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Abstract

Ever since the first three-dimensional computer graphics appeared half a century
ago, the goal has been to model and simulate how light interacts with materials
and objects to form an image. The ultimate goal is photorealistic rendering, where
the created images reach a level of accuracy that makes them indistinguishable
from photographs of the real world. There are many applications — visualization
of products and architectural designs yet to be built, special effects, computer-
generated films, virtual reality, and video games, to name a few. However, the
problem has proven tremendously complex; the illumination at any point is de-
scribed by a recursive integral to which a closed-form solution seldom exists. In-
stead, computer simulation and Monte Carlo methods are commonly used to sta-
tistically estimate the result. This introduces undesirable noise, or variance, and
a large body of research has been devoted to finding ways to reduce the variance.
I continue along this line of research, and present several novel techniques for
variance reduction in Monte Carlo rendering, as well as a few related tools.
The research in this dissertation focuses on using importance sampling to pick a
small set of well-distributed point samples. As the primary contribution, I have
developed the first methods to explicitly draw samples from the product of dis-
tant high-frequency lighting and complex reflectance functions. By sampling the
product, low noise results can be achieved using a very small number of samples,
which is important to minimize the rendering times. Several different hierarchical
representations are explored to allow efficient product sampling. In the first pub-
lication, the key idea is to work in a compressed wavelet basis, which allows fast
evaluation of the product. Many of the initial restrictions of this technique were
removed in follow-up work, allowing higher-resolution uncompressed lighting and
avoiding precomputation of reflectance functions. My second main contribution is
to present one of the first techniques to take the triple product of lighting, visibility
and reflectance into account to further reduce the variance in Monte Carlo render-
ing. For this purpose, control variates are combined with importance sampling to
solve the problem in a novel way. A large part of the technique also focuses on
analysis and approximation of the visibility function. To further refine the above
techniques, several useful tools are introduced. These include a fast, low-distortion
map to represent (hemi)spherical functions, a method to create high-quality quasi-
random points, and an optimizing compiler for analyzing shaders using interval
arithmetic. The latter automatically extracts bounds for importance sampling of
arbitrary shaders, as opposed to using a priori known reflectance functions.
In summary, the work presented here takes the field of computer graphics one step
further towards making photorealistic rendering practical for a wide range of uses.
By introducing several novel Monte Carlo methods, more sophisticated lighting
and materials can be used without increasing the computation times. The research
is aimed at domain-specific solutions to the rendering problem, but I believe that
much of the new theory is applicable in other parts of computer graphics, as well
as in other fields.
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Introduction

1 Overview

Broadly speaking, the field of computer graphics studies the science (and art) be-
hind creating or manipulating graphics using computers. Graphics can refer to any
kind of visual content, but it usually means digital images, which may be printed
or displayed, or moving pictures in the form of animations or video. Computer
graphics has had a profound impact on the development of computers and the way
we interact with them. The research presented in this dissertation has taken the
field a small step forward, but before delving into the subject and explaining our
work, let me give a brief historical context and introduce many of the terms that
will be used later.

1.1 Historical Background

The modern computer is the evolution of early mechanical calculators into more
general machines, capable of storing intermediate results and following the in-
structions of a program to perform advanced calculations. At first purely me-
chanical, these machines developed into the first fully electronic computers in the
1940s. In the early days, computers were built solely to speed up the slow and
error-prone task of performing complex numerical calculations, often military, and
there was no graphical output to speak of; the results were written on punch cards
or teleprinters. The first computers to use a display for simple interactive visual
output were the Whirlwind [114] and SAGE [62] projects, completed in the 1950s
for use in aircraft simulator and air defense systems, respectively. The graphical
output were in these cases markers on a radar-like screen.
The invention of the transistor in 1947, followed by the integrated circuit in 1958,
were key breakthroughs in the development of reliable, less expensive, and much
more powerful computers. It now became viable to build smaller computer sys-
tems in research laboratories, such as the TX-2 at MIT and the DEC PDP-1, both
transistor-based with a memory in the range of tens to hundreds of kilobytes and
using CRT (cathode-ray-tube) displays for output. The higher performance and
greater availability of computers allowed a wider range of applications to be ex-

1



INTRODUCTION

Figure 1: The Sketchpad system by Ivan Sutherland [139] was one of the very first
applications of computer graphics, here demonstrated at MIT in 1963.

plored. The Sketchpad software, published by Sutherland in 1963 [139], is consid-
ered by many to be the birth of computer graphics. Running on TX-2, the program
allowed a user to sketch simple shapes on the display using a light pen, as shown
in Figure 1.
At this time, computer graphics were mostly two-dimensional (2D), created using
flat geometric shapes such as lines, curves, and text. When the computer internally
works with a three-dimensional geometric model, we speak of 3D graphics, even
though the result is usually converted into a two-dimensional image for display.
The research of the 1960s laid the groundwork for many of the basic concepts
of 2D and 3D graphics, and there was a growing commercial interest in the new
capabilities of the computer. It became apparent that computer graphics would
not only revolutionize the design and engineering of new products, and how we
interact with computers, but also play a vital role in the entertainment industry.
The first video game, Spacewar, was created already in 1961 and became a huge
success. The game running on PDP-1 featured two blips on the screen representing
spaceships, and the goal was to destroy the other player.
The first computer displays were vector based, i.e., lines were drawn by directly
controlling the electron beam of the CRT display. As computers got more ad-
vanced, so-called raster displays emerged. On a raster display, the image is repre-
sented by a rectangular grid of dots, or pixels. Initially, each pixel could only be
either turned on or off, but the technology soon evolved to allow a range of differ-
ent intensities and even color. Much of the early research focused on the seemingly
mundane task of drawing lines, curves and text on raster displays. The process of

2



1. OVERVIEW

transforming a geometric shape (e.g., line, curve, or triangle) into a raster image
is called rasterization. One of the earliest examples is Bresenham’s line algo-
rithm [16] developed in 1962 at IBM, which determines which pixels to turn on in
order to approximate a straight line between two points. The same principles apply
today and computers still work mainly with raster images, i.e., images made up of
rectangular grids of pixels. Superficially, one could say that computer graphics
is largely about determining the color of each pixel, even though the machinery
behind doing so can be tremendously complex, as we will see.
In 1971, the first commercially available microprocessor was launched – the Intel
4004. The core of the computer now fit on a single integrated circuit, which set
off the introduction of personal computers. The development of faster computers
went hand-in-hand with research in more advanced computer graphics algorithms,
and new use cases. The 1970s marked the invention of a wide range of techniques,
many of which are still in use today.
Previously, the graphical output had mainly been limited to showing the edges or
outlines of geometrical objects by drawing lines and curves, but now it became
possible to also fill their interiors. By drawing many simple geometric primitives,
for example, triangles or polygons, more complex three-dimensional surfaces and
objects could be constructed. However, first the visibility problem [140, 154] had
to be solved, which refers to the task of determining which surfaces lie in front
of others in the three-dimensional world, and hence are visible in the final image.
The problem is difficult, as primitives may partially overlap or even intersect each
other. Two main approaches have survived the test of time. The first is to ras-
terize all primitives, i.e., convert them into pixels, but only keep the pixel that is
closest to the viewer at each point on the screen. This is referred to as depth or
z-buffering1 [18]. The second approach, known as ray tracing [5, 159], is concep-
tually simpler; a ray is cast from the observer into the world through each pixel,
and the first surface that is encountered along each ray is reported as visible. In
practice, however, making ray tracing efficient is difficult and much research has
since been done to speed up the operation.
As surfaces and objects could now be created out of filled primitives, and not just
their outlines drawn, there was also a need to compute an intensity or color for
each pixel. The process of computing the color is known as shading, and the color
is determined by the surface material of an object and the incoming light. The
simplest method is to assign a single color to each primitive, which is called flat
shading, but this creates ugly sharp edges between primitives. The interpolation
techniques [46, 108] developed in the early 70s were important to get smoother
results. Figure 2 shows an overview of these early shading techniques.
Another important milestone was the invention of texture mapping by Catmull [18],
where an image is placed on the surface of a three-dimensional object to add color
and surface details, similar to putting wallpaper on a blank wall. A related tech-
nique is bump mapping [12], which adds the appearance of a rough surface, for

1The “depth” or z-value of a pixel is its distance from the viewer in the three-dimensional world.
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Figure 2: In the 1970s, it became possible to draw filled geometric primitives
instead of just their outlines, as shown on the left. The different interpola-
tion techniques that were developed, such as Gouraud (middle) [46] and Phong
(right) [108] interpolation, were the first steps towards realistic shading.

example, with bumps and wrinkles. To simulate how light from different direc-
tions reflects off a surface, and hence affects the shading, simple light reflection
models started to appear. Some well-known early examples are the Phong [108],
Blinn-Phong [11], and Cook-Torrance [25] reflection models. By this time, render-
ing, i.e., computer generation of images from a three-dimensional model, started to
become a viable technique for use in movies. Although there had been some ear-
lier attempts, the industry really took off when George Lucas formed the computer
graphics division at Lucasfilm in 1979.
By the 1980s, computer graphics was a well-established research field, and a lot
of effort was focused on understanding and formalizing the mathematics behind
rendering and image formation. Computer graphics up to now had a very artificial
look with harsh lighting and sharp edges. A better understanding and simulation
of the physics was a necessary step towards photorealistic rendering. This ap-
plied to all aspects of rendering. For example, the early reflection models were
formalized as bidirectional reflectance distribution functions (BRDFs), following
the definition used in optics [98]. By simulating a physical camera and distribut-
ing rays randomly [24], it was possible to render effects such as motion blur and
depth of field, which appear in real photographs. The jaggedness, or aliasing, of
edges that had troubled rendering, was recognized as a signal processing problem;
since a display has a limited resolution, each pixel represents a sample of an un-
derlying continuous image. By placing the samples in a non-regular pattern and
applying proper filtering and reconstruction techniques, aliasing could be allevi-
ated [30]. Most importantly, the light propagation through a scene was defined by
the rendering equation [65] as a recursive integral. The physical basis for this is
the principle of conservation of energy. The theory behind the rendering equation
is often denoted light transport, as it deals with the transfer of energy from light
sources, via reflections and refractions, to the camera.
Subsequent work in photorealistic rendering, ours included, has attempted to solve
the rendering equation using various numerical methods. The solution is usually
referred to as global illumination, as it takes all aspects of the illumination into
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Figure 3: Example of a photorealistic image rendered using the Intel R© Embree ray
tracer. The lighting comes from the Uffizi gallery in Florence, and was captured
in a light probe courtesy of Paul Debevec [27]. The model is courtesy of Martin
Lubich (http://www.loramel.net/)

account, both light that arrives directly from light sources, and the indirect illu-
mination that occurs when light first bounces off other surfaces. Inspired by en-
gineering problems in other fields, two main directions emerged in the mid-80s.
The first class of algorithms are radiosity methods, which are based on the finite
element method (FEM) originating from the 1940s and used for solving civil and
structural engineering problems. Although the details vary, the common theme is
that the continuous domain is discretized into finite sub-domains (elements), over
which the solution is computed. In computer graphics, this means dividing up the
three-dimensional world into small patches, and computing the light transport be-
tween these patches [44]. The second category is Monte Carlo algorithms, which
rely on repeated random sampling; an approximation of the result is computed by
averaging over a large number of random, or stochastic, samples [23, 30]. The
Monte Carlo method was developed in the 1940s by mathematicians working on
the Manhattan project, and has been an extremely valuable tool for computer sim-
ulation of many physical and mathematical systems.
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Although the theory of light transport was now better understood, the rendering
problem was by no means solved. Naïve application of both radiosity and Monte
Carlo methods requires an enormous amount of computations to give acceptable
results, and much further research was needed. Both methods continue to be devel-
oped, but the Monte Carlo based approaches have received a lot of attention due to
their simplicity and scalability. Their main problem is that the stochastic sampling
introduces random noise in the result, which leads to grainy images similar to the
grain in photographic film. The noise is measured as statistical variance, and many
techniques have focused on reducing the variance. The 1990s saw the emergence
of many advanced Monte Carlo algorithms, such as bidirectional path tracing [71],
Metropolis light transport [148], and photon mapping [64]. Figure 3 shows an ex-
ample of an image created with a modern renderer. The research presented in this
dissertation follows along this line of work. We introduce several novel algorithms
for smarter sampling in Monte Carlo rendering, along with a few associated tools.
In particular, the focus is mainly on evaluating the direct illumination from light
sources using Monte Carlo methods.

1.2 Outline
The remainder of this dissertation is organized as follows. First, I will describe the
theory of light transport in more detail in Section 2. Each of the terms in the ren-
dering equation are explained, and examples are given of each of the components
necessary in an accurate simulation, i.e., light sources, cameras, and reflectance
functions. Following this, we will take a closer look at Monte Carlo theory, and in
particular, the theory behind the various variance reduction techniques used in our
research, in Section 3. Then, the specific contributions of my research are sum-
marized in Section 4. It is my intent that this section should help the reader gain
a clearer picture how the different publications relate to each other, and the line
of thought that lead us to focus on the chosen problems. This section is followed
by a summary of my research methodology in Section 5, which includes a brief
discussion on the implementation of the methods. Some concluding remarks and
discussion of future research directions are given in Section 6.
Finally, I include the seven publications that form the basis for this dissertation.
The papers have been reformatted to fit the layout of this dissertation, but are
otherwise unmodified reproductions of the original manuscripts.
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2 Light Transport

Photorealistic rendering of an image requires that a sophisticated three-dimensional
model of the scene to be depicted is created. The geometric properties of the scene
are defined by three-dimensional objects, often created out of simpler rendering
primitives, such as triangles or surface patches. The color and appearance of ob-
jects are specified by assigning different materials to them, which are defined by
their reflectance functions. Finally, the content of the image is decided by placing
a virtual camera in the scene, and light is introduced by adding one or more vir-
tual light sources. The rendering of the final image involves a physically accurate
simulation of how light propagates through the virtual world. The transfer of light,
or energy, from the light sources, via surfaces in the scene, and ultimately to the
camera, is described by light transport theory. In computer graphics, the render-
ing equation [65] neatly summarizes the mathematics under the geometric optics
approximation.
In this section, I will explain the details of light transport and the rendering equa-
tion. We will also discuss some common camera, light source, and reflection mod-
els used in computer graphics, as well as the approximations and representations
used in our research.

2.1 The Properties of Light

Let us start by defining the physical quantities of light, and the assumptions com-
monly made in computer graphics. Visible light is electromagnetic radiation that
is visible to the human eye. The characteristics of light are described by its wave-
length, polarization, and radiant intensity. As a type of electromagnetic radiation,
light additionally exhibits both particle and wave properties.

2.1.1 Physical Characteristics

The wavelength of light determines its perceived color; visible light lies in the
spectrum from about 380 nm (blue) to 740 nm (red). However, light transport is
usually only simulated at three distinct wavelengths corresponding to the additive
primary colors red, green, and blue (RGB). These can be combined to any color
as the human vision is trichromatic due to the three types of cones in the eye.2 For
details on different color models, we refer to Reinhard et al.’s book [116]. Note that
while all colors can be represented, the simulation of light transport only at a few
different wavelengths is an approximation. The consequence is that wavelength
dependent effects, such as dispersion and fluorescence are not captured.
Dispersion is the effect that causes white light to split into a rainbow as it passes

2Note that the response curves of the cones do not directly correspond to the red, green, and blue
primaries. The peaks are rather at greenish-yellow, green, and blue wavelengths, but the response
curves are relatively wide to include red on the far side.
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Quantity Unit Description
Radiant energy (Q) J Energy, measured in joules [J].
Radiant flux (Φ) W Energy per unit time in watts [W=J/s].
Radiant intensity (I) W·sr−1 Power per solid angle.
Irradiance (E) W·m−2 Power arriving at a surface per area.
Radiance (L) W·m−2·sr−1 Power per projected area per solid angle.

Table 1: The radiometric SI units used in photorealistic rendering.

a prism due to the refractive index of materials being wavelength dependent. This
effect is generally minor, and indeed, photographic lenses are specifically designed
to minimize it. Fluorescence is the emission of light by a substance that has ab-
sorbed light at a different wavelength. The emitted light is usually of a longer
wavelength, e.g., many fluorescent minerals emit visible light when exposed to
ultraviolet light. Although the RGB model is the most common, some rendering
methods work at a larger number of wavelengths to achieve so-called spectral ren-
dering, in order to simulate dispersion, fluorescence, and related effects [28, 138].
While light propagates in vacuum at a high speed of 3 · 108 m/s, in computer
graphics, the speed of light is almost always ignored; energy transfer is assumed
to be instantaneous. For all practical purposes, this is a perfectly acceptable ap-
proximation. Similarly, the polarization of light is often ignored for performance
reasons, as its visual impact is typically limited. However, some rendering tech-
niques [144, 160, 162] and reflection models [58] do take polarization into account.
The wave properties of light gives rise to diffraction phenomena, e.g., the apparent
bending of light around very small objects or light spreading out past small open-
ings. Diffraction effects are mainly visible when light interacts with geometrical
features of a size on the same order of magnitude as the light’s wavelength. As
such fine detail is rare in current computer graphics, it is generally safe to ignore
diffraction effects and most rendering methods do so. The exception is, for ex-
ample, the colorful reflections of CD/DVD discs and certain insects or minerals.
Approximations exist to handle such cases [1, 134, 135]. Holographic rendering,
i.e., computer generation of holograms, is another application where simulation of
diffraction is essential. This is beyond the scope of this dissertation.

2.1.2 Radiometry

The power of light is measured in several different radiometric units. The ter-
minology is somewhat confusing since there is an equivalent set of photometric
units, which measure the perceived power of light, i.e., adjusted for the sensitivity
of the human eye. However, in physically-based rendering, we are interested in
computing the total energy arriving at each pixel in the virtual camera and work
with radiometric units. These quantities are then converted into an image for dis-
play using a tone mapping operator, which takes the limited dynamic range of the

8
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Figure 4: Left: The direction of a ray is given in terms of its spherical coordinates
on the unit sphere, i.e., ω = (θ ,φ). In integrals over the (hemi)sphere, we com-
monly integrate over differential solid angle, dω . Right: When a ray of light hits
(or leaves) a surface with differential area dA, the amount of energy transferred is
proportional to the projected area, i.e., the cross-sectional differential area, dA⊥,
which is perpendicular to the ray. The relation between the two is determined by
the angle, θ , between the surface normal, n, and the ray direction, ω .

output device into account. For more information, we refer to the book by Rein-
hard et al. [115]. The main radiometric units of interest to us are summarized in
Table 1.
The solid angle refers to the apparent size of an object as seen from a point in
space, and its (dimensionless) unit is steradians [sr]. The solid angle subtended by
a surface is defined as the surface area that its projection covers on the unit sphere.
Hence, the full space of directions is 4π [sr], i.e., the area of the unit sphere. To de-
scribe a direction, ω , on the sphere or hemisphere, it is convenient to use spherical
coordinates, (r,θ ,φ). A point in three-dimensional space is defined by its radial
distance, r, polar angle, θ , and azimuthal angle, φ . For a unit vector, r = 1, and we
use ω = (θ ,φ) to denote its direction. To integrate over the (hemi)sphere, we use
the differential direction, or differential solid angle, dω . These important concepts
are illustrated in Figure 4 (left).
We are usually interested in integrating the power of light arriving at a surface
per differential area, dA. For this purpose, we introduce the projected area, dA⊥,
which is the hypothetical differential area that is perpendicular to a given ray.
The projected area takes the foreshortening due to the angle of incidence, θ , into
account. The relationship between the two is:

dA⊥ = (n ·ω)dA = cosθ dA, (1)

where n is the surface normal, and θ is the angle between the ray and the normal,
or equivalently, the polar angle of the ray’s direction expressed in the coordinate
frame of the surface. See Figure 4 (right).
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Figure 5: The radiance of a ray of light that arrives at (or leaves) a surface with
differential area dA, is its power (flux), Φ, per projected area per solid angle.

