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Preface

�is thesis presents contributions to structure-and-motion estimation. In par-

ticular, the problem of view planning is considered, and continuous and discrete

optimization-based algorithms are given for how to plan the path of a sensor

to its destination, while balancing the competing goals of path length and

reconstruction accuracy. �e same concepts are then applied to the problem

of sequential 3D reconstruction from unordered image sequences. Using co-

variance propagation and image order selection for view planning, significant

gains in robustness and computational efficiency are achieved. A second topic

is refractive structure-and-motion, specifically the problem of absolute pose

estimation when the camera and structure are separated by an optically refract-

ing plane. Using methods from algebraic geometry for solving multivariate

polynomial systems, efficient minimal and near-minimal solvers are constructed.

Finally, a practical method for calibrating a set of cameras under refraction is

given, including an algorithm for efficient refractive bundle adjustment.

�e content of the thesis is based on the following papers:

• Sebastian Haner and Anders Heyden “Optimal View Path Planning for

Visual SLAM”, Scandinavian Conference on Image Analysis, Ystad, 2011.

• Sebastian Haner and Anders Heyden “Covariance Propagation and Next

Best View Planning for 3D Reconstruction”, European Conference on Com-
puter Vision, Florence, 2012.

• Sebastian Haner and Anders Heyden “Discrete Optimal View Path Plan-

ning”, International Conference on Computer Vision �eory and Applications,
Berlin, 2015.
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• Sebastian Haner and Kalle Åström “Absolute Pose for Cameras Under Flat

Refractive Interfaces”, International Conference on Computer Vision and
Pattern Recognition, Boston, 2015.

• Sebastian Haner, Linus Svärm, Erik Ask and Anders Heyden “Joint Under

and Over Water Calibration of a Swimmer Tracking System”, International
Conference on Pattern Recognition Applications and Methods, Lisbon, 2015.

Papers not included in this thesis:

• Sebastian Haner and Anders Heyden “A Step Towards Self-calibration

in SLAM: Weakly Calibrated On-line Structure and Motion Estimation”,

Workshop on Mobile Vision, San Francisco, 2010.

• Sebastian Haner and Anders Heyden “On-line Structure and Motion

Estimation based on a Novel Parametrized Extended Kalman Filter”, Inter-
national Conference on Pattern Recognition, Istanbul, 2010.

• Sebastian Haner and Irene Y.-H. Gu “Combining Foreground/Background

Feature Points and Anisotropic Mean Shift for Enhanced Visual Object

Tracking”, International Conference on Pattern Recognition, Istanbul, 2010.

• Pedro Piniés, Lina Maria Paz, Sebastian Haner and Anders Heyden “Decom-

posable Bundle Adjustment using a Junction Tree”, International Conference
on Robotics and Automation, Minneapolis, 2012.
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Chapter 1

Introduction

A central problem in the field of geometric computer vision is reconstructing

the world in three dimensions, given only two-dimensional images. �e loss of

depth information in an image projection can be compensated for by moving

the camera and viewing the scene from different perspectives. Given two or

more images of an object, and information on from what angle they were taken,

the object’s 3D coordinates can be calculated. As it turns out, it is even possible

to compute both the cameras’ viewpoints and the object coordinates using

only image information, and this problem is known as structure-and-motion
reconstruction. One of two major topics in the thesis is improving the accuracy

of reconstructions using planning, either actively or passively. Using passive

planning we tackle the extensively studied problem of reconstructing a scene

given only an unordered collection of images of the same area or object, often

crowd-sourced off the Internet. By selecting the order in which images are used

in a sequential algorithm, and keeping track of the uncertainties involved in

triangulation and pose estimation, we see notable improvements. In situations

where the reconstruction algorithm is “in the loop”, such as when part of a

mobile robot’s navigation system, the acquisition of images can be actively

influenced. �is can be exploited, achieving higher estimation accuracy by

selecting the camera viewpoints used while respecting the robot’s navigational

aims.

�e second topic of the thesis is reconstruction under refraction. With

the advent of more advanced and autonomous unmanned underwater vehicles,

underwater imaging has received increased attention in the last few years. When

viewing an object under water, we are almost always required to do so through a

window. At the interfaces between water and glass and glass and air, the bending

of light poses problems for standard reconstruction algorithms which are built

on the assumption that light travels in straight lines. Modeling the refractions

using Snell’s law, we study the problem of determining the camera’s viewpoint
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CHAPTER 1. INTRODUCTION

when observing a known object through a refractive interface. We also consider

the problem of jointly calibrating a set of cameras imaging under refraction,

with the goal of generating visually pleasing synthetic panoramas of a swimming

pool, and accurately measuring the position of a swimmer therein.

�esis Overview

�e thesis has been split into two parts, the first dealing with view planning and

the second with refraction. Each has an introductory chapter with background

material specific to that part.

Chapter 2 �is chapter provides a general introduction to standard structure-

and-motion concepts and algorithms, which are used later in the thesis.

Chapter 3 An introduction to view planning is given along with some theo-

retical results which are used in the subsequent chapters.

Chapter 4 A continuous model for optimal view path planning is given. With

a fixed start and destination, the path of a camera sensor is optimized with

respect to path length and reconstruction covariance.

Chapter 5 �e problem from Chapter 4 is cast as a discrete optimization

problem, and shown to be NP-hard. Semidefinite programming relaxations

are used to obtain lower bounds and starting guesses for a genetic algorithm

minimizer.

Chapter 6 �e planning concepts from Chapter 4 and 5 are applied to recon-

struction from unordered image collections.

Chapter 7 �is chapter gives an introduction to refraction and Snell’s law, and

to polynomial equation solving using algebraic geometry.

Chapter 8 �e problem of determining absolute camera pose under refraction

is discussed, and efficient solvers based on the techniques introduced in Chapter

7 are derived.
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Chapter 9 �e practical calibration of a swimmer tracking system is described.

An efficient algorithm for the forward projection of a scene point through flat

refractive interfaces is derived and applied to refractive bundle adjustment.

Author Contributions

�e per-paper contributions of the author are as follows:

• Sebastian Haner and Anders Heyden “Optimal View Path Planning for

Visual SLAM” Scandinavian Conference on Image Analysis, 2011.

Anders came up with the main idea, I developed and implemented the

algorithm and wrote most of the paper.

• Sebastian Haner and Anders Heyden “Covariance Propagation and Next Best

View Planning for 3D Reconstruction” European Conference on Computer
Vision, 2012.

I came up with the idea, developed the theory and algorithms and ran the

experiments, and wrote most of the paper.

• Sebastian Haner and Anders Heyden “Discrete Optimal View Path Planning”

International Conference on Computer Vision �eory and Applications, 2015.

I developed the idea, implemented the algorithms and wrote the paper.

• Sebastian Haner and Kalle Åström “Absolute Pose for Cameras Under Flat

Refractive Interfaces” In submission.

�e idea to investigate this problem came from Kalle, and we collaborated

on the theory. I implemented the solvers, ran the experiments and wrote the

paper.

• Sebastian Haner, Linus Svärm, Erik Ask and Anders Heyden “Joint Under

and Over Water Calibration of a Swimmer Tracking System” International
Conference on Pattern Recognition Applications and Methods, 2015.

Linus designed and built the calibration object and assisted in data collec-

tion together with Erik and Anders. Erik developed the marker detection

algorithm and wrote the corresponding part of the paper. I developed and

implemented all the calibration algorithms and wrote the remainder of the

paper.
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CHAPTER 1. INTRODUCTION

Code

Code which can be used to reproduce some of the experiments in this thesis is

available at http://www.github.com/sebhaner.
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Chapter 2

Structure and Motion
Preliminaries

�is chapter gives a brief, and certainly not complete, introduction to multiple-

view geometry and structure-and-motion reconstruction, and covers some of

the standard concepts and algorithms from the field which are used in the

thesis. More specific background material has been deferred to the separate part

introductions in Chapters 3 and 7.

Notation �roughout the thesis, vectors, vector-valued functions and matrices

are typeset in bold. �e notation Pi, : and P : ,i is used to indicate the i:th row

or column of the matrix P , respectively.

2.1 Pinhole Camera Model

In this work, as in most of the computer vision literature, the camera is modeled

as an old-fashioned pinhole camera, where light from the scene passes through

a focal point (the camera center) and falls on the image plane, forming an

inverted image. Geometrically, undoing this inversion is equivalent to placing

the image plane in front of the camera center (see Figure 2.1). If the camera

center is at the origin and the optical axis is aligned with the z-axis of the

coordinate system, the image projection of the point X can be computed as

x = (fX1/X3, fX2/X3)
>

. In the general case, with the camera centered

at C and its orientation given by a rotation matrix R, the scene point must

first be transformed into the camera coordinate system,Xc = R(X −C). It

is convenient to express x andX in homogeneous coordinates, where an extra

dimension is added to the representation, so that e.g.X = (X1, X2, X3, 1)
>

.

Each point is now represented by an equivalence class where X ∼ X̄ if

5



CHAPTER 2. STRUCTURE AND MOTION PRELIMINARIES

X = λX̄ for some λ 6= 0, and similarly for x. With this convention, point

projection can be described by the linear equation

x =

x1

x2

x3

 = KPX =

f α px
0 γf py
0 0 1

(R −RC
)
X. (2.1)

�e actual projection is then obtained from the representative of x with third

coordinate equal to one, i.e. (x1/x3, x2/x3, 1)
>

. �e matrix K encodes the

intrinsic parameters of the camera that map the projected point to actual pixel

coordinates. �e aspect-ratio parameter γ allows for non-square pixels, the

skew parameter α for non-perpendicular image coordinate axes, and the offset

(px, py) accounts for the fact that the pixel coordinate system origin is at a

corner of the image and not at the principal point. In most applications we can

safely assume that γ = 1 and α = 0.

�e pinhole model does not fully capture the behavior of real cameras,

which have lens systems exhibiting varying degrees of geometric distortion. �is

can be an unintended side-effect of the optics or a way to compress a large field

of view onto a small imaging area, as is the case of a fish-eye lens. Many different

models for the distortion have been proposed (e.g. Kilpelä 1981; Devernay and

Faugeras 2001; Fitzgibbon 2001), but the most commonly used is a radially

symmetric polynomial distortion model (Heikkilä and Silvén 1997)

x
dist

= x(1 + k1r
2 + k2r

4 + . . . ), (2.2)

where r = ‖x‖. Here it is assumed that the image coordinate system has been

shifted so that the center of distortion, taken to coincide with the principal point,

is at the origin. Tangential distortion terms can be included but are usually

ignored, and for most applications two or three radial terms provide sufficient

accuracy. �e dependence on the principal point means that in cameras with

significant amounts of distortion, its location must be carefully calibrated, but

otherwise it can be assumed to lie at the center of the image.

In the work that follows, unless otherwise stated it will be assumed that the

intrinsic parameters f , γ, α, px and py are known and that lens distortion has

been compensated for in the input to the algorithms. When this is the case, we

say the camera is calibrated, and it is convenient to work with the normalized

image coordinatesK−1x. We shall then simply take the projection model to

be x = PX . For more background on camera models and computer vision

geometry, see the standard textbook by Hartley and Zisserman (2003).

6



2.2. MAXIMUM LIKELIHOOD ESTIMATION

C

X

x

Principal point Optical axisf

Figure 2.1: Pinhole camera model. �e optical axis is perpendicular to the image

plane and intersects it at the principal point at a distance f from the camera center,

corresponding to the focal length.

2.1.1 Non-Central Cameras

In the pinhole camera, all light rays which fall on the image plane pass through

a common point, the camera center; equivalently, one can say that each point

on the image plane back-projects to a ray in space, and these all intersect in a

single point. Virtually all cameras operate on this principle, but sometimes it

is useful to extend the notion of “camera” to include external equipment such

as mirrors through which the world is observed. Curved mirrors in front of

the lens are often used to capture panoramic images, and the assembly as a

whole does not act as a central camera, i.e. the back-projected image rays leaving

the mirror surface do not in general intersect in a common central point. �e

image projection model adopted above must then be modified. Other examples

of non-central (or generalized ) cameras include assemblies of several pinhole

cameras mounted together, as is common in robotics applications, or a camera

observing a scene through a refractive interface, such as when mounted in a

waterproof housing and submerged.

2.2 Maximum Likelihood Estimation

Solving structure-and-motion is an inverse problem where the loss of depth

information in projections from 3D to 2D needs to be overcome. �e problem

is complicated further by the fact that image measurements are never exact, but

exhibit a certain degree of noise. Given a probabilistic model of this noise, it

can be argued that the best solution to the problem is the structure and motion

which maximizes the probability of observing the measured data, the maximum

7



CHAPTER 2. STRUCTURE AND MOTION PRELIMINARIES

likelihood estimate. Encoding the structure and motion in a parameter vector θ,

the solution we seek is

θ∗ = argmax

θ

L(θ), (2.3)

where

L(θ) = L(θ | x̃) = p(x̃ |θ) (2.4)

is the likelihood function and x̃ a vector of measured image projections. If the

camera model function f (θ) gives the expected noise-free projections given

camera and point parameters in θ, the reprojection error may be defined as

r(θ) = f (θ)− x̃ and p(x̃ |θ) = D
(
r(θ)

)
where D is the probability density

function of the noise distribution. In the case of zero-mean Gaussian noise,

D = N (0,Σ), the likelihood function becomes

L(θ) ∝ e− 1

2
r(θ)>Σ−1r(θ), (2.5)

and equivalently, taking the logarithm,

θ∗ = argmin

θ

r(θ)>Σ−1r(θ). (2.6)

Under the common assumption Σ = σ2I , this reduces further to just mini-

mizing the sum of squares of the reprojection errors, i.e. a quadratic penalty. For

other noise distributions, corresponding cost functions are similarly derived.

Unfortunately, the resulting cost functions are almost always non-convex

and difficult to optimize. Given a decent guess for the optimal structure and

motion parameters θ∗, however, it is often possible to find good solutions using

iterative local optimization methods.

2.2.1 Least-squares Optimization

As we have just seen, finding the maximum likelihood solution to structure and

motion problems with Gaussian image noise is equivalent to minimizing the

sum of the squares of the reprojection errors, and in fact many problems have

non-linear objective functions which are sums of squared terms.

8



2.2. MAXIMUM LIKELIHOOD ESTIMATION

�e Gauss-Newton Algorithm

Given a differentiable vector-valued function r : Rp 7→ Rm, the Gauss-Newton

algorithm attempts to minimize the squared Euclidean norm s(θ) = ‖r(θ)‖2 =∑m
i=1

ri(θ)
2
. Taylor expansion of the objective function gives

s(θ + δθ) ≈ s(θ) + (∇s)>δθ +
1

2

δθ>Hδθ, (2.7)

a quadratic approximation of the squared norm around the point θ ∈ Rp. �e

gradient has the special form

∇s = 2

(
m∑
k=1

∂rk
∂θ1

rk, . . . ,

m∑
k=1

∂rk
∂θp

rk

)
= 2r>J , (2.8)

where J is the Jacobian matrix of r(θ). Similarly, the Hessian matrix H has

elements

Hij = 2

m∑
k=1

∂rk
∂θi
· ∂rk
∂θj

+ 2

m∑
k=1

∂2rk
∂θi∂θj

· rk. (2.9)

Assuming that the second order derivatives are bounded and the errors rk small

near the minimum, the second term is dropped and H ≈ 2J>J . Given a

starting point θ, the quadratic approximation (2.7) of s(θ) is minimized by

differentiating with respect to δθ and equating to zero, giving the linear system

J>Jδθ = −J>r for the update step. By iteratively moving to the minimizer

of the approximation, θk+1
= θk + δθk, the minimum of s will eventually

be reached, given that the starting guess was close enough and the function is

reasonably well-behaved.

Levenberg-Marquardt

�e Levenberg-Marquardt (LM) algorithm (Levenberg 1944) is a small mod-

ification addressing some shortfalls of Gauss-Newton iteration. Far from the

minimum, the quadratic approximation of Gauss-Newton may be a poor fit to

the actual cost surface, and moving to its minimum could actually increase the

objective function value. LM changes the update step equation system to

(J>J + λI)δθ = −J>r, (2.10)

9



CHAPTER 2. STRUCTURE AND MOTION PRELIMINARIES

where I is the identity matrix. For large values of λ, the step solution is close

to gradient descent i.e. a safer linear approximation of the objective function

instead of a quadratic. If a step does not decrease the objective value, λ is

increased and a new step computed. As one approaches the minimum, λ may

be decreased to take advantage of the quadratic convergence speed of Gauss-

Newton. Augmenting the diagonal of the Hessian matrix also ensures it is

positive definite so that a unique solution for the step exists.

�e convergence speed of LM can sometimes be improved by using line

search. Given the step direction δθk, the update is given by θk+1
= θk+τkδθk

where the largest reduction in objective value is obtained by finding the step

length

τk = argmin

τ
s(θk + τδθk). (2.11)

�e solution to (2.11) is usually only found approximately using a few iterations

of e.g. golden section search (Kiefer 1953) or Armijo’s rule (Armijo 1966).

2.2.2 Initialization

�e Levenberg-Marquardt algorithm is very general and can be applied to

most differentiable cost functions, but as a local optimization method there is

no guarantee it will find the global optimum, unless the problem has specific

properties such as convexity. Its performance depends on the quality of the

provided initial solution, which must be found by other means.

In general, finding the maximum likelihood solution to structure-and-

motion problems is very difficult, and in practice it must be solved approximately

as a sequence of subproblems. �e basic building blocks of most structure-

and-motion reconstruction systems are triangulation and camera resectioning,

which provide initial solutions to maximum likelihood estimation, called bundle
adjustment. However, the very first step is to analyze the input images and

establish correspondences between objects seen in more than one view, known

as feature matching. Related problems such as loop closure and pose graph

optimization are important parts of many practical systems, especially in robotics

applications, but are not the focus of this thesis.

10



2.3. FEATURE MATCHING

2.3 Feature Matching

In this work, physical objects will be exclusively represented by collections of

points in 3D space. Other representations are possible, such as lines and surfaces,

but their projections are more difficult to extract from images. Any reconstruc-

tion algorithm starts by identifying points in different images corresponding to

the same point in space. �is is usually implemented in a three-stage process:

1. Identify salient image features

2. Compute descriptors for the image patches surrounding the features

3. Match descriptors from different images.

Salient features are areas of the image which stand out in some way, such as

corners or high-contrast blobs. A large number of feature detectors have been

proposed for this purpose, e.g. the Harris corner detector (Harris and Stephens

1988), FAST (Rosten and Drummond 2006), MSER (Matas, Chum, et al.

2002) and CenSurE (M. Agrawal et al. 2008). After a feature has been identified,

a patch of the image around it is encoded by a feature descriptor which attempts

to capture the appearance of the object point in a manner invariant to imaging

conditions such as changes in the point of view and illumination. Feature

descriptor algorithms often come with their own tailored feature detector, and

are an active area of research. Popular algorithms include SIFT (Lowe 2004),

SURF (Bay et al. 2008), ORB (Rublee et al. 2011), GLOH (Mikolajczyk and

Schmid 2005), HOG (Dalal and Triggs 2005), DAISY (Tola et al. 2010), BRIEF

(Calonder et al. 2010), BRISK (Leutenegger et al. 2011), FREAK (Alahi et al.

2012) and other increasingly amusing acronyms. To identify image features

corresponding to the same 3D point, descriptors are compared and matched

across images. An example is shown in Figure 2.2.

2.4 RANSAC

Feature detection and matching algorithms are not foolproof, and there will

almost always be a certain number of incorrect matches, or outliers. �ese

can seriously harm the performance of reconstruction algorithms and need to

be dealt with. One approach is to use robust cost functions to mitigate the

impact of erroneous measurements, but better still is to remove them completely.

Usually the correct matches are known to adhere to some geometrical model;

11



CHAPTER 2. STRUCTURE AND MOTION PRELIMINARIES

Figure 2.2: Feature matching example using the SURF feature detector and descriptor.

�e descriptors are 64-element vectors and each feature in the left image is assigned

its closest match in the right as measured by the Euclidean distance in R64
. Note that

there is one incorrect match which can cause problems for reconstruction algorithms.

in the example in Figure 2.3 all points are known to lie on a line. Outliers

stand out by not adhering to the model, so if the model parameters can be

reliably estimated, outliers can be detected. But finding the model parameters

which describe the correct matches well enough can be difficult when the data

is contaminated. Random sample consensus, or RANSAC (Fischler and Bolles

1981), attempts to solve this problem by fitting the model to a randomly

selected minimal set of points. If this set does not contain an outlier, one may

assume the inliers will be close to the fitted model and the outliers not, allowing

classification. If the minimal set contains an outlier, fewer points are expected

to agree with the model so this can be detected. By repeating the process the

probability of finding a minimal set without outliers can be made arbitrarily

high. �e relationship between the probability p of finding such a set (and thus

presumably a solution) and the number of iterations i is easily shown to be

i =
log (1− p)
log (1− rn) , (2.12)

where r is the ratio of inlier points to the total number of feature points, and

n the number of points in the minimal set. For example, with r = 0.5 and

n = 3, 34 iterations are required to reach a 99% confidence level, while for

12



2.5. TRIANGULATION

(a) (b) (c)

Figure 2.3: (a) Outliers skew the least-squares line fit. (b) RANSAC selects two random

points and fits a line, all points close enough are designated inliers. (c) �e outliers are

discarded allowing a better fit.

n = 4 it is 71. For each extra point required to estimate the model parameters,

the average number of iterations required to find a solution increases roughly

by a factor of 1/r. �is is one of the reasons why efficient so-called minimal
solvers are important in computer vision, i.e. algorithms which quickly fit a

particular geometric model to the minimal number of data points. While many

outlier rejection schemes have been proposed, hypothesize-and-test frameworks

like RANSAC or derivatives (e.g. Torr 2002; Nistér 2003; Matas and Chum

2004) appear to still be the most popular.

2.5 Triangulation

Triangulation is the problem of finding the scene pointX given its projection

in two or more images and the corresponding camera poses. If the camera

parameters and image projections are known precisely, the rays passing through

camera centersCi
and corresponding image points xi intersect in a single point.

If there is noise in the image measurements, the rays will most likely not intersect,

but we may try to find a pointX that best explains the observations, a maximum

likelihood estimate. As shown in Section 2.2, this involves minimizing the

distance between the computed projection ofX in the images and the measured

values xi, a non-linear function with many local optima. In general this can

only be accomplished using iterative optimization techniques. To find an initial

estimate to start the iterative algorithm, or in the noiseless case, one may use

a simple linear solution. In homogeneous coordinates we have xi = P iX ,

i = 1, . . . , n, which translates to the projections(
xi

1

xi
2

)
=

1

P i
3, :X

(
P i

1, :X

P i
2, :X

)
(2.13)
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CHAPTER 2. STRUCTURE AND MOTION PRELIMINARIES

where the subscript indicates the row of the vector or matrix. Each image gives

two linear equations inX ,

(
xi

1
P i

3, : − P i
1, :

xi
2
P i

3, : − P i
2, :

)
X = 0, (2.14)

which when stacked together may be solved in a least-squares sense using the

singular value decomposition. �is method is fast and handles an arbitrary

number of views, but it minimizes an algebraic error rather than the geometric

reprojection error, which may produce poor results. For the case of only two or

three views there exist methods which can compute the maximum likelihood

triangulation under the assumption of Gaussian measurement noise, essentially

in closed form (Hartley and P. Sturm 1997; Kanatani et al. 2008; Byröd et al.

2007). We will generally use the linear method followed by non-linear local

optimization of the reprojection error using the LM algorithm.

