast

2Hardware PCF could not be combined with R32 float render targets, which we use for shadow
maps on our current platform.
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Chess Sponza Buddha Hairball
Vertex Position Shading 1.4% 1.7% 4.0% 2.1%
Triangle Setup 6.6% 5.9% 21.0% 13.5%
Silhouette Detection 3.1% 3.5% 10.0% 8.3%
HIM Build 3.1% 0.6% 0.7% 0.1%
Sparse Rasterization 14.4% 16.3% 19.2% 17.3%
Sparse AA - Visibility 40.9% 37.1% 28.4% 36.3%
Sparse AA - Shading 23.0% 30.8% 15.9% 21.3%
Copy to frame buffer 7.6% 4.1% 0.9% 1.1%

Table 2: The time spent in the different stages of our algorithm.

or just a little bit faster than A4 with 16 spp, which is a consequence of that we
have focused on optimizing the 16 spp variant more.
The time spent in the different stages of our pipeline is summarized in Table 2 for
our test scenes at 2048×1280. As can be seen, most of the time is spent in the later
stages of the pipeline, much like a real GPU pipeline. The Buddha scene is a bit
different and spends more time in the earlier stages. This is expected since Buddha
has very few silhouettes compared to the number of triangles in the scene, which
means that most work is culled before the later stages. It is also interesting to look
at the CPU load using our algorithm, e.g., A4 with 16 spp for the scenes in Table 1.
For Chess, it varies from 52% (highest resolution) to 72% (lowest resolution). For
Sponza, the corresponding numbers are 84%-91%, and for Buddha: 72%-89%.
The hairball is more extreme, due to the many silhouettes, and the CPU load is
about 99% all the time. The CPU load is related to how much A4 needs to be idle
and wait for the GPU to render shadow maps and the frame buffer at 1 spp. The
fact that the CPU load generally decreases with higher resolution is evidence that
the GPU becomes the bottleneck at higher resolution.
To determine how A4 scales with increasing shader complexity, a shader with
varying number of diffuse point lights and no textures/shadow maps, was applied
to all scenes. The results are shown in Figure 5, where it is clear that our algorithm
just becomes a small offset to GPU 1 spp at some point. One interpretation for
this is that more expensive shaders are beneficial to our algorithm. This and better
resolution scaling are two really important features of A4. The results also indicate
what factors contribute to increased rendering time when using MSAA, and hence
how A4 can improve performance. The difference in time at zero point lights can
be interpreted as the cost of additional visibility computations, while the slope of
the curve indicates the amount of extra shading. The amount of redundant shading
on the GPU due to quad shading is hard to estimate, but we note that A4 100%
scales best with increased shading complexity. This behavior can be attributed to,
e.g., reduced quad shading overhead and better occlusion culling.
Next, we will discuss some disadvantages with our method. First, our current im-
plementation does not handle tessellation. This would require our vertex position
shading stage to also tessellate, compute the positions of the newly created tri-
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angles, and then detect silhouette edges after that. This would require accurate
knowledge about how the hardware tessellator works, and therefore, it is left as
future work. Second, for best results, surfaces should not intersect. This can, how-
ever, be avoided by the artists at the cost of time. Third, our algorithm is designed
around the fact that many scenes have rather few important pixels, which need
high-quality AA. A difficult scene is therefore the hairball (right in Table 1), as
seen in Figure 6. However, the results here were surprising. A4 (8/16 spp) ren-
dered the scene as fast or faster than the GPU at 8 spp. In fact, for the two higher
resolutions, A4 100% was also faster than the GPU at 8 spp.
Finally, we have also measured image quality, in terms of peak signal to noise ratio
(PSNR), at 2048×1280 against a ground truth image rendered with 256 samples
per pixel with MSAA. The results are shown below in dB (decibels), i.e., higher
numbers are better.

Chess Sponza Buddha Hairball
GPU 4 spp 48.9 dB 48.5 dB 50.1 dB 33.1 dB
GPU 8 spp 52.8 dB 51.9 dB 53.6 dB 37.1 dB
A4 16 spp 54.9 dB 47.1/52.0 dB 54.9 dB 40.1 dB

As expected, the PSNR is substantially higher for A4 using 16 spp compared to
the GPU using 4 & 8 spp. The exception is Sponza, where the PSNR drops to 47.1
dB, which is mostly due to our current handling of alpha-textured geometry. If
transparent geometry also generates silhouettes, PSNR increases to 52.0 dB, which
is a bit better than the GPU at 8 spp. Even though the geometry gets transparent
toward the edges, there are still some hard edges that could be resolved with more
careful texture mapping. Note also that the rendering time increases from 23 to
34 ms when transparent geometry generates silhouettes, which is still faster than
the GPU at 8 spp. This rather substantial increase comes from the fact that shader
culling will be inefficient for all tiles with overlapping transparent geometry in our
current implementation. There is no way to cull before the alpha geometry has
been rendered, and at that point, the tile has already shaded everything for blend
operations to work. We note that this could be resolved by having conservative
zmin for all silhouettes within an important pixel, and perform shader culling if
zsilhouette

min > zpixel
max , but leave this to future work.

As mentioned earlier, it is possible to apply our algorithm to only as many impor-
tant pixels as there is time before the target frame time has been reached. Recently,
Guenter et al. [19] used eye tracking to render in high resolution only in a small
gaze region of the viewer’s eyes. With our algorithm, we could use a similar sys-
tem, but instead increase the sampling rate only in the gaze regions, for faster
rendering. This is left for future work, but it gives some confidence that our plat-
form provides new and interesting alternatives. The energy efficiency of A4 is also
left for future work, i.e., since our approach uses both the graphics processor and
the CPU cores in the chip, it may be that more energy is used compared to using
only 16×MSAA on the graphics processor. However, since our method used less
time to solve the problem, it is possible (but not certain) that our method also uses
less energy.
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Figure 6: Hair ball rendered with A4 with 16 spp in 207 ms at 2880×1800. This
is a difficult case for our algorithm, since there are many silhouette edges. All
important pixels (after all sorts of culling) are marked as red. The GPU used 300
ms with 8 spp MSAA.