The radiant flux, Φ, of a light source is its total emitted power in watts [W]. How-
ever, its intensity, I, is the power per solid angle, i.e., I = dΦ/dω . For example,
if a 100 W point-like light emits light equally in all directions, it has an intensity
of 100/4π = 7.96 W·sr−1. In Section 2.4, the properties of some commonly used
light sources will be discussed. The irradiance, E, is the radiant flux density, or
power per unit area, arriving at a point, x, on a surface:

E(x) =
dΦ(x)
dA(x)

. (2)

The equivalent term for light leaving the surface is radiant exitance (or radiosity),
which has the same unit [W·m−2]. To continue our example, consider a point, x,
on a surface that is perpendicular to the light source and lies at a distance r=10 m.
The irradiance here will be E(x) = Φ/4πr2 = 0.0796 W·m−2. This also shows
that the irradiance from a point-like light source is inversely proportional to its
squared distance.
Finally, the radiance, L, is perhaps the most useful quantity. It describes the power
of light that arrives from a differential solid angle, dω , and falls on a hypothetical
perpendicular differential area, dA⊥, as follows (see Figure 5):

L(x,ω) =
d2Φ(x,ω)

dA⊥dω
=

d2Φ(x,ω)

cosθ dAdω
. (3)

We use the notations L(x←ω) and L(x← y) for incident radiance that arrives at a
point x from direction ω and other point y, respectively, and similarly L(x→ . . .)
is used to denote emitted or outgoing radiance. The radiance invariance law states
that radiance does not change along a ray in vacuum, i.e., L(x← y) = L(y→ x),
which makes it a convenient quantity to work with. The relationship between
irradiance and radiance at a point, x, on a surface is given by:

E(x) =
∫

Ω

L(x← ω)cosθ dω, (4)

where Ω is the visible hemisphere, i.e., the irradiance is the integral over all inci-
dent radiance adjusted for projected area.
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2.2 The Rendering Equation
The rendering equation [65] is based on the law of conservation of energy. In its
basic form, it describes the outgoing radiance, L(x→ ωo), leaving the point x on
a surface in direction ωo, as the sum of the radiance emitted, Le, by the surface
itself and the total radiance reflected, Lr, towards ωo. The total reflected radiance
is computed by integrating over the visible hemisphere, Ω. We have:

L(x→ ωo) = Le(x→ ωo)+
∫

Ω

L(x← ωi) fr(x,ωi,ωo)cosθi dωi︸ ︷︷ ︸
Lr(x→ωo)

, (5)

where L(x← ωi) is the incident radiance arriving at the point x from direction ωi.
The incident radiance is weighted by the cosine of the angle between the surface
normal and the incident direction, cosθi, to take the projected area into account.
The fr term is the bidirectional reflectance distribution function (BRDF), which
describes the reflectance at x between incident and outgoing directions. The prop-
erties of the BRDF will be further discussed in Section 2.3. Note that the BRDF
is dimensionless with the unit sr−1, so the result of the integral is the reflected
radiance with unit W·m−2·sr−1, as expected. In practice, most surfaces are not
emitting light by themselves, so Le is generally zero, except at a few light sources
in the scene. In Section 2.4, we will describe several types of light sources com-
monly used in computer rendering.
The rendering equation is challenging because the radiance, L, appears both inside
the integral and as a quantity to solve for on the left-hand side. The reason for this
is that the outgoing radiance from each point affects the incident radiance at all
other places visible from that point, i.e., we have a huge system of integrals. This
type of “recursive” integral is formally known as a Fredholm integral equation of
the second kind. Analytic solutions are impossible in all but the most trivial cases.
In Section 3, we will discuss numerical solutions based on Monte Carlo methods,
which is the focus of this dissertation.
It should be noted that the idea behind the rendering equation was not fundamen-
tally new when introduced by Kajiya in 1986 [65]; the problem had been exten-
sively studied in the field of radiative heat transfer [60], but it was now presented
in a form suitable for computer graphics.

2.2.1 Limitations and Extensions

There are a number of well-known limitations of the rendering equation expressed
in the form of Equation 5. First, it only attempts to model geometric optics, which
treats light as rays that travel in straight lines and only bend due to reflection or re-
fraction. As such, it does not take the phase and polarization of light into account,
and it does not model diffraction or interference effects.
Second, the wavelength, λ , of light is omitted. Instead, the radiance, L, is usually
assumed to be a vector-valued quantity, measuring the radiance of a ray of light at a
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number of distinct wavelengths (i.e., three in the RGB model). For spectral render-
ing of dispersion effects, the wavelength can be added as an explicit parameter. In
the most general case, both the wavelengths of incident and outgoing radiance, λi
and λo, have to be included, and the integral must be extended to integrate over λi
in addition to ωi. The latter approach allows simulation of fluorescence, but adds
one extra dimension to an already difficult integration problem.
Similarly, the rendering equation expresses the radiance at a single instance in
time, omitting the time parameter, t. By adding time as an extra dimension, correct
motion blur can be computed, i.e., the simulation of a finite, non-zero shutter time
of the camera. This may include dynamic geometry, in which case L changes,
time-varying emission in Le, and even time-varying BRDFs [137]. Furthermore,
by separating the notion of time for incident and outgoing radiance, ti and to, and
integrating over ti, materials that exhibit phosphorescence [43] can be simulated.
In this case, unlike with fluorescence, a material re-emits absorbed light at a much
later time (e.g., as used in glow-in-the-dark toys).
The basic formulation of the rendering equation only handles opaque surfaces,
but it can easily be extended to transparent materials by including a bidirectional
transmittance distribution function (BTDF) and integrating over the entire sphere.3

However, in either case, the incident illumination is assumed to be reflected/re-
fracted around the same point. This is not enough for accurate rendering of translu-
cent materials, which require simulation of subsurface scattering. In a translucent
material, light enters through the surface and is scattered within the material, be-
fore being re-emitted at a potentially different location. There are many examples
of visibly translucent materials, e.g., marble, wax, skin, and many plastics. To
simulate subsurface scattering, the BRDF is replaced by a bidirectional scattering
surface reflectance distribution function (BSSRDF) [99]. In the general case, the
BSSRDF is an 8-dimensional (8D) function parameterized over the positions and
directions of both incident and outgoing light, which makes translucency a difficult
problem. We note that several advanced BSSRDF models have been developed for
approximation, acquisition, and representation of BSSRDFs [31, 32, 54, 105], but
we will not discuss the topic further.
Finally, the rendering equation assumes that light travels in straight paths from one
surface to another, without taking into consideration the medium it travels through.
This assumption is really only true in vacuum, as all other media contain particles
that interact with the light. However, it is a reasonably good approximation in the
typical case of light traveling short distances in clean air. To handle other cases,
e.g., light scattering due to smoke, fog, water, or dusty air, we must simulate how
the radiance changes as light travels through these so-called participating media.
This is a large topic in itself, and we will only very briefly touch on the subject.
The participating media is usually modeled as a statistical distribution of indepen-
dent microscopical particles, which gives rise to four types of light interactions
(absorption, emission, in- and out-scattering). Based on these, a volume rendering

3In many cases, a BTDF representing simple mirror transmittance is used, which means we add the
radiance arriving along the refracted view direction, i.e., wo refracted about the surface normal.
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Diffuse Glossy Specular

Figure 6: The appearance of different materials is often classified by their ability
to reflect light, ranging from perfectly diffuse to ideal specular reflection. Most
real-world materials lie somewhere in between, exhibiting glossy reflection.

equation can be formulated that is similar to the rendering equation, but of higher
dimensionality. For an overview of rendering techniques for participating media,
we refer to the survey by Cerezo et al. [19]. In particular for Monte Carlo methods,
the PhD dissertation by Jarosz [63] also presents a good summary.

2.3 Reflection Models

The visual appearance of a material is determined by the ability of the surface
to reflect light in different directions. The amount of light reflected at different
wavelengths decides its color, i.e., the ability to absorb light, and the directions of
reflection are decided by the surface properties. When a surface is microscopically
very rough, it scatters light in wide range of directions and appears dull or matte. In
this case, we speak of diffuse reflection. On the other hand, an ideal smooth surface
reflects all light according to specular reflection, i.e., mirror-like reflection. Most
real-world surfaces lie in between these two extremes, and exhibit varying degrees
of glossy reflection. The different types of reflection are illustrated in Figure 6.
Perfect specular reflection is governed by the law of reflection, which states that the
angles of incident and outgoing light to the surface normal are equal, i.e., θi = θo,
and all three vectors are coplanar (φo = φi + π). The physical substrate and the
angle of incidence also often have a great effect on the reflectivity of a surface.

Definition Formally, the appearance of an opaque surface is described by the
bidirectional reflectance distribution function (BRDF), fr(x,ωi,ωo), which is de-
fined as follows [99]:

fr(x,ωi,ωo) =
dL(x→ ωo)

dE(x← ωi)
[sr−1], (6)

i.e., the BRDF defines the relation of outgoing radiance in direction ωo, to irradi-
ance arriving from ωi, at a point, x, on the surface.
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2.3.1 Physical Properties

Physically-based BRDFs are naturally positive, as a surface cannot absorb more
light than falls on it:4

fr(x,ωi,ωo) ≥ 0. (7)

The BRDF must also obey the law of energy conservation, which leads to the
following condition:∫

Ω

fr(x,ωo,ωi)cosθo dωo ≤ 1, ∀ωi. (8)

Finally, it obeys the Helmholtz reciprocity principle [21], which follows from the
laws of classical electromagnetism, and states that:

fr(x,ωi,ωo) = fr(x,ωo,ωi), (9)

i.e., the incident and outgoing directions can be swapped with no effect on the
reflectivity. This is important in practice, as it allows computer graphics algorithms
to follow rays in either direction, i.e., from the light towards the camera or in the
reverse direction, without changing how the BRDF is represented.
Most natural materials have spatially-varying reflectance, in which case fr is a six-
dimensional (6D) function; two dimensions describe the position on the surface, x,
and each of the incident and outgoing directions are described by two spherical
coordinates, ω = (θ ,φ). In computer graphics, the spatially varying parameters
controlling the BRDF model at any given point, are usually taken from texture
maps applied to the surface and/or are procedurally computed.
Looking at a particular point, x, the general BRDF is a four-dimensional (4D) func-
tion. When the reflectance depends on the absolute orientation of the surface, as is
the case for materials like brushed metal, satin, or hair, the BRDF is anisotropic.
In a large sub-class of materials, the reflectance does not significantly depend on
the absolute orientation, but only on the relative angle between the incident and
outgoing directions. These materials can be modeled by simpler isotropic BRDFs,
which are three-dimensional functions (at any given surface point):

fr(θi,θo, |φi−φo|). (10)

In the following, we will take a brief look at some of the commonly used BRDF
models in computer graphics.

2.3.2 Examples of BRDFs

A wide range of BRDF models have been developed in computer graphics and
other fields to simulate the visual appearance of materials. The problem of creating

4However, it should be noted that in non-physically based rendering, it is common to have BRDFs
with negative reflectance to “subtract” light from selected areas of a scene.
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a physically-based BRDF is not trivial, as there are many competing goals; it is
often desirable that the BRDF model is easily controllable using a small set of
intuitive parameters, that it is computationally efficient, and able to reproduce a
wide range of materials, while obeying the physical laws detailed above.
Many reflection models include a term to model ideal diffuse reflection. A surface
that only exhibits diffuse reflection is described by the Lambertian BRDF:

fr(ωi,ωo) =
ρd

π
, (11)

where ρd ∈ [0,1] is the diffuse reflection coefficient or albedo, describing the frac-
tion of light that is diffusely reflected. The 1/π factor normalizes the BRDF so that
the integral in Equation 8 is exactly one when ρd = 1. Some real-world materials
are nearly perfectly Lambertian, e.g., matte white paper, or perhaps more interest-
ingly, the lunar surface. Note that since the Lambertian BRDF does not depend on
the incident or outgoing directions, the surface will appear equally bright from all
viewing angles; indeed the moon does not look darker towards its edges.

Empirically Based Models Many of the early reflection models were empiri-
cally based, designed to simulate the visual look or data measured from real sur-
faces. However, they did not always obey the physical laws. A good example is
the Phong reflection model [108], which has later been modified to be physically
plausible [73]. It models isotropic reflectance as a combination of perfectly diffuse
reflection with a simple specular lobe, which gives a plastic-like look. The model
is still popular due to its simplicity. A later example is the Ward anisotropic BRDF
model [152] (also later improved [34, 96]), which was created to fit measured re-
flectance data. It similarly models a combination of diffuse and specular reflection,
but the specular component is represented as an anisotropic Gaussian lobe. The
Ward model is well-suited to represent metallic surfaces, and in particular brushed
metals, as it supports anisotropy. We include its mathematical expression here to
give an idea of the operations involved in evaluating a typical BRDF. The model
is usually expressed on the form [150]:

fr(ωi,ωo) =
ρd

π
+

ρs

4παxαy
√
(ωi ·n)(ωo ·n)

e
− ((h·x)/αx)2+((h·y)/αy)2

(h·n)2 , (12)

where n is the local surface normal, x and y are two orthogonal basis vectors in the
surface’s tangent plane, and h is the halfway vector representing the normalized
direction between ωi and ωo:

h =
ωi +ωo

||ωi +ωo||
. (13)

The reflectance is controlled by four intuitive parameters, the diffuse and specular
reflection coefficients, (ρd ,ρs), and two roughness parameters, (αx,αy), decid-
ing the shape of the specular lobe (where smaller values give sharper highlights).

15



INTRODUCTION

Figure 7: Examples of two renderings using the same physically-based BRDF
based on a microfacet model. The Fresnel term approximates the increasing re-
flectivity towards grazing angles, as shown in the image on the left. The dragon
model is courtesy of Stanford University Computer Graphics Laboratory.

The ease of control of the Ward model is a great advantage over more compli-
cated models. However, in order to address some of its shortcomings, Ashikmin
and Shirley [6] presented a more advanced empirical anisotropic reflection model,
which gives good results for a variety of materials.

Physically Based Models Another important class of BRDFs are physically-
based models, which are derived from physical rather than empirical models of
the light–surface interactions. A lot of inspiration has been gained from reflec-
tion models in other fields, such as the Beckmann distribution for scattering of
electromagnetic waves. The earliest example in computer graphics is probably the
Blinn-Phong [11] model, which is similar to the Phong model. The difference is
that the specular lobe is based on evaluating a normal distribution function (ndf)
centered around the halfway vector. The motivation for this is that surface rough-
ness can be modeled as a random distribution of microfacets, i.e., tiny fragments
of a surface, where the reflection between ωi and ωo is strongest for facets point-
ing towards the halfway vector. (The paper by Edwards et al. [37] has a good
discussion on the halfway vector.)
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Following along this line, the Cook-Torrance model [25], inspired by the Torrance-
Sparrow model used in physics [145], was the first BRDF in computer graphics to
explicitly model the interaction and shadowing between microfacets. It was de-
signed to simulate metallic surfaces, and includes a so-called Fresnel term [14]
to approximate the color shifts and increasing reflectance towards grazing angles
that many materials exhibit. See Figure 7 for an example. Several more accu-
rate microfacet-based models have followed [7, 109], including some targeting
non-glossy materials. For example, the Oren-Nayar model [102] uses diffusely
reflecting microfacets rather than mirrors. This gives a more accurate imitation
of rough diffuse surfaces, such as concrete, plaster, sand, and clay, than the ideal
Lambertian. There are even physically-based BRDFs based on simulating wave
optics for certain classes of materials [58, 134].
However, as physically-based reflection models get increasingly complex, they
tend to require a larger set of parameters. Many of these are often unintuitive,
which can make it difficult to manually tweak the appearance. The computational
complexity of evaluating the more advanced physically-based models can also be
very high. As always in computer graphics, there is a tradeoff between rendering
times and accuracy. There have been attempts to simplify and improve the effi-
ciency of physically-based models using mathematical approximations, e.g., the
work by Schlick [124]. However, many of the simpler empirical models continue
to be widely used, despite a weaker theoretical basis.

Data Driven Models As an alternative to trying to create physical or empiri-
cal models of the reflectance, one can take a data-driven approach and measure
the reflectance of real materials. For this purpose a gonioreflectometer is used,
i.e., a device capable of measuring reflectance at different angles. Although the
design varies, the measurement setup typically involves a light source and sensor
(e.g., camera), whose relative positions can be varied with respect to a material
sample in an automated manner. As a general BRDF is a four-dimensional func-
tion, or even six-dimensional for spatially-varying materials, the process can be
time-consuming. It also faces difficulties such as radiometric calibration, mechan-
ical accuracy, and sensor noise. Hence, accurate reflectance data is only avail-
able commercially, or from a few publicly available datasets, such as the CUReT
database [26] and the MERL BRDF database [88]. In our research, we have used
the latter in Paper I and Paper IV.
In order to use these high-dimensional datasets for rendering, it is often practical
to use mathematical fitting techniques to fit a simpler representation to the mea-
sured data. For example, Lafortune et al. [75] approximate measured or simulated
reflectance data by fitting multiple generalized Phong lobes. This representation
has an intuitive meaning and can be modified, albeit with some difficulty. Matusik
et al. [88] use principal component analysis (PCA) to show that many BRDFs can
be represented using a relatively small set of principal components, or even as a
linear combination of BRDFs [89]. Many other approaches directly project the
reflectance data onto an orthogonal basis, and compress/approximate it by stor-
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ing only a small set of basis coefficients. Examples of bases used in these tech-
niques include spherical harmonics (SH) [131, 158], Zernike polynomials [66],
and wavelets [79, 127]. It should be mentioned that such compressed BRDF rep-
resentations have been very useful also outside the field of photorealistic rendering,
and they are a necessity in real-time relighting methods based on precomputed ra-
diance transfer (PRT) [132]. In fact, the BRDF representation used in Paper I was
adopted from a wavelet-based PRT technique [97].
To conclude, the modeling and representation of reflectance is an interesting topic
because it is an essential part of simulating light transport; the BRDF directly con-
trols the visual appearance of a surface under varying lighting conditions. The
problem is also very complex, and there are endless possibilities to refine the mod-
els, e.g., to simulate more accurate surface detail, texture, reflectance, or subsur-
face scattering. Current research focuses largely on developing specialized models
for particular classes of materials, such as metallic car paint [123]. The SIG-
GRAPH course by Dorsey and Rushmeier [33] gives a good overview.

2.4 Light Sources
In order to form an image and create meaningful pictures, light must be added to
the computer model of the world, just like the photographer needs to pay careful
attention to the lighting of her scene. Without light, the images would be black.
In this section, we will discuss some common types of light sources, and how the
rendering equation can be rewritten to explicitly take these into account.
We have seen how the rendering equation in Equation 5 models the propagation of
light in the three-dimensional world using a recursive integral formulation. On this
form, light is injected into the simulation by surfaces that emit light, i.e., surfaces
where Le(x→ωo)> 0. Technically speaking, any surface can be a light source and
Equation 5 is sufficient to solve the light transport problem. In reality, however,
usually only a few surfaces emit light, while the majority do not. Therefore, it
is often more convenient to express the rendering equation as an area integral, in
order to integrate the light that arrives directly from these surfaces.

2.4.1 Area Formulation of the Rendering Equation

Equation 5 expresses the outgoing radiance, L(x→ ωo), as a sum of emitted light,
Le, and reflected light, Lr. The reflected light is computed by integrating over the
visible hemisphere at x. Therefore, this is called the hemispherical formulation
of the rendering equation. As we will see, it is often more convenient to integrate
over other surfaces in the scene rather than over the hemisphere, which leads to
the area formulation of the equation. We express the reflected light as an integral
over all other points, y, on the surfaces, A, in the scene.
First, note that the surface at y has a normal ny and differential area dAy. The
hemispherical form integrates over solid angle, and the relationship between dif-
ferential solid angle, dωi, and differential area, dAy, is found by considering the
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Figure 8: The geometry term in the area formulation of the rendering equation
describes the relation of energy transfer between two differential surfaces, dAx
and dAy, based on their relative angles and distance. As seen from the point x,
the solid angle, dωi, that the surface dAy subtends is equal to its projected area,
cosθ jdAy, divided by the squared distance, ||x−y||2.

solid angle subtended by dAy at x. This is illustrated in Figure 8, and is given by:

dωi =
cosθ j dAy

||x−y||2
, where cosθ j = (ny ·−ωi). (14)

The cosine term comes from the projected area being dA⊥y = cosθ j dA, which at a
distance r = ||x−y||, corresponds to the solid angle given in Equation 14. We are
now ready to formulate the rendering equation as an integral over all surfaces, A,
in the scene, as follows:

L(x→ωo) = Le(x→ωo)+
∫

y∈A
L(x← y) fr(x,ωi,ωo)G(x,y)dAy,

where G(x,y) =
cosθi cosθ j

||x−y||2
, (15)

is called the geometry term, as it takes the relative geometries of the differential
areas at x and y into account. The L(x← y) term denotes radiance that arrives at x
from the surface at y. Note that this requires a clear line of sight between the two
points, as otherwise no light will arrive and L(x← y) is zero. This relationship
is often made explicit by introducing a binary visibility function, V (x,y), which
describes the mutual visibility of two points:

V (x,y) =
{

1 if x and y are mutually visible,
0 otherwise. (16)

Under the general assumption of light transport in vacuum, where no attenuation
or scattering occurs due to participating media, we have:

L(x← y) = L(y→ x)V (x,y). (17)
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2.4.2 Direct and Indirect Illumination

The area formulation of the rendering equation is useful, since it allows us to
directly integrate over the surfaces of light sources. Intuitively, by doing so, we
can compute the light that arrives directly from the light sources, i.e., the direct
illumination, separately from the light that arrives due to reflection from other
surfaces, the so-called indirect illumination. The outgoing radiance is given as the
sum of self-emitted radiance, and the direct and indirect illumination reflected in
the outgoing direction:

L(x→ωo) = Le(x→ωo)+Ldirect(x→ωo)+Lindirect(x→ωo). (18)

As we will see in Section 3, the two terms Ldirect and Lindirect are usually com-
puted using different techniques for efficiency reasons. The indirect illumination
is the result of light bouncing off other surfaces, possibly an infinite number of
times. The incident radiance arrives from all directions on the hemisphere, and a
hemispherical formulation is usually appropriate:

Lindirect(x→ωo) =
∫

Ω

Lr(x← ωi) fr(x,ωi,ωo)cosθi dωi, (19)

where Lr is reflected radiance arriving at x, i.e., excluding light emitted in the
last bounce, computed using the integral on the right-hand side of Equation 5 at
each visible point over the hemisphere. Note that the indirect illumination is thus
defined on a recursive integral form.
For the direct illumination, the most convenient formulation depends on the type
of light sources used. In the general case, the direct illumination can be expressed
as an integral over all light-emitting surfaces, A′ ⊆ A, using the area formulation,
as follows:

Ldirect(x→ωo) =
∫

y∈A′
Le(y→ x) fr(x,ωi,ωo)V (x,y)G(x,y)dA′y, (20)

where Le(y→ x) is the radiance emitted by the surface at y towards the point x.
Note that the direct illumination, although described by a complex integral, is not
recursive in its nature. The goal of this dissertation is largely to develop efficient
ways of computing the direct illumination, Ldirect , under various conditions. In the
following, we will discuss some examples of light sources.