C1

X

C2

x1
x2

Figure 2.4: �e principle of triangulation.

2.6 Camera Resectioning

Camera resectioning is the problem of determining the camera parameters

given scene pointsXi
and corresponding image projections xi. If the intrinsic

parameters are known, this is often referred to as pose estimation since only the

camera translation and orientation need to be recovered. In the most general

case, we seek the 3-by-4 camera matrix M best explaining the observations.

Using (2.13), each projection xi gives two linear equations in the components

14



2.6. CAMERA RESECTIONING

ofM ,

(
Xi> 0 −xi

1
Xi>

0 Xi> −xi
2
Xi>

)
M11

M12

.

.

.

M
34

 = 0. (2.15)

With eleven or more equations, i.e. at least six point projections, the camera

matrix may be uniquely determined (up to scale). It may then be factored into

M = KP using RQ or Cholesky factorization, separating the intrinsic and

the pose parameters. If the intrinsic parameters are known, methods exist (e.g.

Gao et al. 2003) that allow pose estimation from three point projections, with

up to four possible solutions; the correct one can be chosen by considering

additional points. If only the focal length and a radial distortion parameter

are unknown, four point are sufficient to find a solution (see e.g. Bujnak et al.

2010). In comparison, the linear method is again fast and simple, but minimizes

an algebraic rather than a physically meaningful error. It also does not enforce

the physical constraints that the observed scene points should all be in front of

the camera, a problem which does arise in practice using this method.

As shown in Section 2.2, the assumption of Gaussian measurement noise

implies that the maximum likelihood solution is obtained by minimizing the

sum of squared reprojection errors. If we instead content ourselves with mini-

mizing the maximum error, camera resectioning may be solved as a sequence

of linear feasibility problems (Kahl and Hartley 2008). Choose an ε > 0, and

require the vertical and horizontal components of all reprojection errors to be

smaller, ∣∣∣∣xi1 −M1, :X
i

M3, :Xi

∣∣∣∣ ≤ ε, (2.16)∣∣∣∣xi2 −M2, :X
i

M3, :Xi

∣∣∣∣ ≤ ε. (2.17)

�ese constraints may be formulated as
−Xi> 0 (xi

1
− ε)Xi>

Xi> 0 −(xi
1

+ ε)Xi>

0 −Xi>
(xi

2
− ε)Xi>

0 Xi> −(xi
2

+ ε)Xi>



M11

M12

.

.

.

M
34

 ≤ 0. (2.18)
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To ensure that all points end up in front of the camera, the additional constraints

M3, :X
i > 0 are added. �e task is then to find the smallest ε admitting a

solution, which can be accomplished through bisection. Note that this for-

mulation minimizes the maximum component-wise reprojection error. To use

the Euclidean error instead, the linear inequalities can be replaced by second

order cone constraints, at increased computational cost. Since a number of

convex programs must be solved, the above approach is more costly than the

direct linear algorithm, but usually gives better results since it minimizes a

geometrically meaningful error. �e exception is when there are outliers in the

input data, i.e. grossly incorrect image measurements, which the max norm

is highly sensitive to. �e output of the above algorithms is usually used as

the starting point for non-linear optimization to find a maximum likelihood

estimate.

2.7 Epipolar Geometry

Point triangulation requires knowledge of the camera poses and resectioning

requires knowledge of the 3D structure, so there seems to be a Catch 22; how

do you start? One way to bootstrap the process is to simply guess depths of

the points in one image and then refine the depth estimates as more images

are considered, as is done in Haner and Heyden (2010) and other filter-based

approaches. Epipolar geometry, on the other hand, allows us to compute the

relative pose of two cameras without knowing the scene structure. Consider

Figure 2.5. We may assume that the coordinate system has been chosen so

that the first camera is given by P1 =
(
I3×3 0

)
and the second by P2 =(

R −RC
)
. It is clear that the vectors x1,R>x2 and C all lie in the same

plane, and therefore their triple-product must be zero, x1·
(
C × (R>x2)

)
= 0.

Using the matrix representation [·]× of the cross product, defined so that

[a]×b = a× b, the relation may be expressed as

x>
1
[C]×R

>x2 = x>
1
Ex2 = 0. (2.19)

�e matrix E = [C]×R
>

is known as the essential matrix and encodes the

relative pose between the cameras. From (2.19) the elements of the matrix can

be deduced using a minimum of five matching pairs of image points (Nistér

2003a) or linearly using eight (Hartley 1997), and then factored into a rotation

and a translation (see e.g. Hartley and Zisserman 2003). Only the direction of

16
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O

X

C

x1

x2

Figure 2.5: Epipolar geometry. �e homogeneous image coordinates are transformed

into the scene coordinate system using the respective camera’s rotation and translation,

leaving x1 unchanged and taking x2 toR>x2 +C.

the translation can be recovered, as there is no way to tell the absolute scale of a

scene from the image projections alone.

2.8 Bundle Adjustment

To get the best reconstruction possible for the given input data, the statistically

optimal maximum likelihood solution is preferred. As shown in Section 2.2,

this comes down to minimizing the reprojection errors, now over all images

and all camera and point parameters simultaneously. As already mentioned

this is a difficult problem, and while small problems can be solved optimally

using, for example, methods from Kahl and Henrion (2007), the high compu-

tational cost means finding a globally optimal solution is in general intractable.

Given a good enough initial estimate, however, local optimization methods

often find solutions near the global optimum. Optimization over all param-

eters is known as bundle adjustment, and the most popular method by far is

Levenberg-Marquardt iteration (see Triggs et al. (2000) for an overview of

bundle adjustment algorithms).

�e main computational costs of LM are computing the partial derivatives

in J and solving the system (2.10). Due to the special structure of bundle

adjustment problems, the Hessian has regular and easily predictable sparsity

patterns which can be exploited allowing the solution of very large problems

with millions of parameters.

If the variables are partitioned into camera and point parameters so that

θ =
(
θ>c , θ

>
p

)>
, then J =

(
Jc Jp

)
and r =

(
r>c , r

>
p

)>
are similarly
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CHAPTER 2. STRUCTURE AND MOTION PRELIMINARIES

partitioned and the LM system to solve can be written(
U W
W> V

)(
δθc
δθp

)
=

(
−J>c rc
−J>p rp

)
(2.20)

where U = J>c Jc and V = J>p Jp are block diagonal with one block per

camera and point respectively. BlockWij is only non-zero if camera i observes

point j. Eliminating θp from the top row using the Schur complement of V
gives the system(
U −WV −1W> 0

W> V

)(
δθc
δθp

)
=

(−J>c rc +WV −1J>p rp
−J>p rp

)
(2.21)

which allows us to solve for the camera parameters separately. After δθc is found,

the point parameters can be solved for using back substitution. �e dominating

cost is forming the Schur complement S = U −WV −1W>
and solving for

the camera parameters. Since V is block diagonal it can be inverted in time

linear in the number of points, and the back substitution operation is orders of

magnitude cheaper. S has a particular block sparsity pattern, where block Sij
is non-zero only if camera i and j observe a common point. �us, depending

on the scene geometry, the matrix exhibits varying degrees of sparsity. Real

datasets are typically sparse enough that it is much more efficient solving the

system using sparse Cholesky factorization (Y. Chen et al. 2008) or conjugate

gradient algorithms (Byröd and Åström 2010; Agarwal, Snavely, Seitz, et al.

2010; Kushal and Agarwal 2012) than by dense factorization. Nevertheless,

bundle adjustment is still a computationally heavy part of the reconstruction

pipeline, and Chapter 6 explores a method to reduce the need to run bundle

adjustment.

2.8.1 Robust Cost Functions

Since the LM algorithm minimizes the sum of squared reprojection errors, it

maximizes the reconstruction likelihood assuming normally distributed errors.

Gaussian noise is a good approximation for the small measurement errors

introduced by the limited resolution of the input images and imprecise feature

detection algorithms. It is, however, not a good model for the large errors which

sometimes occur due to incorrect matching of features between images. While

RANSAC usually does a good job of detecting outliers, it may not catch them

all. Remaining outlier data will skew the results because of the high cost they
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2.9. THE KNOWN ROTATION METHOD

incur under the quadratic penalty function. To mitigate the impact, robust cost

functions giving less importance to large errors can be used. A popular choice

is the Huber function, defined as

C(x) =

{
x2

if |x| < β

2β|x| − β2
otherwise .

(2.22)

It assigns quadratic cost to small errors and linear to large, and is convex

which ensures it does not give rise to new local minima. �e influence of

outliers is greatly reduced, so that the result of the bundle adjustment comes

close to the ML estimate for the outlier-free data. �e outliers may then be

detected and removed. To incorporate a robust cost function C into the LM

−1 −0.5 0 0.5 1

0

0.1

0.2

0.3

x

Figure 2.6: Huber cost function, β = 0.2.

algorithm, iterative reweighting is usually employed. By scaling each component

of the vector r by the weight wi =
√
C(ri)/|ri|, the sum of squared errors

s =
∑m

i=1
(wiri)

2 =
∑m

i=1
C(ri) assumes the desired value. �e step equation

(2.10) is modified to

(J>WJ + λI)δθ = −J>Wr, (2.23)

whereW = diag(w2

1
, . . . , w2

m). �e weights are recomputed each iteration as

the errors ri change. In Chapter 6, iterative reweighting is used both for robust

bundle adjustment, and as a way of implementing robust cost functions based

on structure and camera covariance for triangulation and pose estimation.

2.9 �e Known Rotation Method

A rather different approach to structure-and-motion was hinted at above, namely

using the L∞ norm and formulating the problem as a convex program. If the
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camera matrix is given by P =
(
R a

)
the projection in non-homogeneous

coordinates may be written

x =
1

R3, :X + a3

(
R1, :X + a1

R2, :X + a2

)
, (2.24)

and the reprojection error constraints may be formulated as∣∣∣∣x1 −
R1, :X + a1

R3, :X + a3

∣∣∣∣ ≤ ε, (2.25)∣∣∣∣x2 −
R2, :X + a2

R3, :X + a3

∣∣∣∣ ≤ ε. (2.26)

For a pointXi
seen in camera P j

these may be expressed as the inequality
(xi

1
− ε)Rj

3, : −Rj
1, : −1 0 (xi

1
− ε)

−(xi
1

+ ε)Rj
3, : +Rj

1, : 1 0 −(xi
1

+ ε)

(xi
2
− ε)Rj

3, : −Rj
2, : 0 −1 (xi

2
− ε)

−(xi
2

+ ε)Rj
3, : +Rj

2, : 0 1 −(xi
2

+ ε)


(
Xi

aj

)
≤ 0. (2.27)

If the rotation matricesRj
are known for all cameras, the left-hand matrix is

known and (2.27) is a linear inequality. �e scene structure Xi
and camera

translations aj can then be sought as the feasible solution to a linear program

for which ε is as small as possible.

To find the camera orientations, the relative rotations between all pairs

of cameras observing common 3D points can be computed using epipolar

geometry. A process known as rotation averaging can then be used to find a

set of absolute orientations consistent with the relative measurements. Many

different algorithms for this have been proposed, see Hartley, Trumpf, et al.

(2013) for an overview.
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Chapter 3

View Planning Preliminaries

Historically, structure-and-motion research has mainly focused on recovering

the best reconstruction possible, given the input data. In other words, the

algorithm acts as a passive consumer, and has no influence on what images or

other sensor readings are collected. But in many cases, there is the possibility of

steering the acquisition process. In the field of photogrammetry, for example,

the goal is to measure the 3D coordinates of a scene or object as accurately as

possible using visual information. Ideally, one would like to take as many images

from as many angles as possible to cover the scene and get well-conditioned

triangulation problems. Given constraints on resources such as the maximum

number of images to capture, or physical constraints on possible placement of

the camera, selecting a good set of imaging locations becomes an optimization

problem known as camera network design. Traditionally, the process of setting up

these “camera networks” was done by hand, placing cameras intuitively around

an approximately known scene and then evaluating the resulting reconstruction

using simulated measurement data (Fraser 1984). �is was because automatic

optimization is rather difficult; quite different camera configurations may give

similar reconstruction errors, resulting in a very multi-modal, non-convex cost

surface (cf. Mason 1997). Consequently, more recent efforts have resorted to

stochastic optimization techniques for camera placement problems.

Of course, any such planning and optimization must be based on a prediction
of what will be seen at a given camera location. Such predictions need some

initial information about the scene structure, and also about other imaging

conditions such as possible occlusions and the availability of surface texture for

feature detection. In the photogrammetric setting this is usually not a problem

since the site can be roughly surveyed using other means. In other applications,

such initial information may not be easy to obtain and therefore planning the

whole acquisition process beforehand is not possible, or even desired. In vision

metrology, where often images of objects are captured by a camera on a robotic
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arm, there are also strong constraints on the possible movements of the camera

and requirements of efficiency. �e sequential nature of the acquisition then

leads to the concept of next best view planning, where the next imaging location

is planned based on the actual reconstruction obtained thus far, allowing for

more flexibility with regard to unknown object shape and occlusions.

While such short-term planning is “safer” and easier to optimize, it only

gives locally optimal results and struggles to handle long-term constraints on

the acquisition process such as the maximum distance travelled by the sensor,

for example. Finding the balance between a longer planning horizon, which

may yield better results, and the risk of the unpredictability of what will be seen,

is often referred to as the exploration vs. exploitation problem.

In the next two chapters, we will consider view planning in the context

of simultaneous localization and mapping, the robotics term for structure-and-

motion estimation. Given a target location, we ask how an autonomous robot

should move to attain its goal while at the same time reconstructing its sur-

roundings as accurately as possible. In Chapter 6, similar planning concepts

are used on given image data, where only the order in which it is used can be

chosen.

Below, some results are given explaining how the covariance of a reconstruc-

tion can be estimated, which is the basis of most planning algorithms. It may

be beneficial to first read Chapter 4 to get some context, where we will see how

the results are used to evaluate proposed paths of the camera.

3.1 Covariance Estimation

Let r(θ) = f (θ)−x̃ be a vector collecting the reprojection errors of a structure-

and-motion problem with projection function f and observations x̃. Let

J = ∂r
∂θ = ∂f

∂θ be the Jacobian matrix of r evaluated at the maximum likeli-

hood estimate θ∗, and Σ the image measurement covariance matrix. Under

assumptions of Gaussian noise, the expression (J>Σ−1J )−1
then provides

an estimate of the covariance matrix of the estimated structure and motion. A

simple and intuitive proof of this is given in Hartley and Zisserman (2003), on

which the following is based. �e result is exact for affine projection functions;

in the non-linear case, the function can be approximated by its tangent plane

and an approximate estimate is obtained.

Lemma 3.1 Let v be a random vector in Rm with mean v̄ and covariance matrix
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3.1. COVARIANCE ESTIMATION

Σ, and f : Rm 7→ Rp an affine mapping defined by f (v) = f (v̄) +A(v− v̄).
�en f (v) is a random variable with mean f (v̄) and covariance matrixAΣA>.

�is follows easily from the definitions of mean and covariance, and is

needed in the proof of the following theorem:

�eorem 3.2 (Result 5.9, Hartley and Zisserman 2003) Let f : Rp 7→ Rm be
an affine mapping of the form f (θ) = f (θ̄) + J (θ − θ̄), where J has rank p.
Let x ∈ Rm be a Gaussian random variable with mean x̄ = f (θ̄) and covariance
matrix Σ. Let g : Rm 7→ Rp be the mapping taking a measurement x to the
maximum likelihood parameter estimate θ∗. �en θ∗ = g(x) is a random variable
with mean θ̄ and covariance matrix (J>Σ−1J )−1.

Proof. �e measurement model f : Rp 7→ S ⊂ Rm takes parameters to

expected measurements. �e surface S is the space of all possible noise-free

measurements. Since J has full rank, f is one-to-one and invertible. Define

η : Rm 7→ S as the function mapping any measurement x to the unique closest

point on S, in the Mahalanobis norm ‖x‖Σ =
√
x>Σ−1x. �e composition

g = f−1 ◦ η thus represents the maximum likelihood estimator, and may

also be expressed as g(x) = argminθ ‖x− f (θ)‖Σ = argminθ ‖x− f (θ̄)−
J (θ − θ̄)‖Σ . Evaluating g is a weighted linear least-squares problem, and the

normal equations give the solution g(x) = θ∗ = (J>Σ−1J )−1J>Σ−1

(
x−

f (θ̄)
)

+ θ̄. �is shows that g is an affine function of x. Since f (θ̄) = x̄ and

θ̄ = f−1
(x̄) = g(x̄), Lemma 3.1 applies and gives the covariance matrix of

θ∗ as (J>Σ−1J )−1J>Σ−1ΣΣ−1J (J>Σ−1J )−1 = (J>Σ−1J )−1
.

�is result may also be obtained using standard estimation theory. It can

be shown that the maximum likelihood estimator under Gaussian noise, to

first order, is unbiased and achieves the Cramér-Rao lower bound, i.e. that the

covariance is given by the inverse of the Fisher information matrix, which is

indeed J>Σ−1J (see e.g. Morris 2001).

�e condition that f is invertible means that no two points in the parameter

space may give rise to the same measurements. �is is the case for triangulation

and pose estimation, where the cameras or points, respectively, are fixed in

the coordinate system. However, when computing the covariance of a whole

structure-and-motion system, the problem of gauge freedom appears. Any

collection of scene points and cameras may be jointly translated, scaled and

rotated without affecting the resulting image projections, thus an entire family
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of parameters are ML estimates of the same input data. Since for each degree of

gauge freedom the rank of the information matrix drops by one, this ambiguity

must be eliminated by choosing a minimal parametrization before the above

result can be applied. To accomplish this, typically one camera is considered

fixed, eliminating six degrees of freedom, and the distance to a second camera

constrained, fixing the scale of the reconstruction.

Alternatively, one may take the Moore-Penrose pseudo-inverse of the rank-

deficient information matrix instead, as the following results show.

�eorem 3.3 (Result 5.11, Hartley and Zisserman 2003) Let f : Rp 7→ Rm be
a differentiable mapping taking parameters θ to measurements x. Let S be a smooth
manifold of dimension d embedded in Rp passing through point θ, and such that f
is one-to-one on S in a neighborhood of θ, mapping S to a manifold f (S) ⊂ Rm.
Denote by f−1 the local inverse of f restricted to the surface f (S) in a neighborhood
of x. Let a Gaussian distribution be defined on Rm with mean x and covariance
matrix Σ and let η : Rm 7→ f (S) be the mapping taking a point in Rm to the
closest point on f (S) in the Mahalanobis norm ‖·‖Σ . Via f−1 ◦η the probability
distribution on Rm induces a distribution on Rp with covariance matrix equal
to first order to (J>Σ−1J )+A ≡ A(A>J>Σ−1JA)

−1A>, where A is any
matrix whose columns span the tangent space to S at θ.

Proof. Let g : Rd 7→ Rp map an open neighborhood U ⊂ Rd to an open

subset of S containing θ. �en f ◦ g : Rd 7→ Rm is one-to-one on U . Let

J and A be the Jacobian matrices of f and g, respectively. �e Jacobian

matrix of f ◦ g is then JA. �eorem 3.2 can now be applied to the first-

order expansion of f ◦ g about θ, transporting the covariance backwards to

covariance matrix (A>J>Σ−1JA)
−1

. �is matrix has rank and dimension

d and so is invertible. Propagating this covariance forward through g into the

higher-dimensional space using Lemma 3.1 gives the desired result, Σθ =
A(A>J>Σ−1JA)

−1A>. Substituting AB for A leaves this expression

unchanged if B is invertible, so Σθ only depends on the column span of

A.

Note that we are free to choose the manifold S (and thus g andA). �e

following lemma simplifies the result for a particular choice:

Lemma 3.4 Let M be a symmetric matrix, and let M+ be its Moore-Penrose
pseudo-inverse. �en M+ = A(A>MA)

−1A> = M+A if A>MA is
invertible and span(A) = span(M ).
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Proof. LetM = UDU> be the singular value decomposition ofM . IfM
has rank r, U may be partitioned into U =

(
U ′ U ′′

)
where U ′ are the first

r columns and span(U ′) = span(M ). We may writeM = U ′D′U ′> where

D′ = diag(σ1, . . . , σr). �e pseudo-inverse can then be computed asM+ =
U ′(D′)−1U ′>. As remarked above, M+A = M+AB

for any invertible B.

Since by assumptionM andA span the same space, there is an invertibleB
such that AB = U ′. Now M+A = M+U ′ = U ′(U ′>MU ′)−1U ′> =
U ′(U ′>U ′D′U ′>U ′)−1U ′> = U ′(D′)−1U ′> = M+

.

By taking the pseudo-inverse of the Fisher information matrix, we are

thus choosing span(A) = span(J>Σ−1J ) = span(J>). �is corresponds

to the restricted parameter manifold S being locally orthogonal to the null-

space of the Jacobian J . �is is natural, since moving in this space does not

change the measurements, but only explores the various gauge freedoms of the

parametrization. In a sense, the pseudo-inverse allows us to compute covari-

ances of structure-and-motion reconstructions independently of the coordinate

system; if the gauge is locked by fixing parameters, the computed covariances

will be expressed relative to these. On the other hand, the cost of computing

the pseudo-inverse may be prohibitive in practice, while the ordinary inverse is

not. As discussed in Chapter 6, different regularizing constraints may then be

added to the reprojection function making J full rank.

3.2 Additivity of Information

As above, let r(θ) be the collected reprojection errors of a structure-and-motion

problem. We may partition r into separate observations, for example

r = (r>
1
, . . . , r>n )

>, (3.1)

where ri contains the errors from image i. �e rows of the Jacobian matrix

J will be correspondingly partitioned, and assuming that the observations are

independent so that the measurement covariance matrixΣ is block diagonal,

the expression for the total information matrix is seen to be

I = J>Σ−1J =
n∑
i=1

J>i Σ
−1

i Ji, (3.2)

that is the sum of the individual information matrices from each image (note

that we will use I to denote both information and identity matrices; the meaning
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will be clear from the context). �e goal of view planning is to select the terms of

the sum (3.2), i.e. the camera viewpoints, so that some scalar function F (I−1
)

of the covariance matrix is minimized, possibly in competition with other

objectives. A reasonable criterion on F is that it should decrease monotonically

as more information becomes available, and two possible choices are the trace

and maximum eigenvalue functions. Note that the information matrices are

always positive semidefinite by construction. �e following theorems show that

the eigenvalues of a sum of positive semidefinite matrices are always larger than

the eigenvalues of the terms. As a consequence, since tr(I−1
) and λmax(I

−1
)

are monotonically decreasing functions of the eigenvalues of I , their value must

decrease as terms are added to the sum.

�eorem 3.5 (Courant-Fischer) LetA be a n× n symmetric matrix with eigen-
values λ1 ≤ . . . ≤ λk ≤ . . . ≤ λn. �en

λk = min

Sk

max

x∈Sk
‖x‖=1

x>Ax,

where Sk is any k-dimensional subspace of Rn.

�eorem 3.6 Let A and B be positive semidefinite n × n matrices, and let
λ1 ≤ . . . ≤ λk ≤ . . . ≤ λn and µ1 ≤ . . . ≤ µk ≤ . . . ≤ µn be the
eigenvalues ofA andA+B respectively. �en µk ≥ λk for 1 ≤ k ≤ n.

Proof. Let ν1 be the smallest eigenvalue ofB. �en we have that for all x s.t.

‖x‖ = 1,

x>Bx ≥ ν1

⇒ x>(A+B)x ≥ x>Ax+ ν1.