8 Conclusions and Future Work

We have presented a real-time hybrid rasterization pipeline, which uses both the
CPU and its integrated graphics processor, for adaptive edge anti-aliasing. The
key hardware component that glues together the communication and sharing of
resources between the GPU and the CPU is a shared memory architecture. Our
results are very promising, and in particular, we believe that our results shows that
a shared memory architecture can be of great benefit to researchers and developers.
In addition, the resolutions of commodity devices have been increasing rapidly
over the last few years, and our algorithm scales better with higher resolutions.
This makes it an interesting alternative for integrated CPU and GPU architectures,
now and for even higher display resolutions (e.g., 3k and 4k).
Most GPU research has focused on discrete graphics cards, but we believe that
shared memory architectures open up for a wide range of novel rendering algo-
rithms. Our system can be seen as a starting point for a more general platform for
hybrid rendering, and in the future, we would like to investigate other uses, e.g.,
ray tracing. We also want to explore whether the sampling rate can be increased
adaptively when a small triangle is missed inside a pixel. Furthermore, we also
want to incorporate analytical [11, 7] and semi-analytical methods [8] into our
renderer. It may, e.g., be possible to develop an analytical method that handles 2–4
triangles per pixel, and then revert to MSAA for more triangles. For future work,
we will also attempt to augment Crow’s method to motion blur and depth of field.
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ABSTRACT

While each new generation of processors gets larger caches and
more compute power, external memory bandwidth capabilities in-
crease at a much lower pace. Additionally, processors are equipped
with wide vector units that require low instruction level divergence to
be efficiently utilized. In order to exploit these trends for ray tracing,
we present an alternative to traditional depth-first ray traversal that
takes advantage of the available cache hierarchy, and provides high
SIMD efficiency, while keeping memory bus traffic low. Our main
contribution is an efficient algorithm for traversing large packets of
rays against a bounding volume hierarchy in a way that groups coher-
ent rays during traversal. In contrast to previous large packet traversal
methods, our algorithm allows for individual traversal order for each
ray, which is essential for efficient ray tracing. Ray tracing algorithms
is a mature research field in computer graphics, and despite this, our
new technique increases traversal performance by 36-53%, and is ap-
plicable to most ray tracers.

ACM Transactions on Graphics, 33(4):151:1–151:9, 2014.





1. INTRODUCTION

Figure 1: A close-up of the crown scene rendered using Embree 2.0 modified
with our novel traversal algorithm. This scene renders, including shading, frame
buffer updates, and all other overhead, about 22% faster with our algorithm on a
Haswell-based ultrabook. The performance improvement comes from our traver-
sal, which is 36% faster than the fastest traversal algorithm in Embree for this
scene. For other scenes, our traversal algorithm can be over 50% faster.

1 Introduction

Ray tracing [27] is a flexible tool that forms the basis for state of the art photo-
realistic rendering algorithms. Recently, it has also seen increasing use in real-time
applications. One of the core operations in a ray tracer is determining the closest
visible surface along a ray. The performance of this operation is critical and is
usually accelerated by building a spatial data structure over the scene. One of the
most popular spatial data structures is the bounding volume hierarchy (BVH). The
time required to trace a set of rays against a BVH is dependent on the size of the
scene, the distribution of the rays, the quality of the BVH, and the performance of
the ray traversal algorithm. Our goal is to create a high-performance ray traversal
algorithm that is less sensitive to the size of the scene and the distribution of the
rays, compared to other packet tracing approaches.
Modern CPUs employ a variety of techniques to improve performance by rearrang-
ing programs to exploit inherent parallelism [12]. Superscalar CPUs can execute
multiple instructions simultaneously on different functional units and pipelining is
used to issue a new instruction each clock cycle. This makes it possible to realize
high throughput with many independent instructions, even though the latency of
different instructions may differ. When the CPU is unable to issue a new instruc-
tion, resources are wasted. Therefore, instruction scheduling is performed both by
the compiler and the CPU. However, efficient scheduling is possible if and only
if the algorithm contains enough independent instructions at any given time. Our
goal is to construct a ray traversal algorithm that aligns well with current hardware,
by providing enough parallel work within a single instruction stream.
Data level parallelism attempts to make the most out of each instruction by per-
forming the same computation on several data items using single instruction mul-
tiple data (SIMD) execution. The extra performance scales linearly with SIMD
width for suitable algorithms and is very power efficient. Current trends indicate
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that SIMD width will continue to increase in the future. For example, contempo-
rary CPUs have a SIMD width of 256 bits, the many-core Xeon Phi architecture
features 512-bit SIMD, and most GPUs have a width of 1024 or 2048 bits. Algo-
rithms need to have low instruction level divergence in order to efficiently exploit
increasing SIMD width. Divergence leads to underutilization since SIMD lanes
will need to be masked out. This is not a trait generally attributed to depth-first
traversal. Even when packets of rays are traced in a SIMD fashion, rays usually
diverge quickly when incoherent, such as for diffuse interreflections, for example.
As compute increases (wider SIMD and more cores), one of the key challenges
involves the external memory bandwidth and cache design. To reduce latency
and bandwidth, CPUs are equipped with a large cache hierarchy in combination
with sophisticated hardware prefetchers that detect memory access patterns, and
prefetch memory into a cache before it is needed. Our algorithm is designed to
have a predictable memory access pattern with high data coherence, which sub-
stantially reduces the amount of memory bandwidth usage in our tests.
Over the last 30 years or so, the topic of ray tracing has been researched thouroughly,
and can in many ways be considered a mature research field. As a consequence,
it is increasingly difficult to develop algorithms that improve performance, and in
particular so for the core methods, such as traversal, intersection, and shading. De-
spite this, our results show that total ray tracing performance can be improved by
22–37%, while traversal alone is increased by 36–53%, which is rather remark-
able. In addition, we expect that our techniques can be applied to a wide range of
existing ray tracers, since the BVH is the most popular spatial data structure.