2.4.3 Examples of Light Sources

There are many different types of light sources, and the best choice for a given
application is usually a compromise between the desire for accuracy and the ren-
dering efficiency. The most common variants are described below.
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Point Light The simplest model of a light source is the point light, i.e., a point-
like light source that emits light of uniform intensity in all directions. More for-
mally, the point light is said to have an omnidirectional light distribution. Note
that no true point light exists in the real world, as a physical light source always
has some extent in space. Nevertheless, it can be a good approximation if the size
of the light source is small relative to the rest of the scene. Point lights are also
commonly used to approximate other light emitters, e.g., by placing many virtual
point lights (VPLs) over a surface to approximate the light it emits or reflects.
To compute the direct illumination from a point light, there is no need to integrate
over incident radiance, as the point light subtends an infinitely small solid angle.
Following the radiometric definitions in Section 2.1.2, we find that:

Ldirect(x→ωo) =
Φ

4π||x−y||2
fr(x,ωi,ωo)V (x,y)cosθi, (21)

where Φ is the flux of the point light in watts.
While most point lights are omnidirectional, variations that have non-uniform light
distributions are sometimes used in specialized applications. For example, a di-
rectional light distribution may be specified by so-called goniometric diagrams,
available from light manufacturers. Additionally, in some rendering algorithms,
indirect illumination is approximated using a cloud of virtual point lights, which
sometimes have non-omnidirectional properties.

Spotlight A spotlight is a type of light source that is closely related to the point
light. Instead of radiating in all directions, the emitted light is focused in a cone
centered around the principal direction of the spotlight. The distribution of light
often varies within the cone, following a smooth falloff towards the edges and
being completely cut off outside the cone.
Spotlights are convenient tools for the artists creating the three-dimensional worlds,
as they allow more control than point lights and the light can be focused on partic-
ular objects. From the rendering system’s point of view, the spotlight emits light
from a single point in space similar to a point light, but it is often possible to take
advantage of the fact that the intensity is zero outside the cutoff angle of the cone.

Area Light The area light is a more general form of light source, which emits
light over the entire surface of a shape. The light emitting shape is usually a
geometric primitive, such as a triangle, quadrilateral, or disc. Both the spatial and
directional light distributions can be controlled, and by combining multiple simpler
area lights, a more complex light source can be created. We have already seen
how the direct illumination from area lights can be computed as an area integral
using Equation 20. When a scene contains many different light sources, their
contributions are usually computed separately and the results added together.
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Directional Light Finally, there are a few important types of light sources that
are not localized to any position in the scene. A directional light is an imaginary
light source that illuminates all objects equally from a given direction. It can thus
be seen as an infinite area light that is infinitely far away. For example, sunlight
in an outdoor environment is often modeled using a directional light source, as
the rays arriving at Earth are nearly parallel. The directional light is either visible
or occluded, as seen from a point x. This is described by a directional visibility
function, defined as follows:

V (x,ωi) =

{
1 if clear line of sight from x in direction ωi,
0 otherwise. (22)

The light emitted from a directional light pointing in direction −ωi with a radiant
exitance of Me [W·m−2], arrives unmodified at x if there is a clear line of sight,
since all emitted light is assumed to travel in parallel rays. The irradiance is thus
E(x) = Me V (x,ωi)cosθi due to the projected area of the receiver, which gives the
direct illumination as:

Ldirect(x→ωo) = Me fr(x,ωi,ωo)V (x,ωi)cosθi. (23)

Environment Map Last, we have environment mapping, which is an image-
based lighting (IBL) technique, where one or more images are used to specify the
illumination in each direction over the sphere. Similar to the directional light, the
light from an environment map is assumed to arrive from infinitely far away and it
illuminates all objects equally, although the angular distribution varies. Originally,
the technique was mostly used to provide sharp reflections of an environment or
background [13, 47, 93]. It was later developed into an accurate method of lighting
a scene using high-dynamic range photographs of real environments [27]. In this
context, the environment map is usually called a light probe, as it measures the
light in each direction. Environment mapping is a very useful tool in photorealistic
rendering, as it provides a convenient way to approximate the direct lighting in a
real scene. The technique is, for instance, widely used for rendering special effects
in feature films. By capturing one or more light probes at a real set, it is relatively
easy to achieve lighting conditions in the rendered images that match those of
shots filmed at the set. This is a critical component for seamless integration of
computer-generated imagery in real world footage.
As the environment map is assumed to be infinitely far away, the incident illu-
mination does not depend on the position in the scene, but only on the direction.
Therefore, the direct illumination under environment map lighting is given by:

Ldirect(x→ωo) =
∫

Ω

Lenv(ωi) fr(x,ωi,ωo)V (x,ωi)cosθidωi, (24)

where Lenv(ωi) is the radiance arriving from the environment map, as seen in direc-
tion ωi. The integral is defined over the entire visible hemisphere, as the lighting
from all directions needs to be taken into account.
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The computation of direct illumination in Equation 24 is non-trivial, as the integral
is taken over the entire hemisphere and includes both a BRDF, fr, and a visibility
function, V , both of which can be complicated high-frequency functions depend-
ing on the materials and scene geometry used. A large part of this dissertation
is devoted to finding efficient techniques for solving this integral. In particular,
we have developed several novel Monte Carlo techniques aimed at evaluating the
direct illumination under environment map lighting, using a minimal set of well-
chosen random samples. In Section 3 and 4, we will look at the theory and our
contributions in more detail.

2.5 Camera Models

In the previous sections, we have defined all the necessary components for simu-
lating light transport in a three-dimensional world. Using the rendering equation,
we can solve for the radiance at any point and direction in space, taking the light
sources, material models, and geometry of the scene into account. However, in or-
der to create a two-dimensional image, we must additionally model and simulate
the optical system of a virtual camera placed in the scene. The image is formed by
the camera lens projecting incoming light onto an image plane, where an image
sensor or photographic film is exposed over the duration of the shutter time. In this
section, I will give a brief overview of the process of image formation, and discuss
some of the approximations commonly employed in computer graphics.

2.5.1 Exposure

In a real camera, the sensor or photographic film records the exposure to light at
each point on the image plane. In both cases, the image that is formed is a function
of the radiant exposure, H, i.e., total energy per unit area that arrived at each
point, u = (ux,uy), on the image plane. The exposure is computed by integrating
irradiance, E(u), over time, as follows:

H(u) =
∫

t
E(u)S(u, t)dt [J ·m−2], (25)

where S(u, t) is the shutter function, which describes the time interval where the
shutter is open, as seen from the point u. If the irradiance on the image plane
changes over time, e.g., by objects or the camera moving, the result is an effect
called motion blur. This appears as blurry motion trails along the path of objects.
In photography, motion blur is often (but not always) an unwanted effect and short
shutter times are used to avoid it. In film, however, motion blur enhances the
perception of motion, and without it, the moving pictures appear stuttering.
The irradiance, E(u), is itself computed by integrating the incident radiance on
the image plane over solid angle (see examples below). In computer graphics, it is
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often assumed that the shutter opens and closes instantaneously:

S(u, t) =
{

1 t0 ≤ t ≤ t1,
0 otherwise, (26)

where [t0, t1] is the time interval the shutter stays open. In reality, a camera shut-
ter is usually implemented as a mechanical device with shutter blades that travel
across the image plane at a certain speed, or as an electro-optical device that has a
certain switching time between fully opaque and transparent. Equation 26 ignores
these unwanted side effects of the physical construction, although specialized ap-
plications may need to model them explicitly.
Traditional photographic film is coated with crystals or “grains” of light-sensitive
silver halide salts, which are activated by a photochemical process and later chem-
ically developed into a negative image (i.e., darker where more light arrived). The
density of the developed film is typically logarithmic to the exposure, which means
film can record a wide dynamic range, i.e., preserve detail in both dark and bright
areas. On the other hand, the image sensor in digital cameras, which is typically
based on CCD or CMOS technology, transforms light energy quanta (photons)
into an electrical charge. This process typically follows a nearly linear response
curve, which traditionally gave a narrower dynamic range. However, the accuracy
and dynamic range of image sensors have improved to a point where they often
surpass those of photographic film.
For computer-generated images, the dynamic range is only limited by the numeri-
cal range of the data format used for computing and storing the image. For photo-
realistic rendering, a high dynamic range (HDR) format is usually used, where the
radiometric quantities are represented using (at least) 16-bit or more often 32-bit
floating-point values per color component. Before use, the rendered high dynamic
range image has to be mapped to the (limited) dynamic range of the output device
or medium. The process is known as tone mapping, and is an important step be-
fore the image can be displayed or used for other purposes. Similarly, rendered
images do not exhibit traditional film grain, which is therefore often simulated
by a random process and added to the final image in order to match the look of
photographed images or footage.

2.5.2 Pinhole Camera

Before the light arrives at the image plane in a real camera, it passes through the
camera lens – an optical system designed to project an accurate picture of the world
onto the image plane. The simplest possible “lens” system is the camera obscura
or pinhole camera, which consists of a box with a small hole in one side and no
optical lenses at all. On the opposite side, an image is projected (upside-down)
on a screen or photographic film. The image gets sharper the smaller the hole is
because the light gets more focused, but at a too small opening, diffraction effects
limit the sharpness. The image also gets dimmer at smaller openings, since less
light reaches the image plane.

24



2. LIGHT TRANSPORT

Formally, the irradiance at the image plane, E(u), is given by integrating the inci-
dent radiance over the pinhole opening, D. Assuming the opening is parallel to the
image plane, we arrive at the following expression:

E(u) =
∫

v∈D
L(u← v)

cosθ

||v−u||2
cosθ dA, (27)

where the first cosine factor accounts for the solid angle subtended by dA (Equa-
tion 14), and the second for the projected area on the image plane (Equation 1).
If the distance from the pinhole opening to the image plane is d along the optical
axis, the expression can be rewritten:

E(u) =
1
d2

∫
v∈D

L(u← v)cos4
θ dA, (28)

since cos2 θ = d2/||v−u||2 due to standard trigonometry.
For a pinhole camera, the solid angle subtended by the opening is very small and
the integral can safely be approximated as [67]:

E(u)≈ L(u,ω)
A
d2 cos4

θ , (29)

where A is the area of the pinhole opening, and L is the radiance arriving from its
center in direction ω . The cos4 θ factor causes light falloff, or vignetting, towards
the edges of the image, which is clearly visible in photographs taken with real
pinhole cameras.
In an ideal pinhole camera model, the opening is assumed to be infinitely small,
i.e., all light passes through a single point. Although not physically realizable, this
model is commonly used in computer graphics due to its simplicity. Since all light
is projected through a single point, the entire image will be sharp and in focus.
Additionally, the cos4 θ falloff factor is usually ignored [24], so we have:

H(u) ∝ L(u,ω), (30)

which leads to the common conception that a camera “sees” radiance. Note that
for an ideal pinhole camera, we cannot speak in physical terms about the exposure,
since an infinitely small opening would allow no light to pass.

2.5.3 Thin Lens Model

To get around the limitations of the camera obscura, optical lenses can be inserted
in the light path in order to focus light from different directions onto the image
plane. Light that enters a lens is refracted due to the index of refraction, η , being
different between air (η close to 1) and the lens material (e.g., optical glass or
plastic, typically with η = 1.5 . . .1.9). As light exits on the other side, it is again
refracted. The angles between incident and refracted light are governed by Snell’s
law: η1 sinθ1 = η2 sinθ2, where θi is measured with respect to the normal on each

25



INTRODUCTION

Figure 9: Parallel light that reaches an optical lens is either converged (left) or
diverged (right). The outgoing rays converge at the (ideal) lens’ focal point, F,
which lies either on the positive or negative side of the lens. The focal length, f ,
is the distance from the center of the lens to F. The thin lens model assumes ideal
lenses, and that light refracts in the principal plane through the center of the lens.

side. By making the sides of the lens curved, a positive (convex) lens that focuses
light, or a negative (concave) lens that spreads light can be constructed. Parallel
light that reaches an ideal positive lens will converge to a single point along the
optical axis, referred to as the focal point, F . The focal length, f , which is the
distance between the center of the lens and the focal point, indicates how strongly
the lens converges or diverges light. This is illustrated in Figure 9.
In reality, not all light traveling through the lens is converging at exactly the same
point. There are several different physical effects in play. For example, the index
of refraction is wavelength dependent, which causes different optical aberrations,
i.e., distortions in the image. To counter these effects, modern camera lenses are
often assembled from a large number (up to about 20) of optical lens elements.
The overarching design goal is to maximize the amount of light gathered (the irra-
diance, E, in Equation 25), while minimizing optical aberrations.
The thin lens approximation assumes the lens behaves as an ideal lens, and that
light is refracted at a single plane – the principal plane – ignoring optical effects
due to the thickness of the lens. This significantly simplifies the analysis of simple
optical systems. Using the thin lens approximation, a camera lens can be modeled
as a single positive lens that projects light onto the image plane. The lens is focused
at a certain distance, z f , by adjusting the distance between the image plane and the
lens, zl . The relation between the two is given by the thin lens formula:

1
zl
+

1
z f

=
1
f
⇔ zl =

f z f

z f − f
. (31)

Any object that is a distance z f away from the lens is said to lie on the focus plane,
and will be in focus. For example, with a f = 100 mm lens, an object at a distance
z f = 3 m is in focus if the lens–image plane distance is zl = 103.45 mm.

26



2. LIGHT TRANSPORT

The aperture of a lens is the opening through which light can pass to the image
plane. The aperture is physically limited by the size of the lens and the enclosure
in which the lens is mounted. In camera lenses, there is usually also a mechanical
variably sized aperture stop inserted somewhere in the optical path to further limit
the aperture and control how much light reaches the image plane. The aperture is
measured in f -stops (usually written, e.g., f/5.6), which is defined as the ratio of
focal length to the diameter of the aperture, adiam, as follows:

fstop =
f

adiam
. (32)

Light emanating from a point closer or farther away than the focus plane will
converge to a point behind or in front of the image plane, respectively. At the
intersection with the image plane, the cone of light will therefore result in a disc
rather a single point. This is called the circle of confusion, and the effect causes
objects that are not in focus to be blurred. The circle of confusion is smaller at
smaller apertures (i.e., using a larger f -stop number), as the cone of light from any
single point will be narrower. At the same time, less light is reaching the image
plane, so a longer shutter time is necessary. The range of depths for which the
projected image is acceptably sharp is called the depth of field (DOF).
The thin lens model is commonly used in rendering systems as it provides a sim-
ple and intuitive model for image formation. It gives adequate results for most
applications, and allows important artistic control. For example, a large aperture
gives a very shallow depth of field and the possibility to isolate objects at a cer-
tain distance to direct the viewer’s attention. Rendering using the thin lens model
is usually achieved using ray tracing, i.e., shooting rays through different random
positions on the image plane and lens [24], although rasterization can be general-
ized to support the thin lens model [2, 3].

2.5.4 Advanced Models

In some applications, a more sophisticated simulation of the optics of the camera
lens is necessary. This is the case when the rendered images have to precisely
match photographed ones, for example, in production of special effects. The many
lens elements of real photographic camera lenses cannot be accurately approxi-
mated as thin lenses. In some situations, the thick lens approximation can be used
instead. Similar to the thin lens model it assumes ideal lenses, but it takes their
thickness into account by working with two separate principal planes.
For even more flexibility, it is necessary to model the full lens system as a set of
lens elements and apertures [67]. This allows simulation of many of the optical
imperfections that real camera lenses exhibit, as well as accurate bokeh, i.e., the
aesthetic quality of the blur from out-of-focus regions. The shape of the aperture
stop and different optical aberrations cause the circle of confusion to have a certain
shape, and an often non-uniform intensity on the image plane. These effects have
a huge impact on how out of focus areas are depicted by a real camera. Advanced
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camera models that can simulate these types of effects are increasingly important
in the strive for a higher level of realism. For this purpose, efficient light transport
through complex lens systems continues to be an important research field [61].
We have now discussed the difficulties of simulating the camera system and the
most common approximations used. For further information, refer to the surveys
by Barsky et al. [9, 10]. In our work, we have implemented several different cam-
era models, including the thin lens model for simulation of depth of field. The
research presented in Paper VII focuses on motion blur rendering, where the expo-
sure is computed by integrating over time as described in Section 2.5.1. In the other
papers, however, the focus lies on simulating the light–surface interactions within
the scene, which is largely orthogonal to the choice of camera model. Therefore,
to make the evaluation of the algorithms easier, we present results rendered using
a simple pinhole camera model.
This part concludes the overview of the mechanics of light transport. In the fol-
lowing section, I will discuss how light transport is solved using numerical Monte
Carlo methods.
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3 Monte Carlo Rendering

As we have seen in Section 2, photorealistic rendering requires accurate simulation
of light transport by solving the rendering equation. This a difficult problem as it
involves a multi-dimensional integral that is theoretically of infinite dimensionality
due to its recursive formulation. Hence, closed-form solutions are intractable, and
we must resort to numerical methods. However, even deterministic numerical in-
tegration methods using quadrature rules are not practical, as their error bounds
grow exponentially with increasing dimensionality. Many other fields, includ-
ing the physical sciences, engineering, and mathematics, face problems of similar
character. For these classes of multi-dimensional integrals, stochastic Monte Carlo
methods are well-suited.
Monte Carlo (MC) methods are based on random sampling to solve deterministic
problems. By averaging over a large number of random samples from the prob-
lem domain, an estimate of the correct result is obtained. The methods are thus
stochastic in that a correct answer is not guaranteed, but the expected results will
generally be correct. In this section, I will briefly describe Monte Carlo theory
and give an overview of the methods commonly used in computer graphics, be-
fore introducing our novel techniques in Section 4. Let us start by reviewing basic
probability theory.

3.1 Probability Theory

The study and analysis of random phenomena are mathematically described by
probability theory, which is divided into its discrete and continuous counterparts.
Discrete probability theory deals mostly with probabilities of discrete events (e.g.,
dice rolls) and combinatorial problems, while for Monte Carlo rendering, we work
almost entirely in continuous space and will therefore focus on the latter.

3.1.1 Random Variables

A random variable, X , is a variable that does not have a fixed single value, but
rather it takes on a value based on the outcome of a random experiment. The
sample space, S, is the set of all possible outcomes of an experiment. Formally,
a random variable is a function defined over the sample space, and each time an
outcome s ∈ S occurs, the random variable takes on the value X(s). The value
resulting from a given experiment is called a realization of the random variable.
We follow standard conventions in that we denote random variables in upper case,
and their realizations in lower case. The probability of each outcome is defined
by a probability distribution. If X is a discrete random variable, its probability
distribution is given by a probability mass function (pmf), pX (x), defined as:

pX (x) = P(X = x) = P({s ∈ S : X(s) = x}), (33)
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where P(X = x) denotes the probability of X taking on the value x. In the discrete
case, the total probability must sum to one, i.e., ∑ pX (x) = 1. For example, if X de-
notes the outcome of a die roll, we have pX (x) = 1/6 for each possible realization
x ∈ {1, . . . ,6}. (Note that X is here an identity function on S so that X(s) = s.)
A continuous random variable can take on a continuous range of values, and its
probability distribution is given by a probability density function (pdf), fX (x).
While the probability of a continuous random variable taking on exactly a sin-
gle value x is zero, the pdf defines the probability of an outcome falling within a
range of values, [a,b], as follows:

P(a≤ X ≤ b) =
∫ b

a
fX (x)dx. (34)

As per the definition, the probability density function is positive, fX (x) ≥ 0, and
integrates to one, i.e.,

∫
fX (x) = 1. The cumulative distribution function (cdf),

FX (x), is the probability of a continuous random variable taking on a value that is
less than or equal to x. The cdf is found by integrating over the pdf, as follows:

FX (x) = P(X ≤ x) =
∫ x

−∞

fX (t)dt. (35)

Note that the cdf is monotonically increasing (not necessarily strictly), and has
the values F(x) = 0 when x→−∞, and F(x) = 1 when x→ ∞. Note that a neces-
sary condition for the probability density to exist is that the cumulative distribution
function is differentiable everywhere, in which case the pdf is given as the deriva-
tive of the cdf:

fX (x) =
dFX (x)

dx
. (36)

Note that we will omit the subscript, X , when it is obvious which random vari-
able the functions refer to. The probability density function and the cumulate
distribution function are two key concepts in probability theory, which I will make
extensive use of in this dissertation.