By �eorem 3.5,

µk = min

Sk

max

x∈Sk
‖x‖=1

x>(A+B)x ≥ min

Sk

max

x∈Sk
‖x‖=1

x>Ax+ ν1 = λk + ν1.

Since ν1 ≥ 0, µk ≥ λk.
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Chapter 4

View Planning using Continuous
Optimization

Structure-and-motion estimation, or simultaneous localization and mapping

(SLAM), is a chicken-and-egg type problem; given the map, localization is

relatively easy and given the camera positions, map triangulation is straight-

forward. Accomplishing both at once is at the heart of the SLAM problem,

which has received a lot of attention in both the robotics and vision research

communities. Much effort is spent improving the robustness and accuracy

of algorithms, particularly with respect to error accumulation, drift and loop

closing (see e.g. Oskarsson and Åström 2000; Guilbert et al. 2004; Botterill

et al. 2010; Piniés et al. 2010). As mentioned in the introduction, a less studied

problem is how to make efficient use of the information collected in active

SLAM systems, that is systems where the motion of the sensor can be controlled.

In this chapter we consider the problem of maximizing the useful information

gained from a fixed number of images by active planning of the vision sensor

movement. Specifically, we consider the task of finding a camera trajectory

between two predetermined locations such that the reconstruction accuracy

of observed geometry is maximized while the path length is minimized. �e

envisaged application is robot path planning, where the accuracy usually is a

secondary objective, so the focus is on providing the best reconstruction given

time or distance constraints.

In this work we only consider the geometric aspects of the problem and

do not account for availability of texture or object occlusion, which are of

course issues in a real system relying on feature tracking. We further assume

the following:

• An initial maximum likelihood estimate of the structure is available,

based on observations up to that point.
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• All cameras along the trajectory are oriented towards a particular point

of interest, e.g. the centroid of the features to be estimated.

• �e camera can be positioned with such relative accuracy that its pose

and location is fully known at each observation.

�ese assumptions may be relaxed, as discussed in Section 4.6.2. Finally, the

robot path is represented by a sequence of camera locations, and the number of

cameras on the path must be chosen in advance.

4.1 Related Work

Both camera network design and the next best view problem are hard due

mainly to the non-convex, multi-modal costs arising, but also to the sometimes

high computational burden of evaluating the cost function. Recent research has

mostly focused on the latter problem of accurately and efficiently evaluating the

expected information gain of a potential sensor configuration (Low and Lastra

2006; Vasquez-Gomez et al. 2013; Foix et al. 2012) and on achieving coverage

of the scene (Blaer and Allen 2007), while other works tackle minimizing the

resulting cost functions to find one or a series of optimal sensor configurations.

�e myopic planning horizon of next best view planning is often adopted due

to these difficulties, and sensor planning problems of this type have mainly

been addressed using stochastic optimization algorithms or by solving a relaxed,

easier version. For example, in Dunn, Olague, et al. (2006) the camera network

problem is solved using a genetic optimization algorithm searching the high-

dimensional parameter space of camera placements. In Wenhardt et al. (2006)

the authors reconstruct objects using a camera mounted on a robotic arm.

�e object geometry is estimated using a Kalman filter, and the next imaging

location is determined by searching a discrete parameter space and evaluating

the expected information gain in the filter at each position. A different approach

is taken in Trummer et al. (2010) where the next imaging location is decided

based only on the single currently least well-determined feature, allowing a

simple closed form solution. In Dunn, Berg, et al. (2009) the path of a robot

moving in the plane is planned based on the expected reconstruction accuracy of

an observed object. An approximation of the geometry is given and the expected

information gain from observing the object from a particular vantage point is

determined on a discrete grid of camera locations. Each grid cell is assigned a

cost proportional to the inverse of the information gain, and a minimum cost
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path is found between the starting point and the global minimum grid cell.

�is does not take into account the fact that an observation may be more or less

valuable depending on what other observations are available, and thus does not

really optimize the desired objective. For recent general surveys of the sensor

planning field see e.g. LaValle (2006); Shengyong Chen et al. (2008).

In contrast to the above, we will use a continuous optimization approach

and a planning horizon of several steps along with a path length regularizer.

4.2 Problem Formulation

�e planner takes as input an initial estimate of the structure, the current loca-

tion of the sensor and the desired destination. �e output is a path, represented

by a discrete set of sensor locations, connecting these points. �e number of

locations on the path can be set explicitly or deduced from e.g. the robot’s speed

and sample rate and the distance to be traveled. For the experiments in this

chapter, the sensor is assumed to be a single fully calibrated camera, although

extension to stereo and multi-camera systems is straightforward. �e standard

pinhole camera model is used, so that the relation between a world point X
and its projection x is given by

x = f (P ,X) =

(
R1, :(X − t)
R3, :(X − t)

,
R2, :(X − t)
R3, :(X − t)

)>
, (4.1)

whereR and t are the camera rotation and translation. However, any differen-

tiable projection function f (P ,X) may be substituted, collecting the camera

parameters in the vector P .

In the interest of reducing the parameter space dimension, each camera is

parametrized only by its position and is automatically oriented toward a point

of interest, typically chosen as the centroid of the structure under consideration.

Features are deemed visible if they fall within the camera’s field of view; possible

occlusion by other objects is not considered. �e measurement uncertainty of

features is also considered fixed.

We define the optimization problem as follows: minimize the reconstruction
uncertainty of observed geometry and the distance traveled by the sensor between
imaging locations. �ese are conflicting objectives, which are combined in a cost

function defined below.
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4.3 Cost Function

Lacking ground truth data or other a priori information, the quality of a re-

construction can only be judged by the statistical uncertainty of the estimate.

Condensing a probability distribution into a scalar quality measure is not en-

tirely straight-forward, however, and choices must be made depending on the

intended application. Also, in most situations only estimates of the probability

distribution are available, e.g. the mean and covariance. In the experimental

design literature, many summary statistics have been proposed and are usually

functions of the eigenvalues of the covariance matrix, e.g. the trace and deter-

minant, cf. Montgomery (2000). In the structure-from-motion problem, the

eigenvalues have a direct geometric interpretation which we consider below.

If we assume the position and orientation of the camera is fully known when

an observation is made, the structure estimates corresponding to individual

features are independent of each other, and the covariance matrix is block

diagonal with 3-by-3 blocks (assuming point features). �e eigenvalues of each

block correspond to the semi-axes of the ellipsoid representing the variance of

the feature location. We would like these ellipsoids to be as small as possible,

but in what sense? If we minimize the volume, i.e. the determinant, we admit

solutions where a point may be very well-determined in two directions but with a

large uncertainty in the third (typically the depth). Minimizing the determinant

of the entire covariance matrix (the so-called D-optimality criterion) could favor

solutions where one point is very well determined while others are much less

certain. For navigation and mapping purposes, we would like all, or at least the

majority of features to be reconstructed to reasonable accuracy. Minimizing

the largest eigenvalue (E-optimality) would achieve this, but results in a non-

smooth objective function. We choose to minimize the sum of the eigenvalues

(A-optimality), i.e. the trace of the covariance matrix, which provides a good

trade-off with the added computational benefit of not having to calculate

individual eigenvalues.

Before introducing the cost function, we discuss how to compute the trace

given a set of measurements.

4.3.1 Calculating Covariance

In many recent SLAM systems (e.g. Klein and Murray 2007; Strasdat et al.

2010; Mouragnon et al. 2009) maximum likelihood estimates obtained via

bundle adjustment are available. We assume the structure estimate is optimal
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in the ML sense with respect to the observations; as shown in Section 3.1,

the information matrix is then given to first order by I = J>R−1J where

J is the Jacobian of the reprojection error evaluated at the minimum, and

R the measurement noise covariance. Also, the (pseudo-)inverse of I gives

an approximation of the covariance matrix. Since information is additive,

including new observations in the estimate amounts to summing the individual

information matrices. In other words, to calculate the effect of new observations

on the structure estimate, we compute the Jacobian of each observation and add

the corresponding information matrices to the initial one. New observations

may of course shift the ML estimate, invalidating the approximation, but this

is avoided in a natural way as discussed in Section 4.4.

Given a world pointX and a camera P , let x̂ be the measured image coor-

dinate, and f (P ,X) the projection function mappingX to the expected image

coordinate x. Define the reprojection error asEX (P ,X, x̂) = f (P ,X)− x̂
with Jacobian

JX =
dEX
dX

=

 ∂f1

∂X1

∂f1

∂X2

∂f1

∂X3

∂f2

∂X1

∂f2

∂X2

∂f2

∂X3

 . (4.2)

If several pointsX1,...,N
are observed simultaneously, let

E(P ,X1:N , x̂1:N
) =

EX1

.

.

.

EXN

 (4.3)

with block diagonal Jacobian

J =

JX1 0
.
.
.

0 JXN

 . (4.4)

�e information matrix for a single image is then given by

I(P ,X1:N
) =

J
>
X1
R−1

1
JX1 0

.
.
.

0 J>
XNR

−1

N JXN

 , (4.5)
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where usually

Ri =

(
σ2

0

0 σ2

)
. (4.6)

�e final information matrix given the initial information I0 and images

from camera positions P 1,...,M
is now

IM = I0 +

M∑
j=1

I(P j ,X1:N
). (4.7)

Note that the computation is linear in the number of observed features and

the number of images, and that the covariance of the estimate is the inverse,

ΣP 1:M ,X1:N = I−1

M . For notational convenience, for the remainder of the

chapter let P denote the set P 1:M
of camera poses along a path, and X =

X1:N
the estimated structure.

4.3.2 Cost Function

We propose the following cost function:

C(P ,X) =
1

N
tr(ΣP ,X ) +

α

(M − 1)
1−q

M−1∑
j=1

‖P j+1

pos
− P j

pos
‖q

= U (P ,X) + αD(P ),

(4.8)

i.e. the uncertainty measure plus a function of the camera path, weighted by

a constant factor α > 0, where q ≥ 1. �e normalization constants N−1

and (M − 1)
q−1

are designed to make the cost approximately invariant with

respect to the number of observed features and camera positions on the path.

Note that by choosing q > 1, D(P ) will favor solutions with equidistant

spacing between the camera positions, and introducing an offset d, D(P ) =∑M−1

j=1
(‖P j+1

pos −P j
pos‖− d)q, we can impose the soft constraint that the path

length be d(M − 1), if desired.

4.3.3 Cost Function Properties

�e multi-modality of the objective functions normally used in next best view

planning makes optimization difficult. �e proposed cost function is no ex-

ception, but due to the somewhat local nature of the sought solution there are

obvious bounds on the cost and geometry of the path.
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Proposition 4.1 U (P 1:M ,X) is a non-negative decreasing function of the number
of observations M .

�is is a direct consequence of �eorem 3.6. We may now derive a simple

bound on the optimal path length.

�eorem 4.2 �e length of the path at the minimum P ∗ is bounded.

Proof. Given any initial estimate P̂ of the path, we have

αD(P ∗) ≤ U (P̂ ,X) + αD(P̂ )− U (P ∗,X)

≤ U (P̂ ,X) + αD(P̂ )

≤ U
initial

+ αD(P̂ ),

where U
initial

= 1

N tr(Σ0) and Σ0 the covariance of the current structure

estimate. Since ‖P j+1

pos − P j
pos‖ < ‖P j+1

pos − P j
pos‖q + 1, the length of P ∗ is

bounded from above by (M − 1)
1−q(α−1U

initial
+D(P̂ )

)
+M − 1.

We see that the path must be contained inside an ellipsoid with foci at the

(fixed) first and last camera positions, and that the bound can be computed

easily in advance. As expected, the optimal path approaches the line segment

between the foci as α grows.

�is result suggests that we may attempt to find and compare several local

minima by optimizing with varying initial paths sampled from within the

feasible ellipsoid.

4.4 Proposed Algorithm

As noted in the introduction, the next best view problem is known to suffer

from multiple local minima; this is true for all reasonable choices of U . Finding

the global minimum is a difficult problem, and the prevailing approach in the

literature seems to be more or less exhaustive search over a discretized parameter

space (Wenhardt et al. 2006; Dunn, Berg, et al. 2009) or stochastic optimization

methods (S.Y. Chen and Y. Li 2004; Dunn, Olague, et al. 2006). In the interest

of speed, however, we adopt a gradient based optimization scheme, using the

well-known Levenberg-Marquardt (LM) method. LM minimizes the Euclidean
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norm of a residual vector r, which we construct as

r =

(
tr(ΣP ,X1)

N
, . . . ,

tr(ΣP ,XN )

N
,

α‖P 2

pos
− P 1

pos
‖q

(M − 1)
1−q , . . . ,

α‖PM
pos
− PM−1

pos
‖q

(M − 1)
1−q

) 1

2

(4.9)

(the exponent indicates element-wise square root) so that ‖r‖2 = C(P ,X).

�e parameter space is the M − 2 intermediate camera positions; the camera

orientation is determined by its position and the interest point.

�e final hurdle is how to evaluate the cost function before any observations

are made. �e best we can do is predict what the camera will see at a particular

location given the current best estimate of the structure. Assuming that measure-

ments are corrupted with zero-mean noise, the expected observation is simply

the projection x = f (Pi,X). Such an observation has zero reprojection error,

and so does not affect the ML estimate.

�e optimization is applied within the following framework:

1. Given an initial estimate of the structure, calculate its centroid and let

this be the camera’s point of interest. Select a target location for the

camera, i.e. select the endpoint of the path.

2. Generate an initial path by linear interpolation between the first and

last camera locations. �e number of discrete camera locations along

the path could be selected to match the image sampling rate and speed

of the robot, but this would normally result in far too many locations

and a very high-dimensional search space. However, it stands to reason

that more images taken from approximately the same vantage point do

not contribute qualitatively to the reconstruction, so a relatively sparse

distribution of camera locations is sufficient.

3. Find a minimum of the cost function with respect to Ppos using the LM

algorithm. For improved convergence, an optimal step length may be

selected through line search.

4. Move the camera to the next location along the path and make an actual

observation. Update the structure estimate with this new information,
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and update the camera interest point location and path endpoint, if

needed.

Repeat steps 3 and 4, each time using the previous path estimate as an initial

guess. While the endpoint has been kept fixed in the experiments below, in

real use this is expected to be continually updated by the robot’s higher-level

planning functions; it is not anticipated that this sort of view planning will be

performed with horizons longer than required to traverse a room, for example.

4.5 Experiments

We first apply the above algorithm to the scenario of a robot trying to pass

through a doorway. �e doorway is represented by a rectangular array of point

features which are optimally triangulated from the first two views, see Figure

4.1a. In all experiments we assume an image measurement noise σ equivalent

to about one pixel. �e target location is placed in front of the doorway, and

the path is discretized with four waypoints in between. �e optimization is run

until convergence and the robot is moved to the next prescribed location along

the path, where a new image is acquired and the structure estimate is updated

using bundle adjustment.

�e influence of the parameter α is illustrated in Figure 4.2 and Table 4.1.

�e robot passes by a point cloud, and to get a closer look it must make a detour.

A large α penalizes long paths at the expense of reconstruction accuracy.

4.6 Discussion

4.6.1 Computational Complexity

As noted in Section 4.3.1, the cost function can be evaluated in O(MN ) time.

�e LM algorithm requires the computation of the Jacobian of the residual

vector r each iteration. �e analytic expression may be very complicated

and expensive to evaluate, so automatic differentiation or a finite difference

approximation is preferred. �e cost function must be differentiated with respect

to 3(M−2) parameters, requiring 3(M−2)+1 function evaluations to compute

the Jacobian. But the covariance matrix is a function of a sum of individual

information matrices, where only one term changes as the camera parameters

are perturbed one at a time. By careful bookkeeping of the information matrices
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(a) (b) (c) (d) (e)

Figure 4.1: Doorway scenario. �e robot wishes to approach the passage while de-

termining its geometry as accurately as possible. �e first two cameras on the path

represent the last two images the robot has acquired and provide the initial optimal

triangulation of the geometry. Red dots indicate which cameras are free to move, the red

cross is the point of interest. In this case subsequent observations do not visibly change

the initially planned path. �e uncertainty ellipsoids represent 5σ in (a) and 50σ in

(b)-(e). Note that in the latter cases the expected uncertainties, given all observations

along the path, are displayed. �e values q = 3 and α = 4.5 · 10
−7

were used.
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Figure 4.2: Here the robot passes (from left to right) by a point cloud and makes

a detour to get as close to the features as possible; this is natural, since the closer

the feature, the higher its angular resolution. Four cases are plotted, fading out with

increasing values of α.

Optimized path Straight path

α Rel. err. Rec. err. Rel. err Rec. err

1.0 · 10
−7

1.64 · 10
−3

8.32 · 10
−4

2.02 · 10
−3

1.03 · 10
−3

0.5 · 10
−7

1.25 · 10
−3

7.15 · 10
−4

” ”

0.2 · 10
−7

5.36 · 10
−4

4.53 · 10
−4

” ”

Table 4.1: Relative error U (P ,X)/U (P 1:2,X) and absolute reconstruction error

1

N

∑N
i=1
‖Xi −Xi

true
‖, where X1:N

true
is the ground truth structure being observed,

computed for different values of α in the scenario of Figure 4.2. �e relative error

represents the expected decrease in uncertainty from the initial estimate given by the

first two images, the reconstruction error the actual error after all observations have

been made. As α is decreased, the optimized path deviates more from the straight line

between the first and last camera position, and the reconstruction error is decreased.

only four instances need to be computed for each camera instead of all 3(M −
2)+ 1 of a naïve implementation. �is lowers the complexity of computing the

Jacobian from O(M2N ) to O(MN ). Nevertheless, in real-time applications

computing the path should take a few seconds at most, and recent SLAM

39



CHAPTER 4. VIEW PLANNING USING CONTINUOUS OPTIMIZATION

systems track hundreds or thousands of features. It may therefore be necessary

to restrict attention to a subset of reconstructed features, e.g. those with the

largest uncertainty, when evaluating the cost.

Furthermore, due to the iterative nature of the optimization, the path com-

putation may be aborted before convergence but still yield a good approximation,

depending on available time and computational resources.

4.6.2 Extensions

�e assumptions in Section 4 can of course be relaxed. If an initial ML structure

estimate is not available, we can either choose to ignore any prior information

and initialize the algorithm using optimal triangulation from the most recent

images, or simply substitute a non-ML estimate (e.g. from an EKF). If the

estimate is good enough, the inverse of the covariance matrix will still be a good

approximation to the Fisher information. Even if it’s a poor approximation we

would expect the optimized paths to yield better reconstruction accuracy than

a straight or random one.

�e requirement that the camera be oriented toward a particular point is

only intended to reduce the dimension of the parameter space. Optimization

over the orientations, or other rules for selecting orientation based on camera

position and estimated structure could easily be incorporated.

It is also assumed that the camera position and orientation are known

to high accuracy when acquiring images. Obviously, this is rarely true in a

practical SLAM system, where there may be considerable uncertainty in the

robot location. However, the location is usually well-determined relative to

nearby, recently observed features, so for short-term local path planning this is

a fair approximation. Nevertheless, incorporating the camera uncertainty in

the covariance estimation would be straightforward, but would also introduce

correlations between features. �e information and covariance matrices would

no longer be block diagonal, raising the computational load considerably, and

the cost function would possibly have to be modified to include the camera

location uncertainty. �e practical gain of including such information is less

clear.

�e nature of the optimization scheme makes it easy to incorporate different

constraints. For example, in the basic formulation (4.8) points behind the

camera contribute the same information as if they were in the corresponding

position in front of the camera, resulting in a physically incorrect model of
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z0 z1

0

0.5

1

f
(
z
)

Figure 4.3: Example of a differentiable weight function, f (z) = max(s(z)Θ(z0), Θ(z1))

where s(z) = sin

(
(2(z − z0)/(z1 − z0)− 1)π) + 1

)
/2.

image acquisition. �is can be rectified by weighting the information gain from

each observation by a function of the point’s depth. A suitable function can

be seen in Figure 4.3, which smoothly diminishes the influence of points as

they come too close to the camera. Similar weighting must also be employed

to encourage the camera to keep the scene structure in its limited field of view,

where points near or outside the image borders are downweighted. �e effects

of this weighting can be seen in Figure 4.2, where the path taken for small

values of α would otherwise have passed right through the point cloud.

It is also possible to include penalty constraints on the path curvature, and

obstacles in the robot’s path can be modeled as a potential field added to the

cost function, see Figure 4.4.

4.7 Conclusion

�is chapter has presented a continuous optimization approach to certain

instances of the next best view planning problem, aimed toward application

in SLAM systems. Unlike previous algorithms the next best view is chosen

with consideration of several expected future observations. Experiments show

that reconstruction accuracy is improved, at a computational cost linear in the

number of cameras and features. Nevertheless, the algorithm only produces

locally optimal solutions, and relies on the cost functions being smooth. In the

next chapter, we treat the same problem using a discrete optimization framework

in order to overcome some of these difficulties.
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Figure 4.4: Obstacle avoidance may be accomplished by adding a smooth potential to

the cost function, here illustrated as a height field.

42



Chapter 5

View Planning using Discrete
Optimization

In this chapter, we formulate discrete analogs of the continuous planning

problem formulation of the previous chapter and cast them as integer semi-

definite programs (SDPs). �e relaxations to continuous SDPs may be used in a

branch-and-bound scheme to find optimal solutions, or as input to a stochastic

optimization algorithm proposed below in Section 5.3.

Related discrete approaches include Englot and Hover (2010) where a

shortest path linear program formulation similar to this work is used, but only

considers view coverage and not uncertainty. Hollinger et al. (2012) uses a

two-stage approach where good views are selected based on uncertainty, and

then connected by solving a traveling salesman problem.

In A. Singh et al. (2009); Golovin and Krause (2010) approximation algo-

rithms for the constrained path problem using greedy strategies are shown to

provide solutions within a constant factor of the optimum, given that the un-

derlying cost function is submodular. Unfortunately, the maximum eigenvalue

metric proposed below is not submodular and such guarantees cannot be given;

however, an optimality gap can always be computed.

5.1 Problem Description

Assume that the goal of a moving sensor is to reach a predefined target des-

tination, while simultaneously reconstructing its surroundings as accurately

as possible, based on observations taken along the path to the destination.

�ere is a trade-off between reaching the destination quickly, and reducing

the reconstruction uncertainty; for a bearing-only sensor such as a camera, a

longer path can accommodate more observations with greater parallax, thus
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improving triangulation accuracy. Given a trade-off preference, or a bound on

the path length, an optimal path can be found by solving a discrete optimization

problem. �e space between and around the start and destination positions is

discretized into a finite number of possible sensor positions, and these positions

constitute the nodes of a graph. �e edges of the graph encode a neighborhood

connectivity, i.e. the possible motions between the fixed positions. �us a path

in the graph corresponds to a physical path. With each node is also associated

an information matrix encoding how much information about the environment

we can expect to gain, if performing a measurement at that node’s location.

�e problem formulations given are agnostic to the graph geometry and

topology, and to how the information matrices are generated. �us there are no

restrictions such as continuity or smoothness on the function used to evaluate

the information content of a proposed sensor configuration, but which are

typically required by continuous optimization approaches. Furthermore, the

information of each view can be computed in parallel to leverage modern

multi-core processors and GPU:s.