2 Previous Work

As mentioned above, a substantial amount of research has been devoted to finding
new and improved ray traversal algorithms in order to make the entire ray tracing
process faster. Here, we can only review a small number of these papers, and we
chose the ones that are most relevant for our work.
Usually, a stack is maintained that contains the next node to be processed during
ray traversal. The technique has been combined with various forms of ray sort-
ing and tracing of whole packets [26] of rays to improve performance. Sorting
generally incurs some overhead and is usually a heuristic that hopes to improve
data locality and minimize divergence. Packets of rays are often quite small and
inevitably leads to divergence in all but the most coherent workloads (such as pri-
mary visibility). Stack-less ray traversal [13, 16, 11, 2] is a more recent endeavor
that was, at least initially, motivated by the high overhead of maintaining a traver-
sal stack on previous generations of GPUs. More recently, uses have been postu-
lated to include cheap ray suspension and transfer on distributed systems or custom
hardware [11], though no real demonstration of such system exists, to the best of
our knowledge. Áfra and Szirmay-Kalos [1] present optimized stack-less traver-
sal algorithms for CPUs, MIC, and NVIDIA GPUs using multi-BVHs [24, 7, 5],
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where a BVH node usually have four or more children in order to improve SIMD
efficiency in ray vs. many bounding volumes and intersection tests.
While both stack and stack-less traversal generally performs a depth-first traversal
with a small number of rays, Hanrahan [10] introduced breadth-first ray tracing
to increase the number of cache hits for geometry in a beam tracer. Stream filter-
ing [25, 9, 22, 21] builds upon the ideas of breadth-first ray tracing to test a large
number of rays against the same BVH node or triangle, which may allow high
utilization of very wide SIMD. The downside of their approach is mainly that all
rays need to traverse the BVH in the same order. Mora [19] traverses large packets
of rays against a set of triangles, but perform traversal in such a way that a BVH is
not needed.
When traversing a binary BVH at a certain node, and it is determined that a ray
intersects both children, the algorithm must determine which node to traverse next,
and which to postpone (usually by pushing it to a stack). A very important opti-
mization in ray tracing is to let each ray start traversing the child node that is most
likely to occlude the ray, thus potentially making traversal into the other child un-
necessary. The order is often based on some heuristic, e.g., start with the node
closest to the ray origin. One major disadvantage in existing stream filtering ap-
proaches is that all rays must start with the same node, meaning that, for highly
divergent rays, about half of the rays will start with a suboptimal node. Our ap-
proach combines the strengths of stream filtering, in terms of SIMD efficiency and
memory locality, with the flexibility of a depth-first traversal so that any ordering
heuristic is possible for each individual ray.
Boulos et al. [4] use ray packets of arbitrary size in order to exploit coherence
otherwise hidden in separate smaller packets. They combine BVH packet traversal
(interval arithmetic), SIMD packet tracing, and breadth-first ray tracing. However,
they do not attempt to allow for dynamic descent direction for each individual ray
during traversal, i.e., all rays in a packet must take the same path in the tree. Tsako
et al. [22] combine multi-BVH traversal with stream tracing of large packets in
order to reduce the memory bandwidth associated with single-ray tracing against
an n-way BVH, while eliminating the cost of filtering rays at each traversal step.
They maintain one stack of rays per SIMD lane that are referenced by a single task
stack. Again, the traversal order is the same for all rays.
Garanzha and Loop [8] target GPU architectures and improve performance by effi-
ciently sorting rays for coherence and then traversing coherent packets of rays us-
ing frustums in a breadth-first manner. They use an Octo-BVH and traverse using
an ordering heuristic based solely on the average ray direction within a frustum.

3 Overview

As previously mentioned, a stack, which contains nodes that are still to be tested
against the ray, is usually maintained during single-ray traversal. If multiple rays
are traversed simultaneously, rays will typically have some of the same entries in
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Figure 2: Example traversal state showing the relationship between multiple
single-ray stacks and our combined ray stream stack. Na..f represents nodes of
the BVH and Ra..d represents rays traversed against it. Left: four single-ray stacks
– note that since a stack is a data structure that changes over time, we have cho-
sen to just visualize which nodes are visited by each ray. Middle: here the BVH is
shown, and next to each node, all the rays that visit that node are listed. Right: our
ray stream stack is visualized here, and it is straightforward to confirm that those
two stack representations include exactly the same information. One part of our
new traversal algorithm is that we perform ray vs. node tests in the order provided
by the ray stream stack to increase SIMD efficiency.

their node stacks. This observation forms the basis for our algorithm. The key idea
is that if multiple rays are to be tested against the same node, this can be performed
in a very efficient manner. First, memory fetches for that node can be amortized
over multiple rays. Second, since a single node is tested against multiple rays
that are completely independent, we gain instruction level parallelism and have
additional opportunities for vectorization. This means that 1) SIMD execution can
be used, and 2) dependency chains that may stall the pipeline can be avoided. In
fact, if enough rays are tested against the same node, vectorization can scale to any
SIMD width.
We therefore form a ray stream, which is essentially just a collection of rays, e.g.,
the initial eye rays from a 16×16 pixel tile, or some light paths in a global illumi-
nation renderer. When traversing a ray stream against a BVH, our goal is to group
rays that take the same path in the tree, without restricting the path of each indi-
vidual ray. As such, we allow for a flexible traversal order but utilize coherence
when present.
The subsequent section describes the details of the algorithm and then follows
implementation details in Section 5. Results are presented in Section 6 and finally,
we offer some conclusions and ideas for future work.
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4 Traversal Algorithm

In order to extract coherence from individual rays in a ray stream, we remove the
per-ray node stacks typically used in single-ray traversal. We instead define a sin-
gle ray stream stack that is shared by all rays in a ray stream. In order to keep track
of which rays should be tested against a particular node in the ray stream stack,
each item in the stack has a list of pointers to associated rays. The relationship
between multiple single-ray stacks and our ray stream stack is shown in Figure 2.
Ordinary stack-based tree traversal progresses in steps by testing a single ray, or a
small packet of rays, against a node at a time. Our algorithm works in exactly the
same way, only that, in our case, a variable sized set of rays is tested against the
node at each traversal step. Testing the set of rays should ideally be performed in a
loop over the set of rays with few dependencies between loop iterations, so that the
loop can be unrolled to provide for instruction level parallelism and opportunities
for vectorization. At the same time, we desire to group rays that continue along
the same path so coherence can be continued to be exploited in the next traversal
step.
Assume that an internal node contains pointers to its children, as well as the bound-
ing volumes of the children. A high level description of our algorithm can be found
below:

1. Build a ray stream of, e.g., 4096 eye rays.
2. Set active rays to be all rays in the ray stream. This is essentially a list of

ray pointers or indices, referencing the ray stream.
3. Fetch the BVH root node, and make it current node.
4. Using SIMD, test all active rays against the current node:

(a) If the node is internal, then test all rays against the BVs of the children
(two in the case of a binary BVH).