3.1.2 Expectation and Variance

If a random experiment is repeated a very large number of times, the arithmetic
mean of the results will converge to some value. This value is called the mean or
expected value of a random variable describing the experiment. More formally,
the expected value, E(X), of a random variable, X , is the weighted average of the
values it can take, with the weights given by the probability distribution of X . For
example, the expected value of a random variable describing the outcome of a die
roll, is E(X) = 1 · 1

6 + 2 · 1
6 + . . .+ 6 · 1

6 = 3.5. For a continuous random variable,
the expected value is (if it exists) given by:

E(X) =
∫

∞

−∞

x fX (x)dx. (37)
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More generally, if g(X) is a function of a random variable, X , with a probability
density function fX , its expected value is given by the inner product of fX and g:

E[g(X)] =
∫

∞

−∞

g(x) fX (x)dx. (38)

By formulating the expected value as a Lebesgue integral, it follows from the
linearity property that the expected value is a linear operator [41], that is:

E(aX +bY ) = aE(X)+bE(Y ). (39)

The linearity holds true for any two random variables, X ,Y , and a,b ∈ R.
Now, assuming the mean of the results from an experiment is known, a natural
question is, what is the variation of the results around this mean? The variation
is measured as the variance of a random variable, which is informally a measure
of how concentrated the probability distribution is around its mean. Formally,
the variance, V (X), of a random variable, X , is defined as the expected squared
deviation from its mean or expected value, as follows:

V (X) = E[(X−E(X))2], (40)

which can alternatively be written as V (X) = E(X2)−E(X)2. For a continuous
random variable, X , the variance is thus explicitly given by the integral:

V (X) =
∫

∞

−∞

(x−µX )
2 fX (x)dx, where µX = E(X). (41)

It should be noted that the units of the variance are the square of the units of the
random variable. For example, the variance of a random variable representing
irradiance [W·m−2], will have units W2·m−4. Therefore, it is often more intuitive
to talk about a random variable’s standard deviation, σ , which has the same units
as the variable itself. The standard deviation is defined as the square root of the
variance (often denoted σ2):

σX =
√

V (X). (42)

In addition, it is useful to know how linear operations on random variables affect
their variance. For this purpose, we first need to know if the random variables are
correlated or not, i.e., if there is a linear dependence. Correlation is defined in
terms of the covariance between two random variables, X and Y , as follows:

Cov(X ,Y ) = E[(X−µX )(Y −µY )] = E(XY )−E(X)E(Y ). (43)

Note that the covariance between two independent random variables is always
zero, but the converse is not true; two random variables may have zero covariance,
but still exhibit a non-linear dependence. It is often convenient to measure the
covariance adjusted for standard deviation. This is defined as the (Pearson product-
moment) correlation coefficient, ρX ,Y :

ρX ,Y =
Cov(X ,Y )

σX σY
=

E[(X−µX )(Y −µY )]

σX σY
, −1≤ ρX ,Y ≤ 1, (44)
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i.e., the correlation coefficient is limited to the range [−1,1]. A value of 1 implies
a positive perfectly linear relationship, i.e., all pairs of observations from X ,Y lie
on a line for which y increases as x increases, while −1 implies a negative linear
relationship. We are now ready to describe how the variance changes due to linear
operations. First, note that scaling a random variables changes its variance by the
square of the scale:

V (aX) =
∫

∞

−∞

(ax−aµX )
2 fX (x)dx = . . . = a2 V (X). (45)

The variance of a linear combination of two random variables is given by:

V (aX +bY ) = a2 V (X)+b2 V (Y )+2ab ·Cov(X ,Y ). (46)

If the variables are uncorrelated, which is often the case, their covariance is zero.
This leads to the so-called Bienaymé formula, which states that the variance of a
sum of uncorrelated random variables, Xi, is the sum of their variances:

V

(
n

∑
i=1

Xi

)
=

n

∑
i=1

V (Xi) . (47)

We have now briefly touched upon the subject of probability theory, in order to
introduce the terminology necessary to discuss Monte Carlo methods and variance
reduction techniques. For a more comprehensive overview, we refer to textbooks
in the field [41, 49].

3.2 Monte Carlo Integration

Broadly speaking, Monte Carlo methods build on probability theory to estimate
the expected value of a random variable by random sampling. Hence, by posing
the problem we want to solve, e.g., the integral of a function, as an expectation,
Monte Carlo methods can be used to estimate the answer. Let us start with some
definitions.

3.2.1 Estimators

In probability theory, a random sample of length n (i.e., sample size n) represents
the outcomes of n independent experiments, in which the same quantity is mea-
sured. Given a random variable, X , with distribution fX , a random sample is thus
a set of n independent, identically distributed (iid) random variables with distri-
bution fX . The ith experiment is described by Xi, which has a realized value xi,
i.e., the value obtained when actually making the experiment. In the following,
we often use term sample loosely to refer to a random sample of length one (a
single Xi) and sometimes its realization xi. The term sampling refers to the process
of generating samples from a given probability distribution.
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As discussed in the previous section, the expected value is the limit of the mean
result of a repeated experiment. Formally, the law of large numbers states that
the sample mean converges to the expected value as n→ ∞. Hence, we can ap-
proximate the expected value of an arbitrary function, E[g(X)], by drawing a set of
samples {x1,x2, . . . ,xn} from X and taking the mean of g(x) over the samples. This
is called the n-sample Monte Carlo estimate, g̃n, of E[g(X)]. The corresponding
random variable, g̃n(X), is called a Monte Carlo estimator, and is given by:

g̃n(X) =
1
n

n

∑
i=1

g(Xi). (48)

Each realization of the estimator g̃n(X) gives an estimate of the expected value we
are seeking. These estimates will almost certainly vary from the correct value, but
there will be no statistical bias, i.e., the estimator is said to be unbiased. Mathemat-
ically, the bias of an estimator is measured as the difference between its expected
value and the value it is estimating. In this case, E[g̃n(X)]−E[g(X)] = 0 due to
the linearity of expected value (Equation 39).
The estimator in Equation 48 is also consistent, which means that it converges in
probability to the quantity being estimated. Formally:

lim
n→∞

P(|g̃n(X)−E[g(X)]|< ε) = 1, (49)

for any fixed ε > 0, i.e., the probability of being close to the estimated value in-
creases with growing sample size, n, to become one in the limit. Being both un-
biased and consistent are desirable properties of a Monte Carlo estimator, as it
guarantees the estimates are correct on average and that the variance decreases
with more samples. Note that the two properties do not always go hand in hand;
an estimator may be unbiased, but not consistent, and similarly, many estimators
are biased while still being consistent.

3.2.2 Integration

Monte Carlo estimators are very useful as we can pose almost any problem as
an expectation, and hence estimate its value by averaging over random samples.
For example, in our case, we are interested in solving difficult multi-dimensional
integrals, i.e., the rendering equation. Assume we want to compute the integral, I,
of a function h(x):

I =
∫

x∈D
h(x)dx, (50)

defined over some (possibly multi-dimensional) domain, D. The integral can be
cast as an expectation by rewriting it as follows (c.f., Equation 38):

I =
∫

x∈D
h(x)dx =

∫
x∈D

h(x)
f (x)

f (x)dx = E
[

h(X)

f (X)

]
, (51)
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where X is a random variable with a probability density function f (X). This equal-
ity holds true for any pdf defined over D, as long as f (x) > 0 when h(x) 6= 0.
Hence, the Monte Carlo estimator of I is given by:

Ĩn(X) =
1
n

n

∑
i=1

h(Xi)

f (Xi)
, (52)

where Xi are iid random variables with a probability distribution defined by f (x).
The process of approximating an integral by averaging over random samples is
called Monte Carlo integration. It is a powerful technique as it works in any di-
mension and is conceptually simple. In order to estimate an integral, all we need
to do is to generate random samples from a distribution with pdf f (x), and average
over the values of h(x)/ f (x), evaluated at each sample.

As a simple example, consider the evaluation of the definite integral: I =
∫ b

a h(x)dx.
The simplest Monte Carlo estimator draws samples from a uniform distribution
defined over the integration domain, U(a,b), which has a pdf:

fX (x) =
{ 1

b−a for x ∈ [a,b],
0 otherwise.

(53)

The Monte Carlo estimate is given by:

Ĩn =
1
n

n

∑
i=1

h(xi)

fX (xi)
=

b−a
n

n

∑
i=1

h(xi), for Xi ∼U(a,b). (54)

It is easy to show that the corresponding MC estimator, Ĩn(X), is an unbiased
estimator of I. Using Equation 38 and 39, we find that:

E[Ĩn(X)] =
b−a

n

n

∑
i=1

E[h(Xi)]

=
b−a

n

n

∑
i=1

∫
∞

−∞

h(x) fX (x)dx (55)

=
b−a

n
1

b−a

n

∑
i=1

∫ b

a
h(x)dx =

∫ b

a
h(x)dx = I.

3.2.3 Variance Reduction

The variance of the general Monte Carlo estimator g̃n(X) of E[g(X)] (Equation 48),
can easily be expressed in terms of the variance of g(X). Using Equation 45 and 47,
we note that:

V [g̃n(X)] =V

[
1
n

n

∑
i=1

g(Xi)

]
=

1
n2

n

∑
i=1

V [g(Xi)] =
1
n

V [g(X)], (56)
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since Xi ∼ X are iid random variables. Thus, the variance goes to zero as n→ ∞,
assuming V [g(X)] is bounded. To put a probabilistic bound on the error, Cheby-
shev’s inequality states that the probability of a random variable, X , being more
than k standard deviations away from its mean, µX , is at most 1/k2, for any real
k > 0, that is:

P(|X−µX | ≥ kσ) ≤ 1
k2 . (57)

This applies to any distribution with finite variance. Inserting Equation 56, we
arrive at:

P
(
|g̃n(X)−E[g(X)]| ≥ 1√

n
k
√

V [g(X)]

)
≤ 1

k2 , (58)

i.e., for any fixed k, the error decreases in the rate O(1/
√

n) as we increase the
number of samples n. This is usually expressed informally as the convergence rate
of the basic Monte Carlo estimator being 1/

√
n. This rate is irrespective of the

dimensionality, which explains the usefulness of Monte Carlo methods for multi-
dimensional problems. Unfortunately, 1/

√
n is a slow rate of convergence; in order

to reduce the error to a 1/10th, we have to use 100× as many samples.
In Monte Carlo simulation of light transport, it is often very costly to draw new
samples and evaluate their values. For example, in computation of indirect illumi-
nation, the sample space is defined as the set of all possible light paths between
a light source and the image plane. Each such path may bounce numerous times,
resulting in many light–surface interactions that need to be sampled and evaluated.
Therefore, it is critical to reduce the variance of the Monte Carlo estimators used,
in order to achieve more accurate results using fewer samples.
For standard Monte Carlo integration (Equation 52), the variance of the estima-
tor Ĩn(X) is given by:

V [Ĩn(X)] =
1
n

V
[

h(X)

f (X)

]
. (59)

In order to reduce the variance of Ĩn(X), i.e., lower its variance at any given number
of samples, n, there are three main strategies. First, we can select the probability
distribution, f (X), so that it places more samples in important areas of the domain,
i.e., importance sampling. Second, by reformulating the problem so that the quan-
tity being estimated, h(X), has lower variance, e.g., using control variates, we can
reduce the overall variance. Both of these techniques require knowledge of the in-
tegrand, h(x). Last, by using a good sampling method for drawing well-distributed
samples xi from Xi, better results can be obtained than if uniform random sampling
is used. This is possible even without further knowledge of the involved functions.
In our research, we have applied all three strategies for reducing the variance in
Monte Carlo integration of direct illumination. In the following sections, I will
discuss the different techniques in more detail.
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3.3 Importance Sampling
The goal of importance sampling is to select a probability distribution, f (x), which
minimizes the variance in Monte Carlo integration (Equation 59), i.e., makes the
variance V [h(X)/ f (X)] as small as possible.

3.3.1 Choosing a Probability Distribution

Intuitively, it is desirable to choose the probability distribution, f (x), so that the
quotient h(x)/ f (x) is as close to constant as possible, i.e., to keep the variation
around its mean low (c.f., Equation 40). For the common case of h(x)≥ 0, ∀x∈D,
it is obvious that the ideal choice is a probability distribution that is proportional to
the integrand itself, i.e., f (x) = c ·h(x). In this case, h(x)/ f (x) = 1/c everywhere,
and the variance is zero. For the general case of an arbitrary integrand, it can be
shown that the distribution:

f (x) ∝ |h(x) |, (60)

is the optimal choice [122].5 Note that the optimal pdf is only of theoretical in-
terest, as in order to integrate to one, the normalization factor c would have to be
c = 1/

∫
h(x)dx = 1/I, but I is the unknown quantity that we are trying to estimate.

However, what this means in practice is that we should design the probability
distribution (which is often called the importance function) so that more samples
are placed where the function being integrated is large, and fewer where its value
is small. The large sample values in dense regions will be weighted down since
the probability density is higher there, and low values are weighted up. This may
seem counterintuitive, but it keeps the variance of each random sample low, and
hence reduces the overall variance of the estimator.
For correctness, it was earlier mentioned that f (x)> 0 must be fulfilled wherever
the integrand is nonzero. However, this is usually not enough for good results.
We must also be careful to ensure that f (x) is not very small when the integrand
is large. If f (x)� h(x), we may get outliers with arbitrarily large values since
we divide by f (x), i.e., the tails of the distribution matters. In addition to being
representative for the function being integrated, the most difficult criteria to fulfill
is that the probability distribution should be easy to construct and draw samples
from. Remember that the motivation for importance sampling in the first place is
to reduce the computational cost of reaching a desired accuracy.
Depending on the application, there are many different choices of probability dis-
tributions. For example, for evaluating direct illumination, a common choice is to
draw samples over the hemisphere with a distribution that is proportional to the
BRDF. For a given point on a surface, x, and outgoing direction, ωo, the BRDF
is a two-dimensional function defined over incident directions on the hemisphere,
which means the probability distribution is p(ωi) ∝ fr(x,ωi,ωo). Another com-
mon choice is to sample according to the incident illumination from a light source,

5Note that we generally do not have to worry about negative integrands since we are integrating
physical quantities (e.g., radiance) that are, by definition, positive.
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e.g., an environment map, in which case p(ωi) ∝ Lenv(ωi). Neither of these two
choices work well in the general case, as they only take part of the integrand into
account. To address this problem, Veach proposed a method called multiple im-
portance sampling [147], which combines multiple importance sampling strategies
into a combined estimator:

Ĩn =
m

∑
i=1

1
ni

ni

∑
j=1

wi(Xi, j)
h(Xi, j)

fi(Xi, j)
, (61)

where ni samples (∑ni = n) are drawn from each of m probability distributions, fi.
The weights, wi, determine how much influence each estimator, h(Xi, j)/ fi(Xi, j),
should have. By appropriate choice of weights, the combined estimator will be
both unbiased and have a lower variance than if any one of the individual impor-
tance functions was used.
However, when none of the importance functions approximate the integrand, h(x),
well, the combined variance will still be high. Our research deals largely with how
to construct and directly sample difficult probability distributions, in particular for
the case of evaluating direct illumination. The work will be discussed in detail in
Section 4. For now, assuming an appropriate pdf, fX (x), has been chosen, let us
look at how samples from fX (x) can be generated.

3.3.2 Independent Sampling Methods

In this section, we will review some standard techniques for generating indepen-
dently distributed random samples, given a probability density function. A good
understanding of these methods is necessary to explain our work in Section 4.

Inversion Sampling The most straightforward method for generating indepen-
dent random samples from a continuous probability distribution, fX (x), is called
inversion sampling. It is based on the probability integral transform theorem,
which states that if X is a random variable with cumulative distribution function
FX (x), then the random variable defined as:

Y = FX (X), (62)

has a uniform distribution, i.e., Y ∼U(0,1). This leads to a powerful method for
sampling by using the inverse cumulative distribution function, F−1

X , given by:

X = F−1
X (Y )∼ fX (x), if Y ∼U(0,1), (63)

i.e., by generating uniform random samples over the unit interval and mapping
them using the inverse cdf, we get random samples, X ∼ fX (x), following the de-
sired distribution. The method generalizes to higher dimensions, e.g., by using
separable marginal cumulative distribution functions. The rationale for the proba-
bility integral transform can be intuitively understood as the cdf is a non-uniform
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Probability density function Cumulative distribution function

Figure 10: Inversion sampling is based on generating uniformly distributed sam-
ples, Y∼U(0,1), and evaluating X = F−1

X (Y ) to get samples distributed according
to the pdf fX (x). This can be visualized as placing samples with a uniform density
on the y-axis and finding the intersection with the cdf (as shown on the right). In
regions of high slope, i.e., where fX (x) is large, the samples will be packed more
tightly along the x-axis, exactly according to fX (x).

mapping onto [0,1], i.e., FX : R→ [0,1]. In regions with a low probability den-
sity, fX , the random observations will be sparse, but the slope of FX will also be
low (as its derivative is fX ). Hence, the observations are packed into a small range
on the y-axis. The opposite is true in regions with a high probability density. In
effect, the variations in probability density are exactly cancelled out by the map-
ping, FX , resulting in a uniform density on the y-axis. Inversion sampling exploits
this by applying the inverse mapping. This is illustrated in Figure 10.
Inversion sampling requires that the inverse of the cdf is known. Therefore, in
computer graphics problems, the method is only practical when simple geomet-
ric models or analytical expressions for the probability distribution can be de-
fined, for which closed-form expressions of the inverse cdf:s exist. For example,
Shirley et al. [129] apply inversion sampling to uniformly emitting light sources
of simple geometric shapes, e.g., spheres and polygons. Similarly, some of the
simpler analytical reflection models can be directly sampled. Examples include
the Phong [130], Lafortune [75], and Ward [152] BRDFs. To support arbitrary
BRDFs, Lawrence et al. [81] use a data-driven approac where the reflectance is
tabulated and stored in a compact factored representation, which is sampled by
numerically inverting the cdf:s of 1D factors.

Rejection Sampling In many real problems, the cumulative distribution function
is not known and cannot easily be computed or inverted. In such cases, rejection
sampling may be used to sample an arbitrary target distribution. The method is
most easily explained from the observation that, in order to sample an arbitrary
distribution, we can sample uniformly from the region under the graph of its prob-
ability density function, f (x). Where f (x) is large, more samples will be placed,
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Figure 11: Rejection sampling can be visualized as uniformly sampling the area
under the graph of the envelope function, αg(x), which is designed to conserva-
tively enclose the target distribution, f (x). All samples above the graph of f (x)
are rejected (marked in red). The projection on the x-axis of the accepted samples
will be distributed exactly according to f (x).

and vice versa. Hence, the samples’ x-coordinates will be exactly distributed ac-
cording to f (x).
With rejection sampling, in order to uniformly sample the region under f (x), uni-
form samples are first generated under the graph of a larger envelope function
that fully encloses f (x). Each sample is then either accepted or rejected based on
whether it lies above or below f (x). Only samples under f (x) belongs to the target
distribution. The envelope function is given by αg(x), which is chosen so that:

f (x)≤ αg(x), ∀x, (64)

where g(x) is a probability density function. The pdf g(x) is called the proposal
distribution, and should ideally be a distribution chosen so that it can be efficiently
sampled using other methods, e.g., inversion sampling. The procedure is illustrated
in Figure 11.
Formally, the method proceeds by first generating iid samples Xi from the distri-
bution g(x), and then randomly accepting each sample with a probability:

P(accept | X) =
f (X)

αg(X)
. (65)

In practice, this may be done by generating uniform random samples Ui ∼U(0,1),
and performing the operation:

if Ui ≤
f (Xi)

αg(Xi)
then Yj = Xi (accept). (66)

The set of surviving samples, Yj, are distributed according to f (x). The total ac-
ceptance rate, i.e., the ratio of accepted samples to the total number of samples
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generated and tested, is given by:

P(accept) =
∫

∞

−∞

P(accept | X = x)g(x)dx =
∫

∞

−∞

f (x)
αg(x)

g(x)dx =
1
α
, (67)

i.e., the ratio between the areas under f (x) and αg(x). The method generalizes to
higher dimensions, where the acceptance rate is intuitively the ratio of volumes un-
der f (x) to αg(x). This diminishes exponentially with increasing dimensionality,
i.e., the acceptance rate is α−s in s dimensions, if the acceptance rate is 1/α in each
dimension. Hence, the method quickly becomes impractical, as it is often difficult
to find an envelope function that tightly encloses the target distribution. Despite
this, there are some examples of rendering techniques where rejection sampling
has been successfully used. For instance, a method for sampling of the prod-
uct of surface reflectance and environment map lighting was proposed by Burke
et al. [17]. In order to accelerate rejection sampling of complex probability distri-
butions, we present a novel hierarchical method in Paper IV. The rationale is to
quickly reject large groups of samples, by hierarchically constructing and refining
the envelope function. See Section 4.2.2 for further details.

Sampling Importance Resampling As we have seen, rejection sampling re-
quires determining a suitable scale factor, α . However, for many pairs of distribu-
tions, f (x) and g(x), if the scale is sufficiently large to guarantee bounding of f (x),
then the acceptance rate is impractically low. This may, e.g., be the case if there
are sharp peaks in the target distribution that are not accurately represented by
the proposal distribution, g(x). The sampling importance resampling (SIR) algo-
rithm [120, 121] addresses this problem. The method is related to rejection sam-
pling and similarly makes use of a proposal distribution, but it does not depend on
determining a scale factor, α .
The SIR algorithm starts by generating M samples, Xi, from the known proposal
distribution, g(x). A weight, wi, is then associated with each sample based on the
the ratio between the probability densities of the target and proposal distributions:

wi =
f (Xi)

g(Xi)
. (68)

Based on these weights, a discrete probability distribution, p(xi), for the samples
is defined by the normalized weights, as follows:

p(xi) =
wi

∑i wi
. (69)

Finally, in the resampling step, a smaller set of n < M samples, Yj, are drawn with
replacement from the samples Xi according to the probability distributionp(xi).
The final samples, Yj, will only be approximately distributed according to the target
distribution, f (x), since the selection is limited by the initial sampling. Hence,
as M → ∞, the distribution of Yj approaches f (x). Note that since samples are
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drawn with replacement, the same sample may occur multiple times in the final
distribution.
The resampling step is easy to implement as it works with a discrete probability
distribution. One can, for example, compute its cumulative distribution and per-
form a binary search based on a uniform random number to pick a sample with the
correct probability. The SIR algorithm has been applied in computer graphics for
sampling of direct lighting [129, 143], BRDFs [143], and the product of environ-
ment map lighting and BRDF [17]. The main drawback is that, in order to limit
the bias introduced by a finite M, it is important to keep n comparatively small,
e.g., n < 0.1M. This limits the practically of using SIR in computer graphics, as
the cost of drawing a large set of proposal samples often cannot be motivated.