5.2 Problem Formulation

Define a directed graph G = (V ,E) and a set of positive semi-definite infor-

mation matrices {Ii ∈ Sn+ | i = 0, . . . , |V |}. For a given trade-off parameter

λ, define the optimization problem

min.

p∈P
length(p) +

1

λ
F
((
I0 +

∑
i∈p
Ii
)−1

)
, (P1)

where P is the set of all simple paths in G from the source node to the destina-

tion node. I0 is the initially available information matrix of the environment

structure, and Ii the expected information to be gained at node i. �e inverse of

the information matrix is the covariance matrix of the reconstructed structure,

so the second term measures the variance using the scalarizing function F . �is

function is typically the trace or maximum eigenvalue, as discussed in Section

4.3. For these choices of F , we note that the second term is always decreasing

as a function of the number of nodes on the path (this follows from �eorem

3.6). We now make two observations: if λ is large enough, the problem is

equivalent to finding the shortest path through the graph, and may be solved

efficiently using standard algorithms. If λ is sufficiently small, it is optimal to

44



5.2. PROBLEM FORMULATION

include all (non-zero) information matrices in the sum, while still minimizing

the distance traveled, thus the problem is equivalent to the traveling salesman

problem (TSP). Since TSP is known to be NP-hard, an efficient exact algorithm

for the general case is out of reach. Also, the recognition version of TSP (“Is
there a tour of length less than L?” ) is NP-complete, so we should not expect

even to be able to verify if a given solution is optimal. �is is true even for

graphs with nodes of degree at most four, e.g. planar grids (Papadimitriou and

Steiglitz 1998).

In the above formulation (P1) the parameter λ is used to control the trade-

off between a short path and a more accurate reconstruction of the surroundings.

It is however not obvious how to select this parameter, or even its suitable range,

without some trial-and-error. In fact, another problem formulation may be

more natural: given a time or distance budget, what is the best reconstruction

obtainable? In other words, given an upper bound on the length of the path

traveled, minimize the reconstruction error, i.e.

min. F
((
I0 +

∑
i∈p
Ii
)−1

)
s.t. length(p) ≤ L .

(P2)

Note that with this formulation, as the allowed path length grows we no longer

approach TSP. Instead, for L large enough, any Hamiltonian path on the

graph will be optimal, and for the types of graphs considered here, these are

usually easily generated. Unfortunately, the problem still appears difficult for

length limits of practical interest. �ere are several other variations on the

problem formulation, for example one could minimize the path length under

the constraint that the covariance is reduced by a certain amount. However, all

of them appear equally hard to solve.

Below, we give convex relaxations of (P1) and (P2) and show how these

can be used to solve the original problems in a branch-and-bound scheme, or

more practically as guides for more local optimization methods. �e convex

relaxation and optimization methods presented are easily adapted to alternative

problem formulations.

5.2.1 Shortest Path as a Linear Program

�e problem of finding the shortest path between two nodes in a graph with

positive edge weights is often solved using Dijkstra’s algorithm. It can be shown
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that this algorithm is equivalent to applying a primal-dual solver to the following

linear program (Papadimitriou and Steiglitz 1998):

min.

∑
(i,j)∈E

cijxij

s.t.

∑
j : (i,j)∈E

xij =
∑

j : (i,j)∈E
xji, i ∈ {1, . . . , |V | \ s, t}

∑
j : (s,j)∈E

xsj = 1,
∑

j : (j,t)∈E
xjt = 1

0 ≤ xij ≤ 1 .

(LP)

Here xij is a variable indicating if the edge between node i and j is part of the

path or not, and cij the associated non-negative edge weight. �e constraints

express flow conservation, so that the number of edges incident on a node equal

the number exiting, except for the source (s) and terminal (t) nodes which

have one outgoing and one incident edge respectively. �ese constraints can be

summarized intoAGx = b whereAG is the |V |-by-|E| edge incidence matrix
of G with entries

Aij =


−1 if edge j leaves node i

+1 if edge j enters node i

0 otherwise

, (5.1)

and x are the edge indicator variables suitably stacked. It is easily shown that

(LP) must have an integer optimal solution. Note that this formulation does not

explicitly forbid solutions consisting of a path between the source and terminal,

plus any number of closed loops; these are only eliminated by virtue of not

being optimal.

5.2.2 View Planning as a Semidefinite Program

We adapt the shortest path problem formulation above to the planning problem

(P1). For convenience, introduce binary variables αi for each node of the

graph, indicating whether that node is on the path or not. We form the relaxed
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optimization problem

min.

∑
(i,j)∈E

cijxij +
1

λ
F
((
I0 +

|V |∑
i=1

αiIi
)−1

)
s.t. AGx = b

αi =
∑

j : (j,i)∈E
xji, i 6= s

αs = 1

0 ≤ αi ≤ 1 ,

(P3)

where α and x are not required to be binary. �e cost functions used in next

best view planning are generally non-smooth and multi-modal, and difficult to

optimize. However, due to the discretization, the argument to the second term

of the objective above is affine in α. Both the trace-of-inverse and maximum

eigenvalue-of-inverse functions are convex, and using the epigraph trick the

second term may be formulated as a convex semidefinite constraint (see e.g.

Boyd and Vandenberghe (2004) or the chapter appendix). As one would expect,

this semidefinite program no longer has all the desirable properties of the linear

program; integrality of x or α is no longer guaranteed, and a solution with

disjoint loops may in fact be optimal.

�e corresponding convex relaxation of (P2) is the same as (P3), except

that the first term of the objective is transformed into a linear inequality:

min. F
((
I0 +

|V |∑
i=1

αiIi
)−1

)
s.t. AGx = b∑

(i,j)∈E
cijxij ≤ L

αi =
∑

j : (j,i)∈E
xji, i 6= s

αs = 1

0 ≤ αi ≤ 1 .

(P4)

Selecting L is more intuitive than choosing λ; one must only be careful not to
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produce an infeasible problem by selecting L too low, but the lower limit is

readily obtained using a standard shortest path algorithm.

It is possible to find an optimal integer solution to (P3) or (P4) using a

standard branch-and-bound search, but this is also known to be NP-hard and

may take a large number of iterations, each involving solving a potentially quite

large SDP. If a solution is found, it may also contain unwanted disjoint loops.

While it is easy to include linear constraints forbidding any particular loop in

the SDP, since there are exponentially many possible loops in the graph, adding

constraints against them all at the outset is infeasible. But, they can be added on

an as-needed basis; if loops are present in the solution, add constraints against

them and solve again until no loops remain. As it turns out, 2-cycles are quite

common in the solutions, and as their number is typically linear in the number

of nodes, it is feasible to remove them at the outset which may lead to faster

convergence to a loop-free solution.

Obviously, the above procedure may be very time consuming or completely

intractable for all but the smallest problem instances. However, we also noted

above that depending on the trade-off parameter λ, the original problem (P1)

should vary in difficulty between simple shortest path (typically O(|E| log|V |)
for Dijkstra’s) up to exponential complexity. Empirically, it turns out that many

instances are in fact “easy”, in that very few steps of branch-and-bound are

required and few or no loops are included in the solution. Yet, many other

instances are indeed difficult and not amenable to this approach.

5.3 Approximate Solution

Despite the problems of tractability in finding optimal solutions described

above, it can be noted that the relaxed SDP formulations (P3) and (P4) provide

lower bounds on the optimal objective values of (P1) and (P2). �is may

be used to verify the performance of approximation algorithms. Also, if the

problem instance at hand is “easy enough”, the relaxed solution x∗ may be

quite close to a valid integer, loop-free solution. In these cases it is possible to

construct a valid solution to (P1) using a simple shortest path search on the

graph G with edge weights cij = 1− x∗ij . �is solution may be good enough,

or can serve as initialization for local or stochastic optimization algorithms.

To obtain a feasible solution to (P2) from a fractional SDP solution x∗ of

(P4), this method cannot be used as the path is not guaranteed to be shorter
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than L. Instead, we solve the integer linear program

max.

∑
(i,j)∈E

x∗ijxij

s.t. AGx = b, A+
Gx ≤ 1∑

(i,j)∈E
cijxij ≤ L

xij ∈ {0, 1} ,

(5.2)

whereA+
G = max(AG, 0), so that the second constraint ensures that at most

one edge is incident on every node. �is heuristic attempts to cover as much of

the weight of the SDP solution as possible, and is guaranteed to return a feasible

path. However, as with the SDP, the solution may also contain disjoint loops.

In cases where the bulk of the SDP solution is covered by these unwanted loops,

the returned path is likely to be a poor solution to the original problem. In

this case, loop constraints can again be added and the program solved again

as described in Section 5.2.2. �e ILP (5.2) does not depend on the scene

information Ii and can benefit from specialized branch-and-bound solvers,

thus it is typically orders of magnitude faster to solve than (P4).

5.3.1 A Simplified Formulation

Given the hardness of (P1) and (P2), it is natural to seek a simplified problem

formulation which might admit faster solution algorithms. Part of the diffi-

culty is the nonlinearity of the interaction between the information matrices

when taking the inverse to obtain the covariance; the value of any particular

contribution to the information depends on all the others. Forgoing this inter-

action, instead of minimizing the covariance, one can maximize the trace of the

information matrix, yielding the problem

min.

p∈P
length(p)− 1

λ
tr

(
I0 +

∑
i∈p
Ii

)
.

(P5)

Since the trace is linear, this results in a shortest path problem on G with

modified weights (subtract tr(Ii)/λ from each edge incident on node i). As

long as this does not result in any negative cycles, this may be efficiently solved

using e.g. the Bellman-Ford algorithm, or even Dijkstra’s if all weights are non-

negative. If negative cycles are present, the problem again becomes much more
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difficult. In the extreme where all edge weights are negative, the problem is

equivalent to the longest simple path problem on −G, which is known to be

NP-hard (Schrijver 2004). Unfortunately, for many scenarios and reasonable

choices of λ negative cycles will be present, and in these cases (P5) can be

formulated as (LP) but with binary constraints on x. While this ILP may be

significantly faster to solve than (P3), the complexity is the same and no-loop

constraints must also be introduced incrementally. However, in some scenarios

it may be reasonable to restrict the graph G to be acyclic, and then the shortest

path problem can always be solved in linear time. A general graph may be

reduced to a directed acyclic graph by ordering the nodes by decreasing distance

to the target node, and only keeping edges reducing the distance, thus forcing

the sensor to move monotonically towards the destination. �is will of course

not work for purely exploratory scenarios where the start and end points may

be near.

Even with this significantly simplified formulation sacrificing the interde-

pendence of measurements, the problem is still not easy in general. We therefore

introduce a stochastic genetic algorithm applicable to all problem formulations.

5.3.2 A Genetic Algorithm

Genetic algorithms (GA) are a class of evolutionary optimization algorithms

which emulate the process of natural selection. A population of candidate solu-

tions is maintained, and in every iteration of the algorithm, a new population is

generated by mutation and crossings of individuals of the previous generation.

�e chance of an individual producing offspring in the next generation is pro-

portional to that individual’s fitness, calculated from the corresponding value

of the function being minimized. Genetic algorithms have been found to be

quite efficient in providing good solutions to many combinatorial optimization

problems, including TSP (Choi et al. 2003; Schmitt and Amini 1998) and path

planning (Davoodi et al. 2013), which motivates the use here.

To use a genetic algorithm, one must choose a representation for a candidate

solution, and define unary mutation and binary crossover operators. In this

work, each individual is described simply as a sequence of vertices constituting

the path (the encoding is usually called a chromosome, in keeping with the

evolutionary theme). Algorithm 1 shows the basic operation of the proposed

genetic algorithm. �e different steps and operators used are described below.
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Algorithm 1: Proposed genetic path planning algorithm

Initialize a population P
B ← −∞
best← ∅
for iter← 1 to maxiter do

for i ∈ P do
fi ← evaluateFitness(i)

end
if max(fi) > B then

B ← max(fi)
best← argmax(fi)

end
P̄ ← ∅
for n← 1 to |P | do

With probability ∝ fj , fk, select individuals j, k ∈ P
i← j
With probability pcross, i← crossChromosomes(j,k)

With probability p1

mutate
, i← mutateChromosome(i)

· · ·
With probability pm

mutate
, i← mutateChromosome(i)

P̄ ← P̄ ∪ {i}
end
best← locallyRefine(best)

P ← P̄ ∪ {best}
if no change in B for K iterations then

break
end

end
return best

Initialization �e first step is to generate candidate solutions, in this case

paths in G from the source to the terminal node. Unless we have some a

priori information on the characteristics of the optimal solution, these should

be spread out uniformly across the space of all feasible paths. Unfortunately,

truly uniform sampling of simple paths on a general graph appears to be a
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difficult problem. Reasonably random paths, however, may be obtained using

random order depth-first search (DFS), loop-erased random walk (Lawler 1980),

or for undirected graphs by computing the minimum cost spanning tree with

randomized edge weights, and extracting the unique path in the tree. Starting

at the source, loop-erased random walk implies walking on the graph, choosing

every edge with equal probability until the terminal is reached. Any loops

created along the way are then cut out to form a simple path.

If candidate solutions have been obtained using any of the heuristic methods

based on the SDP relaxation, these can be included in the initial population

and will then be refined.

Mutation Operators A mutation operator should introduce “noise” or random-

ness into an existing chromosome, while preserving the main features of the

encoded path. In practice, several mutation operators are often employed, ex-

ploiting problem-specific heuristics. To modify a path, just randomly replacing

vertices is not possible, since not every sequence of vertices is a valid path in

the graph G. Instead, our first operator selects two random cut points along

the path, and replaces the path in between with a random one generated using

either randomized DFS or loop-erased random walk. A second operator instead

replaces the section with the shortest path between the cut points. �is is moti-

vated by the fact that optimal paths are often quite regular, so it makes sense

to smooth out kinks. Both these operators are comparatively slow, so we also

use a much faster but more local operator which simply selects a random vertex

on the path, and replaces it with one picked from the intersection of nodes

reachable from the preceding node with those with outgoing edges incident on

the next node on the path.

Crossover Operator �e crossover operator takes two existing paths as input

and produces a mixed path, containing parts of both, assuming they cross at

some point. �is is accomplished by selecting a random simple path on the

graph obtained from G consisting only of the edges on the two paths. See

Figure 5.1 for an illustration.

Local refinement To speed up convergence to a locally optimal solution, chro-

mosomes may be optimized by systematically applying the fast local mutation

operator described above in a deterministic fashion. Each node on the path,
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Figure 5.1: Illustration of the crossover operator. At each intersection either path is

chosen with equal probability.

visited in random order, is replaced with the neighbor which minimizes the

objective function.

With the formulation (P2), we run the risk of generating infeasible paths in

the course of the genetic algorithm. A simple solution is to reject any infeasible

path obtained and repeat the mutation or crossover operation until a feasible

realization is produced. It is easy to verify that if the inputs are feasible, the

operators defined above will eventually produce feasible output. However,

depending on how close L is to the lower bound of feasibility, this may take an

unreasonable amount of time. �e very simplest solution is to relax the length

constraint to a barrier penalty term in the objective, e.g.

min. F
((
I0 +

∑
i∈p
Ii
)−1

)
+ C max

(
0, length(p)− L

)
2

, (5.3)

where C is a suitably large constant. Since the genetic algorithm does not

require smoothness the barrier could simply be defined as the indicator function

of the feasible set, but it is advantageous to allow infeasible individuals in the

population as it provides more diversity.

5.4 Stratified Solution Strategy

�e genetic algorithm will quickly find good solutions if the search space is not

too large. For large grids with many hundreds of nodes and large neighborhood

connectivities, the algorithm risks getting stuck in local optima, often producing
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implausible-looking paths. We therefore propose to reduce the search space by

substituting a smaller graph, based on the solution of the SDP relaxation of the

problem, to obtain a good initialization which can then be refined on the full

graph.

5.4.1 Reducing the Graph

�e idea is to keep only a subset of the N most important nodes, as indicated

by the fractional SDP solution α∗. Interpreting these values as probabilities,

we draw N nodes without replacement, selecting nodes in proportion to their

α∗-value. �e reduction in the covariance achieved using only these nodes is

computed and maximized through repeated random sampling of the subset.

Once a subset has been chosen, a new fully connected graph is formed,

where edges between the nodes represent the shortest path between them in

the original graph. �is allows the mapping of paths on the reduced graph to

the full graph where they can be evaluated. �e genetic algorithm can now be

run without modification on the reduced graph, where the parameter N can

be chosen to trade fidelity for convergence speed.

5.5 Experiments

Due to the general formulation of the basic problem, many different scenarios

can be accommodated by adapting the graph G and edge weights cij , which

do not need to fulfill geometric constraints such as the triangle inequality.

For example, each node can represent a camera position and an orientation,

and the connectivity between poses can be defined so as to constrain angular

velocity on the path. Purely exploratory behavior can be achieved by selecting

start and/or destination nodes as “super-nodes” connected to every other node

with zero weight, thus effectively permitting arbitrary start and destination

points. Typically, we know less about the scene further away from the starting

point, so the predictions of what will be seen, or what obstacles lay ahead,

may be incorrect. �erefore one should plan with caution; by weighting the

information matrices based on distance to the starting node, such behavior can

be incorporated.

In the synthetic experiments below, each node (except super-nodes) has an

associated camera pose defining position and orientation. �e environment

structure is represented by 3D points, each considered independently estimated
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such that the initial information matrix I0 is block diagonal (in fact we let it be

a multiple of the identity matrix). To compute the information gained from

acquiring an image at a certain pose, the standard pinhole camera model is used;

let the projection x̂ of X be given by x̂ = f (P ,X). Given a point X̄ , the

corresponding block of Ii is computed as J>Σ−1J , where J = df
dX|(Pi,X̄)

is the projection Jacobian andΣ the assumed measurement error covariance

on the image plane. However, if X̄ is out of the camera’s field of view or too

far away, the block is set to zero. In Figures 5.2–5.9 different experiments are

shown; the setups and results are described in the figure captions for easier

reference.

5.5.1 Practical Considerations

�e choice of scalarizing function F can have a large impact on the solution

time of the SDP, depending on the dimension of the information matrices.

To minimize the trace of the covariance matrix, one variable per eigenvalue is

required, while the maximum eigenvalue cost only needs one. On the other

hand, evaluating the trace cost function is typically faster. Furthermore, the

maximum eigenvalue is vulnerable to outliers e.g. features which are not seen

in any or too few views. If such features are not removed in a preprocessing

step, the cost function can never decrease below the initial uncertainty.

�e algorithms were implemented in Matlab with core functions in MEX

C++. SDPs were set up using YALMIP (Löfberg 2004) and solved using the

MOSEK interior-point optimizer (Dahl 2012). For the experiment in Figure

5.6, solving the SDP with the trace cost took 8.7 s as opposed to 4.2 s for the

maximum eigenvalue, while the genetic algorithm (on the full problem) runs

at about 10 iterations per second on the same Core 2 Duo 3.0 GHz computer,

with a population of 60 individuals. With parallel processing of individuals,

speed can likely be increased manyfold.

5.5.2 Tighter Relaxations

�e convex relaxations proposed simply replace the binary constraints x ∈
{0, 1}n by x ∈ [0, 1]n. �eoretically, the best relaxation possible would be

the convex hull of the non-convex feasible set, and it is possible to approach

this ideal using additional semidefinite constraints. Introducing y = 2x− 1

and a symmetric matrixH ∈ Sn of lifting variables, we may replace the binary
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Figure 5.2: Cameras looking at a point cloud are placed on an 8-connected unit

grid. On the left, the greenness and thickness of edges is proportional to x∗ij , the

corresponding variable of the solution to the relaxed SDP (P3), using the maximum

eigenvalue scalarizing function and λ = 2. Due to the symmetry of the problem,

both a left and right path seem to be given equal consideration. �e lower bound

obtained is 61.1. On the right, the same problem with the path (green) found by the

genetic algorithm among possible positions (blue), with a cost of 67.3. Below, the same

problem but with λ = 40 and final cost 32.6, as compared to the lower bound of 23.0.

Depending on problem characteristics, bounds may be more or less tight.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
//   http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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Figure 5.3: �e same situation as in Figure 5.2, now solving problem (P2) with L = 30.

On the left, the solution obtained by solving the analog of the simpler problem (P5),

giving a cost of 92.3 compared to the SDP lower bound of 67.7. On the right, the

red nodes indicate the reduced graph obtained by sampling the SDP solution with

N = 20, and applying the GA gives a path with cost 88.7. Below, the GA run on the

full graph with cost 86.36. �e simplified formulation is qualitatively different from

the others and focuses on getting as close to the structure as possible while neglecting

the parallax effects. It is therefore not a suitable approximation in many situations.
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for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.156892908110547,0.98058067569092,-0.11766968108291);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;




for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.156892908110547,0.98058067569092,-0.11766968108291);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;




for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.156892908110547,0.98058067569092,-0.11766968108291);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;
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Figure 5.4: In this example, two graph nodes each are placed at every point of an

8-connected unit grid. �e two nodes represent a camera looking at either of two

objects/obstacles. On the left, the solution to the relaxed SDP (P4), using the trace

scalarizing function and L = 22. Nodes of the original square grid whose combined

shortest distance to the start and destination nodes is greater than L have been removed,

since they cannot be part of a feasible solution. As in Figure 5.2, there appears to be two

competing paths, with edge values x∗ij ≈ 1/2. On the right, the path obtained from

the simplified formulation (P5), which works reasonably for this problem instance.

Below, the solution obtained using the proposed genetic algorithm. �e corresponding

objective values are 192.1, 271.8 and 262.1. �e gap between the final objective and

the lower bound given by the SDP is relatively large, but the path obtained directly

from the SDP solution is still quite reasonable.
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Figure 5.5: Here, a room is to be explored, with free start and end points. L was set to

50. At each spatial location there are five different orientations to choose from, and

graph connectivity was defined so that angular velocity is limited to 72
◦

per step. On

the left, the relaxed SDP solution giving the lower bound 382.2. On the right, the

path obtained by iterating (5.2) while removing loops, finally giving a path cost of

412.2. Below, the refined path obtained from the GA initialized with the path on the

right, and with cost 399.6. Note that the room is circled twice with the camera in two

different predominant orientations; this is most easily seen by viewing the embedded

3D models on-screen, where the different orientations have been spatially separated

for illustration purposes. Interestingly, no diagonal edges are included in any of the

solutions.
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Figure 5.6: In this experiment, we simulate an omnidirectional camera by adding the

information matrices of four cameras at each location. Each cluster thus corresponds

to only one node of the graph. On the left, the SDP (P4) with L = 43 gives a lower

bound at 4.11. On the right, the solution using the stratified approach, with cost

5.47. Below, the graph has been reduced to a DAG such that the observer must move

towards the target at every step. �is limits the search space making branch-and-bound

tractable, and the optimal solution with cost 17.98 is shown next to the solution of the

simplified problem (P5) (pale green) with cost 30.81.
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for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.16311504570892,0.978690274253521,-0.12473503495388);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;




for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.16311504570892,0.978690274253521,-0.12473503495388);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;
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Figure 5.7: Stratified algorithm run on the Örebro castle dataset, reduced to one

hundred representative points using random sampling.

Figure 5.8: �e Battle of Lund monument dataset and problem setup.
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Figure 5.9: Exploratory scenario with fixed start and free end point. �e point cloud

of the Lund monument has been reduced to a few hundred representative points (by

random sampling) to constrain the information matrix dimension. Top left, the SDP

solution giving lower bound 1.76 along with the “filled in” path found as the shortest

path on the graph with weights 1− x∗ (see Section 5.3), having cost 3.18. Right, the

GA solution on the reduced graph obtained by sampling the SDP solution, with nodes

marked with black squares, shown in light green with cost 2.78. �e dark green path is

the result of the GA on the full graph, seeded with the reduced solution, with cost 2.57.