(b) If the node is a leaf, then test all rays against the triangles in the leaf.

5. According to the result from step 4a, push stack items to the ray stream
stack, each with a BVH node and a corresponding ray pointer list of associ-
ated rays.

6. If the stack is empty, we are done. Otherwise continue with the next step.
7. Pop a stack item and make the item’s BVH node the current node. Also

make the associated list of rays the active rays.
8. Go to 4.

This algorithmic description is fairly complete, but omits an important optimiza-
tion that switches to single-ray traversal as the active rays becomes few. How this
optimization is applied is discussed in more detail in Section 5. The most inter-
esting step in the algorithm is arguably step 5 that deals with appending rays to
the ray stream stack. In fact, how to efficiently manage the ray stream stack and
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its associated ray pointer lists during traversal is the topic of the remaining part of
this section.
When testing a set of rays against an internal node (Step 4a), the outcome of the
tests determines what stack items are added to the ray stream stack in Step 5. The
maximum number of stack items that can be added, and to which child they each
refer to, depends on how many children each interior node of the BVH has and the
number of possible order configurations that are allowed for continued paths. For
example, for BVH2 (Section 4.1), we need to push a maximum of n= 3 stack items
to the ray stream stack. The specifics for BVH structures with 2 and 4 children are
discussed in Sections 4.1 and 4.2.
In order to support a streaming approach where each ray is tested against the in-
ternal node once, we need an efficient way to append rays to the stack. The upper
limit on the number of stack items that can be added, allows us to reserve space
for all of them prior to testing any rays, i.e., before Step 4. After testing a specific
ray (Step 4a) and determining how traversal should progress for that ray, a pointer
to the ray is appended to all stack items that make up that particular path continua-
tion. Once all rays have been tested, the result is a set of stack items that reference
zero or more rays. Only those items that actually reference any rays are pushed to
the ray stream stack in Step 5.
The limited number of stack items added at a traversal step means that memory
for the ray pointer lists can be managed in a very efficient manner. If the maxi-
mum number of items is n, it is enough to allocate n large lists for ray pointers at
program start. At each traversal step, ray pointers can simply be appended to the
end of these lists by incrementing a counter. Because the ray stream stack always
processes items in stack order, memory can be reclaimed from the n lists by sub-
tracting the counter of each list after processing a stack item is complete. Note that
we are usually reading ray pointers from one of the lists that we are also appending
to. Given that we can never append more ray pointers than what we have read, a
careful implementation can read and append new ray pointers in-place without any
extra copying.

4.1 BVH2

In this subsection, we describe how our traversal algorithm works for a BVH2.
Each internal node in a BVH2 structure has two children, namely one left and one
right. The following outcomes are thus possible during the intersection test:

1. The ray misses both left and right children→ do nothing.

2. Traverse into left child.

3. Traverse into right child.

4. Traverse into left child, then right child.
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Figure 3: To the left, a parent box is shown with a left and right child, and four
rays, Ra, Rb, Rc, and Rd, which illustrate the different types of paths that can be
taken into the children of the parent node. As mentioned in the text, our traversal
algorithm needs three stack items, here enumerated I, II, and III. Depending on
which path (left, right, left then right, or right then left) a ray takes, the ray needs
to be put into one or more stack items. For example, ray Ra hits the left child only,
and is therefore put into I. Rc hits the right and then the left child, and is therefore
put into II and III. Note that the order is important here, i.e., stack items are visited
in the order given by the enumeration (I, II, and III).

5. Traverse into right child, then left child.

We now need to represent these cases using stack items, each referring to the left
child or right child. The first case means that the path is terminated, so it does not
need a stack item. To accommodate the following two cases, it is enough to have
one stack item for each node and the order of them is not important. However,
in order to accommodate the two possible orders when hitting both children, we
need to be able to order the left path before the right path in some cases, as well
as order the right path before the left path in other cases. For this to work, three
stack items are needed that reference the nodes left-right-left or right-left-right.
This is explained in Figure 3 for left-right-left. Note that these cases can be ac-
commodated using two different configurations. Which configuration is chosen is
generally not important, however, the node that appears a single time may have
sightly better SIMD efficiency because of the higher chance of maintaining larger
packets as traversal continues.
As described previously, for efficient allocation of ray pointer lists to the different
stack items, we pre-allocate one large list of ray pointers for each stack item that
may be added during a traversal step. The pre-allocated ray pointer lists need to
be able to hold all rays in the worst-case scenario. At most, each ray can exist
in a single stack item at each level of the tree, so, if the maximum depth of the
BVH is d = 32 and the number of rays traversed simultaneously is m = 1024, the
maximum size of a pre-allocated ray pointer list is m×d = 32,768.
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Figure 4: Rays {0,1, ...,7} traversing the tree shown to the right. The nodes in
the tree are named and leaf nodes are indicated using a dashed outline. For illus-
trative purpose, traversal is based on ray index, i.e., the interval within brackets
indicates what rays will enter a node and the inequality between two siblings rep-
resents the ordering heuristic. No occlusion occurs in this example, so all paths
are explored. The states of the pre-allocated ray pointer lists are shown from left
to right as traversal progresses and the numbers within a range indicate individual
rays, while the letter below indicates the associated node. At the bottom, the ray
stream stack is shown, referencing ranges in the pre-allocated ray pointer lists.
The range that is next to be processed is highlighted in light red. The initial state,
to the far left, is the result of testing all rays against the immediate children of the
root node. The strength of our algorithm is that all rays within a range can be
efficiently processed using SIMD execution.

A high level description of the traversal algorithm for BVH2 is shown below. In
this case, the left-right-left configuration was chosen.

