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RECURSIVE FORMULAS FOR THE EVALUATION OF CERTAIN COMPLEX
INTEGRALS*

By K. J. ASTROM (Brown University)

Abstract. This paper presents recursive formulas which admit simultaneous tests
of stability and evaluation of quadratic loss functions for linear discrete-time dynamical
systems. The method admits a significant reduction of the number of computations in
comparison with previously known methods.

1. Introduction. We shall consider the evaluation of integrals of the type

1 B ®BE™) dz

I'=500? A0ae) )

where 4 and B are polynomials with real coefficients
AR =a" + ad + - + a, 2

B@) = b2" + b2 + --- + b, C)

and ¢ denotes the integral along the unit circle in the positive direction.

Integrals such as (1) occur in many control and communication problems. The sum
of squares of the values of the impulse response of a dynamical system with the pulse
transfer function B(z)/A(z) is e.g. given by (1). Evaluation of quadratic loss-functions,
generation of quadratic Lyapunov functions for linear systems and investigation of the
accuracy of parameter estimation in linear systems also lead to integrals of type (1)
(see, e.g., [1] and [3]).

Closed form solutions of (1) for polynomials of low order are available in the litera-
ture, (see, e.g., Jury [3, p. 208-299]). For large n, say n > 4, the closed form solutions
are, however, very cumbersome to use. It is also well known that a,I, where I is the
integral defined by (1), can be obtained as the first component of the vector z which
satisfies the following linear equation:

* Received September 12, 1969. This research was supported in part by the National Science
Foundation under Grant No. GP 7347 and in part by the National Aeronautics and Space Adminis-
tration under Grant No. NGL }Q-002—015.m .
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(see, e.g., [3, p. 168-172]). Some simplifications which can be used if z, is computed
through the evaluation of determinants are discussed in [4].

In this paper we present recursive equations for the integral which lead to con-
siderably fewer computations than a direct solution of the linear system. The recursive
equations are derived using elementary results from the theory of analytic functions.
The recursive equations can be conveniently used both for hand and machine computa-
tion. Analogous results for continuous-time systems have been obtained by Nekolny
and Bene$ [5].

2. Preliminaries and notations. We first observe that the integral (1) will always
exist if the polynomial A (z) has all its zeros inside the unit circle. In such a case we can
always find a stable dynamical system with the pulse transfer function B(z)/A(z),
and the integral (1) is then simply the sum of squares of the ordinates of the impulse
response of the system.

If A (2) has zeros on the unit circle the integral diverges. If A(z) has zeros both inside
and outside the unit circle but not on the unit circle, the integral (1) still exists. In such
a case we can always find a polynomial A’(z) with all its zeros inside the unit circle such
that

ARAET) = A'()A'(™)

and the integral then represents the sum of squares of the impulse response of a stable
dynamical system whose pulse transfer function is B(z)/A4’(2).

In many practical cases, however, we obtain the integral as a result of an analysis of
a dynamical system whose pulse transfer function is B(z)/A4(z). In such a case it is
naturally of great importance to test that A(z) has all its zeros inside the unit circle
because when this is not the case the dynamiecal system will be unstable although the
integral (1) exists.

In order to present the result in a simple form we will first introduce some notation.
Let A* denote the polynomial defined by

A¥@) = 2" ARE™Y) = ao + @z + - + a2 4)
Further introduce the polynomials
AR = ad + a7+ -+, (5)

Bie) = bk + b 4 oo + bi, (6)
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which are defined recursively by

Aia@) = 27 (AR — adi@)], @)
Bii() = 2 {Bue) — B:A%@}, @®

where
o = ay/as ©
B = bi/as (10)

and

A = AR, (11)
B.() = B@). (12)

If these equations have a meaning we must naturally require that all at are different
from zero. To see the implications of this we will make use of the following theorem.

TuroreM 1. The polynomial A(z) has all its zeros inside the unit circle if and only of
at > 0 for all k.

This theorem is essentially the Schur-Cohn stability criterion for linear discrete-time
dynamical systems (see, e.g., [2], [3, p. 126], [7]). We also have the following result which
will be used in the proof of our main result.

TuaroreM 2. Let the polynomial A.(z) have all its zeros inside the unit circle; then
A,_1(2) also has all its zeros inside the unit circle.

This theorem is also given by Schur [7]. A simple proof is given by RuZicka [6].

We thus find that the polynomials A,(2) can always be defined if the original poly-
nomial has all its zeros inside the unit circle. If this is not the case we will always get
at < 0 at some step in the reduction. The equations (7) and (8) can thus be profitably
exploited as a stability criterion.

3. The main result. We will now show that the integral (1) can be computed re-
cursively. For this purpose we introduce the integrals I, defined by
1 {@BE) dz.

= P L QAED 2 (13)

Tt follows from (1) that I = I, . We now have

L

TumoreM 3. Let the polynomial A(z) have all its zeros inside the unit circle. The
integrals I, defined by (13) then satisfy the following recursive equalions:

{1 - ai}Ik—l = I, — ﬂlzcr (14)
IO = 63 . (15)

Proof. As A(z) has all its zeros inside the unit circle, it follows from Theorem 1
that all *’s are different from zero. It thus follows from (9) and (10) that all polynomials
A,’s and By’s can be defined. Furthermore it follows from Theorem 2 that all poly-
nomials A,’s have all zeros inside the unit circle. All integrals I, thus exist.