Discussion In summary, all of the discussed independent sampling methods trans-
form an s-dimensional uniform distribution, U(0,1)s, into the desired target distri-
bution. This is done either using direct methods (inversion sampling), or by gener-
ating and rejecting samples from a proposal distribution. In Paper I, we propose a
further direct sampling method, called hierarchical sample warping. The method
uses a hierarchy of conditional probabilities to transform a uniform distribution
into a distribution that closely approximates an arbitrary target distribution, with-
out relying on the distribution being normalized, nor its inverse cdf to be known.6

The properties of our method will be further discussed in Section 4.2.1.
Although applicable in any dimension, the efficiency of all the mentioned inde-
pendent sampling methods, ours included, is limited by the so-called curse of di-
mensionality. Generating independent random samples for efficient importance
sampling in very high-dimensional spaces becomes practically impossible. The
methods are therefore best suited for relatively low-dimensional problems, such
as Monte Carlo integration of direct illumination (over the hemisphere or light
source), depth of field (lens), and motion blur (time). For sampling in high-
dimensional spaces, such as the space of all light paths in light transport prob-
lems [147], Markov chain methods, e.g., the Metropolis-Hastings algorithm, are
better suited. These methods generate samples that are correlated rather than in-
dependent, which leads to a fundamentally different approach. Although not the
primary focus of this dissertation, I will include a brief description.

3.3.3 Markov Chain Methods

For high-dimensional sampling problems, modeling the problem as a Markov
chain allows it the be decomposed into a sequence of simpler problems. This
makes sampling possible even if very little is known about the final target distribu-
tion, f , as is the case for the path formulation of light transport. The Metropolis-
Hastings algorithm [57, 92], is one of the most general Markov chain Monte Carlo
(MCMC) methods. To explain it, we will need a few definitions.

6Our method exactly samples the target distribution if its pdf is piecewise constant.
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A Markov chain, {X (t)}, is a sequence of dependent random variables:

X (0),X (1), . . . ,X (t), . . . , (70)

such that the conditional probability distribution (called Markov kernel) of X (t)

given the previous variables, only depends on X (t−1). Informally, the Markov
chain can be seen as wandering around the parameter space, remembering only
where it has been in the previous iteration. In many cases, there exists a station-
ary distribution, f , such that if X (t)∼ f , then X (t+1)∼ f . The Markov chain will
typically converge to f , regardless of the starting point, X (0). Hence, by defining a
Markov chain with stationary distribution equal to our target distribution, it is pos-
sible to generate samples approximately distributed according to f once the chain
has converged. In practice, it is hard to know when the chain has converged, so
instead a fixed number of the first draws are usually discarded.
The main difference to the previous methods, is that the generated samples will
not be statistically independent, as is required by the basic Monte Carlo estimator
(Equation 48). Fortunately, under certain conditions, i.e., that the chain is aperi-
odic, irreducible and positive recurrent (for definitions, we refer to the statistical
literature [118]), the chain is said to be ergodic and the ergodic theorem holds,
which states that:

1
M

M

∑
i=1

g(X (i)) →
∫

∞

−∞

g(x) f (x)dx = E[g(X)], (71)

as M → ∞, where f (x) is the stationary distribution, and X (1), . . . ,X (M) are M
values from the (ergodic) Markov chain. This is the Markov chain analogue of the
law of large numbers that forms the basis of Monte Carlo methods. Hence, under
the right conditions, Markov chains can safely be used in Monte Carlo algorithms,
ignoring the correlation between the generated samples.
The Metropolis-Hastings algorithm [57] is a flexible method for defining a Markov
kernel with an arbitrary desired stationary distribution. In the general case, the
algorithm uses a conditional proposal distribution, q(y |x), which should be chosen
so that it is easy to sample. At each iteration, the algorithm generates a random
variable Yt ∼ q(y |x(t)), and randomly accepts it, i.e., X (t+1) = Yt , or otherwise
rejects it, in which case X (t+1) = X (t). The probability of accepting the proposal Yt
is given by ρ(x(t),Yt), where ρ is defined as follows:

ρ(x,y) = min
[

f (y)
f (x)

q(x |y)
q(y |x)

,1
]
. (72)

The proposal distribution, q, can be chosen almost arbitrarily, with the only re-
quirements that Equation 72 should be possible to evaluate, and that it should
allow exploration over the entire support of f . In the independent Metropolis-
Hastings algorithm (IMHA), which is a special case of the general algorithm, the
proposal distribution, q, is required to be independent of the current state, i.e.,
q(y |x) = q(y). This leads to an algorithm similar to rejection sampling, but with
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the difference that a scale α , such that f (x) ≤ αg(x), does not have to be deter-
mined. Similar to sampling importance resampling (SIR), the same sample can
occur multiple times due to the rejection step. However, note that as the samples
generated by IMHA are correlated, the simpler independent sampling methods are
preferable if possible.
When the Metropolis-Hastings algorithm is applied to solve the rendering equa-
tion, it is called Metropolis light transport (MLT) [148]. Here, the sampling do-
main is the entire space of light paths, and proposals are usually generated by
mutations of the current path. The algorithm is one of few that can sample the
entire path space. However, for lower-dimensional sampling problems, good esti-
mates are achieved much faster using explicit methods, which is the main focus of
this dissertation. In the next section, we will look at a variance reduction technique
that is fundamentally different from importance sampling.

3.4 Control Variates

The method of control variates is a fundamental Monte Carlo technique, which
takes advantage of correlation between different random variables to reduce the
variance of the basic sample mean estimator (c.f., Equation 48). This is different
from importance sampling, which adapts the distribution of samples to reduce the
variance. The two techniques can be combined with good results.

3.4.1 Control Variate Estimator

Assume we have a function of a random variable, g(X), and want to estimate the
unknown quantity E[g(X)]. The basic Monte Carlo estimator gives the expecta-
tion as the sample mean of g(Xi). However, in some categories of problems, it is
possible to construct a related random variable, h(X), such that h(X) is correlated
to g(X), but has a known expectation, E[h(X)] = µh. The idea is to exploit samples
from h(X) to improve the estimation of the unknown quantity, E[g(X)]. For this
purpose, we introduce a new random variable:

Y = g(X)−β (h(X)−µh), (73)

which potentially has less variance than g(X) itself, if β and h(X) are chosen
appropriately. The control variate estimator is the sample mean of Y :

g̃n,β (Y ) =
1
n

n

∑
i=1

(g(Xi)−βh(Xi))+β µh. (74)

It is easy to realize that g̃n,β is an unbiased estimator of E[g(X)], due to the linear-
ity of expected value. Similarly, the estimator is consistent, as the sample means
of g(Xi) and h(Xi) converge to E[g(X)] and E[h(X)], respectively, as n→ ∞.
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To analyze the variance of the control variate estimator, g̃n,β (Y ), we introduce the
variables Z = g(X) and W = h(X). Following Equation 46, the variance is:

V (g̃n,β (Y )) =
1
n

(
σ

2
Z +β

2
σ

2
W −2β Cov(Z,W )

)
. (75)

The goal is to choose β so that the variance is minimized. As Equation 75 is
a quadratic function on the form aβ 2 + bβ + c = 0, it has its minimum when the
derivative is zero, i.e., where 2aβ +b= 0⇔ β =−b/2a. In this case, the minimum
is found at β ∗:

β
∗ =

Cov(Z,W )

σ2
W

. (76)

Inserted into Equation 75, the variance at the optimal β ∗, is given by:

V (g̃n,β ∗(Y )) =
1
n

(
σ

2
Z −

Cov(Z,W )2

σ2
W

)
=

1
n

σ
2
Z (1−ρ

2
Z,W ), (77)

where ρZ,W is the correlation coefficient (c.f., Equation 44) between Z and W . This
is an interesting result, since (1−ρ2

Z,W )≤ 1 for any Z and W (due to ρZ,W ∈ [−1,1]
by definition). Hence, under the assumption that β ∗ is known, the variance of the
control variate estimator can never be larger than the variance of the basic Monte
Carlo estimator, which is 1

n σ2
Z . If g(X) and h(X) are uncorrelated, the variance

will be the same as before, while in all other cases the variance will be lower. In
the special case of ρZ,W =±1, the variance reduces to zero.
In practice, finding the optimal parameter β ∗ is not realistic, as it requires knowing
the exact covariance between g(X) and h(X), which implies knowledge of E[g(X)].
Therefore, the variance reduction will not be as large as Equation 77 suggests, and
it is even possible to end up with a larger variance than the original estimator if the
control variate is only weakly correlated, or if β is chosen poorly.
There are a couple of different alternatives for finding a good β . First, one can
draw an independent set of samples from g(X) and h(X), from which an unbiased
estimate of β ∗ can be computed. However, this is costly, as these samples will
not be used for anything else than determining β . As an alternative, β ∗ can be
estimated from the same set of samples as are used to evaluate the final control
variate estimator. This risks introducing bias, as the value of β will be depen-
dent on the observed samples. Finally, in some cases, domain-specific knowledge
about g and h can be used to select an appropriate β , either using some heuristic
or by picking a fixed number.

3.4.2 Combination with Importance Sampling

Control variates may very well be applied to Monte Carlo integration, and the
method combines naturally with importance sampling. In this case, the goal is to
compute an integral I =

∫
g(x)dx, which can be posed as computing the expecta-

tion E [g(X)/ f (X)] where X∼ f (x) (c.f., Equation 51). We introduce an approx-
imation, h(X), which should ideally be strongly correlated to g(X), and define Z
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Figure 12: The method of control variates can be illustrated as a Monte Carlo
integration of the difference g(x)−βh(x), where h is an approximation of g with
known integral, J. The goal is to find the unknown integral I=

∫
g(x)dx. If g and h

are correlated, random samples from their difference have a lower variance than
samples from g(X). In the figure, β =1 for illustrative purposes.

and W above as:

Z =
g(X)

f (X)
and W =

h(X)

f (X)
, where X∼ f (x). (78)

In order to use W as a control variate term, its expectation, E(W ), must be known.
This is equal to the integral J =

∫
h(x)dx, as follows:

E(W ) = E
[

h(X)

f (X)

]
=
∫

∞

−∞

h(x)dx = J, for X∼ f (x). (79)

The control variate estimator for the unknown integral I is now, following the
earlier definition, given by:

Ĩn,β =
1
n

n

∑
i=1

(
g(Xi)

f (Xi)
−β

h(Xi)

f (Xi)

)
+βJ, (80)

The only requirement on h(x) is that the function should be possible to evaluate
at any point in the parameter space that has a nonzero probability of being sam-
pled. In addition, its true integral, J, must be known. If such a function can be
found, it can thus immediately be used to create a control variate estimator for the
integral we seek. The intuition for the method is straightforward; the difference
between the integrand and an approximation of it, is evaluated using Monte Carlo
integration, and then the known integral of the approximation, J, is added back as
a correction term. The concept is illustrated in Figure 12.
Control variates have the potential to significantly reduce the variance in Monte
Carlo simulations. Despite this, the method has not been widely used in computer
graphics for solving light transport problems. This is likely due to the difficulty
of finding a good enough approximation, h, that has both a significant correlation
and a known integral. If the approximation is only weakly correlated, the variance
reduction will not be large enough to motivate the added cost, and selecting an
appropriate β may be difficult. On the other hand, if the analytical integral of h is
not known, bias will be introduced.
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Nevertheless, there are a few examples of techniques where control variates have
been applied to light transport problems. For indirect illumination, control variate
estimators based on an ambient term [72], the incident radiance field [74], or a
radiosity solution [142], have been used. For direct illumination, Szécsi et al. [141]
combine control variates with importance sampling, but their approach is limited
in that it ignores visibility and assumes only diffuse materials. In Paper III, we
propose a combined approach that takes all three terms in the integral for direct
illumination under distant lighting into account, i.e., lighting, BRDF, and visibility.
That work builds on our techniques for importance sampling developed in Paper I
and II, and extends them with an accurate approximation of the visibility term.
In summary, as more accurate and faster methods for approximating light transport
become available, there is a growing potential for using these approximations to
define good estimators based on control variates. The approach is attractive as it,
for example, could allow approximate solutions developed for real-time rendering
to be reused in the context of unbiased Monte Carlo rendering. In the following
section, we will discuss the last of our main variance reduction techniques.

3.5 High Quality Sampling Points

In classical Monte Carlo theory, each sample that drives the simulation is statis-
tically independent of all others. For example, generating a sample from a given
probability distribution usually involves first drawing a sample X ∼U(0,1), and
then transforming it into the desired distribution using one of the methods in Sec-
tion 3.3. Note that nothing prevents two independent samples from randomly be-
ing close to each other, or even groups of samples from clumping together. For
Monte Carlo integration, this can lead to a poor exploration of the integral and
high variance as a result.
It was discovered early on that by spacing the samples more evenly to better fill
out the sampling domain, the convergence rate of Monte Carlo methods can be
greatly improved. Intuitively, by explicitly avoiding large gaps between the sam-
pling points, rather than drawing each sample independently from a uniform distri-
bution, the risk of missing important features is reduced. There are many different
methods for constructing point sets and sequences with good properties. The term
point set usually refers to a finite fixed number of points, while the term point se-
quence implies an ordered list of points. A sequence can sometimes be extended
to include more, possibly infinitely many, points. There is a clear distinction made
between deterministic and stochastic methods due to their very different theoreti-
cal foundations, with different terminology, applications, and measures. I will give
examples of both types in this section.
The “quality” of a point set or sequence is often measured by its discrepancy and/or
spectral properties (see below). Points that are deterministically constructed to
have a low discrepancy, while still sharing some properties with random variables,
are called quasi-random points. Combining deterministic quasi-random sampling
with classical Monte Carlo methods, leads to quasi-Monte Carlo (QMC) theory.
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Figure 13: A sequence is uniformly distributed modulo one if each subset, E,
contains (asymptotically) a number of points proportional to the volume of E, i.e.,
Nλs(E), where N is the number of points. The star discrepancy, D∗N , is defined
using all subsets on the form [0,a), i.e., axis-aligned boxes with one corner in the
origin (as shown in the example on the right).

This has been the focus of extensive research due to its many desirable properties,
such as deterministic error bounds and fast convergence. On the other hand, with
stochastically generated points, repeated experiments generate different results and
Monte Carlo theory for, e.g., estimating the variance and convergence rate apply.
Algorithmically, QMC methods generally only differ from their MC counterparts
in the type of input samples used. Therefore, the majority of our research can
be applied in both settings, and examples of both types are shown in Papers I–IV.
Additionally, in Paper VII, a new method is presented for generating quasi-random
points with properties optimized for motion blur rasterization.
In the following, I will give an overview of the theory and methods for generating
high-quality sampling points for Monte Carlo and quasi-Monte Carlo applications.

3.5.1 Low Discrepancy Sequences

For a sequence of N s-dimensional points, S = {x1,x2, . . . ,xN}, in the unit cube
[0,1)s, let A(E,N) be the number of points that fall into a subset E ⊆ [0,1)s. The
sequence is said to be (asymptotically) equidistributed or uniformly distributed
modulo one [69], if for every interval [a,b)⊆ [0,1)s, we have:

lim
N→∞

A([a,b),N)

N
= λs([a,b)), (81)

where λs(.) is the Lebesgue measure in s dimensions, i.e., generally the volume.
Hence, the proportion of points falling in a subinterval is asymptotically propor-
tional to the length (area, volume) of that interval, as illustrated in Figure 13.
Equation 81 is a rather weak requirement, as even independent draws from a uni-
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form distribution will create a uniformly distributed sequence.7 Some sequences
are obviously more uniformly distributed than others. It is therefore important to
be able to measure the uniformity of a point sequence. Several different measures
exist. For example, different variations of discrepancy measures are commonly
used, which indicate how non-uniform a sequence is. The extreme discrepancy,
DN , is defined as [101]:

DN(S) = sup
J

∣∣∣∣A(J,N)

N
−λs(J)

∣∣∣∣ , (82)

where J is the set of all subintervals of the form [a,b) ⊆ [0,1)s, i.e., axis-aligned
boxes, and the supremum (sup) returns the greatest element over that set. The
geometrical interpretation is that the discrepancy is the largest absolute difference
between the proportion of points in a subinterval to the volume of that interval. The
lower the number, the more uniformly distributed the sequence is. Instead of con-
sidering all axis-aligned subintervals, the set J is often restricted to all subintervals
on the form [0,a), which gives the star discrepancy:

D∗N(S) = sup
x∈[0,1)s

∣∣∣∣A([0,x),N)

N
−λs([0,x))

∣∣∣∣= sup
x∈[0,1)s

|∆S(x)| , (83)

where ∆S(x) is called the discrepancy function of S. Another common variant
is the Lq,N-discrepancy, which is the Lq norm (q≥ 1) of the discrepancy function.
Additionally, it should be noted that for infinite sequences, the discrepancy is taken
over the first N points of the sequence.
For deterministic sequences, tight bounds on the discrepancy can often be found.
This is important, as it allows the integration error in quasi-Monte Carlo methods
to be bounded. The Koksma-Hlawka inequality states that if a function, f , has
bounded variation on the unit cube, then the quasi-Monte Carlo integration error
using the sequence S, is bounded as follows [101]:∣∣∣∣∣

∫
[0,1)s

f (u)du− 1
N

N

∑
i=1

f (xi)

∣∣∣∣∣ ≤ V ( f )D∗N(S), (84)

where V ( f ) is the variation in the sense of Hardy-Krause. The details are beyond
the scope of this introduction, but the conclusion is clear; the convergence rate of
D∗N(S) with increasing N determines how fast the QMC integration error dimin-
ishes. We refer to the books by Niederreiter [101], and Dick and Pillichsham-
mer [29] for further definitions.
For carefully selected deterministic low-discrepancy (quasi-random) point sets, the
discrepancy can be in the order of O(logs−1 N/N) [101], which is often much bet-
ter than the O(1/

√
N) probabilistic error bound of classical Monte Carlo methods.

This explains the popularity of QMC methods in a wide range of applications.
7The reverse is not true, however, as many sequences are uniformly distributed without being real-

izations of independent uniform random variables.
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Figure 14: Example of a (t,m,s)-net in base b=2 with parameters t =0, m=4,
and dimensionality s=2. The five squares show all elementary intervals with area
bt−m=2−4, which each holds exactly bt =1 point.

However, it should be noted that the integrals involved in light transport simula-
tion typically have discontinuities that cause the variation to be unbounded. The
theoretical error bounds thus do not apply in this context, although in practice,
there is plenty of empirical evidence that QMC methods work well for rendering
problems [68, 106]. Two methods for generating low-discrepancy point sets dom-
inate: regular lattices and so-called digital nets. I will focus on the latter, as there
are many important applications in computer graphics.
As an alternative to the fully deterministic methods, it is possible to use random-
ized quasi-random sequences [104] in Monte Carlo methods. In this case, the
good uniformity properties are well preserved, while the random nature allows
probabilistic error bounds (e.g., variance) to be estimated using classical Monte
Carlo theory. This approach elegantly avoids the problem of determining QMC er-
ror bounds for difficult integrals, and such methods are referred to as randomized
quasi-Monte Carlo (RQMC) methods.

3.5.2 Digital Nets

Digital (t,m,s)-nets or just digital nets [101], are quasi-random sequences with
extensive stratification properties. Informally, let the sampling domain, i.e., the
unit cube in s-dimensional space, [0,1)s, be divided into a large number of axis-
aligned strata called elementary intervals. In order for a point set to be a (t,m,s)-
net, each such stratum must hold exactly the same number of quasi-random points,
as defined by strict rules. This guarantees very well-distributed points. The net is
called a digital net when digital methods are used to construct it, which represents
an important category of sample generation methods. A brief definition follows.
The elementary intervals in base b are rectangular boxes in [0,1)s, with end points
at integer multiples of b−k, for some k ≥ 0 and b ≥ 2. The set of all elementary
intervals, E, is defined as:

E =
s

∏
j=1

[
l j

bk j
,

l j +1
bk j

)
, (85)

where k j ≥ 0 and 0 ≤ l j < bk j . A sequence of bm points is a (t,m,s)-net if every
elementary interval of volume b t−m contains exactly bt points. As t ≥ 0 controls
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the number of points per stratum, it is usually referred to as a “quality” parameter
(lower value is better). Figure 14 shows a simple example of a (0,4,2)-net in
base b = 2. The parameters indicate that there are bm=24=16 points defined over
the two-dimensional unit square, [0,1)2. In this case, each elementary interval of
area bt−m=2−4 has exactly bt =1 point, as illustrated in the figure.
Digital nets can be constructed using arithmetic defined on a finite field, Fq, where q
is prime [101]. The field Fq consists of elements numbered {0, . . . ,q−1}, and all
operations are performed modulo q. For example, digital computers use the binary
arithmetic of the finite field {0,1}. A digital net can be defined using a set of gen-
erator matrices, C1, . . . ,Cs, over Fb, where each matrix is an m×m matrix and b
is the base as before. Working in base b = 2, the ith component of the jth point, x j,
is given as:

x(i)j =
(
2−1, . . . ,2−m)

Ci

 d0( j)
...

dm−1( j)


 ∈ [0,1), (86)

where dk( j) are the bits of the binary representation of j, where j ∈ {0, . . . ,2m−1},
with d0 being the least significant bit.
Some constructions of (t,m,s)-nets are extensible, which means points can be
added to each stratum by shrinking the elementary intervals. In fact, there are
ways to construct infinite sequences of points, so-called (t,s)-sequences, with the
property that subsequences form (t,m,s)-nets. Formally, a (t,s)-sequence in base b
is an infinite sequence of points, xi, such that any subsequence of length bm (start-
ing at a multiple ofbm) is a (t,m,s)-net in base b. A simple example is the one-
dimensional van der Corput sequence [146], which is a (0,1)-sequence constructed
by reversing the base b representation of the natural numbers around the decimal
point. Other often cited examples are the Halton [53], Sobol’ [133], Faure [40],
and Niederreiter [100] sequences. Similar to digital nets, there are important digi-
tal methods for constructing (t,s)-sequences. For an extensive treatment of digital
nets and sequences, refer to the book by Dick and Pillichshammer [29].
Many different common constructions of digital (t,m,s)-nets and sequences are
used for sampling purposes in computer graphics [68]. It should be noted that
the (t,m,s)-property of a point set is not enough by itself to guarantee a large
minimum distance between points, although the points are overall well-distributed.
Two points in neighboring elementary intervals may, e.g., be arbitrarily close to
each other. Some methods have been developed explicitly for generating points
with a large or maximized minimum distance [50, 51]. This is an important prop-
erty in computer graphics, as we will see in the next section. Additionally, in
Paper VII, we develop a new digital construction of three-dimensional (t,m,s)-
nets with properties that are particularly useful in our applications. The points
generated using our method are sequentially ordered in one dimension, while have
a well-distributed two-dimensional projection in the other two.
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Figure 15: Example of well-distributed sampling points in two dimensions and
their associated power spectrum with blue noise characteristics. The points were
generated using the method by Gamito and Maddock [42].