1. Build a ray stream of size m.
2. Allocate ray pointer lists Le f t |, Right ||, and Le f t |||, each with m×d entries,

where d is the maximum depth of the BVH.
3. Initialize counters cnt |, cnt ||, and cnt ||| to 0.
4. Set active rays to be all rays in the ray stream.
5. Fetch the BVH root node, and make it current node.
6. Using SIMD, test all active rays against the current node:

(a) If the node is internal, then test all rays against the BVs of the two
children. The outcome determines what to do next:

i. If the right child was hit, append a pointer to the ray to Right || at
position cnt ||, and increment cnt ||.

ii. If the left child was hit and it was closer than the right child, ap-
pend to Le f t | and increment cnt |.

iii. If the left child was hit and it was farther than the right child,
append to Le f t ||| and increment cnt |||.

(b) If the node is a leaf, then test all rays against the triangles in the leaf.

7. Create stack items for all ray pointer lists where rays were added. Each item
references the added range of ray pointers as well as the corresponding node
(left or right). Then, push applicable stack items in the following order:
Le f t |||, Right ||, and Le f t |, so that Le f t | is popped next.
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8. If the stack is empty, we are done. Otherwise continue with the next step.
9. Pop a stack item and make the item’s BVH node the current node. Also

make the associated list of rays the active rays. To free up memory from
the pre-allocated ray pointer lists, simply subtract the cnt variable this stack
item refers to so that it points to the beginning of the current stack item.
Added ray pointers will then overwrite the ones that were just read in the
next traversal step.

10. Go to 4.

A detailed example of a few rays traversing a simple BVH2 is shown in Figure 4.
Note how the ray stream stack consistently references the last range of rays in the
pre-allocated ray pointer lists.

4.2 BVH4

In the case of a BVH with four children per internal node, i.e., a multi-BVH [24,
7, 5], the number of possible outcomes increases. In order to reduce that num-
ber, we restrict the ordering to that of two levels of a BVH2. Specifically, let
{c0,c1,c2,c3} be the children of an internal node of a BVH4. Conceptually, these
nodes can then be put into a BVH2 where the first level has children {left, right}
and children(left) = {c0,c1} and children(right) = {c2,c3}. This approximation
allows us to accommodate all cases using 9 stack items, i.e., 3 were required by a
BVH2 which indicates that 3×3 are sufficient for two levels in that tree.
Depending on how the BVH4 was created, this restriction can have little to no
performance impact since the order flexibility is comparable to that of a BVH2.
This would be the case if the BVH4 was built by collapsing nodes in a BVH2. If
the BVH4 is instead built by iteratively splitting nodes with the best SAH cost, for
example, care should be taken to group nodes that are in the same vicinity.
Analogous to Section 4.1, multiple configurations of stack items will be able to
fulfill the ordering requirements. We used the following sequence of nodes for the
stack items in our implementation: c0-c1-c0-c2-c3-c2-c0-c1-c0.
For a BVH4, each ray may end up in three stack items at each level of the tree,
in the worst case. However, looking at a single ray pointer list, it is sufficient to
reserve space for all rays in all levels, since every stack item at the same depth
level corresponds to a different ray pointer list. Therefore, each pre-allocated ray
pointer list must have a size of m×d, where m is the number of rays, and d is the
maximum depth of the BVH, which is the same size required for BVH2 per list.
The number of lists increase for BVH4, but on the other hand, the depth of the tree
will decrease as well.
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5 Implementation