To prove the theorem we will make use of the theory of analytic functions. The
integral (13) equals the sum of the residues at the poles of the function B,(2)B.(z™")/
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{24,(2)A,(z"")} inside the unit circle. As the integral is invariant under the change of
variables z — 1/z, we also find that the integral equals the sum of the residues of the
poles outside the unit circle. We will first assume that the coefficients of A are such that
its zeros are distinet and different from zero. Now consider

1 B/c—l(z)Bk—l(z—l) CLZ_

I;;—-x = -2% Ak_l(Z>Ak_1(Z_l). Z .

The poles of the integrand inside the unit circle are z = 0 and the zeros z; of the poly-
nomial A,_,(z). It follows from (7) and (4) that
Az = axdi(e) = ai A&,

A @) = 2 AuE) — e di@)).
Hence

A @) = 2:{ AL — e PALED))

= (1 — ez Az ).
Furthermore it follows from (4) and (7) that
Al @) = A%() — adi().
Hence
£100) = 4%0) — 2. 4:(0) = a5 — aa; = ag(1 — af).

The functions

B (@B 1
A s@AE () 2

— Bk—1<z)BIT—1<Z>
A @10 — ) A%R)}

Bk—l(z)Bk—1<Z_l) l
A @A@Y 2

Bk—l<z)Bk—l(z—])
A @ (e — o)) Az}

A A
2 2

have the same simple poles inside the unit circle and the same residues at these poles.
Hence

1 __1_ Bk—l(z)Bk—l(z_l) Q%
1— C(i 271'7/ Ak_l(z)Ak(z_l) 22

1 1 fBs@Ben) (16)

Ik—l =

T1 - oS A@AED

where the second equality is obtained by making the variable substitution z — 27

The integrand has poles at the zeros of 4,(z). It follows, however, from (7) that
A @) = 2{ 4@ — awdi@))
= 2{ A7) — a4}
Hence for z; such that 4,(z;) = 0 we get 4;_,(¢7") = 2:4,(z7"). The functions

Bk—l(z)Bk-—l(z—l)
AR Ari(z)
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and

Bk—l(z)Bk—l(Z_l)_l _ Bl 1(z)B 1(2)
AAGE) 2 ARALR

thus have the same poles inside the unit circle and the same residues at these poles.
The integrals of these functions around the unit circle are thus the same. Eq. (16)
now gives

1 1 Bk 1(Z)BL 1(3 ) dZ
1— o 2m ARAEY 2

I, =

Now introduce (8) and we find
1 [ {Bi®) = BAYDB(T) — BAYET) dz
= o A, @A 2
B.()B,(z™") dz B [ Bi@A%E ) dz
21rz AAGEY 2 2m ) ARAET) 2

A%@BE) dz AR A%E) dz

2m 14@A@”)z+2m LOLED 2

The first integral equals I, . The second integral can be reduced as follows:
B A%E™) dz _ ___9§ Bip) Ai2) dz
A,QA%R) 2

27rZ ARAEY 2 2t
_ B fBu) de_ , BU0) _ , bi_
== 21”/ >}i(z) 2 Bk A*(O) ﬂk k 614

(1 — )iy

a7

where the first equality follows from (4), the third from the residue theorem and the
fifth from (10). Similarly we find that the third integral of the right member also equals
B: . By using (4) the fourth term of the right member of (17) can be reduced as follows:

A% AXE) de dz
m% A@AED 7 m% =6

Summarizing, we find (14). When & = 0 we get from (13)

1 0>2 dz _ n2
I = P (ao z 0

Since I, is a continuous function of the parameters a, , we also find that (14) and (15)
hold even when A has multiple zeros. The proof of the theorem is now completed.
4, Computational aspects. Notice that it follows from (7) that

1—oa;= (“0 - akalls)/al«; = ag_l/ag (18)
The equation (14) can then be written as
ag[k = ag—IIk—1 + ﬁkbllj = a’é‘llkﬂ + (b};)z/ag . (19)

It is now a simple matter to evaluate the integrals numerically using the recursive
equation (14) or (19).

The number of arithmetic operations required to compute I using the recursive
formulas is shown in Table 1. The corresponding number of operations required for a
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TABLE 1
Number of arithmetic operations required to compute the integral using the recursive formulas
Order of polynomial Add/Subtract Multiply Divide
2 8 6 5 ?
5 35 30 11 ]
10 120 110 21 )
n n? + 2n nt+n 2n + 1
TABLE 2
Number of arithmetic operations required to compule the integral using gaussian reduction
Order of
polynomial Add/Subtract Multiply Divide
2 12 13 4
5 82 81 16
10 476 461 66
4n® 4 1502 + 20n + 12
12
2n% 4 6n2 4 16n + 6 n:4+n+2
n (n even) 6 —
4n% + 15n2 4+ 20n + 9
12
(n odd)

straight-forward solution of (3) for x, using gaussian reduction is shown in Table 2.
A comparison of the tables shows that the recursive formulas give a considerable saving.
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