3.5.3 Blue Noise Properties

In addition to being uniformly distributed, it is in many cases important that sam-
pling points used for rendering are irregular, i.e., without any obvious symmetries
or regular structures. The motivation comes from the Nyquist-Shannon sampling
theorem in signal processing [112]; if a continuous function, f , is bandwidth lim-
ited and contains no frequencies higher than fmax, then it can be exactly recon-
structed from regularly spaced samples if the sampling frequency, fs, is higher
than the Nyquist rate, 2 fmax, that is:

fs > 2 fmax. (87)

Otherwise, perfect reconstruction of the original function is not guaranteed as
aliasing causes folding of high frequencies into lower frequencies. This can most
easily be explained by looking at the problem in the frequency domain. When f is
sampled at a frequency fs, it can be shown that its frequency spectrum is replicated
at a spacing fs. Aliasing occurs if these replicated spectra overlap, that is, when
fs/2 < fmax, in which case it becomes impossible to recover the original function’s
spectrum from the sampled function.
The quantities being sampled in computer graphics are generally not bandwidth
limited, e.g., there are sharp transitions due to geometrical edges and discontinu-
ities in the shading, so some degree of aliasing almost always occurs. If a point set
has obvious regularities along certain directions, high-frequency details are likely
to be folded into distracting visible artifacts and moiré patterns [23]. The rationale
for using irregular point sets is that, although aliasing still occurs, the artifacts are
largely replaced by less distracting random noise.
To quantify these characteristics of a point set, i.e., both uniformity and irreg-
ularity, the discrepancy measures are generally not sufficient. Additionally, for
stochastic points, firm bounds on the discrepancy may be hard to find. Instead, a
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spectral analysis of the point set is commonly performed [23]. The standard ap-
proach is to compute the power spectrum, or the estimated power density spectrum
in case of stochastically generated points [125]. For a point set to be irregular, its
power (density) spectrum should be radially symmetric. That is, there should not
be any particular direction with a significantly different frequency spectrum. Ad-
ditionally, it is desirable to have a low or zero energy at low frequencies (other
than the DC peak), which indicates a lack of large gaps between points, as such
gaps would cause low-frequency peaks. Stochastic point sets fulfilling these re-
quirements are often loosely said to have blue noise properties, referring to the
term “blue noise” used to describe random noise characterized by a power density
that increases with increasing frequency. Figure 15 shows an example of well-
distributed points and their associated spectrum.
Another, simpler measure of uniformity, is the minimum point distance. This is
defined as the smallest distance between any two points in a point set. By max-
imizing the minimum point distance, it is ensured that the points are very well
spread out without any clumps. However, this measure does not consider the ir-
regularity of the points, as for example, a regular lattice has a very large minimum
point distance, but also a high regularity.

3.5.4 Stochastic Sampling Methods

There are many stochastic methods for generating random points with a higher
uniformity than independently drawn random points. The simplest approach is
stratified random sampling, where the sampling domain is divided into a number
of disjoint regions, or strata, in which random points are independently placed.
In practice, the sampling domain [0,1)s is generally divided n times along each
dimension, for a total of N = ns strata, and one point is placed at random in each
stratum. The choice of n exactly determines the number of points, which limits
the method to lower dimensions as ns quickly grows large, or we achieve little
stratification if n is small.
Several variants of stratified sampling exist. For example, in latin hypercube (or n-
rooks) sampling, the sampling domain is similarly divided into n strata along each
dimension, but only a single point is placed in each stratum for every dimension.
That is, in 2D each row/column of the grid will have only a single random point.
In practice, points can be placed in the strata along the diagonal of the sampling
domain, and then the strata along each dimension are randomly permuted. This
gives a total of N = n points, but the overall stratification is rather weak. Although
these stratification methods yield point sets with an increased uniformity, nothing
prevents points in neighboring strata from being arbitrarily close.
To achieve better spectral properties, methods that enforce a strict certain mini-
mum distance between any two points have been developed. Formally, assuming
that each sample is placed in the center of a disk with radius r, a point set is said to
follow a Poisson-disk distribution if no two such disks overlap. The distribution is
said to have a radius of r. The name comes from the connection with the discrete
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Poisson probability distribution, which models the number of samples that fall
in any subset of a domain, if samples are placed at random with a certain rate. In
Poisson-disk sampling, the constraint that points must fulfill the minimum distance
requirement is added. The distribution generalizes to any dimension by consider-
ing a sphere or hypersphere of radius r at each point. Poisson-disk distributions
were first studied in relation to the spatial distribution of trees [87].
The most straightforward method for generating points from the Poisson-disk dis-
tribution is a technique called dart throwing [23, 30], which is based on rejection
sampling. Points are iteratively drawn from the uniform distribution (i.e., “throw-
ing darts”) and tested for inclusion using the Poisson-disk criteria. If a point is
not within a distance 2r of any other point, it is added to the set and the process
is repeated. The probability of finding a valid point in each draw is directly pro-
portional to the area of the empty space between disks (of radius 2r) placed at the
current points. Therefore, the efficiency of the method quickly decreases as more
points are generated, making it computationally expensive. It is also difficult to
guarantee that a maximal distribution is generated, i.e., one where it is impossible
to insert any further points without violating the Poisson-disk criteria.
Many faster algorithms have since been developed. A common theme is to exploit
spatial data structures (e.g., grids, quadtrees, or scalloped sectors) to keep track of
the unsampled space to guide the insertion of new points. Lagae and Dutré give a
good overview in their survey [76]. Recent developments have focused on aspects
such as efficient parallel implementation, higher dimensionality, and/or producing
maximal and unbiased point sets [15, 35, 36, 42, 155]. The traditional argument
against using Poisson-disk sampling – that it is too expensive – has thus largely
disappeared. Very high-quality point sets can now be generated in empirically
linear time, and practically in up to five or six dimensions [36].
As an alternative to Poisson-disk sampling, points with blue noise properties can
be generated using a variety of other methods. For example, using models based on
statistical mechanics [39], or particular geometric shapes (polyominoes) that can
be combined into a large number of possible patterns [103]. The latter was first
applied to rendering using the method presented in Paper IV. Another important
category of algorithms is based on refining an initial point set to improve its blue
noise properties. The classical approach is Lloyd relaxation [84], which iteratively
moves each point to the center of its Voronoi cell. Modern approaches [8, 126]
avoid some of the earlier drawbacks, e.g., convergence to a hexagonal grid. The
initial seed distribution may be either a uniform random distribution, or preferably,
a point set with approximate blue noise properties for faster convergence. It should
be noted, however, that the process of refining a stochastically generated point set
generally adds bias.
In summary, the quality of the sampling points used for (quasi-)Monte Carlo meth-
ods plays a vital role in reducing the variance or errors of the estimation. In our
research, we have applied a variety of different methods, both deterministic low-
discrepancy sequences and stochastic Poisson-disk points. In the next section, I
will describe the contributions of each of our papers.
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4 Contributions

In this section, I will try to succinctly summarize our research and the key con-
tributions of each of the seven publications that form the basis of this doctoral
dissertation.
The common goal throughout our work has been to develop advanced techniques
for improving the efficiency of Monte Carlo simulation of light transport problems.
In particular, we have focused mainly on variance reduction techniques for Monte
Carlo integration where the integrand is a product with multiple terms. Such in-
tegrals occur frequently in physically-based rendering; at each ray–surface inter-
action, the outgoing radiance is given as a (hemi)spherical integral of the product
of the incident illumination, the BRDF, a geometric term, and sometimes visibility
(c.f., Equation 19 and 20).
Each of our studies focuses on different aspects of the above problem. Papers I–IV
present complete systems for efficiently evaluating product integrals, with applica-
tions demonstrating rendering under distant direct illumination. This is followed
by Papers V–VII, which focus on specific aspects of the larger problem.
The key contributions of my work can be summarized as:

I Several practical techniques for importance sampling of the product of light-
ing and reflectance for unbiased Monte Carlo rendering.

I Exploiting the triple product of lighting, reflectance, and visibility to further
reduce the variance, using either importance sampling or control variates.

I Hierarchical sampling methods for efficiently transforming uniformly dis-
tributed points into any desired probability distribution.

I Automatic analysis of surface shaders to allow importance sampling, with-
out knowledge of the mathematical formulation of the BRDF.

I An algorithm for sparse adaptive sampling and caching of the visibility func-
tion, for use in variance reduction schemes or direct pre-visualization.

I An optimized mapping between the (hemi)sphere and the square, which al-
lows efficient implementation of our hierarchical algorithms.

I A method for generating well-distributed low-discrepancy points in three
dimensions, with good two-dimensional projections.

I will start by describing the mathematical framework in which all of our work
will be explained. Then, I will discuss our specific solutions in each of the above
mentioned areas.
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4.1 Mathematical Framework
In the following, we will assume a general form of the rendering equation [65],
describing the reflected radiance, Lr, leaving a surface point x in direction ωo, as
an integral over the visible hemisphere:

Lr(x→ ωo) =
∫

Ω

L(y→ x) fr(x,ωi,ωo)V (x,y)cosθi dωi, (88)

where L(y→ x) is radiance leaving a surface at y in direction towards x. Depend-
ing on the application, L may represent light reflected off another surface (i.e.,
indirect illumination) or emitted from a light source (i.e., direct illumination). In
practice, we have focused mainly on the latter.
For convenience, we combine the cosine term with the BRDF to form a combined
“reflectance” term, R, as is common practice:8

R(x,ωi,ωo) =

{
fr(x,ωi,ωo)(ωi ·n) if ωi ·n≥ 0,
0 otherwise. (89)

Note, when integrating over the visible hemisphere, ωi ·n ≥ 0 always holds true.
In some cases, it is more convenient to integrate over the full sphere, in which
case the contribution is zero for directions below the horizon. It should also be
noted that for practical purposes, we rewrite all integrals over the (hemi)sphere as
integrals in R2 using appropriate mappings. This will be discussed in Section 4.6.

4.1.1 Product Importance Sampling

The basic n-sample Monte Carlo estimator of the integral in Equation 88, given a
specific x and ωo (omitted below), can be expressed as:

L̃r,n =
1
n

n

∑
j=1

L(ω j)R(ω j)V (ω j)

f (ω j)
, (90)

where L(ω j) = L(y→−ω j) is the radiance arriving from a specific surface (e.g.,
light source) in direction ω j, which is visible when V is nonzero. Note that ω j are
here random variables distributed according to f (ω) over the hemisphere.
This MC estimator is evaluated for each surface point, x, at which we want to
estimate the illumination due to a particular light source, L. In reality, when ren-
dering a typical three-dimensional scene, there may be millions of such integrals
to estimate. For each chosen sampling direction, ω j, the three terms, L, R, and V
have to be evaluated; L is typically inexpensive for the case of direct illumina-
tion, R may be of higher complexity if advanced reflection models are used, and
the visibility, V , is evaluated by tracing a ray towards y to find out if the light
source is visible, as seen from x. Ray tracing involves traversing a spatial data

8In a few of the papers, the letter B has been used to denote this function, but we switch to R here
to avoid confusion with other fields, where B sometimes denotes radiance.
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Lighting (L) Reflectance (R) Product (LR)

Figure 16: We introduce several techniques for multiplying and sampling prod-
ucts of functions. One application is efficient Monte Carlo integration of direct
illumination, where the product of the lighting, L, and reflectance, R, is sampled,
as shown on the right.

structure and performing multiple ray–primitive intersection tests. In addition, the
exact probability density for each sample, f (ω j), must be computed in order to
achieve unbiased results. Therefore, at each integration point, we can only afford
a small number of samples. The goal is to keep n in the range of tens to hundreds
of samples, for the evaluation of high-frequency direct illumination.
To achieve low variance, we have developed several advanced importance sam-
pling techniques for generating samples according to a product distribution. Fig-
ure 16 shows an example of sampling the product of distant environment map
lighting and reflectance, which is an important application for our theory. Recall
that, in order to minimize the variance, the probability distribution of the samples
must accurately follow the shape of the integrand (c.f., Section 3.3). Most previous
techniques have sampled according to only one of the terms involved, usually the
lighting or reflectance (with or without the cosine term).
In Paper I, we present one of the first techniques for directly drawing samples from
the following (double) product distribution:

f (ω) =
L̃(ω) R̃(ω)

Lns
, with Lns =

∫
Ω

L̃(ω) R̃(ω)dω, (91)

where L̃ and R̃ represent accurate approximations of the exact illumination and re-
flectance. Both functions are positive, so the necessary condition that the probabil-
ity density function is positive is fulfilled, i.e., f (ω) ≥ 0, ∀ω . The normalization
factor 1/Lns is necessary for f (ω) to integrate to one. The physical interpreta-
tion of Lns is that it represents the total contribution due to L̃ and R̃, assuming
no shadowing (i.e., V = 1 everywhere). Combining Equation 90 and 91 gives the
following unbiased estimator for the reflected radiance:

L̃r,n =
Lns

n

n

∑
j=1

L(ω j)R(ω j)

L̃(ω j) R̃(ω j)
V (ω j). (92)
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The variance of this estimator depends on two main factors. First, the approxima-
tion errors in the lighting and reflectance cause each of the terms L/L̃ and R/R̃ to
fluctuate somewhat around one. Second, the visibility term, V , is unknown and
each sample obtains a value in [0,1] depending on the visibility between x and the
light source. In the common case of only opaque occluders, V is a binary function.
The samples V (ω j) can then be seen as following a Bernoulli distribution, i.e.,
the discrete probability distribution that takes the value 1 with probability q, and 0
with probability 1−q. The variance of this distribution is q(1−q), which has its
maximum at q=0.5, i.e., when half of our visibility samples fall in shadow.
In Paper II, the technique is refined so that the exact lighting term, L, can be used
without approximation for importance sampling. Similarly, the alternative method
for product sampling presented in Paper IV, allows the exact lighting to be used.
Using these methods, L̃ = L and the MC estimator simplifies to:

L̃r,n =
Lns

n

n

∑
j=1

R(ω j)

R̃(ω j)
V (ω j), where Lns=

∫
Ω

LR̃dω. (93)

In this case, the only remaining variance stems from the visibility term and the
approximation of the reflectance.
The machinery we have developed for product importance sampling will be fur-
ther discussed below; in particular, Section 4.2 presents our hierarchical sampling
methods, followed by details on the computation of the product distribution in
Section 4.3, and approximations of the reflectance in Section 4.4.

4.1.2 Triple Product Importance Sampling

The variance due to the unknown visibility term, V , in Equation 92 and 93 can be
significant. Indeed, this is often the main source of noise in rendered images [113].
Unfortunately, the visibility is also difficult to estimate and use for variance reduc-
tion. First, unlike the reflectance of a surface or the radiance emitted by a light
source, the visibility is globally defined by the geometrical location of all objects
in the scene. This means it can locally change quickly if there are nearby objects
or complex occluders. Second, it is not a smooth function – each transition from
visible to occluded or vice versa, represents a discontinuity. Therefore, the usual
approach has been to try and take the other terms, i.e., lighting and/or reflectance,
into account, but leave visibility to be evaluated using ray tracing. In two of our
publications, we address this by approximating the visibility and including it in the
Monte Carlo estimator in an unbiased way, using two different techniques.
The first attempt, in Paper IV, is to include an approximation of the visibility, Ṽ ,
as a third term in the product distribution. We call this triple product importance
sampling, as samples are drawn from the following probability distribution:

f (ω) ∝ L(ω) R̃(ω)Ṽ (ω). (94)

This is theoretically straightforward, but it is difficult in practice to find a useful
approximation, Ṽ . Recall that the probability distribution is never allowed to be
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zero when the integrand is non-zero (c.f., Section 3.3). Hence, visibility has to be
conservatively estimated:

Ṽ (x,ω) ≥ V (x,ω), ∀ x,ω. (95)

Said another way, the visibility approximation must never report a direction as
occluded (V = 0) if it is not, but the reverse is acceptable. The naïve solution
would be to add a small epsilon to Ṽ to ensure it is never exactly zero. However,
although unbiased, this method would lead to outliers whenever a visible direction
is falsely classified as occluded, due to the division by a small value in f (ω).
The approach taken in Paper IV is to define Ṽ using inner-conservative bound-
ing geometry, i.e., simple geometric primitives placed fully inside opaque objects.
This guarantees that the relation in Equation 95 is fulfilled, as if a ray intersects the
bounding primitive inside an object, then the ray is also guaranteed to be occluded
by the object itself. The reverse is usually not true. The method is not without
problems, however, as constructing the bounding geometry can be costly, and we
are hence limited to a relatively small number of bounding primitives. The degree
of variance reduction depends on how well the bounding geometry approximates
the shape of the real objects, and in many cases, a close fit is difficult to achieve.
Therefore, we have explored an alternative, more general solution based on control
variates, which do not place the same strict requirements on Ṽ .

4.1.3 Control Variate Estimator for Visibility

In Paper III, we address the visibility problem by constructing an accurate visibility
approximation, Ṽ , which is used to define a control variate term for reducing the
variance. As opposed to triple product importance sampling, this method does
not require the visibility to be conservatively estimated. Any approximation that is
correlated with the true visibility function will do. However, the variance reduction
is larger the stronger the correlation is, so in practice, we want Ṽ ≈V .
The representation of Ṽ is chosen so that the analytical integral of the triple prod-
uct LR̃Ṽ can be efficiently computed, where L and R̃ are the exact lighting and
approximate reflectance, respectively. These are the same functions as we used for
importance sampling in Paper II. This choice allows us to define a control variate
estimator for the rendering integral (c.f., Equation 80), as follows:

L̃r,n =
1
n

n

∑
j=1

(
LRV −βLR̃Ṽ

f (ω j)

)
+ β

∫
Ω

LR̃Ṽ dω︸ ︷︷ ︸
J

, (96)

where the parameters ω j and ω have been omitted for clarity. The integral J repre-
sents the reflected radiance, computed using approximate reflectance and visibility
functions. The estimator effectively evaluates the difference between the exact ra-
diance and this approximation using Monte Carlo integration, and then J is added
back to keep the result unbiased. Since LR̃Ṽ is strongly correlated to the function
we want to integrate, LRV , it represents a good choice for use as a control variate.
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The probability distribution of the samples, ω j, used to estimate the difference can
be chosen arbitrarily. To minimize the variance, we want to use importance sam-
pling and choose f (ω) ∝ L(ω)R̃(ω), since this product is already available as part
of the computation of J. Finally, the value of the coefficient β needs to be chosen.
As we saw in Section 3.4, an optimal choice exists, but it depends on the unknown
covariance between the terms involved. In our case, Ṽ is constructed using sparse
random sampling (see details in Section 4.5), which is a consistent estimation with
no strong bias towards either over- or underestimation of the occlusion. A value
of β =1 was therefore empirically found to work well. Intuitively, this centers the
difference between the exact and approximated functions around zero, similar to
the example shown in Figure 12. Now, the final estimator is found by inserting the
expression for f (ω) and β =1 in Equation 96, as follows:

L̃r,n =
Lns

n

n

∑
j=1

(
R(ω j)

R̃(ω j)
V (ω j)−Ṽ (ω j)

)
+ J, (97)

where the normalization factor Lns is the same as before (Equation 93). As we saw
earlier, the approximation of reflectance causes some variation, but the variance
due to the unknown visibility term is now reduced, often significantly.
Control variates is an attractive technique for many rendering problems, but so far
it has not been widely used. The main difficulty is finding a suitable approximation
that is both analytically integrable, and strongly correlated with the target function.
Additionally, in our case we do not want to restrict ourselves to only static scenes,
where long precomputation times can be afforded since the result will be reused
over many frames. Hence, only little time can be spent on building the visibility
approximation, and the added cost must be motivated by a large enough reduction
in variance. The technique presented in Paper III is based on sparse sampling
and caching of the visibility function, combined with an efficient binary encoding.
These topics will be further discussed in Section 4.5.

4.2 Hierarchical Sampling
The algorithms for (double) product and triple product importance sampling that
we have developed in Paper I, II, and IV can be divided into two main components:
methods for computing the product distribution, and methods for sampling it, i.e.,
drawing random samples with the correct distribution. In reality, the two are tightly
intertwined. I will start by discussing our novel sampling methods, i.e., how to
generate random samples assuming the probability distribution is already known,
before describing its computation in Section 4.3. The generated samples are finally
used in the Monte Carlo estimators discussed above, in order to compute unbiased
estimates of the reflected radiance.
Our goal has generally been to develop explicit methods for computing and sam-
pling the product distribution, rather than using traditional statistical methods,
where samples are often drawn from a simpler proposal distribution and then ad-
justed to follow the target distribution (c.f., Sections 3.3.2 and 3.3.3). For explicit
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sampling, we present an intuitive, efficient hierarchical approach that we call hier-
archical sample warping. As an example of a statistically-based technique, we also
present a novel hierarchical rejection sampling scheme. In both cases, hierarchi-
cal representations of the product distribution are exploited to make the sampling
operations efficient. The two methods will be discussed below.