As starting point for our implementation, we use Embree 2.0 [28], which is a col-
lection of highly optimized ray traversal kernels and spatial data structures, and
is widely used in the industry. The traversal interface of Embree was extended
to include support for ray streams. The example path tracer [15] that comes with
Embree, modified with a few performance improvements, was used to render all
images, and it was also extended to support our algorithm. Most notably, in ad-
dition to the original recursive single-ray render loop, we added a separate render
loop that builds ray streams, in order to trace many rays simultaneously. The new
render loop eliminated recursion entirely and instead stored the required light path
data for each ray, intersected all rays, and resumed each path in a loop. This
approach is of similar spirit to what Laine et al. [17] did to separate material eval-
uation and path extension from ray casting in a GPU path tracer. Care was taken
so that our new render loop traced the same number of rays and generated exactly
the same end result as the original path tracer.
The path tracer is parallelized over multiple CPU cores by letting multiple threads
work steal tiles of the final image. We made use of coherence within a tile by
building a ray stream containing all primary rays generated from that tile. The
initial tile size was 16× 16 pixels and we used 16 samples per pixel, resulting
in 4096 initial rays in a ray stream. Tile size variations are studied further in
Section 6, however. Note that the number of rays in a ray stream decreases as light
paths are terminated, so efficiency may be lowered after a few bounces. It could
be possible to fill up the ray stream with rays from a neighboring tile, for example,
but for simplicity and clarity of analysis, we did not attempt to do that.
Our traversal algorithm was optimized for the Intel Haswell architecture which
provides support for 8-wide SIMD instructions for floating-point operations. The
ray stream stores a single ray in two 32-byte structures, specifically, one used dur-
ing BVH traversal and one used for triangle intersection. Each of these structures
can be fetched using a single 256-bit AVX load. The BVH version of the ray holds
the inverse of the ray direction to speed up slab tests. In addition, the ray origin is
premultiplied with the inverse ray direction. Hit point information was also stored
in a separate 32-byte structure, only accessed when an actual hit is registered.
When implementing the ray stream vs. internal BVH node test, different SIMD
strategies were tested. The simplest and most parallel version was to test 8 rays
at a time with Struct of Arrays (SoA) style SIMD. However, we found that the
register pressure became too high in this case. The winning strategy turned out to
be testing 2 rays at a time by running a 4-wide single-ray SIMD box-test over two
rays simultaneously. Our ray pointer lists were implemented as arrays of 16-bit
integers that index into the ray stream during traversal. For each loop iteration
over the ray stream, we thus have to fetch two 16-bit indices and two 32-byte rays.
Due to the frequent access, they are likely to be resident in the L1 or L2 cache
for reasonable ray stream sizes. Appending ray indices to the ray pointer lists
was done using scalar stores. We make use of fused multiply-adds to perform the
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ray against bounding-box test, which is a high throughput, high latency operation.
During this latency, we fetch the rays for the next loop iteration. In order to avoid
fetching invalid rays for the next iteration, we always pad with valid ray indices at
the end of each stack item, by duplicating the last ray index in the item. The details
of our implementation for BVH2 is shown in Appendix A. While the tests for
BVH2 and BVH4 are similar, the benefits of BVH4 are twofold: 1) ray loads are
amortized over more bounding box tests, and 2) the capability to hide instruction
latency increase due to an increased number of slab tests.
As an optimization, our algorithm switches to an optimized single-ray code path
whenever there are less than n active rays. This code path is very similar to the
single-ray code in Embree, but has been changed to work well with our 32-byte ray
structures. For BVH2, n was set to 8, which is a fairly low number. For BVH4, n
was instead set to 16, indicating that the overhead for this version is higher, which
is expected since up to 9 stack items are added at each traversal step.
Another optimization we tried was to bin rays according to ray direction, which is
a technique used by many before us (see Eisenacher et al.’s work [6] for a review of
previous work). This was accomplished by creating 8 initial stack items in the ray
stream stack, one for each possible sign configuration of x, y, and z. By sweeping
over all rays once and appending each ray to the appropriate item, based on ray
direction, we can ensure that all rays within a stack item share the same directional
sign. We can then move any direction-dependent code out of the loop over the
ray stream, which incidentally reduced register pressure too. Binning rays did not
pay off for BVH2 as the lowered SIMD efficiency reduced performance, and the
instructions eliminated due to constant ray sign partially resulted in more pipeline
stalls. However, it was worthwhile for BVH4 as the register pressure in this case
could be lowered by holding fewer node bounds at the same time. Furthermore, the
BVH4 implementation has more parallel work, meaning that removed instructions
gave a noticeable performance boost.
The renderer makes use of explicit light source sampling using shadow rays at
each bounce, which warrants special treatment for these rays. When traversing a
shadow ray against a BVH, the nearest hit point is of no interest. Instead, we just
want to determine if anything is between a point and a light source. Because of
this, it is no longer clear that traversing into the closest node is the best choice.
Instead, traversal should continue into the child with the highest chance of occlud-
ing a shadow ray [14]. However, altering the BVH with a new cost metric would
be detrimental to the comparison to previous algorithms in Embree, so they are
therefore considered out of scope in this paper. Embree instead relaxes the order-
ing requirement for shadow rays to avoid some overhead. We do the same and
implement shadow rays so that all rays in the ray stream take the same path in the
tree, which decreases divergence and increases SIMD utilization. At each traver-
sal step, we have a single stack item for each node for shadow rays. The order of
these stack items are then determined by a simple heuristic: the stack item with
most rays should be processed first. We have found this to work well in practice.
Embree also includes a set of packet traversal kernels [26], as well as hybrid ker-
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nels that starts with packets and switches to single-ray traversal as utilization be-
comes low [3]. To use these kernels, it is the responsibility of the renderer to
manage ray packets. The example renderer that supports these kernels constitutes
a total rewrite of the single-ray renderer using ISPC [20], which makes the entire
renderer vectorized. This makes it a bit difficult to compare performance directly
with our algorithm and single-ray traversal. For example, in the case of incoherent
rays, shading and path extension get lower utilization as well. On the other hand, in
the case of coherence between rays, shading would benefit from vectorization. We
note this difference but still make comparisons in Section 6. Also note that with
our algorithm, it may be possible to select between a scalar or vectorized version
of a shader based on groups of rays created during traversal. However, we have
chosen to keep the scalar shaders intact for simplicity and to make the comparison
with single-ray traversal easier.
As ray-triangle test, all algorithms use parallel variations of the Möller-Trumbore
test [18]. Our algorithm, as well as the single-ray test, make use of an 8-wide SoA
SIMD implementation, intersecting 8 triangles against a single ray at a time. The
packet traversal kernel instead tests 8 rays against 4 triangles at a time. The hybrid
traversal kernel switches between 8 rays against 4 triangles and 1 ray against 4
triangles.

6 Results

We compare our algorithm to the single-ray, packet, and hybrid traversal kernels
available in Embree 2.0. When possible, we compare using both BVH2 and BVH4
as spatial data structures, i.e., BVHs with two and four children, respectively. The
BVH is built using the standard settings in Embree, which uses an SAH-binned
construction algorithm [23]. Since our traversal algorithm was designed to gener-
ate exactly the same results as previous traversal algorithms, the generated images
are exactly the same, and therefore, an image quality comparison is omitted. The
algorithms were evaluated on an ultrabook laptop with a 4-core Intel Haswell Core
i7-4750HQ CPU clocked at 2.0 GHz and with a turbo frequency of 3.2 GHz. This
chip has 4× 32 kB L1 instruction cache, 4× 32 kB data cache, 4× 256 kB L2
cache, 6 MB L3 cache, and 128 MB L4 EDRAM cache. The highest turbo fre-
quency can only be reached when a single core is active and by monitoring the
CPU frequency during rendering, we have found it to be stable at 2.8 GHz on all
cores. The thermal design power (TDP) of the CPU and GPU combined is 47 W.
Our modified version of Embree 2.0 was compiled with Intel C++ Studio XE 2013
Update 1 for Windows (compiler version 14.0.1) and all tests were performed in
Windows 8. The packet renderer was compiled with ISPC version 1.6.0.
The evaluation is based on four test scenes, namely, CROWN, BENTLEY, DRAGON,
and SANMIGUEL. The scenes and measured performance are shown in Table 1.
As can be seen, our algorithm with BVH4 is the fastest for all scenes, while our
BVH2 is the next to fastest. Of the competing traversal methods, there is no clear
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winner: Hybrid BVH4 is best for BENTLEY, while Single BVH4 is best for the
other. The last row reveals that total performance (including even frame buffer
updates) is between 22–37% higher with our algorithm compared to the best of
the competing methods. The last row also reveals if we only look at the time it
takes to perform ray queries, i.e., including traversal and intersection testing (also
including the additional overhead of the new render loop that builds ray streams),
our traversal algorithm is 36–53% faster. Since our method is consistently and
substantially faster for all test scenes, we believe that this is a very encouraging
result.
Bandwidth to and from DRAM was measured in gigabytes per second using Intel
VTune for an extended number of frames. Specifically, we let the renderer run for
30 seconds without measurements and then measured bandwidth during a 60 sec-
ond interval. This number was divided by the number of rays per second because
a higher throughput of rays would increase the bandwidth usage over a given time.
The resulting value we use for comparison is thus bytes per ray, also shown in
Table 1. Note that this is not the storage, but rather the average number of bytes
needed to transfer to and from DRAM per ray. Our traversal methods use a lower
amount of bandwidth per ray, or the same, as the other traversal algorithms. This
is likely one of the sources to our performance improvement.
In Figure 5, we have evaluated the performance our algorithm with respect to dif-
ferent tile sizes. Recall that the number of samples per pixel have been fixed to
16, and then we vary the tile size, in order to build ray streams of different size.
With a tile size of 12×12, the number of rays in a stream is 12×12×16 = 2304,
for example. As can be seen, 6400 initial rays in a ray stream performs the best,
and this is equivalent to a tile size of 20×20 pixels. However, the performance is
relatively stable for tile sizes between 16×16 and 24×24 pixels. The number of
bytes per ray (B/ray), reported in Figure 5, has some variation among the scenes.
Simply from our recursion-less render loop, one can expect a reduction in memory
bandwidth because of better data locality. For example, ray queries is performed at
the same time for all eye rays, and similarly for all rays after each bounce, which
should increase locality of accesses in the BVH. Furthermore, shading happens
without interference from traversal, which should improve texture caching. In ad-
dition, traversing large ray streams may also be beneficial for memory bandwidth
if the reduction in node fetches happens to increase cache hits. This is, however,
not certain, and the amount of cache lines the ray stream occupies in the cache may
actually decrease cache hits for the BVH. From the plot we see that a reduction in
memory bandwidth happens for BENTLEY and DRAGON, but not to a great extent
for CROWN and SANMIGUEL, for the ray stream sizes that we investigated.
We also evaluated how our traversal algorithm behaved with varying field of view.
The results can be seen in Figure 6, where it is clear that the advantage of our
algorithm is relatively large for all angles, except for 8 degrees. In this particular
case, only perfectly reflective surfaces are visible within the view, which makes all
rays very coherent. As expected, Hybrid traversal performs extremely well in this
case and wins by about 10%. The advantage that Hybrid has over our algorithm
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Figure 5: Performance and bandwidth usage of Our BVH4 when changing the
number of initial rays in a ray stream. In order to avoid changing the ray distri-
bution, samples per pixel was fixed at 16, and tile size was varied from 4× 4 to
28× 28 pixels. The number of shadow rays that is traversed together is limited
to the same number. However, since more shadow rays may be generated in the
render loop (up to one per eye ray and light source), multiple batches of shadow
rays may be traversed to test all of them.