Achieving similar cost using random initialization takes significantly longer; the plot

shows the progression of the objective value (Φ) over iterations of the proposed genetic

algorithms. �e orange dashed curves show the maximum, minimum and median over

20 runs of the GA on the full graph with random initialization. �e green curves show

the same for the stratified approach, first running 250 iterations on the reduced graph,

then switching to refinement on the full graph. It is clear that the stratified scheme

converges much faster.
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Figure 5.10: Effect of reduced confidence in future measurements. �e plots show

the same scenario but on the right the information matrix at each node has been

down-weighted by the distance from the start node. �e pale purple lines indicate the

SDP solution, the green path the GA solution.
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for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.245414104484586,0.96277840990107,-0.113268048223655);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;




for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.245414104484586,0.96277840990107,-0.113268048223655);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;
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Figure 5.11: In this example the graph has been reduced to a DAG, only allowing

movement strictly decreasing the distance to the target node. Left: the simplified

formulation solution with cost 80.4. Right: GA solution after 200 iterations with cost

76.6. Below: the optimal solution obtained using branch-and-bound, with cost 69.6.

�e lower bound obtained from the relaxed SDP is only 46.9 in this case.
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for(var i=scene.lights.count-1; i >= 0; i--)
  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.156892908110547,0.98058067569092,-0.11766968108291);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;
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L0.direction.set(-0.156892908110547,0.98058067569092,-0.11766968108291);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;
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  scene.lights.removeByIndex(i);

L0=scene.createLight();
L0.direction.set(-0.156892908110547,0.98058067569092,-0.11766968108291);
L0.color.set(1,1,1);

scene.lightScheme=scene.LIGHT_MODE_HEADLAMP;
scene.lightScheme=scene.LIGHT_MODE_FILE;
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constraints of the original problem with(
1 y>

y H

)
� 0, diag(H) = 1, rank(H) = 1. (5.4)

By removing the non-convex rank constraint we obtain Shor’s semidefinite

relaxation (Shor 1987). It has been shown that dropping the rank requirement

is equivalent to Lagrangian relaxation, i.e. solving the dual of the original

optimization problem. In theory, one could go further and apply even tighter

relaxations from Lasserre’s hierarchy (Lasserre 2000) of which Shor’s is the first

level. Unfortunately, the added computational complexity of even this first level

with n2
extra variables makes it impractical for all but the smallest problems.

Crucially, in our experiments the tightening of the lower bound turns out to

be insignificant, at the cost of a three orders of magnitude increase in running

time.

5.5.3 Receding Horizon Control

In practice, the proposed problem formulations are foreseen to be solved in a

“receding horizon” manner, where the destination is continually updated as new

navigational objectives are received from higher-level planning functions. If the

path endpoint moves frequently or unpredictably, trying to find the optimal

path from start to finish may be pointless and wasteful. We therefore propose a

more local planning model, where the path is only optimized over the next k
number of steps, while still attempting to respect the longer-term path length

constraints.

Given the robot’s position, the graph is trimmed so that only nodes reach-

able within k steps, and the destination node, remain. New edges between

the “horizon” nodes (at precisely k steps away) and the destination node are

introduced with weights equal to the shortest path distance between them in the

original graph. �e information at the horizon nodes is set to the accumulated

information expected along those shortest paths. �e planning problem can

then be solved on the new graph using the GA optimizer or optimally using

branch-and-bound, if k is small enough (say≤ 4 for reasonable running times).

After moving to the last horizon node on the path, the traveled distance is

subtracted from the length limit L and the process is repeated. �is ensures

that the total path length upon reaching the destination does not exceed the

original limit, but also leads to the “parallax budget” being used up in the early
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Figure 5.12: Örebro castle dataset with the trace scalarizing function and L = 50.

On the left, the short-term planning (k = 3) solution using branch-and-bound with

final objective value 262.0 and path length 49.3. On the right, the GA solution with

objective value 253.9 and length 49.8. �e SDP lower bound was 244.3.

stages, leaving only the shortest path solution available later on. �is effect

can be alleviated by augmenting the length limit somewhat at each stage. An

example of this approach is shown in Figure 5.12.

5.6 Conclusions

While the general problems considered in this chapter are demonstrably hard,

satisfactory solutions can be found sometimes directly from the SDP relaxation,

and often by the proposed genetic algorithm. In many scenarios, the SDP

solution gives hints as to what a good path might look like, while in others

it consists of seemingly random, disconnected edges only. In those cases the

lower bound obtained is usually not very tight and it is difficult to draw any

conclusions about the optimality of any path. �is is of course to be expected

given the hardness of the problem. Nevertheless, the SDP solution can always be

used to seed the GA optimizer in the proposed three-stage stratified algorithm.

�e linearized approximation (P5) sometimes gives reasonable solutions, as

in Figure 5.4, but most often does not show any proper long-term planning

behavior, as in Figure 5.3. On a directed acyclic graph (see Figure 5.6) it does

have the advantage of being extremely fast compared to the other methods.

For computational tractability, structure points must be considered in-
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dependent, and real point cloud data need to be subsampled. How to best

subsample while preserving data characteristics has not yet been considered. As

the graph size and connectivity increases, computational complexity also rises

and the quality of solutions attainable in reasonable time drops. �is limits

the resolution of the discretization, particularly in the orientation space, which

means local, continuous refinement may be a desirable second step, using e.g.

the optimization algorithm from the previous chapter.
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Appendix

5.A Semidefinite Programming

Semidefinite programs are a class of convex conic optimization problems where

a linear objective function is minimized over the cone defined by semidefinite

matrices. On standard form the problem may be stated as

min. c>x

s.t. F0 + x1F1 + . . .+ xnFn � 0,
(5.5)

where c is a vector of coefficients, theFi are symmetric matrices and� indicates

that the sum should be negative semidefinite. Linear, quadratic and second

order cone programs are all special cases of semidefinite programs. �e optimum

of an SDP can be found to within ε accuracy in time polynomial in ε and the

problem size, most commonly using interior point methods, see for example

Nesterov and Nemirovskii (1994).

Branch and Bound

Imposing integral or binary constraints on the variables of a convex program

instantly makes it much more difficult. Many hard combinatorial problems,

such as the traveling salesman problem, may be cast as integer linear programs

which must therefore be NP-complete (see Papadimitriou and Steiglitz 1998).

Given an SDP with added binary constraints on all or some of the variables, a

solution can be found using a branch-and-bound strategy.

First the problem is solved with the binary constraints relaxed to be convex,

replacing xi ∈ {0, 1} with xi ∈ [0, 1]. If some of the variables designated

to be binary are fractional in the solution, one is chosen and two new relaxed

problems are posed. In one the chosen variable is set to one, in the other to zero.
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Figure 5.13: Example branch-and-bound search tree. Branching has been terminated

at the shaded nodes either because an integer solution was found, the problem was

infeasible or the lower bound computed was higher than the value of the current

incumbent solution.

�e two new subproblems are solved, and if any of the remaining variables are

still fractional, one is chosen and the problem is split once again. Recursively

applied, this procedure gives rise to a binary search tree, see Figure 5.13 for

an example. Branching stops whenever a subproblem is infeasible or returns a

binary solution. After solving a subproblem, a fractional solution is rounded

and checked for feasibility. If it is, and the objective value is lower than that of

the best solution found so far (if one has been found), the solution becomes

the new incumbent, and provides an upper bound on the optimal objective

value. Since every node of the search tree solves a relaxed version of the original

problem, the objective value computed is a lower bound on the optimal value.

�erefore, branching may also be terminated whenever a node computes a lower

bound which is higher than the current incumbent upper bound. When the

lowest lower bound of any leaf node matches the incumbent upper bound, the

optimal solution has been found, at least in theory. However, if the SDP solver

used is not accurate enough, it can be difficult to tell whether a node should be

closed or not. In our experiments, we have found that MOSEK and SeDuMi

(J. F. Sturm 1998) may give different results, with MOSEK producing slightly

lower objective values.

Because of the bounding mechanism, the order in which nodes are visited

becomes important. Different strategies have been proposed and they may

lead to drastically different running times. Unfortunately, one cannot know

beforehand which will work best for a given problem, and the number of nodes
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to visit will still generally be exponential in the number of variables.

Another angle of attack is to generate feasible binary solutions from frac-

tional ones more intelligently than just by rounding the values, in an attempt

to reduce the upper bound as quickly as possible. In our problem formulations,

rounding is unlikely to produce a connected path in the graph. Instead one

could explicitly generate feasible solutions from fractional ones as described in

Section 5.3. Unfortunately, this strategy did not improve the convergence speed

in our experiments, mainly because the convex relaxations are often not very

tight and few of the nodes ever produce lower bounds higher than the optimal

value, except for near the very end of the process.

5.B Transforming the Objective

�e objective functions used in the planning problems can be transformed to

epigraph form with linear objectives under semidefinite constraints.

Minimizing the Trace

�e problem

min. tr(A−1

) (5.6)

is equivalent to the SDP

min.

n∑
i=1

ti

s.t.

(
A ei
e>i ti

)
� 0, i = 1, . . . , n ,

(5.7)

where ei is the i:th column of the identity matrix, and n the dimension of

A. �is holds because a matrix is positive semidefinite if and only if its Schur

complement is, and in the constraints above, the complements are ti−e>i A−1ei
so they are equivalent to (A−1

)ii ≤ ti. Minimizing

∑
ti thus minimizes the

sum of the diagonal elements ofA−1
, i.e. the trace. Note that this requires n

extra variables in the formulation.
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Minimizing the Maximum Eigenvalue

�e problem

min. λmax(A
−1

) (5.8)

is equivalent to

min. t

s.t. A+ tI � 0,
(5.9)

where I is the identity matrix. Note that if the matrixA has eigenvalues λi(A)

then A + tI has eigenvalues λi(A) + t. �e semidefinite constraint is thus

equivalent to λmin(A) + t ≥ 0 which in turn is equivalent to λmax(A
−1

) ≤
−1/t (note that t < 0 at the optimal point since we assume A is positive

definite). Minimizing −1/t is then equivalent to minimizing t and the result

follows. �e objective value will however not equal the maximum eigenvalue,

which is required if we want to add additional terms to the objective (such as the

path length). In this case, we introduce a new variable u and add the constraint

−1/t ≤ u which can be formulated as a Schur complement, yielding the SDP

min. u

s.t. A+ tI � 0(
−t 1

1 u

)
� 0.

(5.10)

In this formulation only one (or two) extra variables are required and the SDP

is faster to solve than when minimizing the trace.
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Chapter 6

Reconstruction from Unordered
Image Sequences

�ree-dimensional reconstruction from unordered image sequences is a well-

studied problem in the computer vision literature, see for example Snavely

et al. (2007); Agarwal, Snavely, Simon, et al. (2009); Frahm et al. (2010);

Olsson and Enqvist (2011); Crandall et al. (2011). “Unordered” refers to the

assumption that nothing is known about the relative location of the cameras

or time of capture of the images. �is is in contrast to the SLAM problem

formulation where consecutive images are known to be close in space and time

which can be exploited for tracking, matching and reconstruction. Unordered

image sequences can comprise anything from carefully planned image series

taken for the specific purpose of reconstruction, to completely uncurated image

collections downloaded from the Internet, where the images have only been

tagged with the name of the location we wish to reconstruct. In the most general

case, one must therefore assume that little is known at the outset in terms of scene

coverage, image quality or camera calibration. �e main difficulty is usually

image feature matching, which may be very challenging given widely varying

viewpoints and illumination conditions. In this chapter, we will nevertheless

assume that some matching has been performed, and focus on the geometric

reconstruction phase. We apply concepts of active view planning seen previously

to the unordered image set reconstruction problem, using a sequential algorithm

(in contrast to more holistic methods such as known rotation algorithms).

Although we can no longer choose the viewpoint freely, in a sequential algorithm

there is usually a choice between a subset of the images at every step. Our strategy

will be to choose the image giving the smallest error, judged by the expected

covariance of the reconstruction. To be able to determine the covariance, it is

necessary to know the uncertainty of the observed geometry. In the following,
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it is shown how this is achieved by propagating covariances when resectioning

cameras and triangulating points, and how as a side effect the algorithms gain

robustness and better approximate the maximum likelihood estimate.

6.1 Estimation from Uncertain Geometry

�e cornerstones of sequential structure-and-motion are triangulation and

camera pose estimation. Usually, one attempts to find the maximum likelihood

solution for the point or camera given noisy image measurements, but assuming

that all other parameters are known exactly. �is is of course rarely the case,

since points and cameras are triangulated and resectioned using noisy data.

Below, we derive algorithms that also take the uncertainty of the 3D structure

and camera parameters into account.

6.1.1 Pose Estimation

Consider the problem of camera pose estimation givenN 3D point coordinates

X and their measured projections in one image, x̃. Assuming there are errors

in the image measurements, the problem is to find the maximum likelihood

solution, i.e. the camera parameters θ∗ satisfying

θ∗ = argmax

θ

L(θ), (6.1)

where

L(θ) = L(θ | x̃,X) = p(x̃ |θ,X) (6.2)

is the likelihood function. In this formulation it is assumed that the struc-

ture parameters X are precisely known. More generally, given a probability

distribution ofX , the problem is to maximize

L(θ) =

∫
R3N

p(x̃ |θ,X)p(X) dX. (6.3)

We restrict our attention to the case of Gaussian distributions. �en we have

L(θ) ∝
∫
R3N

e−‖x̃−f (X,θ)‖2

R · e−‖X−X̄‖2

Q dX, (6.4)
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where f (X,θ) is the projection of the pointsX using camera parameters θ,R
the measurement error covariance,Q and X̄ are the covariance matrix and mean

of the distribution of X and ‖y‖2

Σ = y>Σ−1y the squared Mahalanobis

distance. Next, we project the distribution of X onto the image plane, by

integrating along the light rays. Formally, for a given θ we parametrize each

3D point by its image projection x = f (X,θ) and depth ρ, so that

L(θ) ∝
∫
R2N

e−‖x̃−x‖
2

R

(∫
RN

e−‖(x,ρ)−X̄‖
2

Q dρ

)
dx. (6.5)

�e right-hand factor is a distribution on the 2N -dimensional generalized

image plane, and may be seen as the projection of a Gaussian random variable,

i.e. f
(
N (X̄,Q),θ

)
. By Taylor expansion about X̄ , f can be approximated

by f̃ (X,θ) = f (X̄,θ) + J (X − X̄), and for affine functions

f̃
(
N (µ,Σ),θ

)
= N

(
f̃ (µ,θ),JXΣJ

>
X

)
(6.6)

with JX = ∂f
∂X|θ. We now have

L(θ) ∝∼
∫
R2N

e−‖x̃−x‖
2

R · e−‖f (X̄,θ)−x‖2

JQJ> dx, (6.7)

which may be seen as the convolution (u ∗ v)(τ ) =
∫
u(x)v(τ −x) dx of the

Gaussians u(x) = e−‖x−x̃‖
2

R and v(x) = e
−‖x−0‖2

JQJ> , with τ = f (X̄,θ).
�e convolution of Gaussians is particularly simple,

N (x̃,R) ∗ N (0,JQJ>) = N (x̃,R+ JQJ>), (6.8)

giving

L(θ) ∝∼ e
−‖x̃−f (X̄,θ)‖2

R+JQJ> . (6.9)

Taking the logarithm, maximizing the likelihood is equivalent to minimizing

− logL(θ) ∝∼ ‖x̃− f (X̄,θ)‖2

R+JQJ> , (6.10)

which can be solved using an iteratively reweighted nonlinear least-squares

algorithm. In fact, only a minor modification to a standard algorithm for mini-

mizing the reprojection error is required. For example, a Levenberg-Marquardt

optimization loop would be modified to
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Figure 6.1: For camera resectioning, the uncertainties of the 3D points are projected

onto the image plane and convolved with the image measurement uncertainty giving

the reprojection error metric. Note that the projections are not necessarily independent;

however, in this work inter-point covariances are discarded for computational reasons.

while not converged do
· · ·
W ← (R+ JXQJ

>
X )
−1

δθ ← (J>θWJθ + λI)−1J>θWr
· · ·

end while
where Jθ = ∂f

∂θ|θ and JX as above (cf. equation 2.10). By �eorem 3.2, the

covariance matrix of the recovered camera parameters θ∗ can be estimated by

the inverse of the Hessian matrix evaluated at the minimum,

Σθ ≈ (Jθ∗W
∗J>θ∗)

−1. (6.11)

Of course, a good initial guess is required to start the iterative algorithm,

and can be obtained using standard minimal or linear solvers. �e general

effect of taking the distribution of X into account is to give more weight to

well-determined 3D points than uncertain ones when finding the camera pose.

6.1.2 Triangulation

Handling uncertainty in camera parameters when triangulating 3D structure

is completely analogous to the pose estimation case. �e linearized problem
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6.2. COVARIANCE PROPAGATION

formulation is to find

θ∗ = argmin

θ

‖x̃− f (θ, P̄ )‖2

R+JSJ> , (6.12)

where θ now represents the 3D structure, and P̄ is the mean of the distribution

of the cameras with covariance S and J = ∂f
∂P |θ.

6.1.3 Complexity

�e introduction of the weight matrixW in the algorithms above inevitably

incurs extra computational costs. In particular, if the input variables are corre-

lated,W will be a full matrix and the natural sparsity of the problems is lost.

To mitigate this, we will assume no correlation between pairs of cameras or

points, so thatW is block diagonal. Such simplification is also necessary since

the full covariance matrix of even a moderately sized reconstruction problem

would occupy hundreds of gigabytes of memory. Furthermore, it may not be

necessary to recomputeW every iteration, since the projection is not expected

to change significantly given a good initialization. In our experiments, it is

recomputed every third iteration and after the last, to ensure that the covariance

estimate given by (6.11) is as accurate as possible.

6.2 Covariance Propagation

�e proposed algorithms open the possibility of covariance propagation through-

out the reconstruction process. Uncertainties in 3D points are transferred to

uncertainty in resectioned cameras, which in turn transfer uncertainty to trian-

gulated points, and so on. In this manner, a rough estimate of the covariances

is available at any time and can be used, for example, to improve reconstruction

accuracy and for next best view planning, which we exploit to reduce error

accumulation.

Below we detail a system for 3D reconstruction from unordered image

sequences and show the benefits that can be gained.

6.2.1 Selecting the Seed

In choosing the set of images on which to initialize the reconstruction, we

strive for the following: the initial reconstruction should be stable, contain

many structure points and it should be near the center of the camera graph (the
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graph with each camera a vertex and edges between cameras observing common

features). �e latter is motivated by the fact that error accumulation is a function

of the distance from the seed; if the “degrees of separation” from the seed is kept

low, error accumulation can be minimized. We therefore wish to minimize the

distance of every camera to the seed. For our purposes we define the center as

any vertex of the camera connectivity graph with minimal farness, the sum of

shortest distances from the node to all others. We define the edge weights of the

graph as 1/max(0, nc−4), where nc is the number of observed points common

to both cameras. �is heuristic, while ignoring the actual two-view geometry,

is based on the assumption that cameras sharing many observed points are

well-determined relative to each other. �e maximum imposes a five point

overlap threshold, needed to determine relative motion between views. Now,

all shortest paths in the graph can be computed and summed for each camera,

the k lowest scoring yielding a set of candidate images. For each candidate,

an adjacent view with a balance between many common image points and

good parallax is selected as in Snavely et al. (2007), i.e. each pairing is scored

according to the proportion of outliers to a homography fit. �e top-scoring

pair is selected, and standard two-view reconstruction is performed, followed

by bundle adjustment.

6.2.2 Fixing the Gauge

Reconstruction from image measurements only is subject to global translation,

rotation and scale ambiguity. Unlike Snavely et al. (2008), which measured

pairwise covariances in local coordinate systems, we need globally referenced

covariances and so must compute these for the seed reconstruction. For the

covariances to be defined we must fix the gauge, especially the scale, since the

dimension of the nullspace of the Hessian matches the number of degrees of

freedom of the system. From a theoretical standpoint, taking the pseudoinverse

of the unconstrained Hessian is the most satisfying solution (Hartley and Zis-

serman 2003; Morris 2001), however it can be computationally very expensive

if the seed views share many points (i.e. > 1000). An alternative approach is to

constrain the parameters of the system by adding penalties to the cost function,

making the Hessian full rank so it can be inverted without finding an SVD.

Different constraints lead to somewhat different estimates of the covariance;

one way is to lock the first camera and impose a distance constraint on the

mean of the structure points, as was done in Snavely et al. (2008), or one can
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simply fix the distance between the first and second camera. �e first prior gives

results closer to the pseudoinverse, but also destroys the sparsity of the Hessian

matrix making inversion more expensive. In cases where the pseudoinverse is

too expensive we choose the second option which preserves sparsity.

After fixing the scale, there is still a difficulty in quantifying just how

large an uncertainty is, since it must be put in relation to the overall size of

the reconstruction. �e scale is unknown in the beginning, since there is no

guarantee that the distance between the seed cameras is representative of the

whole scene. �is has implications for the various outlier rejection thresholds

used in the reconstruction pipeline.

6.3 Next Best View Planning

View planning in a sequential reconstruction process aims to actively choose

the most favorable sensor configuration (camera position and orientation) to

achieve a certain goal, in this case geometric accuracy. In each iteration, we can

choose which camera to resection among those observing a sufficient number

of triangulated points. Usually, the camera observing the largest number of

triangulated points is chosen first. However, if the geometry is such that the

pose is poorly determined, triangulations using the image will have larger errors,

propagating to subsequently resectioned cameras, etc. It therefore makes sense to

minimize the error accumulation in every step. To this end, we propose to select

the camera with lowest estimated reconstruction error, by exhaustive search

among candidate images. �e covariance is computed by first resectioning

the camera using a linear or minimal solver and taking the inverse of the

Hessian,Σcam ≈ (JθWJ>θ )
−1

as defined in Section 6.2. As a scalar measure

of reconstruction error we use tr(Σcam) · εrp, where εrp is the mean reprojection

error. �is turns out to give better results than the covariance alone; a small

estimated covariance does not necessarily imply a low reprojection error, and

a well-determined camera should ideally have both. Note that the score can

be cached for each camera between iterations and need only be recomputed if

more points in the camera’s view have been triangulated. While the number of

views that need to be resectioned in each iteration is dependent on the particular

data set and could theoretically grow with the number of triangulated points,

in practice this number is found to be approximately constant throughout the

reconstruction process and typically between 10 and 50.
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6.4 Reconstruction Pipeline

We apply NBV planning and covariance propagation to the problem of recon-

struction from unordered image collections. We will assume that matching and

tracking of image features has been performed and is outlier-free. If not (as

in the last experiment below), the proposed method is easily integrated with

outlier detection schemes such as RANSAC. �e algorithm is mainly standard

fare:

1. Find initial seed views (Section 6.2.1).

2. Reconstruct and bundle adjust the seed geometry.

3. Compute the covariance of the seed (Section 6.2.2).

4. Choose a camera to resect following Section 6.3. Resect using a linear

method; if it fails (i.e. large reprojection error or points behind the

camera) try an L∞ formulation (see Section 2.6) instead. If that also

fails, choose another camera and try again. Else, refine the camera pose

by minimizing (6.10) and store its covariance.

5. Triangulate all points seen by at least two resectioned cameras using a

linear method. Compute an approximate uncertainty by evaluating the

Hessian of the standard reprojection error and taking the trace of the

inverse. Well-determined points, i.e. with low covariance and reprojec-

tion error, as specified by thresholds, are kept and further refined by

minimizing (6.12). Store the covariance derived from this reprojection

error.

6. (Optional) Bundle adjust over all or part of the reconstruction, and

update covariances accordingly.