Preliminaries In the following, we assume that the sampling problem can be
expressed in s-dimensional Euclidean space, Rs. For our purposes, that means
we transform the (hemi)spherical functions of the rendering integral to R2 using
one of the mappings discussed in Section 4.6. We will limit the discussion to this
two-dimensional case, but the methods generalize to higher dimensions.
Let p(x)∝ f (x) be an arbitrary multi-dimensional probability distribution we want
to sample. For example, in our case f (x) may be the (unnormalized) product of
lighting and approximated reflectance, mapped to R2:

f (x) = L(x) R̃(x). (98)

We assume that f can be expressed as a two-dimensional discrete image, F(x), i.e.,
a function that is piecewise constant over a regular grid. For practical purposes,
we let x ∈ [0,1)2, and assume the resolution of the image is a power of two in each
dimension. Hence, the image has 2m×2m, m≥ 0 grid cells or pixels.9 Each pixel
with integer coordinates t = (x,y) for 0≤ x,y < 2m, occupies a little square in the
grid. We introduce s = (m, t) to denote this region of the unit square:

s = 2−m [x,x+1) × 2−m [y,y+1) ⊆ [0,1)2. (99)

Also, note that the area of a pixel is A(s) = 2−2m. The value of a discrete pixel
is denoted Fm

t = Fm
x,y, which is assumed to represent the average of the original

function over s, which is given by the integral:

Fm
t =

1
A(s)

∫
s

f (x)dx. (100)

Hence, as a consequence,
∫

F(x)dx =
∫

f (x)dx. Note that we can represent f (x)
up to any level of accuracy by choosing a high enough resolution, m, but there
are practical limits due to memory consumption and computational efficiency. In
some cases, the functions we are interested in sampling are already represented
as discrete images, in which case F is exact, i.e., F(x) = f (x). For example, the
lighting, L, from an environment map is already discretized to the resolution of the
environment map.
To describe our sampling methods, we define an image hierarchy, which consists
of the full series of images of resolution 2l × 2l pixels, where 0 ≤ l ≤ m, i.e., all
images of size 1×1 to 2m×2m, with a power of two number of pixels along each

9Note that we use capital letters to denote discrete images, which should not be confused with the
cdf of a random variable. Also, note that x here refers to positions in the unit square.
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dimension. The pixels in each image are denoted, F l
x,y, where l is called the level

of an image, ranging from the coarsest resolution (l = 0) to the finest (l = m). A
pixel’s integer coordinates are 0≤ x,y < 2l . The pixels at each level represent the
average image values over the corresponding squares, i.e., the integrals scaled by
the inverse pixel areas, 22l , c.f., Equation 100. Due to the 2×2 scale between each
level, this means that a pixel at a level l < m is given as the average over the four
pixels under its support at the next finer level, l +1. We have:

F l
x,y = 22l

∫
s
F(x)dx =

1
4 ∑

0≤i, j≤1
F l+1

2x+i,2y+ j, 0≤ l < m. (101)

Note that according to this definition, the image hierarchy is equivalent to a full
mipmap hierarchy [161] computed using a box filter. Methods for sparsely com-
puting suitable image hierarchies for the case where F is a product of multiple
terms, will be discussed in Section 4.3.

4.2.1 Hierarchical Sample Warping

In our first sampling method, we exploit an exact hierarchical representation of the
image, F , to efficiently generate samples from the probability distribution p(x) ∝

F(x). The sampling method is introduced in Paper I and briefly mentioned in
Paper II (with pseudocode), but I will give a more formal description here.

Hierarchical Probability Tree We first note that the single pixel at the coarsest
level, F0

0,0, represents the integral over the entire image. Hence, our probability
distribution is defined (with correct scale) as:

p(x) =
F(x)
F0

0,0
, since F0

0,0 =
∫

[0,1)2

F(x)dx. (102)

The marginal probability of a random sample, X , being placed in a region s= (l, t),
is found by integrating the pdf over s (c.f., Equation 34), as follows:

P(X ∈ s) =
∫

s
p(x)dx =

1
F0

0,0

∫
s
F(x)dx = 2−2l F l

t
F0

0,0
, (103)

where we have used Equation 101 in the last step. The expression for P(X ∈ s)
applies at any level in the hierarchy. This can be exploited in sampling strategies
that start at the coarsest level and hierarchically place samples according to F . At
each step in the hierarchy, the conditional probabilities of sampling each of the
four pixels at the next finer level are computed. The conditional probability of
sampling s′ = (l′, t′), under the support of s, is given by:

P(X ∈ s′ | X ∈ s) =
P(X ∈ s′)
P(X ∈ s)

= 22(l−l′) F l′
t′

F l
t
, for s′ ⊆ s. (104)
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Figure 17: With our hierarchical sample warping algorithm, a uniformly dis-
tributed point set is recursively warped (rescaled) into the desired distribution.
At each step in the recursion, the conditional probabilities for the next finer level
controls the placement of splitting planes. By warping the point set based on the
splitting planes, its density is constantly adjusted to maintain the correct marginal
probability density in all parts of the domain. The illustration shows the warping
for one full level in the hierarchy in two dimensions.

In particular, when going from one level to the next, the conditional probabilities
for each of the four pixels, s′ = (l +1, t′), are simply:

P(X ∈ s′ | X ∈ s) =
1
4

F l+1
t′

F l
t
, for s′ ⊆ s, l′= l+1. (105)

Previous work has explored the use of similar hierarchies of conditional probabil-
ities as decision trees for random thresholding [20, 22, 78]. In those methods, new
random variables are drawn at each level in the hierarchy, in order to randomly se-
lect which of the four children nodes to sample. This makes it difficult to achieve
high-quality sampling points, as any blue noise properties of the input samples are
effectively lost.

Sample Warping We propose an alternative strategy, called hierarchical sample
warping, which has the advantage that it largely preserves the spectral qualities of
the input samples. The method transforms a uniformly distributed point set into
samples distributed according to the target distribution p(x)∝ F(x), by recursively
splitting and rescaling, the point set along each dimension. The technique is illus-
trated in Figure 17. Starting with the coarsest level and the second dimension, y,
the point set is split into two halves along a splitting plane at ys. The plane is
positioned so that the probability of a uniformly distributed sample falling in each
half, is equal to the corresponding conditional probabilities of sampling each half
of the current region.
The points in both halves are then linearly scaled, or warped, so that ys moves
back to the center of the interval. Linearly scaling a uniformly distributed point
set changes its density, but the points remain uniformly distributed within each
half. The process is repeated for each half along the first dimension, x, using the
conditional probabilities of each pixel. This completes one step of the warping
algorithm. At this point, the point set has a density function that is proportional to
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Probability distributions Random points Hammersley points

Figure 18: Two examples that illustrate that the quality of an input point set is
largely preserved through our hierarchical sample warping algorithm. In this
case, the probability distributions are defined over a rectangular area.

the 2× 2 image at level l =1, i.e., the samples within each of the four pixels are
locally uniformly distributed, but with the correct marginal probability density.
The process is recursively repeated for each square that has one or more samples,
while for empty squares, the recursion can be immediately terminated. Hence,
due to induction, once samples have been warped down to the finest level, l = m,
the overall distribution of the warped points is p(x) ∝ F(x) (Equation 102) as
desired. The early termination for empty squares is an important practical aspect,
as it allows F(x) to be sparsely computed only where needed for a given input
point set (we will look at methods for this in Section 4.3). In our application, this
greatly reduces the cost of sampling. Since F is a product of multiple terms and
may very well be of, e.g., 10242 pixels resolution or higher, computing the full
product would be prohibitively expensive.
Our algorithm can be seen as a variant of inversion sampling (Section 3.3.1). Sim-
ilar to sampling by analytic inversion of the cumulative distribution function (cdf),
our method transforms uniformly distributed points into the desired distribution.
However, this is done hierarchically in multiple steps rather than in a single step.
The benefit is that we never have to explicitly compute and invert the full cdf. The
main advantage over previous hierarchical approaches using conditional probabil-
ities, is that our method tends to preserve the spectral properties of an input point
set; two points that are far apart in the input point set, are likely to be far apart in the
final distribution. Figure 18 shows an example of this for two different probability
distributions. Another advantage is that our method does not require generating
any other random variables than the input point set, which makes the implementa-
tion efficient. It should be noted that a minimum point distance is not guaranteed,
however, as two points may end up arbitrarily close due being warped differently
in neighboring squares. The non-uniform scaling of the point set in each step of
the recursion also changes the anisotropy of the point distribution. This effect has
been studied by Wei and Wang [156].
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4.2.2 Hierarchical Rejection Sampling

Paper IV introduces another hierarchical sampling method, which builds on rejec-
tion sampling. Recall that rejection sampling generates random samples by draw-
ing samples from a proposal distribution, and then randomly accepting or rejecting
(thresholding) them against the target distribution (c.f., Section 3.3.1). Our method
uses a hierarchically computed upper bound of F(x) as the proposal distribution,
and tests each generated sample against F(x).
We use the notation F l

t to denote the upper bound of F over a region s = (l, t). The
only requirement on the upper bound is that it is conservative, that is:

F l
t ≥ max

x∈s
F(x). (106)

In practice, we use a bounding function that gets progressively closer to F as the
level, l, increases. To minimize the number of candidate samples, we use hier-
archically constructed low-discrepancy points (Section 3.5.2) to gradually fill up
the volume under the graph of the bounding function with uniformly distributed
points. As soon as a point in any region of the function exceeds the locally com-
puted upper bound, the generation of new candidate points in that region is termi-
nated, as those are guaranteed to be rejected. Regions where points are accepted
are, on the other hand, recursively subdivided to refine the upper bound.
The method is motivated by the fact that an exact hierarchical representation of
F(x), as required for sample warping, is often difficult to compute when F is a
product of multiple terms, i.e., F = F1F2 . . .Fn. However, an upper bound is easier
to compute. In our paper, we conservatively estimate the maximum of F over any
region, s, as the product of the individual terms’ maxima:

F l
t = ∏

i

(
max
x∈s

Fi(x)
)
≥ max

x∈s
F(x). (107)

The reason for this being an (over-)conservative estimate and not the exact maxi-
mum, is that the peaks of the individual terms, Fi, do not usually align. However,
as we go to finer resolutions the estimate is refined, until at the highest resolu-
tion, l=m, the upper bound is exactly equal to F , i.e., Fm

t = Fm
t . The underlying

assumption is that F is locally smooth. This is generally the case in our appli-
cations, even though locally sharp peaks or discontinuities may exist, e.g., due to
strong lights in the environment map. Around such peaks, the sampling method
will locally refine the upper bound until it reaches the full resolution image.

Properties of the Samples The choice of input samples is an important practical
aspect, and the algorithm imposes a few constraints for good results. In order to
sample according to an s-dimensional probability distribution, we generate (s+1)-
dimensional points and use the first dimension for the rejection test. The projec-
tion of the remaining s dimensions of the surviving points make up the coordinates
of the final samples. For best results, the input points should ideally have a well-
distributed projection in these dimensions. Additionally, to allow early termination
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of the hierarchical refinement and sampling process, which is key for efficiency,
the points must be sequentially ordered along the first dimension. Many determin-
istic low-discrepancy points based on digital nets and sequences (Section 3.5.2)
fulfill the latter requirement, while also having reasonably good projections in the
other dimensions. In Section 4.7, we will look a novel method for generating three-
dimensional point sets, that is specifically designed to improve the projection of
the non-ordered dimensions.
For example, in two-dimensional sampling problems (such as our example ap-
plications in Section 4.1), we can use standard three-dimensional Hammersley
points [101], S = {x0, . . . ,xN−1}, with each point defined as:

xi =

(
i
N
, Φp1(i), Φp2(i)

)
∈ [0,1)3, (108)

where Φp1(i) and Φp2(i) are the radical inverses of the index i in two different
prime bases p1 and p2, i.e., its digits in the chosen bases reversed around the
decimal point. To reduce the bias from deterministically generated points, we
add a random jitter in the range [0,1/N) to the first component, and use random
scrambling [104] in the assignment of samples to regions in the paper.
As a rejection sampling-based method, the final number of samples is not known
in advance and cannot be exactly controlled, as it depends on how many samples
survive the rejection test. Assuming the input points, xi = (x(1)i ,x(2)i ,x(3)i ), are
defined over the unit cube, [0,1)3, the rejection test is given as (c.f., Equation 66):

if x(1)i ≤ cF
(

x(2)i ,x(3)i

)
then y j = (x(2)i ,x(3)i ) (accept), (109)

where {y j}, j = 1, . . . ,n is the set of accepted (two-dimensional) samples. The
coefficient c must be chosen so that:

cF(x)≤ 1, ∀x ⇐⇒ c ≤ 1
max F(x)

. (110)

The exact maximum of F(x) is often unknown, but in practice, we can use the
upper bounds F l

t a few levels down in the hierarchy, to quickly get a conservative,
reasonably tight estimate. The expected number of accepted samples, E(n), is then
equal to the volume under cF(x), scaled by the total number of input points, i.e.:

E(n) = N c
∫

[0,1)s

F(x)dx. (111)

Since the integral of F varies, the value of c must be adjusted accordingly to
achieve a number of samples that is approximately constant. For our application of
triple product importance sampling in Paper IV, we have designed a heuristic that
allows N and c to be iteratively chosen within a small number of iterations (1.3 on
average), but this may not always be possible.
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In summary, the main advantage of hierarchical rejection sampling compared to
sample warping is that the method does not require a hierarchical representation
of F(x) to be known. It is sufficient that an upper bound can be computed. This
allows sampling in cases where F is to difficult or expensive to compute. The price
for this flexibility, however, is that the method puts stricter requirements on the
input samples. Also, it cannot guarantee a fixed or predictable number of samples,
which may be a problem in some applications.

4.3 Sparse Product Evaluation

In the previous section, we have seen how a product distribution described as an
image, F(x), can be sampled using two novel hierarchical techniques. Both sam-
pling methods are based on hierarchically evaluating the product, either exactly
or using an upper bound, starting at the coarsest level and recursively refining the
computation where necessary. The prime applications are double and triple prod-
uct importance sampling (Section 4.1), where F is defined as a product of lighting,
reflectance, and in some cases, visibility. We will look at different methods for
approximating these terms later, but for now, let us discuss how the product distri-
bution of two or more arbitrary terms can be evaluated efficiently.
Our primary contributions are in the area of computing the product distribution
exactly, i.e., without further approximations than what its individual terms may
bring. This is desirable as it allows sampling through hierarchical warping, which
is both efficient and flexible. As an alternative for cases where the exact product
is too expensive to compute, I will also briefly describe an approximate technique,
which was used in Paper IV.

4.3.1 Haar Wavelet Products

Our first approach transforms the problem into the wavelet domain in order to
reduce the complexity. I will start by motivating the approach, and then discuss the
theory behind it. As before, the focus is on the two-dimensional case for illustrative
purposes, although the presented methods generalize to higher dimensions. In the
following, consider the case where F is a product of two terms:

F(x) = G(x)H(x). (112)

First, note that although sample warping usually only requires a small subset of the
terms in the hierarchy, F l

t , to be computed, the initial coarsest coefficient, F0
0,0, is

always needed. This represents the integral over the entire image, which is used for
normalizing the probability distribution and computing conditional probabilities
at the start of the recursion (Equation 105). Computing F0

0,0 naïvely is too costly,
since:

F0
0,0 =

∫
[0,1)2

G(x)H(x)dx =
1

22m ∑
0≤x,y<2m

Gx,yHx,y, (113)
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i.e., it requires per-pixel multiplication of the images G and H at their full resolu-
tion (note that F0

0,0 6= G0
0,0 H0

0,0).
The rationale for our work is that, by using appropriate compressed representations
of G and H, it is possible to significantly reduce the cost of evaluating their prod-
uct. The compressed representations must be both hierarchical and compact, i.e.,
being able to accurately approximate the functions using a small number of coef-
ficients. In addition, their multiplication should ideally be sparse, meaning that
only a small number of nonzero terms exist. It turns out that the Haar wavelet ba-
sis fulfills all these requirements. This realization, together with the development
of the hierarchical sample warping method, are the key contributions in Paper I.

The Haar Wavelet Basis In general terms, a wavelet function, ψ(t), is a func-
tion that describes a localized wave-like oscillation. As such, a wavelet is defined
both in terms of its frequency and its location. Transforming a signal into the
wavelet domain, i.e., expressing it as a sum of wavelet functions, allows it to be
analyzed in both time and frequency. Wavelets are therefore widely used in signal
processing and analysis applications. The method is related to the Fourier trans-
form, which decomposes a signal into a sum of sinusoids and hence only gives
information about its frequency content. For an overview of wavelet analysis, we
refer to Mallat’s book [86].
For practical purposes, the wavelet functions are usually defined as translations and
scalings of a mother wavelet, ψ(t), which is designed to have compact support and
fulfill the following properties:∫

∞

−∞

ψ(t)dt = 0 and
∫

∞

−∞

|ψ(t)|dt = 1. (114)

Each scaled wavelet function essentially represents a bandpass filter. In order to
represent the full range of frequencies, the wavelet function is combined with a so-
called scaling function [85], φ(t). The scaling function should behave as a lowpass
filter, and is usually chosen so that:∫

∞

−∞

φ(t)dt = 1 and
∫

∞

−∞

φ(t)ψ(t)dt = 0. (115)

The continuous wavelet transform considers the set of all possible scaling and
translations, which is highly redundant. For practical implementation, the analysis
is usually limited to a set of wavelet functions that are defined at discrete steps in
time and frequency, i.e., using a discrete wavelet transform (DWT).10 A common
choice is:

ψl,k(t) = 2l/2
ψ

(
2lt− k

)
, l ≥ 0, (116)

where l,k ∈ Z are the integer scale and translation, respectively, that are applied to
the mother wavelet function. By appropriate choice of scaling and wavelet func-
tions, an orthonormal basis is formed, in which any real continuous function can

10Note that the discrete wavelet transform still works with continuous signals; it is only the wavelet
functions that occur at discrete steps in time and frequency.
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be expressed. Each coefficient in the wavelet decomposition represents the local-
ized energy content of the function at a specific frequency. In effect, this property
concentrates the energy to a small number of coefficients that accurately represent
the overall shape of the function. Minor details are added through wavelets at finer
resolutions, but those coefficients tend to be small. This is exploited for wavelet
compression, where small coefficients can be truncated or heavily quantized with
minimal impact on the reconstruction.
The Haar wavelet basis is the simplest possible orthonormal wavelet basis, pro-
posed already in 1909 by Alfréd Haar. It is defined by the following scaling and
mother wavelet functions in one dimension:

φ(t) =
{

1, 0≤ t < 1,
0, otherwise, ψ(t) =

 1, 0≤ t < 1/2,
−1, 1/2≤ t < 1,

0, otherwise.
(117)

In the following, we limit ourselves to the unit square, [0,1)2, and use the com-
mon non-standard decomposition [136] to extend the Haar wavelet basis to two
dimensions:

φ(x,y) = φ(x)φ(y), and


ψ(1)(x,y) = ψ(x)φ(y),
ψ(2)(x,y) = φ(x)ψ(y),
ψ(3)(x,y) = ψ(x)ψ(y).

(118)

The scaled and translated Haar wavelet functions over the unit square, are given
by applying Equation 116 along each dimension, as follows:

ψ
(i)
l,t (x) = 2l

ψ
(i)
(

2l x− t
)
, for

{
l ≥ 0,
0≤ t < 2l .

(119)

We note that each such wavelet function has square support of size 2−l × 2−l in
the unit square. The three types of wavelet functions, ψ(i), i = {1,2,3}, represent
the horizontal, vertical and diagonal differences, respectively. Since each wavelet
function is split by its center, we note that the coefficients up to (and including) a
scale l, are enough to exactly represent a discrete image, F(x), at level l +1. Also
note that the coefficient for the scaling function represents the integral of F over the
unit square, which is the same as F0

0,0 before. The Haar wavelet basis is therefore
perfectly suited for hierarchical sample warping, as it allows efficient compression
of the involved functions, as well as hierarchical reconstruction. The only piece
missing is the theory for multiplication of two compressed wavelet representations,
which we will look at next.

General Wavelet Product We use Ψi to denote the Haar basis functions up to a
level m−1, which are enough to represent the full-resolution image at l = m:

F(x) = ∑
i

Fi Ψi(x), where Ψ =
{

φ ,ψ
(1)
(0,0), . . . ,ψ

(i)
(l,t), . . .

}
, (120)
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where Fi are the coefficients of the wavelet representation of F . There are the same
number of coefficients and basis functions as there are pixels in the full-resolution
image, i.e., 22m, and we number these i = 0, . . . ,22m−1. In our case F is a product
of two terms, F = GH (Equation 112), which are represented in the same wavelet
basis. The product can be written:

F(x) = G(x)H(x) =

(
∑

j
G jΨ j(x)

)(
∑
k

HkΨk(x)

)
. (121)

The inner product of F(x) and a basis function gives the corresponding coefficient,
which using Equation 121 expands to:

Fi =
∫

Ψi(x)F(x)dx

=
∫

Ψi(x)

(
∑

j
G jΨ j(x)

)(
∑
k

HkΨk(x)

)
dx (122)

= ∑
j
∑
k

Ci jkG jHk where Ci jk =
∫

Ψi(x)Ψ j(x)Ψk(x)dx.