is twofold. First, it does not spend any time building ray streams and reordering
rays, which is unnecessary overhead when rays are fully coherent. Second, the
render loop and material evaluation is fully vectorized in this case due to the ISPC
renderer and the same material covers the entire view. However, it is clear that this
benefit disappears as soon as diffuse surfaces enters the view, and for 32 degrees,
our total performance is about 43% higher compared to the fastest of Hybrid and
Single BVH4. A nice property of our algorithm is that it does very well for various
scenarios without any surprising performance cliffs. If anything, the diagram in
Figure 6 reveals that the weaknesses of our algorithm is when all rays are coherent
and they hit a reflective surface (so the rays continue to be rather coherent), or they
hit a single large surface. However, it should be pointed out that our algorithm is
rather fast in these cases, but the Hybrid may be faster.
In order to evaluate exactly where our performance improvement comes from, we
measured the fraction of time spent in the ray query kernels (BVH traversal +
intersection testing) using VTune during an extended period of time for our test
scenes. The measured fraction was then multiplied by the ray throughput to get
s/Gray (seconds per gigaray). The results are shown in Table 2. These numbers tell
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Figure 6: In this evaluation, we changed the field of view from 8 to 64 degrees,
which has similar effects as moving away from an object. As can be seen, our
traversal algorithm is substantially faster for all but the smallest field of view.
In the smallest field of view, only perfectly reflective surfaces can be seen which
makes the rays very coherent. In this case, hybrid traversal does extremely well
as expected, but quickly falls behind as diffuse surfaces enter the view. Also, when
the field of view becomes very large, most of the image will contain a single large
ground polygon, and therefore, the hybrid traversal slowly catches up with our
performance.

us exactly how much time ray queries take, and therefore, how much our traversal
algorithm improves performance, disregarding the new render loop. This is very
interesting since results including the render loop already were reported in Table 1.
The cycles per instruction (CPI) shows how much the CPU pipeline stalls during
traversal, and it is clear that our algorithm has low CPI. To highlight this fact,
we show the same numbers (bottom row), but only for our optimized loop, which
tests ray streams against the BVH. The rest of the ray query time in our algorithm
is actually spent doing triangle intersection or single-ray traversal once coherence
is low. Therefore, the optimized loop is the sole source for our increased traversal
performance. The CPI value for that loop is very close to the optimal value for
our target architecture, Haswell, which can issue two instructions per clock. So,
its ideal CPI is 0.5, and the lower the reported CPI numbers are, the better.
For completeness, we also investigated the percentage of all ray vs. BVH node
tests that was performed inside the optimized loop. We got the following results
for BVH4 for the test scenes: CROWN: 76%, BENTLEY: 88%, DRAGON: 86%,
and SANMIGUEL: 83%.
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CROWN BENTLEY DRAGON SANMIGUEL

CPI Time per ray CPI Time per ray CPI Time per ray CPI Time per ray

Single BVH4 Traversal 1.40 70 s/Gray 1.28 50 s/Gray 1.29 54 s/Gray 1.45 117 s/Gray
Our BVH4 Traversal 1.02 54 s/Gray 0.88 33 s/Gray 0.91 39 s/Gray 0.95 81 s/Gray

Our core loop only 0.61 16 s/Gray 0.61 13 s/Gray 0.60 15 s/Gray 0.60 31 s/Gray

Table 2: Here, we measure the fraction of time spent in the traversal kernels
per ray (in seconds per gigaray). We compare Our BVH4 against Single BVH4.
In addition, we present cycles per instruction (CPI) as a measurement of how
much the CPU pipeline stalls during traversal. At the bottom, we show the same
measurements, but only for our optimized loop that tests a ray stream against a
BVH4.