7. If possible, goto step 4 and find the next view, else terminate.

In the first experiments below, bundle adjustment is only performed on the

seed to demonstrate the efficacy of the approach in reducing error accumulation.

In real use, step 6 should performed at regular intervals. �e cost of updating

the covariances afterwards is a computational bottleneck, which needs to be

addressed.
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Figure 6.2: Toy example of camera array observing a wall illustrating the covariance

estimation results depending on which seed is chosen (from left to right, cameras 1 and

2, 19 and 20, 39 and 40). �e points and cameras are color coded by the trace of their

covariance, with green through blue to red for increasing uncertainty. Choosing the

seed in the middle reduces the maximum camera uncertainty with respect to the seed.

6.5 Experiments

Figure 6.2 shows a simple synthetic example of the dependence on the seed

of the propagated covariances. Although the relative uncertainties between all

cameras remain the same in our linearized Gaussian propagation model, in

reality the reconstruction errors depend heavily on the path taken.

Next, the algorithm is applied to a dataset extracted from photos of the

“Spilled blood” church in St. Petersburg. �e reconstruction and a comparison

with a standard method is shown in Figures 6.3 and 6.4. �e comparison shows

the mean standard reprojection error and the ground truth deviation, defined

as the mean distance of each triangulated point from its ground truth position,

after the two point clouds have been aligned using a Procrustes transformation.

�e “ground truth” in this case has been obtained from the system described

in Olsson and Enqvist (2011), using the known-rotation L∞ reconstruction

method. �e plain method, without covariance propagation or NBV planning,

runs into trouble around iteration 300 and does not manage to resection all

cameras, whereas the proposed algorithm does and is generally more robust and

accurate. A similar comparison is made for the “Trafalgar” dataset of Agarwal,
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Figure 6.3: Resulting point cloud reconstruction of the “Spilled blood” dataset using

the proposed algorithm, color coded by estimated covariance. No bundle adjustment

has been performed. �e dataset has 781 images, 162,521 points and 2,541,736 feature

measurements.

Snavely, Seitz, et al. (2010) in Figure 6.5.

Finally, we compare three variants of the proposed algorithm on the Lund

Cathedral dataset. �e covariance propagation and next best view-planning

can be used independently, i.e. the next image can be chosen by the maximum

overlap principle while propagating covariances, or the next view can be chosen

based on camera uncertainty calculated using zero point covariances, with no

propagation. As Figure 6.7 shows, using NBV planning alone does not work

well at all and the process breaks down, like the plain method. Propagation

without planning works almost as well as both combined, and is probably the

greatest contributing factor.

Next, we apply the proposed algorithm to a more realistic scenario. �e

“Örebro castle” dataset is corrupted by replacing 5 of matches with artificially

generated outliers. Camera resectioning is preceded by RANSAC outlier detec-

tion, and we allow local bundle adjustment to be performed every 20 iterations,
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Figure 6.4: Comparison between the proposed algorithm and a baseline “plain” method

on the “Spilled blood” dataset. In the plain method the standard reprojection error is

minimized instead, and the next camera is chosen by the maximum overlap principle.

Running times were 22 and 13 min respectively. �ere is no absolute scale on the top

graph since it depends on the overall scale of the reconstruction, which is arbitrary.
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Figure 6.5: Results for the Trafalgar dataset (256 images). Running times were 83 and

138 s respectively.
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Figure 6.6: Resulting point cloud reconstruction of the Trafalgar Square dataset.

optimizing over the 20 last resectioned cameras and the triangulated points

visible in these views. Measurements from other cameras where the points are

visible are also included. A robust Huber cost function is used, and measure-

ments with high reprojection error after convergence are deemed outliers and

removed. �e resulting point cloud reconstructions are shown in Figure 6.9.

�e proposed method produces higher quality output and, surprisingly, is faster

in this case. Note that in this experiment the covariances are not updated after

bundle adjustment, and still there is marked improvement.

After bundle adjustment, the estimated covariances of the affected parame-

ters are no longer valid and need to be updated. As mentioned in Section 6.2.2,

inverting the whole Hessian matrix of the LM system is infeasible for all but

the smallest problems. However, since we only need the diagonal blocks of the

covariance, a lot of work can be saved. If the covariance matrix corresponding

to the camera parameters only is known, the individual point covariance blocks

can be computed very efficiently. �e Hessian of a typical bundle adjustment

84



6.5. EXPERIMENTS

(a) Plain (b) NBV, no propagation

(c) Propagation only (d) Propagation and NBV

Figure 6.7: Lund Cathedral dataset (1060 images, 45770 points, 408625 projections)

reconstructed using the baseline algorithm, next best view-planning only without

propagating covariances, propagating covariances but using the maximum overlap

principle, and the proposed algorithm, using both NBV planning and propagation.
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Figure 6.8: Error plots for the Lund Cathedral dataset.

problem has the particular structure

H =

(
A>Σ−1A A>Σ−1B
B>Σ−1A B>Σ−1B

)
=

(
U W
W> V

)
, (6.13)

whereΣ is the measurement noise covariance matrix and U and V are block

diagonal with blocks corresponding to the cameras and points respectively. In

the fixed-gauge case, the covariance of the camera parameters is then given

by Σc = (U −WV −1W>
)
−1

and the covariance for point i is given by

Σpi = V −1

i W>
i ΣcWiV

−1

i + V −1

i where Vi is the corresponding block of

V , andWi the corresponding rows ofW (see Hartley and Zisserman (2003)

for details). Exploiting the sparsity of W , the product W>
i ΣcWi can be

evaluated in time proportional to the number of cameras observing point i. �e

dominating cost is in practice computing the camera covariance, i.e. forming

and inverting the Schur complement, typically of cubic cost in the number of

cameras. When this number is low, the covariance update is fast (on the order of

a few seconds), but as the reconstruction grows the cost becomes prohibitive and

the time would be better spent on bundle adjustment. However, as shown above,

updating the covariances is not critical to the performance of the algorithm,

and an approximation may be sufficient. For example, experiments have shown
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(a) Standard method, 908 s. (b) Propagation and next best view plan-

ning, 782 s.

Figure 6.9: Reconstructions of the Örebro castle dataset with 5 outliers and local

bundle adjustment every 20 iterations. �e difference in processing time is due to the

plain method often failing to resection cameras using the fast linear method and falling

back on the slower but more robust L∞ solver, and more often failing and reattempting

triangulation as new views are resectioned.
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that only inverting the diagonal blocks corresponding to individual cameras

of the Schur complement gives a reasonable approximation to the full inverse.

Nevertheless, efficient updating of the covariances remains an open problem

and is the subject of future work.

6.6 Conclusion

�e proposed method increases robustness to errors such as poorly resectioned

cameras and poorly triangulated points, reduces error accumulation and also

provides estimates of reconstruction accuracy which could be further processed

for outlier detection etc. �is comes at a cost of up to a twofold increase

in running time. However, this cost is practically linear in the problem size,

whereas iterated bundle adjustment costs betweenO(n3
) andO(n4

), depending

on problem structure. �us, trading less frequent bundling for covariance

propagation and next best view planning should pay off for large problems.

In addition, the covariance propagation mechanism is a minor modification

to standard algorithms and can therefore easily be incorporated into existing

sequential reconstruction pipelines.
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Chapter 7

Preliminaries on Refraction

�e following chapters are mainly concerned with optical refraction effects as

a complicating factor in structure-and-motion systems. When a ray of light

passes from one optical medium into another, such as from air into water or

glass, it bends. �us, if a camera in air observes a scene under water, the usual

pinhole camera model is no longer valid since it assumes that light travels along

straight lines from the 3D point to the camera center. Not accounting for the

refractive effects at the boundary between optical media can lead to significant

errors in the reconstruction, so they need to be accurately modeled.

�is chapter gives a short primer on modeling refraction using Snell’s law,

and an introduction to solving systems of polynomial equations, which is central

to our implementation of efficient minimal solvers for camera pose estimation

under refraction.

7.1 Snell’s Law

Refraction of light at an optical medium boundary is described by Snell’s law,

named for Willebrord Snellius’ discovery in 1621 but already described much

earlier by Ibn Sahl in 984. �e law states that

ρ1 sin θ1 = ρ2 sin θ2, (7.1)

where ρ1,2 are the refractive indices of the two media and θ1,2 the angles the

incident and refracted ray make with the surface normal (see Figure 7.1). Since

the angle of refraction only depends on the ratio of refractive indices, it is

convenient to define µ ≡ ρ1/ρ2. Furthermore, the incident ray with direction

vector u, the refracted ray direction v and the surface normal nmust all lie in a

common plane, and so v can be expressed as a linear combination of u and n,

v = au+ bn. (7.2)
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ρ1

ρ2

u

v

nθ1

θ2

Figure 7.1: A light ray with direction vector u is refracted at the media boundary with

surface normal n, and emerges with new direction v according to Snell’s law. Since the

index of refraction is wavelength-dependent, white light disperses into its constituent

colors.

Taking the cross product withn and the norm, we find ‖v×n‖ = |a|‖u×n‖
and assuming u and n are unit vectors (and θ1 6= 0),

|a| = ‖v × n‖‖u× n‖ =
sin θ2

sin θ1

=
ρ1

ρ2

= µ. (7.3)

It is clear from Figure 7.1 that a ≥ 0, so a = µ. Taking instead the scalar

product of (7.2) with n gives

b = v · n− au · n = − cos θ2 + µ cos θ1. (7.4)

Given the surface normal and the incident ray, the refracted ray direction may

thus be computed as

v = µu+ (µ cos θ1 − cos θ2)n, (7.5)

where

cos θ1 = −n · u
cos θ2 =

√
1− µ2

(1− cos
2 θ1) .

(7.6)
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In the last equation we see that if µ > 1 the argument to the square root might

become negative. If this happens, it means that the ray undergoes total internal

reflection at the boundary, and no light enters the second medium.

Note that by induction, if a ray traverses several flat parallel optical media

interfaces (such as the two sides of a pane of glass), it will always stay in a single

plane; this turns out to be a very useful fact.

�e refractive indices are inversely proportional to the speed of light in the

material, and are therefore also dependent on the wavelength. Light of different

colors will therefore bend slightly differently, but this effect is quite weak and

we will usually ignore it. However, in Chapter 9 we will see how treating the

red, green and blue color channels of an image separately can reduce so-called

chromatic aberration effects in underwater imagery.

7.2 Solving Polynomial Equation Systems

In the following chapter we will need to solve systems of multivariate poly-

nomial equations derived from Snell’s law, and to understand the methods

employed some background on algebraic geometry is needed. We start with

some definitions.

Definition 7.1 A monomial in n variables x = (x1, x2, . . . , xn) is a product of
the form

xα1

1
xα2

2
· · ·xαn

n , (7.7)

where αi ∈ N0. �e total degree of a monomial is the sum |α| = α1 + . . .+αn.

Definition 7.2 A polynomial f in x = (x1, x2, . . . , xn) is a finite sum of the
form

f (x) =
∑
α

cαx
α, (7.8)

where the cα ∈ C are the coefficients. �e degree of a polynomial is defined as
maxα|α|, the largest total degree of any of its monomials.

�e set of all polynomials with complex coefficients is denoted C(x). �e

problem we wish to solve is the following:
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Problem 7.3 Given a set of polynomials fi(x) ∈ C(x), i = 1, . . . ,m, find all
solutions to the system of equations

f1(x) = 0

...
fm(x) = 0 .

(7.9)

Definition 7.4 �e variety V (f1, . . . , fm) is the set of points x where all polyno-
mials f1(x), . . . , fm(x) vanish.

A variety may be empty if no solution to the system exists, consist of a finite

number of isolated points, or contain a continuum of solutions. We are only

interested in systems with a finite non-zero number of solutions, i.e. with finite

zero-dimensional varieties.

Definition 7.5 �e ideal generated by the polynomials f1, . . . , fm is the set

I = 〈f1, . . . , fm〉 =

{
m∑
i=1

hi(x)fi(x) : h1, . . . , hm ∈ C(x)

}
. (7.10)

By the definition, all polynomials in I vanish on the corresponding variety

V . If the ideal contains all polynomials which vanish on V , it is said to be

radical. Two polynomials f and g are said to be equivalent with respect to I , or

congruent modulo I , if f − g ∈ I , meaning that they attain the same values

on the variety. With this equivalence relation we can define the quotient space

C(x)/I , the set of all equivalence classes modulo I .

It may be shown (see e.g. Cox et al. 2007) that for a radical ideal I , C(x)/I is

isomorphic toCr where r = |V | is the number of solutions to the corresponding

equation system; consequently, it is a linear vector space.

Next we need to define an order relation on the monomials. With the

lexicographical ordering, a monomial xα >
lex
xβ if the first non-zero element

of the vector difference α − β is positive. With the graded lexicographical
ordering, xα >

grlex
xβ if the total degree |α| > |β|, or if |α| = |β| and

xα >
lex
xβ. Finally, the graded reverse lexicographic ordering also orders by

total degree, but breaks ties differently; xα >
grevlex

xβ if |α| > |β|, or

|α| = |β| and the last non-zero element of α− β is negative.

Definition 7.6 �e leading term LT (f ) of a polynomial f is the term with the
‘largest’ monomial with respect to a given monomial ordering.
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�e leading terms LT (I) of the polynomials in an ideal I themselves

generate an ideal 〈LT (I)〉.

Proposition 7.7 Given a monomial ordering on C(x) and an ideal I ⊂ C(x),
every polynomial f ∈ C(x) is congruent modulo I to a unique polynomial which
is a C-linear combination of the monomials in the complement of 〈LT (I)〉. Also,
the elements of {xα : xα /∈ 〈LT (I)〉} are linearly independent modulo I .

Proof. See Cox et al. (2007) p. 230.

Proposition 7.7 tells us that the monomials which are not in 〈LT (I)〉
constitute a basis for the vector space C(x)/I , and that any polynomial function

defined on the corresponding variety can be expressed as a linear combination

of these basis monomials.

7.2.1 �e Companion Matrix

Before trying to solve a multivariate system, we consider the univariate case. A

common method to find the roots of a univariate polynomial

f (x) = xn + cn−1x
n−1 + . . .+ c1x+ c0 (7.11)

is to construct the so-called companion matrix. Note that if f (x) = 0 then

xn = −cn−1x
n−1 − . . .− c1x− c0, (7.12)

and this relation together with a trivial identity mapping can be expressed on

matrix form as
−cn−1 −cn−2 · · · −c1 −c0

1 0 · · · 0 0

0 1 · · · 0 0

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

0 0 · · · 1 0


︸ ︷︷ ︸

C


xn−1

xn−2

.

.

.

x
1


︸ ︷︷ ︸

b

=


xn

xn−1

.

.

.

x2

x


︸ ︷︷ ︸

xb

. (7.13)

Equation (7.13) shows that any root of f must be an eigenvalue of the com-

panion matrix C, and it may also be verified that the characteristic polynomial

of C equals f . Furthermore, the eigenvectors equal (up to scale) the vector b
evaluated at the corresponding root. �e eigenvalues and eigenvectors can be
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computed stably and efficiently using methods from numerical linear algebra,

making this a popular technique.

Note also that using any of the monomial orderings introduced above,

〈LT (I(f ))〉 = 〈{xm : m ≥ n}〉, and that b consists of its complement, thus

forming a basis for C(x)/I(f ) by Proposition 7.7. �is corresponds to the

fact that any function defined only on the n roots of f can be expressed as a

polynomial of degree n− 1.

7.2.2 �e Action Matrix

�e companion matrix technique can be extended to the multivariate case, as

first shown by Lazard (1981). Let I = 〈f1, . . . , fm〉 be an ideal generated by a

polynomial system with a finite number of solutions |V | = r. Consider the

linear operator on C(x)/I

Ta : f (x) 7→ a(x)f (x) (7.14)

parametrized by some a(x) ∈ C(x), called the action polynomial. Proposition

7.7 now implies that there exists a finite linear basis b for the quotient space,

and therefore Ta can be represented by an r-by-r matrixMa, called the action
matrix. Any member of the quotient space can be written f = c>b where

c ∈ Cr is a vector of coefficients, and so Ta(f ) = (Mac)
>b = c>M>

a b.

Since this holds for all c, we must have

a(x)b(x) = M>
a b(x) (7.15)

for any x ∈ V which shows that the eigenvalues and eigenvectors of M>
a

correspond to a(x) and b(x) evaluated at the solutions, respectively. �is is

in analogy with the univariate case, where the companion matrix encodes the

mapping Tx.

7.2.3 �e Action Matrix Method

If we can find an action matrixMa for some polynomial a, and the variables

x can be easily extracted from the basis monomials b, solving the system boils

down to an eigenvalue problem. In practice, the action polynomial is chosen

as a simple monomial, usually just one of the variables, and will henceforth be

referred to as the action variable.
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To find an action matrix for a given polynomial system with r solutions

we use a technique called single elimination with basis selection (Faugère 2002;

Byröd et al. 2008; Byröd et al. 2009). �e first step is to expand the given set

of equations by multiplying each polynomial with a set of monomials. Exactly

which and how many monomials to choose is highly problem-specific and a bit

of a dark art. �e expanded system is written on matrix form as

CM = 0, (7.16)

where C is a matrix of coefficients and M a vector of monomials. Given

an action variable a, the monomialsM inM are partitioned into three sets,

M = E ∪ R ∪ P . �e set P = {xα : axα ∈M} contains the monomials

which stay inM on multiplication with a, called the permissible set. �e set

R = aP \ P is called the reducible monomials, and E =M\ (P ∪ R) the

excessive. With this partition we can write (7.16) as

(
CE CR CP

)MEMR
MP

 = 0. (7.17)

�e goal is to find a subset B ⊂ P containing a basis for the quotient space

defined by the polynomial system, and a linear mapping expressing the corre-

sponding reducible monomials inR in terms of B.

Using QR factorization of the coefficient matrix, the system is put on the

form (
UE1

CR1
CP1

0 UR2
CP2

)MEMR
MP

 = 0, (7.18)

where UE1
and UR2

are upper triangular. Having eliminated the dependence

on the excessive monomials from some of the equations, the top rows of the

matrix are discarded. �is leaves the system

UR2
MR = −CP2

MP , (7.19)

and if it can be solved forMR in terms ofMP the action matrix can be easily

constructed. In general, the set P is much larger than the basis dimension, so

there is no need to find the mapping for all the monomials inR. Indeed, UR2
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is often not even of full rank. Using QR factorization with column pivoting

(see e.g. Golub and Van Loan 1989), the columns of UR2
can be heuristically

partitioned into a well-conditioned set UB and a set linearly dependent on the

others. �e monomials corresponding to the first k well-conditioned columns

are selected as the set B. Discarding the rest of P , the reducible monomials

aB \ B can now be solved for in terms of B.

For the above algorithm to succeed, the set B must contain a basis for the

quotient space, but there are no theoretical results guaranteeing this will happen

or even that it is possible to find r independent columns in UR2
. In practice,

however, given a sufficiently expanded equation set and the right size selected for

B, the method works. If |B| > r, not all eigenvalues and vectors of the action

matrix can correspond to solutions of the original polynomial system, but if

B contains a basis the solutions are guaranteed to be a subset. �e incorrect

solutions are then filtered out by checking in the equations.

Speed

�e action matrix size depends on k which for reasons of speed should be chosen

as small as possible to give a smaller eigenvalue problem. However, the costliest

step is often the first linear elimination, and the smaller expanded equation set

one can get away with, the better. If the equation system exhibits certain kinds

of symmetry, this can be used to reduce the problem size further, as shown

in Ask (2014). For example, if a variable x only appears in even powers in

the equations, an implicit substitution for x2
can be used to cut the basis size

in half. In addition, the monomial ordering used within the partitioned sets

P , R and E can impact the amount of fill-in which occurs using sparse QR

factorization. We have found that using the  ordering usually gives less

fill-in and faster solvers. More advanced algorithms like SuiteSparseQR (Davis

2011) can compute their own fill-reducing orderings, and then the original

monomial ordering has little impact. Recently, sparse QR factorization has been

implemented on graphics processors with reported ten-fold speedups compared

to multicore CPU implementations (Yeralan et al. 2013), which promises even

faster solvers.

7.2.4 Polynomial Eigenvalue Problems

A slightly less versatile, but sometimes faster and always simpler method for

solving a polynomial system, is to formulate it as a polynomial eigenvalue problem
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(PEP). Any system of polynomial equations fi(x) = 0 may be written

(λnAn + λn−1An−1 + . . .+ λA1 +A0)M = 0, (7.20)

where theAk are coefficient matrices, λ = xj is called the hidden variable and

M consists of monomials in xi, i 6= j. For example, choosing x as the hidden

variable, the system

x2 + yz = 1

xz = 2

xyz = 3

(7.21)

can be writtenx2

1 0 0

0 0 0

0 0 0

+ x

0 0 0

0 1 0

0 0 1

+

−1 0 1

−2 0 0

−3 0 0

 1

z
yz

 = 0.

Note that the matricesAk are not in general square, but this can be achieved

by generating additional equations by multiplying with monomials, as in the

action matrix method. �en (7.20) can be written

Ay = λBy (7.22)

where

A =


0 I 0 · · · 0
0 0 I · · · 0
.
.
.

.

.

.

.

.

.

.
.
.

.

.

.

−A0 −A1 −A2 · · · −An−1



B =


I

.
.
.

I
An

 , y =


M
λM

.

.

.

λn−1M

 .

(7.23)

We recognize (7.22) as a standard generalized eigenvalue problem. If eitherA0

orAn has full rank, the problem can be transformed to an ordinary eigenvalue

problem, and the solutions extracted from the eigenvalues and vectors; if not,
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it is potentially ill-posed and solutions may not exist. �e applicability of

this method therefore depends on the ability to generate equations satisfying

this condition, which is not always possible (at least in practice). For a more

thorough introduction to this approach, see Kukelova et al. (2012).

A related technique, simply called the “hidden variable method”, uses

the fact that unless the system only has the trivial solution x = 0, the sum

λnAn + . . .+A0 must be singular and its determinant zero. �e determinant

is a univariate polynomial in λ which can be solved for the hidden variable.

Recursive application can then determine the values of the remaining variables.

While this method has been applied successfully to some problems (see e.g. H. Li

2006), for large systems simply expanding the determinant can be infeasible and

H. Li and Hartley (2006) had to resort to symbolic computations to successively

simplify the expression, making the algorithm very slow. Also, the determinant

may turn out to be identically zero and then the method does not apply.

Speed

�e eigenvalue problems arising are potentially much larger than those in the

action matrix method, since we need to form the block matrices in (7.23). On

the other hand, it may not be necessary to generate as many new equations,

and since there is no need for QR factorization the PEP formulation can in fact

be an order of magnitude faster, as we shall see in the next chapter.

7.2.5 Finding the Number of Solutions

To successfully apply the action matrix method, we need to know how many

solutions a given polynomial system has. Algebraic geometry software such as

Macaulay2 (Grayson and Stillman) or Maple can be used to compute a basis for

the quotient space, thus revealing its dimension. �is is done by computing a

Gröbner basis for the ideal using e.g. Buchberger’s algorithm, but this is highly

sensitive to round-off errors and therefore all computations are performed using

exact rational arithmetic. If the coefficients of the polynomial system are given

as inexact floating-point numbers, problem-specific correlations between the

coefficients may not be detected and a larger basis than necessary is returned.

In some cases, problem instances with integer coefficients can be constructed

to avoid this, but with equations deriving from Snell’s law this is difficult to

achieve; the square root in (7.6) means coefficients are likely to be irrational. As
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a consequence, in all but the simplest cases we will only be able to give upper

bounds on the number of solutions.

7.2.6 Other Methods

Action matrix and PEP-based algorithms have been the most successful when

applied to computer vision problems, but there are many other methods for

solving polynomial systems, see e.g. Dickenstein and Emiris (2010) and refer-

ences therein. Some are fast but not very flexible and only apply to a limited

class of systems, such as extended linearization (Courtois et al. 2000). Others

are more powerful but too slow for use in a solver intended for real-time use,

such as homotopy continuation, but with the continued development of efficient

algorithms such as PHCpack (Verschelde 1999) this may be possible in the

future.
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Chapter 8

Absolute Pose under Refraction

Refractive structure-and-motion problems come in many varieties, depending

on what relationships between scene structure, cameras and refractive planes

are known. In many applications, such as in underwater photography where

the camera views the world through a waterproof housing, the relationship

between the camera and the glass can be pre-calibrated and assumed known.

�e back-projections of image points through and past the refractive interface

can then be precomputed in the camera’s coordinate system, and the whole

assembly acts as an axial camera, as shown in A. Agrawal et al. (2012). Axial

cameras are a special case of generalized cameras and algorithms previously

developed for these can be used. For example, absolute pose for generalized

cameras was solved minimally in Nistér (2004) using three points, and relative

pose in Stewénius et al. (2005) using six points (as reported in Kim et al. (2010),

that algorithm degenerates for some axial camera configurations, but not in this

case). To our knowledge, optimal two-view triangulation under refraction has

not been solved, but standard linear methods are of course applicable when the

back-projected rays are known. �ese three components along with refractive

bundle adjustment (Jordt-Sedlazeck and Koch 2013) are the building blocks of

a structure-and-motion system, and for the practically important case of known

camera–refractive plane pose the problem can be considered more or less solved.

In Chari and P. F. Sturm (2009) a theory is presented for the multiple-view

geometry of cameras observing a scene through a common refractive interface.

�e existence of refractive projection, fundamental and homography matrices

is shown and the relative pose problem is solved under very specific conditions.

In Kang et al. (2012) the relative translation problem is solved optimally under

the L∞-norm, given the camera orientations.

In this chapter we consider the problem of determining absolute pose of

a camera observing known scene structure through a single known refractive

planar interface. A more general problem was solved by A. Agrawal et al. (2012)
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in the context of calibration, where the relative poses of camera, scene structure

and refractive plane are all unknown, and indeed even the ratio of refractive

indices. However, the algorithm requires at least eight point correspondences

and has unnecessary degrees of freedom if the relative pose between scene

structure and refractive plane is in fact known. In Chang and T. Chen (2011)

the absolute pose problem is solved minimally with two point correspondences

given that the camera’s vertical direction is known, as given by an accelerometer.

However, it is also assumed that the refractive plane is horizontal, significantly

simplifying the problem. We present a minimal solution for the same case

but with arbitrary refractive plane, and analyze the closed-form solutions to

the known-orientation case. We also present a non-minimal algorithm for the

general case using five points, and extend it to the case of unknown camera

focal length using six points.

8.1 Snell’s Law

u

vn

P

X

ρ1 ρ2

C

θ1 θ2

Figure 8.1: �e image ray (C,u) from the camera center intersects the plane with

normal n at P and is refracted into the ray (P ,v) according to Snell’s law.

As we saw in the introductory chapter, refraction of light at an optical

medium boundary is described by Snell’s law

ρ1 sin θ1 = ρ2 sin θ2, (8.1)

where ρ1,2 are the refractive indices of the two media and θ1,2 the angles the

impinging and refracted ray make with the surface normal (see Figure 8.1). It
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was also noted that the impinging ray with direction vector u, the refracted ray

v and the plane normal n must all lie in the same plane. Using properties of

the cross product, Snell’s law may then be expressed on vector form as

ρ1

u× n
‖u‖‖n‖ = ρ2

v × n
‖v‖‖n‖ (8.2)

or equivalently

µ‖v‖(u× n) = ‖u‖(v × n), (8.3)

where µ = ρ1/ρ2. Note that by squaring both sides component-wise we obtain

three equations which are polynomial in all variables. However, since both sides

of (8.3) are orthogonal to n only two of the equations can be independent.

�e co-planarity constraint on the rays and normal can also be written as

u× v · n = 0, independently of the refractive indices. It is obvious that the

camera center C and scene pointX must also lie in this plane, implying

u× (X −C) · n = 0. (8.4)

In Section 7.1 we also derived an expression for the refracted ray direction given

u and n,

v = µu+
(
r cos θ1 − sign(cos θ1) cos θ2

)
n (8.5)

where

cos θ1 = −n · u
cos θ2 =

√
1− µ2

(1− cos
2 θ1) .

(8.6)

�e sign function in (8.5) is needed in case the normal n is given pointing

away from the camera.

In what follows, we will usually assume that the intrinsic parameters of

the camera are known so that the back-projected ray direction u of an image

point can be computed in the world coordinate system, given only the camera’s

orientation and translation. However, in the six-point algorithm presented in

Section 8.6, the camera focal length is assumed unknown.

Furthermore, for the minimal solvers we only consider the case of a single

flat refractive interface, since explicitly modeling two refractions using Snell’s

law leads to significantly more complex equations. For example, as shown in
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Glaeser and Schröcker (2000), computing the forward projection of a scene

point into a camera through one refractive plane amounts to finding the roots

of a fourth-degree polynomial, while A. Agrawal et al. (2012) show doing the

same for two parallel planes gives a 12
th

degree polynomial. �e proposed

non-minimal five- and six-point solvers only use the co-planarity constraints

(8.4) and thus handle multiple refractions as long as all interfaces are parallel. In

real applications there are usually two refractions, e.g. air–glass and glass–water,

but if the glass is thin compared to the scene scale this is well-approximated by

a single air–water refraction. �is approximation is validated experimentally in

Section 8.7.

8.2 Unknown Camera Translation

We start with the simpler problem of only finding the translation of the camera,

with the orientation given. Snell’s law (8.3) gives three equations per point, but

since the projection only has two degrees of freedom, they are not independent

and only give two constraints. To solve for the translation, one and a half

points i.e. three coordinates, are thus needed; with two point matches, the extra

constraint can be used to determine the refractive index ratio.

By coordinate transformation we may assume the refractive plane is de-

scribed by z = 0, and that the image ray directions u have been normalized

to unit length and rotated into the global coordinate frame using the camera’s

known orientation. �e intersection of the ray from the camera center C in

the direction u with the plane is then given by

P = C − Cz
uz
u (8.7)

and the refracted ray v = X − P whereX is the corresponding known 3D

point. Substituting this into (8.3) gives

µ(u× n)‖X −C + (Cz/uz)u‖ =(
X −C + (Cz/uz)u

)
× n. (8.8)

Multiplying through by uz , squaring both sides component-wise and using

that n = (0, 0, 1)> we obtain two polynomial equations (the z-component

is identically zero) in the components of C and the squared ratio µ2
. �e

co-planarity constraint (u× n) · (X −C) = 0 provides two linear equations
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in the variables Cx and Cy which can be uniquely solved for as long as the

two image rays u1 and u2 are not parallel (i.e. the image points are distinct).

Substituting these values into Snell’s law (8.8) gives two independent equations,

linear in µ2
and quadratic in Cz . Eliminating µ we obtain a quartic equation

in Cz . �e four solutions thus differ in the perpendicular distance Cz to the

refractive plane and the refractive index ratio. If the ratio µ is known, this

can be directly substituted into one of the equations quadratic in Cz , yielding

two solutions. Given perfect data, the two equations have one common root

corresponding to the true solution, but the other roots might not agree. �is is

possible because not all solutions returned are physically correct.

Note that Snell’s law as stated in (8.1) only specifies the angle the refracted

ray makes with the normal, but not on which side (see Figure 8.2), nor that the

two rays should be on different sides of the plane. �ere is thus an ambiguity

in the equations leading to incorrect solutions; some cases are illustrated in

Figure 8.3. In the known refractive index case, experiments indicate one of the

solutions is always physically incorrect, while in the unknown index case there

can be between one and three valid solutions. False solutions can be filtered by

checking if the back-projection ray given by (8.5) intersects the scene point.

�is example illustrates a major difficulty in designing minimal solvers for

refractive problems, namely an abundance of solutions which grows with the

number of point matches required. When the orientation is not given the

polynomial equations become much more involved and closed-form solutions

are not possible.

X

ρ1 ρ2

C

θ1

θ2

γ1

γ2

Figure 8.2: Ambiguity in Snell’s law giving rise to false solutions. Both ρ1 sin θ1 =
ρ2 sin θ2 and ρ1 sin γ1 = ρ2 sin γ2 are fulfilled.
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Figure 8.3: Four solutions to the known orientation, unknown refractive index case,

three of which are incorrect due to ambiguities in the equations. Solid lines are the

physical back-projections of the image points while dashed lines illustrate spurious

optical paths consistent with (8.3) giving rise to false solutions.
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8.2.1 Unknown Refractive Plane

�e problem of determining the refractive plane given the camera pose and

the scene structure is very similar to the known-orientation pose problem.

Using the co-planarity constraints, the x- and y-components of the plane

normal can be solved for linearly in terms of the z-component using two image

correspondences. Using Snell’s law, two equations of degree three in the plane

translation and refractive ratio can then be obtained. �is gives three solutions

of which only one is physically correct.

8.3 �e 2D Case

In two dimensions there is only one rotation angle for the camera orientation

which greatly simplifies the equations. �e coordinate system may be trans-

formed so that the known refraction interface, now just a line, coincides with

the y-axis. �e intersection point P of an image ray u with the line is then

given by

P = C − Cy
R : ,2 · u

R>u, (8.9)

where

R =

(
cos θ − sin θ
sin θ cos θ

)
(8.10)

andR : ,2 denotes the second column of the camera’s rotation matrix. Embed-

ding in 3D and plugging into Snell’s law (8.3) now only provides one constraint

per projection, so three points are needed. Multiplying with the denominator in

P and squaring as before, we obtain three polynomials of total degree six in the

variables Cx, Cy, c = cos θ and s = sin θ, and add the constraint c2 + s2 = 1.

Analysis of the resulting system using algebraic geometry tools shows it may

have up to 96 solutions. However, there is symmetry in the equations; s and

c only occur in even powers meaning that if (Cx, Cy, c, s) is a solution, so is

(Cx, Cy,−c,−s). �is corresponds to the fact that rotating the camera 180
◦

results in the same image projections in 2D. �is symmetry can be exploited

when solving the system using the action matrix method (Ask et al. 2012),

essentially allowing us to solve for only half of the solutions giving an effective

basis size of 48. We multiply the four original equations with all monomials
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which are products of the “basis monomials” c2
, s2

, cs, Cx, Cy s.t. the total

degree does not exceed 7 and the degrees of the variables c, s, Cx, Cy do not

exceed 6, 5, 7 and 3 respectively (of course this assignment is symmetric in c
and s and Cx and Cy). �is results in 1272 equations in 1484 monomials.

Using c2
as the action monomial then allows us to solve for Cx, Cy, c2

, s2
and

cs. We also know that c > 0, since otherwise the optical axis is pointing away

from the refractive plane, so the sign of s can be determined from cs.

Experiments indicate that there is rarely more than one or two physically

correct solutions among the 48. An optimized Matlab implementation of the

solver runs in 80 ms including Newton steps to refine the solutions. However,

since the 2D case is of limited practical importance we will not focus on this

solver any further.

8.4 Known Rotation Axis

�e problem in 3D of known translation and one degree of rotational freedom

is similar to the pure 2D pose problem, which is a special case. �is problem

formulation arises when e.g. the camera’s elevation and roll angle can be deter-

mined using an accelerometer, such as in a mobile phone, but the azimuth is

unknown. A special case was considered in Chang and T. Chen (2011) where

it was assumed that the refractive plane is horizontal, i.e. that the normal is

known.

We transform the coordinate system so that the unknown rotation axis is

parallel with the y-axis. If the refractive plane is described by n ·X + d = 0

the intersection with an image ray is given by

P = C − n ·C + d

n · (R>u) R
>u, (8.11)

where

R = Rxz

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (8.12)

is the camera rotation matrix, decomposed into the known elevation and roll and

the unknown y-axis rotation. Four degrees of freedom means two projections

are required to solve the minimal case, and as usual plugging into Snell’s law gives
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four independent polynomial equations after multiplying with the denominator

in P and squaring. Along with the constraint cos
2 θ + sin

2 θ = 1, these are

enough to solve the problem using the action matrix technique, and analysis

with Macaulay2 shows there could be up to 64 solutions. However, there is

no longer symmetry in the rotation parameters that can be used to reduce the

basis size, and it turns out the equation set has to be expanded to thousands

of polynomials, yielding a slow solver (∼1 s). Instead we change the rotation

parametrization to that used in Kukelova et al. (2010) and Chang and T. Chen

(2011), letting

q = tan(θ/2) (8.13)

giving

cos θ = (1− q2

)/(1 + q2

)

sin θ = 2q/(1 + q2

) .
(8.14)

�e resulting system can now be solved as a polynomial eigenvalue problem.

To transform it to PEP form the equation set has to be expanded, but we use a

simpler strategy than the resultant-based method proposed in Kukelova et al.

(2012). We expand the original system, consisting of all six equations from (8.3)

and both co-planarity constraints (8.4), to 32 equations by multiplying with

monomialsCx,Cy andCz . It may seem unnecessary to include the co-planarity

constraints since they are implicit in Snell’s law, but in transforming (8.3) to

polynomial form, some information is lost which is retained in (8.4), further

constraining the solutions. Hiding the variable q we obtain a matrix polynomial

equation

(q8A8 + q7A7 + . . .+ qA1 +A0)M = 0 (8.15)

of degree eight where the Ai are 32-by-20 matrices and M a vector of 20

monomials in Cx,y,z. To convert this to a PEP the Ai must be made square

without losing rank, and this is accomplished by left-multiplying (8.15) by

a random 20-by-32 matrix or simply by A>
1

, similar to what was done in

Fitzgibbon (2001). We could use any of the matricesA1,...,7 but notA0 orA8

since these may be rank deficient for certain specific input data (though never

simultaneously).

An upper bound on the number of solutions to the original system is found

to be 112, while the PEP returns up to 8 · 20 = 160 solutions. Of these
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only a subset fulfill the equations and only a handful provide physically correct

solutions.

8.4.1 Degeneracies

As noted in Section 8.3, the 2D case requires a minimum of three points. �is

means that if the scene points lie in the plane spanned by the camera up vector

and the refractive plane normal, the translation cannot be solved for using only

two points. Note that this is a degeneracy shared with the non-refractive case.

�e solver itself also exhibits degeneracies even when the problem is well-

posed; if the 3D points X1,2, the plane normal n and the camera center lie

in the same plane, or ifX1 −X2 is parallel with n, the solver will fail. �ese

conditions are however unlikely to be exactly fulfilled by real data. In addition,

the parametrization chosen has a singularity at θ = 180
◦
, which in most

situations can be avoided by suitable rotation of the coordinate system around

the y-axis.

Interestingly, as the true solution angle approaches the singularity, the

equations become extremely sensitive. We have found that even for solution

angles as far away as θ = 160
◦
, accurately evaluating the polynomials is not

possible. For an angle of 179
◦
, a disturbance on the order of ε

mach
≈ 10

−16

changes the function value by orders of magnitude. �is seems to be due

entirely to floating-point cancellation effects, as the polynomial coefficients

remain bounded and relatively small. Nevertheless, the proposed solver still

returns accurate results, but they cannot be verified by checking in the equations.

�e solutions can still be filtered using (8.5), but for example directly refining

the solutions using Newton’s method is not possible in these cases.

8.5 Absolute Pose with Five Points

�ree points are minimal for the general absolute pose problem, but using the

same approach as above the equations become too difficult, with thousands

of terms. As was noted in A. Agrawal et al. (2012), much information can

be gained using only the co-planarity constraints (8.4), given enough point

correspondences. In that paper, absolute pose and refractive plane parameters

are solved for linearly using eleven points, and with eight points using a clever

application of a minimal solver for the standard five-point relative pose problem.

�is is afforded by the relative simplicity of the co-planarity constraints com-
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pared to the full Snell’s law. We therefore solve the absolute pose problem using

only the co-planarity constraints, which requires five point correspondences.

From these equations all parameters except for the perpendicular distance of

the camera to the plane can be recovered.

To simplify the equations, we may assume that the refractive plane normal

is parallel with the z-axis, and the co-planarity constraints then take the form

R>u× (X −C) · (0, 0, 1)> = 0. (8.16)

Note that this equation does not contain Cz . We parametrize the camera

rotation matrixR using quaternions q = (s,ω>)> so that

R(q) = 2(ωω> − s[ω]×) + (s2 − ω>ω)I3×3 . (8.17)

R(q) is only orthonormal if q has unit length, but all matrix elements scale with

‖q‖2
. Since (8.16) is homogeneous inR, the unit-length requirement can be

dropped and we set the scalar component s = 1, as was done in Stewénius et al.

(2005). Since both q and −q represent the same rotation, fixing the sign and

magnitude in this way gives a minimal parametrization and halves the number

of solutions, at the cost of introducing a singularity for all 180
◦

rotations (for

which s = 0). We now have five polynomial equations of total degree three in

five unknowns, and analysis gives an upper bound on the number of solutions as

48. By multiplying with all monomials up to total degree three, 280 equations

are obtained and the action matrix method can be applied. As it turns out,

correlations in the coefficients of the system means there are in general only

16 solutions. �is manifests itself in the action matrix algorithm as a rank

deficiency of four when solving for the reduction monomials in terms of the

basis monomials. �is means there are four monomials which cannot be solved

for and must be removed from the basis. Which monomials to remove depends

on the data, and can be determined using column-pivoting QR factorization as

discussed in Section 7.2.3.

�e above solution works independently of the refractive indices or indeed

how many refractive layers are traversed, as long as each ray stays in a single plane.

Assuming there is only one interface given by z = 0 and that the refractive

index ratio is known, we can plug the rotation and x- and y-translation into

the full Snell’s law for a single projection and obtain a quadratic equation for

the z-translation. �e two roots correspond to the situation in Figure 8.2 and

it can be shown that the physical solution is the one with the camera closest
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to the plane. If there are several parallel refractive planes and/or the refractive

indices are unknown, the method presented in A. Agrawal et al. (2012) can be

used to solve for the translation, given enough point correspondences.

8.5.1 Degeneracies

If all points lie on a line parallel with the plane normal, the camera can be

rotated around this line without changing the image projections (in fact there is

even a three-dimensional family of solutions since the constraints are weaker).

�e solver will also fail if all points and the plane normal lie in a common plane.

�e singularity of the parametrization can be avoided with high probability by

randomly rotating the coordinate system about the z-axis.

8.6 Unknown Focal Length with Six Points

�e five-point formulation above is easily extended to the case of unknown

camera focal length. Under the same assumptions the co-planarity constraints

take the form

R>K−1u× (X −C) · (0, 0, 1)> = 0, (8.18)

where

K−1 = diag(1, 1, f ) (8.19)

and f is the focal length. �e extra degree of freedom means six points are

required, and analysis of the system gives an upper bound on the number of

solutions as 104. Note however that a symmetry has been introduced; changing

the sign of the focal length and rotating the camera 180
◦

around the optical axis

results in the same image projections. With the chosen parametrization, such a

rotation is equivalent to flipping the signs of the first two vector components of

the quaternion, and there is thus a two-fold symmetry in the variables f , ω1

and ω2.

We obtain 648 equations by multiplying the original six with all monomials

which are products of the “basis monomials” f2
, ω2

1
, ω2

2
, fω1, fω2, ω1ω2, ω3,

Cx, Cy s.t. the degrees of the variables f , ω1, ω2, ω3, Cx, Cy do not exceed

3, 3, 3, 1, 1 and 1 respectively. Choosing ω3 as the action variable, a basis size

of 52 is now sufficient to compute the solution using the same basis selection

method as for the five-point solver. Since the monomials f2
, fω1 and fω2 are

in the basis, the correct signs for the rotation components are easily deduced.
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8.6.1 Degeneracies

While the five-point solver fails if the plane normal and scene points lie in

a common plane, the equations (8.18) of the six-point problem are actually

under-determined in this case. �e problem as such is still well-posed, but the

co-planarity conditions are not enough to constrain the solution.

8.7 Experiments

�e solvers were implemented in Matlab, and all experiments run on a 3.0 GHz

Core 2 Duo computer. �e known-axis solver runs in around 60 ms, most of

which is spent solving the rather large PEP problem using Matlab’s polyeig
command. In the action matrix-based solvers most of the time is spent in

the elimination step reducing the expanded system, and when using sparse

fill-reducing QR factorization the five- and six-point solvers run in around 10

and 20 ms respectively.

We test the solvers’ numerical stability using randomly generated problem

instances. As seen in Figure 8.4, the known-axis and five-point solvers perform

very well with essentially no failure cases, while the six-point solver is somewhat

more unstable. To see if the degeneracies inherent to the solvers is problematic,

we also generate random degenerate configurations of plane and scene points,

and disturb the points slightly by adding normally distributed noise of relative

magnitude 10
−5

. Figure 8.5 shows that the solvers still manage to find solutions

in the majority of cases, indicating that the set of problematic problem instances

is small and not of practical concern.

Figure 8.6 shows the distribution of the number of real solutions returned

by the solvers. Among these, the five- and six-point solvers never returned more

than one physically correct solution, and the known-axis and 2D solvers never

more than three.

�e known-axis solver was derived under the assumption that there is only

one refractive interface. In situations where the two media are separated by

e.g. a sheet of glass, this assumption introduces an error. To quantify this we

conduct a synthetic experiment where a sheet of glass is placed roughly half-way

between a camera in air and scene points in water, which are around ten length

units apart. �e refractive index of air is taken to be unity, water 1.333 and glass

1.5. Figure 8.7 shows the translational and angular error of the pose estimate

for varying glass thicknesses and levels of image measurement noise. It is clear
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that the error introduced by the approximation is small and is dominated by

the image measurement error.

8.7.1 Real Data

To validate our algorithms on real data, a Rubik’s cube was submerged in a

small rectangular acrylic plastic tank with clear sides. �e cube was captured by

an HTC Desire mobile phone while recording the accelerometer readings. �e

relative locations of the cube corners and the refractive plane (the tank wall)

was measured by ruler, and the image correspondences marked by hand. While

the five- and six-point solvers only return one physically valid solution given

perfect synthetic data, since they are not minimal several plausible solutions

with small reprojection errors may be found with noisy input. To determine the

best camera pose from each solver a RANSAC-like approach was used, where

minimal sets of corner matches were selected at random, and all valid solutions

compared in terms of reprojection error, computed over all points. While the

solvers neglect the effect of the tank wall, this is included when computing the

reprojection errors. �e index of refraction of water was taken as 1.333, and

1.49 for the plastic. In addition to the three proposed solvers, we also solve for

the pose while ignoring the refraction effects, i.e. assuming all refractive indices

are unity.

Figure 8.8 shows the reprojections of the different algorithms overlaid

on two of the images, and their reprojection errors are summarized in Table

8.1. �e average error in the focal length returned by the six-point solver was

Solver 2-pt known axis 5-pt 6-pt No refraction Iterative

Error 16.5 7.1 8.3 31.9 5.3

Table 8.1: Average reprojection error magnitude in pixels over several runs with different

random seeds to the RANSAC procedure. Images were captured at 2592 × 1952

resolution. �e iterative solution minimizes the reprojection error over all points by

Levenberg-Marquardt iteration seeded with the five-point solution, and represents a

lower bound on the error.