7 Conclusions and Future Work

Over the last 10–15 years, a lot of optimization research effort has been spent on
building better BVHs faster, and on parallelizing and SIMDifying the core of the
ray tracing algorithm, namely, traversal, intersection testing, and shading. Embree
is one of the most optimized ray tracing frameworks, for a variety of CPUs, that
we know of, and it is widely used in the industry for this reason. By completely
changing the interface to Embree, we have been able to implement our novel al-
gorithm that traverses the BVH with large ray streams using a dynamic descent
in the top part of the BVH, and then switches to single-ray traversal. As we have
demonstrated, when measuring only the time it takes to perform the traversal, our
new algorithm is up to 53% faster. For future work, we would like to test whether
a memory-mapped layout of the scene can be used to automatically render huge
scenes with our traversal method. We believe this should be possible, since our
algorithm is good at reducing memory bandwidth usage by visiting the same node
with many rays. Furthermore, we would like to investigate whether our method is
at all feasible on a GPU and for a Xeon Phi accelerator.
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APPENDIX

A Core Loop Implementation for BVH2

Here we list our core loop implementation for testing a ray stream against an inter-
nal node of a BVH2 acceleration structure. The code is mainly written using AVX2
intrinsic functions, but we present it using a simplified syntax to improve readabil-
ity.1 The loop tests two rays against the two bounding boxes of the children and
stores ray indices into the pre-allocated ray pointer lists. The input bounds are or-
ganized as [minl ,minr,maxl ,maxr], i.e., a 4-wide vector, for each coordinate axis,
and are broadcast to 256 bits by duplicating the 4 floats to both 128-bit lanes. Af-
ter running through the loop, stack items are created for the ray pointer lists where
rays actually were added. That part has been omitted for brevity.

void coreLoopBvh2(
// AABBs for left and right children.
m256 bbX, m256 bbY, m256 bbZ,
// Pointers to the end of the pre-allocated ray pointer lists.
uint16* list0, uint16* list1, uint16* list2,
// Active rays (pointing into one of the pre-allocated ray pointer lists).
uint16* activeRays, uint16* lastActiveRay)
{
m256 negMask = set1(-0.0f);
m256 posNegMask = setr(0.0f, 0.0f, -0.0f, -0.0f, 0.0f, 0.0f, -0.0f, -0.0f);

m256 bbXneg = shuffle(bbX, bbX, M(1,0,3,2));
m256 bbYneg = shuffle(bbY, bbY, M(1,0,3,2));
m256 bbZneg = shuffle(bbZ, bbZ, M(1,0,3,2));

bbX ^= posNegMask; bbY ^= posNegMask; bbZ ^= posNegMask;
bbXneg ^= posNegMask; bbYneg ^= posNegMask; bbZneg ^= posNegMask;

uint32 nextIndexA = activeRays[0];
uint32 nextIndexB = activeRays[1];

m256 dirNearOrgFarA = load(rayData + nextIndexA);
m256 dirNearOrgFarB = load(rayData + nextIndexB);

m256 dirNear = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 0|(2<<4));
m256 orgFar = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 1|(3<<4));

m256 orgFarNeg = orgFar ^ negMask;

m256 dirX = shuffle(dirNear, dirNear, M(0,0,0,0));
m256 dirY = shuffle(dirNear, dirNear, M(1,1,1,1));
m256 dirZ = shuffle(dirNear, dirNear, M(2,2,2,2));

uint32 mask = 0;
uint32 indexA = 0, indexB = 0;

for (; activeRays < lastActiveRay; ) {
uint32 leftHit = mask >> 4;
uint32 rightHit = (mask >> 5) & 1;
uint32 order = (mask >> 6) & rightHit;

m256 bbXray = blendv(bbX, bbXneg, dirX);
m256 orgX = shuffle(orgFar, orgFarNeg, M(0,0,0,0));
m256 bbYray = blendv(bbY, bbYneg, dirY);
m256 orgY = shuffle(orgFar, orgFarNeg, M(1,1,1,1));
m256 bbZray = blendv(bbZ, bbZneg, dirZ);
m256 orgZ = shuffle(orgFar, orgFarNeg, M(2,2,2,2));

1To restore the original source, add _mm256_ before and _ps after functions, replace m256 with
__m256, replace M with _MM_SHUFFLE, and replace the ∧ operator with a call to _mm256_xor_ps
when used with vector registers.

150



APPENDIX

*list0 = indexB; *list1 = indexB; *list2 = indexB;
list0 += leftHit & (1^order);
list1 += rightHit;
list2 += leftHit & order;

indexA = nextIndexA;
indexB = nextIndexB;
activeRays += 2;
nextIndexA = activeRays[0];
nextIndexB = activeRays[1];

m256 nearFarX = fmsub(bbXray, dirX, orgX);
m256 nearFarY = fmsub(bbYray, dirY, orgY);
m256 nearFarZ = fmsub(bbZray, dirZ, orgZ);
m256 nearFarRay = shuffle(dirNear, orgFarNeg, M(3,3,3,3));

dirNearOrgFarA = load(rayData + nextIndexA);
dirNearOrgFarB = load(rayData + nextIndexB);

m256 nearFar = max(max(nearFarRay, nearFarX), max(nearFarY, nearFarZ));

mask = movemask(cmple(shuffle(nearFar, nearFar, M(0,1,1,0)),
shuffle(nearFar ^ negMask, nearFar, M(0,0,3,2))));

dirNear = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 0|(2<<4));
orgFar = permute2f128(dirNearOrgFarA, dirNearOrgFarB, 1|((3<<4));

dirX = shuffle(dirNear, dirNear, M(0,0,0,0));
dirY = shuffle(dirNear, dirNear, M(1,1,1,1));
dirZ = shuffle(dirNear, dirNear, M(2,2,2,2));

orgFarNeg = orgFar ^ negMask;

leftHit = mask;
rightHit = (mask >> 1) & 1;
order = (mask >> 2) & rightHit;

*list0 = indexA; *list1 = indexA; *list2 = indexA;
list0 += leftHit & (1^order);
list1 += rightHit;
list2 += leftHit & order;

}

if (indexA != indexB) { // Checks if the last index was duplicated (padding).
uint32 leftHit = mask >> 4;
uint32 rightHit = (mask >> 5) & 1;
uint32 order = (mask >> 6) & rightHit;

*list0 = indexB; *list1 = indexB; *list2 = indexB;
list0 += leftHit & (1^order);
list1 += rightHit;
list2 += leftHit & order;

}
}
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