67 pixels or 2.6% compared with the ground truth camera calibration. �e

reconstructed camera poses are shown in Figure 8.9. �e five- and six-point

solutions agree closely while the two-point solution shows translation errors in

116



8.8. CONCLUSIONS

−12 −8 −4 0

log
10

(relative error)

Known axis

−12 −8 −4 0

log
10

(relative error)

Five points

−12 −8 −4 0

log
10

(relative error)

Six points

−12 −8 −4 0

log
10

(relative error)

2D solver

Figure 8.4: Distribution of solver error relative to ground truth, computed over 5000

random problem instances.

the vertical direction, probably due to noisy or biased accelerometer data. �e

no-refraction assumption clearly leads to large reprojection errors and skewed

pose estimates.

8.8 Conclusions

We have presented efficient solutions to several variants of the refractive absolute

pose problem. We have shown that the solvers are numerically stable and

produce accurate results on real images. �ere is still room for improvement

with regard to numerical stability, particularly for the six-point solver, and

with regard to speed. For example, techniques from Kuang and Åström (2012)

or Naroditsky and Daniilidis (2011) could be used to reduce the size of the

expanded equation sets used in the action matrix method. Degeneracies for the

problem setups have also not been thoroughly explored. While the goal of a

truly minimal solver in the general case has not yet been reached, the presented

algorithms are likely to be faster, enough to compensate for the higher number
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Figure 8.5: Distribution of solver error computed over 5000 random problem instances

near degenerate configurations for the solvers.
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Figure 8.6: Distribution of the number of real solutions returned by the solvers,

computed over 5000 random problem instances.
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Figure 8.7: Pose error of the known rotation axis solver as a function of glass thickness

and image noise, averaged over 100 random problem instances (scene scale approx. 10

units). Bottom, middle and top graphs correspond to zero, one and two pixel std. dev.

Gaussian noise respectively.

of iterations required in a hypothesize-and-test framework. �e unmanageable

size of the polynomials derived from Snell’s law in the general case suggests a

new approach is needed, where the physical constraints can be enforced to limit

the number of solutions. �is appears to apply also to the relative pose problem

under refraction, where we did not manage to derive polynomial systems of

tractable sizes.

Using the techniques developed here it should nevertheless be feasible to

extend the six-point solver to include more calibration parameters, such as

radial distortion, and solve problems such as optimal two- and three-view

triangulation. �is is left as future work.
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Figure 8.8: Visualization of the reprojection errors in the Rubik’s cube experiment.

Manual image measurements of the cube corners are shown as white dots. �e known-

axis solver reprojection is shown as green plus-signs, the five-point solver as orange

crosses, and the reference non-refractive solution as magenta stars. �e reprojections

of the six-point solver are very similar to the five-point solution and are omitted for

clarity.
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Figure 8.9: Reconstructed poses from two images of the Rubik’s cube experiment.

Green: known-axis, orange: 5-point, blue: 6-point, mauve: no-refraction solution.
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Chapter 9

Refractive Camera Calibration

In competitive swimming, being able to measure and analyze a swimmer’s

movements during training can be very useful in identifying weaknesses and for

tracking progress. In this chapter, we take a very practical approach to computer

vision and describe parts of a real-time system designed for this purpose, with

focus on the calibration of the camera rig and the problems of underwater

imaging arising from refraction effects.

First we consider the problem of calibrating a combined over– and un-

derwater camera setup. Calibration is necessary to be able to compute the

swimmer’s position from image projections, and to generate synthetic panning

views following the swimmer using stationary cameras. In Section 9.2, we

describe the process of intrinsic and extrinsic calibration, and how we deal with

the problems arising from refraction and reflection at optical media boundaries.

�e second problem we consider regards generating visually pleasing images

from the cameras. To accomplish this, all geometric distortions must be neutral-

ized along with lens vignetting, chromatic aberration and exposure variations.

In Section 9.3, we present practical methods for achieving these goals, and

for stitching together images from the stationary cameras allowing synthetic

panning shots of the swimmer.

To illustrate the effectiveness of our approach we conclude with full-length

stitched over– and underwater panoramas of the pool along with example

output from the complete vision system.

Related Work

�e literature on camera calibration is vast and spans many decades, but the

calibration of cameras under refraction has received little attention until recently.

As mentioned in the previous chapter, A. Agrawal et al. (2012) present a method

for determining camera pose and refractive plane parameters from a single image
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of a known calibration object using eight point correspondences. Chang and T.

Chen (2011) solve the relative and absolute pose problems of cameras observing

structure through a common horizontal flat refractive surface, given that the

gravity vector is known, while Jordt-Sedlazeck and Koch (2013) rely on iterative

optimization for determining relative and absolute pose when the refractive

planes are known relative to the cameras. Kang et al. (2012) solve relative and

absolute pose optimally under the L∞-norm given known rotations. However,

in the application considered here, relative poses of the cameras and refractive

plane parameters are known to a sufficient degree so that only the absolute

pose of a calibration object needs to be computed before non-linear iterative

optimization is applied. In Jordt-Sedlazeck and Koch (2013) efficient refractive

bundle adjustment is performed using the Gauss-Helmert model; in contrast,

our method of computing the forward projection through refractive media

allows bundle adjustment using standard non-linear least-squares solvers which

typically do not implement equality constraints.

9.1 Camera Setup

�e system consists of two rows of cameras mounted along the long edge of a

50 m swimming pool; one row looking down at the surface from above, and

one row below the water line observing the pool through glass windows (see

Figure 9.1). �e cameras are oriented to observe one of the lanes in the pool.

All cameras are synchronized so that matches of moving calibration markers

between cameras are known to correspond to the same spatial location.

9.2 Calibration

�e aim of calibration is to determine the intrinsic and extrinsic parameters

of all the cameras in a joint coordinate system. �e system at hand presents

two major difficulties: the underwater cameras experience refraction effects

at the air–glass and glass–water interfaces, and total internal reflection at the

water surface means no objects above the surface are visible to the underwater

cameras. Likewise, unpredictable refraction effects due to surface waves means

observations of underwater objects from above the pool are unreliable.

�e calibration process consists of the following steps:

1. Intrinsic in-air calibration of all cameras
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Figure 9.1: �e system setup with two rows of cameras along the pool observing the

middle lane.

2. Capture and detection of calibration object markers

3. Initialization of calibration object pose and camera extrinsic parameters

4. Parameter refinement using bundle adjustment.

Below, we describe these in more detail.

9.2.1 Intrinsic Calibration

All cameras are calibrated in air, i.e. without the refractive interface, recovering

focal length, principal point and lens distortion parameters prior to full system

calibration. We use the standard method of Zhang (1999) and the distortion

model of Heikkilä and Silvén (1997). �e wide-angle lenses used also exhibit

a significant degree of vignetting which must be compensated for to produce

seamless stitching of the images. We model each color channel of the vignetted

image as Ivig(r, θ) = I(r, θ)(1 + c1r
2 + c2r

4 + c3r
6
) where the origin is

taken to be the recovered principal point. �e parameters ci can be estimated

independently for each channel using linear least-squares fitting to images taken

of evenly lit single-color flat surfaces. For the underwater cameras, we use

images of the opposite pool wall for this purpose, taken after the cameras have

been mounted. �is ensures the vignetting effect produced by Fresnel reflection

at the glass interfaces is also accounted for, although it is quite weak. Figure 9.2

shows a result of the method.
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Figure 9.2: Devignetting result. On the left the original image, on the right the

devignetted and below the intensity profiles of the indicated lines. �e vignetting effect

is severe near the corners of the image and cannot be corrected with the adopted model.

However, these parts of the image are not used in the panorama generation due to the

horizontal overlap between cameras.

9.2.2 �e Calibration Object

As mentioned above, total internal reflection and surface waves means no

single point can be observed simultaneously by both an underwater and a

wall-mounted camera. �e solution is to use a semi-submersed known rigid

calibration object, different parts of which can be observed simultaneously by

the two sets of cameras. �e object was chosen as a vertical straight rod with

easily recognizable markings at known intervals; we used eight bright-yellow

balls, four mounted below and four above a polystyrene foam flotation device.

A more elaborate rig with two– or three-dimensional structure would give

additional calibration constraints, but also be more unwieldy and difficult to

construct and use. �e floating rig is towed around the pool while capturing

images making sure to cover each camera’s field of view.

9.2.3 Marker Detection

�e marker detection and localization is performed in three steps. First all pixels

are classified based on color content using a support vector machine (SVM)

on a transformed color space, then the SVM response map is thresholded and

connected components are identified. �e obtained regions are then filtered

with respect to shape to obtain the final potential marker locations used for
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Figure 9.3: �e cameras mounted below the waterline only see the bottom half of the

calibration object, and the wall-mounted cameras only the top half.

solving the pose problem (see Section 9.2.4).

SVM and Color Transformation

�e markers have uniform and distinct color. However, due to light absorption

in water, the color in the underwater cameras varies with distance. �e available

fluorescent lighting above the pool has a fairly narrow spectrum which also makes

color differentiation more difficult. In addition, specularities and reflections

in the water surface may also appear yellow. For these reasons a linear SVM

classifier based only on RGB channels proved insufficient for segmenting the

markers. To mitigate the issues of varying lighting conditions, and improve the

detection of yellow, the images are converted to the CMYK color space with

the non-linear transformation

K = min(1−R, 1−G, 1−B)

C =
1−R−K

1−K
M =

1−G−K
1−K

Y =
1−B −K

1−K .

(9.1)

To further augment the input data to the SVM, all second order combinations

of the chromatic components are added to the feature vector. For each pixel k
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Figure 9.4: Example of SVM performance. �e calibration tool and the SVM response.

�e SVM was trained on a different sample image.

the feature vk is taken as

vk =
(
C,M, Y ,C2,M2, Y 2, CM,CY ,MY ,K

)>
k
. (9.2)

Separate classifiers are constructed for over and underwater cameras using

the standard linear soft margin SVM formulation (Cortes and Vapnik 1995),

solving the convex quadratic program

min.

w,b,ζ

1

2

w>w + C
∑
k

ζk

s.t. tk
(
w>vk + b

)
≥ 1− ζk

ζk ≥ 0,

(9.3)

wherew, b are the sought SVM parameters, ζk slack variables allowing features

being placed on the wrong side of the hyperplane, and tk ∈ {−1, 1} a class

indicator. Positive and negative samples are extracted from a single representative

image for each of the classifiers. �e penalty weight C is selected to be as large

as possible while still giving feasible solutions.

A representative example of the detection using the trained SVM is shown

in Figure 9.4.
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Region Properties

As the markers are spherical their image projections should be conics. A rea-

sonable simplification is to search for approximately circular regions. A simple

confidence measure of how circular a region is was devised as the following:

1. Discard all regions whose area is smaller than a disc of radius 5 pixels or

larger than a disc of radius 50.

2. Estimate two radii (rmin, rmax) based on the regions’ second order mo-

ments, i.e. do ellipse fitting.

3. Create two circular regions around the center with the sizes rmin and

3rmin.

4. Score based on the ratio of region inside the inner circle to region in the

larger circle.

Regions are then culled based on relative response where regions whose confi-

dence is below a ratio of 20% of the maximum confidence are discarded. �e

centroids of the remaining regions are used as candidates for the markers when

solving for the calibration stick pose.

9.2.4 Solving for the Calibration Object Pose

We model the calibration rod markers as points on a line. �e pose of the stick

relative to a perspective camera can be uniquely determined (up to rotation

around its own axis) from the projection of three markers in a single image,

given their absolute positions on the stick. Unlike the general three-point

pose problem, where the points are not collinear, this can be solved easily

in closed form using simple trigonometry (it is in fact a special case of the

Snellius-Pothenot problem, see Wildberger 2010). Consider Figure 9.5, where

C represents the known camera center and D1,2 the known distances between

the markers. If we can compute two of the depths x, y or z, the pose relative

to the camera can be inferred. From the law of sines we have

sin ε

y
=

sin δ

x
=

sinα

D1 +D2

,
sin ε

z
=

sin γ

D1

,
sin δ

z
=

sinβ

D2

, (9.4)

129



CHAPTER 9. REFRACTIVE CAMERA CALIBRATION

C

M1

M2

M3

γ

β
α ε

δ

x

y

z

D1

D2

Figure 9.5: �ree markers on the calibration rod viewed by a camera with center C.

giving

z

x
=

sin δ/x

sin δ/z
=

D2 sinα

(D1 +D2) sinβ
≡ Kx

z

y
=

sin ε/y

sin ε/z
=

D1 sinα

(D1 +D2) sin γ
≡ Ky .

(9.5)

From the law of cosines, D2

1
= x2 + z2 − 2xz cos γ, and by substituting

z = xKx we find

x = D1/
√
K2

x − 2Kx cos γ + 1

y = xKx/Ky .
(9.6)

Note that the argument to the square root is always non-negative, guaranteeing

a physical solution. Given the normalized image projections m1,2,3 of the

markersM1,2,3 in homogeneous coordinates, scaled so that ‖m1,2,3‖ = 1, we

can compute cos γ = m1 ·m3, sinα = ‖m1 ×m2‖, sinβ = ‖m2 ×m3‖
and sin γ = ‖m1 ×m3‖, and thus x and y.

�e fourth marker provides redundancy and is used to verify the marker de-

tection in a RANSAC scheme. By ordering candidate marker locations vertically,

potential correspondences can be established and tested against the reprojection

error. All markers are included in a subsequent non-linear refinement step

where the reprojection error in the image is minimized over rigid motions of

the calibration object.
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d

n
W

ρ1 ρ2 ρ3

C

Figure 9.6: Each underwater cameraC views the pool through a glass pane of thickness

d mounted atW and with normal vector n.

However, before this procedure can be applied to the underwater images,

refraction effects in the windows through which the object is viewed must be

taken into account.

9.2.5 Refraction

�e underwater cameras observe the pool through glass windows (see Figure

9.6). To obtain a physically accurate model of the imaging system, the refraction

effects at both optical medium interfaces must be taken into account. We turn

again to Snell’s law

µ sin θ1 = sin θ2, (9.7)

where θ1,2 are the angles of incidence and µ = ρ1/ρ2 the respective indices

of refraction of the two media. Given a ray passing through a point P1 in the

direction u and an interface plane passing through the pointW with normal

vector n, the refracted ray (P2,v) may be computed as

P2 = P1 −
n · (P1 −W )

n · u u

v = µu+
(
µ cos θ1 − sign(cos θ1) cos θ2

)
n

(9.8)

where cos θ1 = −n · u
cos θ2 =

√
1− µ2

(1− cos
2 θ1) ,

given that n and u have been normalized to unit length (see Figure 9.7 for

an illustration). Note that no trigonometric functions need to be evaluated,
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Figure 9.7: Refraction of ray (P1,u) into (P2,v) under Snell’s law.

making it fast to compute. �e above formula only works in the backward

direction, i.e. given the ray corresponding to an image point, we can follow

it into the second medium. However, we are mainly interested in going the

other way, computing the projection of a world point into the camera. �is is

more difficult; given the world point P3 on the ray (P2,v) and camera center

P1, determine P2 so that Snell’s law is satisfied (the image projection of P3 is

then given by the in-air camera model projection of P2). In previous works this

has either been avoided (Jordt-Sedlazeck and Koch 2012), or solved by finding

the roots of a 12
th

degree polynomial (A. Agrawal et al. 2012) or by numerical

optimization of the back-projection (Kunz and H. Singh 2008; Yau et al. 2013).

We will use a variant of the latter.

Computing the Forward Projection

�e ray directions u and v must lie in the same plane as the interface normal

n; call the normal vector of this plane w = n× (P3 − P1). �is restricts the

possible locations of P2 to the line

P2(t) = P 0

2
+ tb (9.9)

where b = n × w. Given P2(t) for some t, we can refract and trace the

ray (P1,P2(t) − P1) into the second medium. At the optimal t, the ray(
P2(t),v(t)

)
will pass through P3. Define the signed orthogonal distance
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between P3 and the ray as

d(t) = w ·
(
P3 − P2(t)

)
× v(t). (9.10)

Unlike the absolute distance, this signed distance function is differentiable at

its root, which means it can be minimized using Newton’s method. If ρ1 ≤ ρ2,

the intersection of the interface plane and the straight line between P1 and

P3 can be used as an initial guess for P2, otherwise a safer starting point is

the orthogonal projection of P1 onto the plane, to avoid encountering total

internal reflection.

For our underwater cameras, equations (9.8) are applied twice in the back-

ward direction, first for the air–glass and then for the glass–water transition.

Since the two interfaces are parallel, all rays still lie in the same plane and the

search remains one-dimensional. Yau et al. (2013) take a similar approach min-

imizing the back-projection error, but use bisection with inferior convergence

properties.

On average over a typical range of angles, a precision of 10
−6

(corresponding

to a reprojection error on the order of 0.01 pixels) is reached in four iterations

using forward finite difference derivatives. While the method is general and

does not require the imaging plane to be parallel with the interface(s) as in

Treibitz et al. (2012), it is still fast and can compute the forward projection of

two million points per second on a Core 2 Duo E7500 3.0 GHz computer in a

multi-threaded C++ implementation. It is thus well-suited for use in large-scale

bundle adjustment algorithms minimizing the true image reprojection error, and

the algorithm is simple to implement. It is also easily and efficiently parallelized

on graphics hardware, since given a fixed number of iterations there are no

branch points, unlike in the bisection approach. It may also be extended to the

case of multiple non-parallel interfaces, which would require a two-dimensional

search for P2, at some additional computational cost.

9.2.6 Structure Initialization

Once we can compute the projection of any given point into each camera, all

extrinsic parameters may be optimized through bundle adjustment if a good

initialization is available. In the swimming pool case, the positions of the

cameras are easily measured by hand or from blue-prints, and we assume these

to be known, except for the exact distance of the underwater cameras to the

glass pane as this number significantly influences the refraction effects. �e
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thicknesses of the window panes are also considered known, and the panes are

initially assumed to be mounted exactly flush with the pool wall.

�e initial pose of the calibration object in every frame is determined

relative to the camera with the “best” view (i.e. with the markers closest to

the image center), using the single-view solver above. If the best view is an

underwater camera the image will be distorted by refraction, and solving while

only accounting for intrinsic camera parameters is likely to give inaccurate

results. Since the refraction effects are actually three-dimensional in nature,

the coordinates cannot be exactly normalized without knowing the depth of

the markers beforehand. We settle for an approximation where the image rays

are traced into the pool (using the initial camera and window parameters),

and their intersections with a plane parallel to the image plane at the expected

mean depth of the calibration target are computed. �e intersection points

are then projected back into the images, now assuming there are no refraction

effects, producing the measurements we would have obtained had there been

no water or windows. �is approximation, which assumes the markers are at a

known depth halfway into the pool, is quite accurate as the depth dependence

of the correction is relatively weak, and is certainly sufficient for initialization

purposes.

As was noted in Jordt-Sedlazeck and Koch (2013), and argued in the

beginning of Chapter 8, it is possible to solve exactly for the depth of three

points also in the refractive case, assuming the camera’s pose relative to the

refractive plane is known. �e camera and glass then form a generalized camera

(in fact, an axial camera), where the back-projected image rays do not intersect

in a common point but rather a common axis. �e generalized three-point pose

solver (Nistér 2004) can then be applied, which produces up to eight solutions.

However, it does not exploit the fact that the points on our calibration object

are co-linear, and we have found in experiments that our simpler solver together

with the approximation produces stabler and more accurate results under image

measurement noise.

9.2.7 Non-linear Refinement

�e bundle adjustment problem is formulated and solved using the Ceres non-

linear least-squares solver (Agarwal, Mierle, et al. 2012). Due to the relatively

complex projection algorithm, numerical finite difference derivatives are used,

although automatic differentiation could possibly be applied. We allow the glass
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pane normals and underwater camera distance from the glass to vary, along with

all camera orientations and calibration stick poses. While the calibration thus

obtained is quite accurate, the human eye is very sensitive to discrepancies at

image seams which becomes obvious when rendering stitched panoramic views.

In particular, horizontal lines on the pool wall (see Figure 9.11) need to match

to the pixel. To this end, we mark points in the images along these lines, and

require their back-projection intersections with the pool wall to be co-linear.

�is may be achieved by introducing a new variable ȳk for each line into the

optimization, and adding the terms ‖yk,i− ȳk‖2
to the bundle adjustment cost

function, where yk,i are the vertical components of the back-projected points

lying on line k.

9.3 Stitching

One goal of the calibration is to be able to stitch together images to form a

panorama of the pool, or equivalently, panning shots of the swimmer. To render

such a view, we define an image plane in the world coordinate system, typically

parallel to the long side of the pool. Output pixels are sampled in a grid on

this plane, and projected into the devignetted camera images to determine their

color. Where images overlap, blending is applied to smooth out the transition.

For speed, projection maps for each camera can be precomputed. Since the

projection depends on the depth of the rendering plane, separate maps are

computed for a discrete set of depths and then interpolated between to match

the current depth of the swimmer. �is can be efficiently implemented on

graphics hardware and allows us to generate full HD panning views in real time

at over 100 frames per second.

9.3.1 Exposure Correction

While all cameras are set to the same white balance, exposure and gain, differ-

ences between individual cameras are sometimes visible, particularly near the

transition edges. To minimize visual discrepancies post-capture, we assume that

the pixel value of a point visible in two cameras simultaneously is described by

the relation γiIi = γjIj where γk is the gain correction for camera k and Ik
the intensity in the captured image. To achieve even lighting of the stitched

image, points are sampled on the render plane and projected into low-pass

filtered images to obtain the Ik. Each relation above contributes a row to the
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Figure 9.8: Top: the initialization to the bundle adjustment problem, where the pose

of the calibration rod in each frame has been determined from one view only (blue

indicates an underwater image was used, magenta above water). Bottom: the result of

optimizing over calibration object pose, window pane normals and camera orientations.

Bundle adjustment over the 700 poses and 1900 images took 32 seconds at 7 iterations/s

on a Core 2 Duo 3.0 GHz computer.
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which can be solved for the γ in a least-squares sense using singular value

decomposition. After scaling the gain coefficients to have unit mean, they

are multiplied with the raw images before stitching. See Figure 9.10 for an

illustration.

9.3.2 Chromatic Aberration Correction

An often ignored fact is that the indices of refraction used in the ray-tracing

equations (9.8) are wavelength-dependent. However, the resulting chromatic

aberration is quite pronounced even to the naked eye observing e.g. the bottom

tiles of the pool through refraction at the surface. �e effect is also apparent

near the edges of our underwater images in areas of high contrast. By using

(empirically determined) separate indices of refraction for the red, green and blue

color channels, the aberration can be almost completely neutralized, improving

the visual quality of rendered images (see Figure 9.9).

�e final stitched panoramas are shown in Figure 9.11, along with the raw

images captured by each camera.

9.4 Conclusion

We have developed an effective and practical procedure for combined refractive

and non-refractive camera calibration. We have also presented an efficient

method of computing the forward projection through refractive media, and

shown how visually pleasing stitched panoramas may be generated. �e calibra-

tion data and images generated can then be used for tracking and analyzing a

swimmer’s movements in and above the water. An example of the output of the

full system is shown in Figure 9.12.
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Figure 9.9: Chromatic aberration correction. On the left, the images were rendered

using the same index of refraction of water for all channels (n = 1.333); on the right,

nred = 1.333, ngreen = 1.3338, nblue = 1.3365. Notice the reduced rainbow effect

around the edges of the black bars (the differences are subtle so these images are best

viewed on-screen in the electronic version of the thesis).
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