The set of coefficients Ci jk are called tripling coefficients. Note that these equations
hold in the general case, for any dimensionality and choice of basis.
Ng et al. [97] analyzed the two-dimensional case, and showed that the set of
tripling coefficients is sparse if the two images G and H have sparse represen-
tations in the Haar wavelet basis. Their Haar tripling coefficient theorem showed
that it is possible to directly compute the coefficients for the wavelet representa-
tion of the product, F , using linear programming and a simple set of rules. The
sparsity comes from the fact that if G and H are each compressed to a small set of
nonzero coefficients, the majority of the tripling coefficients will be zero. I will not
reproduce the theorem here, but for further details, refer to the original paper [97]
and my Master’s thesis [20]
In the technique presented in Paper I, we apply the two-dimensional wavelet prod-
uct, which was originally developed for interactive relighting applications, to our
application of Monte Carlo rendering. In particular, we let G and H be precom-
puted, compressed representations of environment map lighting and the reflectance
function, respectively. The sampling proceeds by hierarchically computing the
wavelet coefficients, Fi, for the product and at each step, using these to locally
reconstruct the product distribution. This is used to evaluate the conditional prob-
abilities necessary for sample warping, as explained in Section 4.2.1. Figure 19
shows an image rendered using our technique.
In the paper, we also present a generalized tripling coefficient theorem, which
allows F and G to have n dimensions each, while H has m dimensions, where
0 ≤ m ≤ n. Note that the original theorem only worked for n = m = 2. We show
that the tripling coefficients, Ci jk, can be expressed as products of one-dimensional
tripling coefficients and new so-called coupling coefficients. We also show a proof-
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Figure 19: Image rendered using the technique presented in Paper I, which uses
the wavelet product of lighting and reflectance for importance sampling.

of-concept implementation of the generalized theorem for the case n = 4, m = 2,
i.e., an 4D = 4D×2D wavelet product. For details, refer to Paper I.

4.3.2 Fast Wavelet Product

In Paper II, we note that the general framework for wavelet products is unnec-
essarily flexible for our purposes. Equation 122 allows the wavelet coefficient at
any place in the hierarchy to be computed, but in practice, we are only interested
in these for hierarchical reconstruction of the product function. The goal is to
hierarchically evaluate F l

t , i.e., the average of the product over a square s = (l, t).
By inserting the wavelet expansion of the product F(x)=G(x)H(x) (Equation 121)
into the expression for the image average, F l

t , at the coarsest level (c.f., Equa-
tion 101), we note that:

F0
0,0 =

∫
F(x)dx

=
∫ (

∑
i

GiΨi(x)

)(
∑

j
H jΨ j(x)

)
dx (123)

= ∑
i

∑
j

GiH j

∫
Ψi(x)Ψ jdx = ∑

i
GiHi.

The last step is due to the orthonormality of the Haar basis, i.e., the inner product
of any two basis functions with different indices is zero. Hence, the image at
the coarsest level is computed simply by summing up the products of all pairs of
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wavelet coefficients with the same index. The set of nonzero terms is sparse, as it
is only when both Gi and Hi are nonzero that their product has an influence. The
above equation can alternatively be written as:

F0
0,0 = G0

0,0H0
0,0 +

22m

∑
i=1

GiHi, (124)

i.e., a product of the image averages plus the sum of all wavelet coefficients for
basis functions under the support of these.
Intuitively, this relationship generalizes to any smaller region, s = (l, t), of the do-
main due to the hierarchical nature of the wavelet basis; a localized basis over s is
formed by appending a scaling function, φl,t, and considering all wavelet functions
under the support of s. For details, refer to the derivation in the paper. The result
is that the product image can be computed directly at any level as:

F l
t = Gl

t H l
t + 22l

∑
{i |Ψi∈s}

GiHi, (125)

where the sum is over the indices of all wavelet functions that exist at a level l′ ≥ l,
and are under the support of the current square, s. The scale factor 22l comes from
the area of s (c.f., Equation 101). We refer to this simplification as the fast wavelet
product, as it represents a specialized form of the general wavelet product that is
better suited for fast hierarchical evaluation of the product image.
To generate samples distributed according to F(x), we start at the coarsest level
and recursively evaluate Equation 125 where needed. In practice, looking at a
level l, the terms G and H are separately reconstructed from their respective
wavelet coefficients to find the averages Gl+1

t′ and H l+1
t′ for the four quadrants

at the next level, l +1. To each of these, the sums of corresponding wavelet coef-
ficients are added in order to compute F l+1

t′ . These are then used to evaluate the
conditional probabilities for sample warping (Equation 105) as before. The imple-
mentation of these operations can be made very efficient as the wavelet coefficients
are naturally arranged in a hierarchical sparse tree structure. Evaluating a partial
sum ∑GiHi at any node in the tree, becomes a process of multiplying and accumu-
lating all nonzero wavelet coefficients over the children nodes. The same wavelet
coefficients are used throughout, just different subsets of them, so all partial sums
can be computed and cached at startup in a single sparse tree traversal.

4.3.3 Sparse Quadtree Product

The fast wavelet product introduced in the previous section, is an efficient way
of sampling the product of two functions stored in the Haar basis. In practice,
however, in order to use this method, all the involved data must be precomputed
and transformed into the wavelet basis prior to rendering. This can be a severe
limitation. For instance, precomputing wavelet representations of the lighting and
all reflectance functions in a realistic scene is impractical.
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To avoid these problems, we suggest a method in Paper II that allows a hierar-
chical approximation of the reflectance function to be constructed on-the-fly (see
Section 4.4). The approximation is represented in the form of a sparse image,
i.e., a hierarchical image with some larger regions (l < m) being piecewise con-
stant. We have already seen examples of such sparse images in the form of the
product function reconstructed from compressed Haar wavelet representations. In
that case, the compression removes details in areas of low variation, causing unim-
portant regions to be piecewise constant. The difference is that we now directly
compute the sparse image, without going via a wavelet basis.
Sparse images are naturally encoded in a sparse quadtree structure, i.e., the image
averages, F l

t , are hierarchically arranged in a sparse tree, where the leaves repre-
sent squares of constant value. We note that the product of two sparse quadtrees,
F(x) = G(x)H(x), can be efficiently computed by traversing the trees of G and H
in parallel. Assume G(x) is constant over a square s = (l, t) with a value Gl

t. Then,
the same square in the product image can be computed as (c.f., Equation 101):

F l
t = 22l

∫
s
G(x)H(x)dx (126)

= 22lGl
t

∫
s
H(x)dx = Gl

t H l
t , if G(x) = Gl

t for x ∈ s.

The same applies if H is locally constant. Hence, we note that the image averages
can be directly multiplied whenever at least one of the two terms is a leaf node (and
hence piecewise constant). This conclusion is not groundbreaking, but it leads
to a very practical algorithm for computing the product distribution from sparse
images. Essentially, the two quadtrees are recursively traversed in parallel, and
all pairs of nodes with at least one leaf are multiplied. The final product image is
hierarchically computed at the back of the recursion by averaging over the results
for the four children nodes at each step (Equation 101).
In our implementation of the algorithm in Paper II, the evaluated sparse product
coefficients are cached along the way and used for hierarchical sample warping in
a second step. Additionally, our sparse approximation of the reflectance function
is constructed alongside the evaluation of the product in a single traversal. For
details, we refer to Section 4.4.2 and the pseudocode in our paper.
The complexity of the sparse quadtree product depends on the number of pairs of
leaf-level nodes in the two quadtrees. If one of the trees is very sparse, we can
afford the other to be non-sparse. This fact is exploited in our papers by the use
of full-resolution, unapproximated lighting together with a very sparse approxi-
mation of the reflectance, allowing sampling according to p(ω) ∝ L(ω)R̃(ω), as
mentioned in Section 4.1.1. In other applications, it may be more appropriate to
let both terms be moderately sparse.
The sparse quadtree representation is generally less sparse than an equivalent
wavelet representation, so the best choice of algorithm depends on the use case. If
the data is available beforehand, it is preferable to compress it in the Haar wavelet
basis and use the fast wavelet product. For rendering problems, however, we are
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often interested in evaluating a large number of integrals with different integrands.
In this case, extensive precomputation is not efficient. Another advantage of our
sparse quadtree product is that it can be easily extended to handle products of more
than two terms. Equation 126 generalizes to products on the form F = F1F2 . . .Fn,
as long as at most one term is not a leaf. In Paper III, we show an example of this
by computing the triple product of lighting, approximate reflectance, and approx-
imate visibility, i.e., LR̃Ṽ , for use as a control variate term. It should be noted
that this example is a somewhat favorable case, as Ṽ = 0 in fully occluded regions,
which allows the tree traversal to be efficiently pruned in those regions.

4.3.4 Approximate Product

Finally, in Paper IV we use the hierarchical rejection sampling method (see Sec-
tion 4.2.2) instead of sample warping. To make the rejection test faster, each gen-
erated candidate sample is tested against a hierarchical approximation of the prod-
uct distribution, rather than the exact product. We consider the case of a product
with multiple terms, F = F1F2 . . .Fn, and test samples against an approximation
F̃(x) ≈ F(x). In the paper, hierarchical representations of each of the terms Fi
are precomputed. Then, at sample generation time, the product over a specific re-
gion, s = (l, t), is simply approximated as the product of the averages over s of the
individual terms, i.e., F l

t,i for the ith image, as follows:

F̃ l
t = ∏

i
F l

t,i. (127)

This is an approximation, since in general:

F̃ l
t = ∏

i

(
22l
∫

s
Fi(x)dx

)
6= 22l

∫
s
∏

i
Fi(x)dx = F l

t , if l < m. (128)

However, the error of the approximation in Equation 127 gets smaller at finer reso-
lutions, under the assumption that the terms Fi are locally smooth. Hence, we want
to evaluate the approximation at finer resolutions in regions where F(x) is large,
while in low-importance regions, a cruder approximation (lower l) is acceptable.
A couple of different sampling strategies are discussed in the paper. In the main
algorithm, candidate samples are hierarchically generated and tested against the
locally estimated upper bound, F l

t. If a sample passes this test, the node is subdi-
vided and the upper bound is refined by recomputing it at the finer level, l+1. At
each step, the sample is placed in one of the four children nodes, and new candidate
samples are generated for the remaining nodes. The samples are tested against the
refined upper bounds, and the process is repeated recursively. Whenever a single
sample remains, i.e., when no new candidate samples can be generated without
exceeding the local upper bound, the recursion is terminated. At that point, the
product approximation F̃ l

t is evaluated, and the final rejection test performed.
In effect, the product distribution is more accurately approximated in regions of
high importance, i.e., regions that are subdivided to a fine level. In other regions,
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where the recursion terminates early, the approximation is evaluated at coarser
nodes. The final F̃(x) from which samples are drawn, is thus made up of leaf
nodes of different size and accuracy. During the sampling process, its integral∫

F̃(x)dx is additionally computed, and later used for normalizing the probability
associated with each sample.

Discussion The approximate product method is attractive since it automatically
adjusts the accuracy of the product approximation to important regions. Addition-
ally, since the approximation is computed on-the-fly, the full-resolution represen-
tations of the individual terms, Fi, can be used. However, it should be noted that,
although the approximation error is upper bounded, the method gives no other
guarantees on its magnitude. The need for precomputing each product term, Fi, is
also a drawback in certain applications.
In comparison, the wavelet and quadtree products rely on sparse, approximate rep-
resentations of Fi, while the product is evaluated exactly. It may therefore be easier
to predict the accuracy of the final probability distribution. The exact product also
makes it possible to rely on sample warping. Hence, these methods do not need
to generate and test a large number of candidate samples. However, some amount
of precomputation is necessary, even though we show examples of sparse product
terms that are created on-the-fly (i.e., reflectance and visibility). In all algorithms,
the evaluation of the product is automatically directed towards regions where it is
needed, avoiding unnecessary work in unsampled parts of the function.
For results and further comparisons, refer to our original publications (Paper I–
IV). We will now look at different ways of computing the individual terms, Fi, in
our example applications.

4.4 Analysis and Approximation of Reflectance

In the previous sections, we have introduced methods for sampling and evaluating
a product distribution. The algorithmic innovations that allow this are not tied to
any particular use case, but the motivating application in our work has been the
evaluation of the rendering equation. In our formulation, one of the terms in the
product is the reflectance function, R, defined in Equation 89. Each surface po-
sition and outgoing light direction, ωo, picks out a two-dimensional slice of the
reflectance function, R(ωi), which describes the BRDF times the cosine term over
all incident directions, ωi. For convenience, we map directions on the (hemi)sphere
to the unit square. The goal is thus to find the slice R(x), where x ∈ [0,1)2, for a
given surface point and outgoing direction. In this section, we will describe the
different strategies that we have developed for computing appropriate approxima-
tions, R̃(x), for this purpose.
Note that even though the product distribution is a scalar function, we generally
want to use full color representations of its individual terms. The reason is that,
for example, multiplying a red material with green lighting should result in a low
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or zero contribution, and a low sampling density as a result. The product thus has
to be computed in color, and its luminance is used to define the final probability
distribution. We are therefore interested in RGB representations of R(x).

4.4.1 Precomputed Tabulated Representations

For the wavelet-based sampling approach used in Paper I, we precompute tabu-
lated reflectance functions in the Haar wavelet basis. The outgoing direction, ωo,
is discretized into a 2D set of fixed directions. For each such outgoing direction,
a two-dimensional reflectance function is stored in the wavelet basis. These are
compressed by discarding all coefficients with an absolute value below a certain
threshold. The threshold is chosen so that a fixed percentage of the coefficients are
retained. In our research, we found that most materials can be accurately repre-
sented using only around 2% of the wavelet coefficients. This shows that the Haar
basis efficiently concentrates the information to a small number of coefficients.
Due to the efficient compression achieved, we could use realistic measured mate-
rials [88], many of which were anisotropic. For the results presented in the paper,
we tabulate the reflectance function over 162–322 discrete outgoing directions, us-
ing a resolution of 642–1282 for each slice (i.e., 82–328 wavelet coefficients per
slice at 2% sparsity). The total memory consumption is only 0.3–5.0 MB per ma-
terial, but the reported precomputation times are the range of a few minutes (using
extensive super-sampling to improve the quality).
In the method proposed in Paper IV, we take a similar approach, but store un-
compressed tabulated reflectance functions. For each two-dimensional slice, we
store an image hierarchy of averages, R̃l

t, alongside the maxima, Rl
t, which are

needed for hierarchical rejection sampling. To reduce the memory consumption,
we limit the implementation to support only isotropic BRDFs (c.f., Section 2.3.1)
by storing a tabulated reflectance function for each of a discrete set of outgoing
polar angles, θo. Each slice of the reflectance function is stored in the local hemi-
spherical frame centered around the surface normal, using the HEALPix mapping
(Section 4.6.1) with a resolution of 1536 to 24576 data points per slice, depending
on the specularity of the material. The precomputation times are shorter than in
the method of Paper I, but still in the range of 0.4 to 5.3 seconds per material. Ad-
ditionally, each tabulated (isotropic) reflectance function occupies 2.6–38.5 MB of
memory (in full floating-point RGB values).
The main advantage of using precomputed representations of the reflectance func-
tion is that very well-distributed samples can be achieved. The error introduced by
the quantization and compression of R(x) is easy to measure, and it can be made
arbitrarily small by increasing the resolution of R̃ and/or reducing the compres-
sion. For applications where the same materials can be reused over many frames,
such as product visualization or rendering of animations, precomputing tabulated
materials may be a good idea. However, the long precomputation times and the
memory consumption present major drawbacks, as a realistic scene may contain
hundreds or thousands of different materials. The reported timings could be sig-
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Figure 20: Example of a reflectance function that is procedurally defined by a
shader program. As many shader inputs may not be known beforehand, precom-
puting a tabulated representation of the reflectance is difficult. The images are
rendered using the technique presented in Paper II.

nificantly reduced by using modern parallel implementations running on a multi-
threaded CPU or graphics processor, but even then, the precomputation needed for
a realistic scene is non-negligible.
Additionally, in real applications, the reflectance functions are often programmat-
ically defined by shader programs. Figure 20 shows a simple example of this.
Depending on the number of shader inputs used, the shaders may be of too high
dimensionality to be realistically precomputed. Changing the material parameters
or editing the BRDF, usually also requires the tabulated representations to be re-
computed, making interactive changes difficult. Therefore, finding methods that
do not require preprocessing has been one of our primary goals. Next, we will
look at two different approaches.

4.4.2 Dynamically Sampled Approximation

In the method introduced in Paper II, we dynamically construct an approximation
of the reflectance function, R̃(x), in order to avoid the problems associated with
precomputation-based approaches. Our approximation is based on a small set of
point samples, R(xi), i = 1, . . . ,N, which are computed on-the-fly. Conceptually,
the point samples are used to reconstruct a continuous representation of the re-
flectance function. This is then discretized to a sparse quadtree representation,
i.e., a piecewise constant function with nodes of varying size, which is used for
sampling purposes.
The reconstruction of a continuous reflectance function is a scattered data interpo-
lation problem, for which many advanced numerical techniques exist [157]. Our
application is unusual in that we can only afford to spend a minimal amount of
time on the reconstruction, and the result is to be represented as a sparse quadtree.
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The approach we describe in the paper combines the reconstruction and discretiza-
tion steps. In practice, we hierarchically subdivide the set of samples, R(xi), until
only a single sample per node remains. These nodes define the leaves of the hi-
erarchical approximation, R̃l

t, which are averaged at the back of the recursion to
form the complete sparse quadtree representation. In doing this, we additionally
evaluate the sparse quadtree product (Section 4.3.3) in the same traversal, multi-
plying R̃ with an uncompressed lighting term, L. The results are cached along the
way, which makes the subsequent sampling using sample warping extremely sim-
ple. This process is performed on-the-fly just prior to the sampling of the product
distribution. Hence, all shader inputs and material parameters are known, which
means we can support arbitrary shaders and spatially varying materials.
A number of factors affect the accuracy of the resulting approximation, R̃(x), and
hence the amount of variance reduction achieved. First, if a large number of point
samples from R are taken (i.e., a large N), the probability of finding important fea-
tures is increased. However, there is a tradeoff between how much effort to spend
on constructing the approximation, versus how many samples can be afforded in
the final sampling step, where R̃(x) is used for product sampling. The goal is to
optimize the overall quality for a given fixed total computation time. In our pa-
per, we describe a simple variational analysis we performed to find a good work
distribution between the two tasks.
Second, the choice of samples, R(xi), has a large impact on the result. For diffuse
materials, a uniform or cosine-weighted sampling over the hemisphere is adequate,
but for glossy materials it is important to accurately capture the specular peak(s).
For this reason, we aim to use importance sampling to draw a set of random sam-
pling directions distributed according to p(ω) ∝ R(ω). The reflectance function is
evaluated for the chosen directions, and the result is mapped to the unit square to
give R(xi). Sampling exactly according to R(ω) may not be possible depending
on the BRDF model used, but an approximate probability distribution suffices if it
accurately captures the peaks of the BRDF. Note that we do not need to compute
the probability associated with each of these samples, as they are never used in
a Monte Carlo estimator, but only for approximating the (unknown) reflectance
function. In our implementation, we rely on existing methods for numerical inver-
sion of the cdf for some well-known BRDFs, e.g., the Phong and Ward models (see
Section 2.3.2). Hence, our method can be said to be semi-automatic; it handles
procedurally or programmatically defined shaders, but we rely on the rendering
system or the user to implement a (possibly approximate) importance sampling
strategy for the reflectance function. The generated samples are then used to dy-
namically build the quadtree approximation that is required for efficient product
sampling and control variate techniques.
Although most rendering systems already use BRDF importance sampling in some
form, we would ultimately like to remove this requirement in order to support
completely arbitrary shaders. In the work presented in Paper VI, we have explored
one such technique, which will be described next.
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Figure 21: In interval analysis [94], the value of each variable is represented by a
conservative interval, and the arithmetic operations are defined to operate on such
intervals. Here, two simple examples are shown (addition and multiplication). The
red marks indicate one potential value of each variable.

4.4.3 Optimized Interval Analysis

In Paper VI, we assume the user specifies a completely arbitrary reflectance func-
tion by writing a shader program. The program consists of a sequence of instruc-
tions, which compute the reflectance, R, given a specific surface point, incident and
outgoing directions (c.f., Equation 89). A real scene may consist of hundreds or
thousands of such shader programs. Manually computing useful approximations
or upper bounds of their generated reflectance functions, as required for impor-
tance sampling, is both tedious and error-prone. Additionally, it requires advanced
mathematical skills. Therefore, we want to apply automatic methods for analyzing
the shader program, in order to construct appropriate importance functions.
Bounded arithmetics, such as interval analysis [94], is an example of one such
tool. In our paper, we present several important optimizations that allow interval
analysis to be applied to shader analysis much more efficiently than before. Before
introducing our optimizations, let me give a brief review of interval analysis and
discuss how it applies to our hierarchical sampling methods.

Interval Analysis of Shaders The idea behind bounded arithmetics is to com-
pute conservative bounds on the result of a computation, instead of a single value.
Using interval analysis, the bounds are represented as a conservative interval,
which is guaranteed to enclose the exact result. We use the following notation
to denote an interval:

â = [a,a] = {x ∈ R | a≤ x≤ a}, (129)

where a and a are the lower and upper boundaries of the interval â, respectively.11

In order to bound a computation, each arithmetic operation is redefined to operate
on intervals. As a simple example, consider the addition of two intervals:

â+ b̂ =
[
a+b, a+b

]
. (130)

The result of each mathematical operation is a new interval, which is given as
input to the next operation, and so on. Figure 21 shows two examples of simple

11The values ±∞ are allowed and specify open-ended intervals.
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interval operations. The bounds grow as they are propagated, and the end result is
conservative bounds for the result of a chain of computations. Interval analysis is
thus widely used in scientific and engineering applications, for example, to bound
the rounding errors in numerical computations. A few published methods have
similarly applied bounded arithmetics to compute bounds on the result of shader
evaluations for various purposes [48, 55, 56, 59]. Recently, Velázquez-Armendáriz
et al. [149] applied the same machinery for analyzing shaders in Monte Carlo
rendering, which is closely related to our work.
There are several different ways in which shader analysis based on interval analysis
can be applied to our sampling methods presented in Section 4.2 and 4.3. Given a
range of incident directions, ω̂i, mapped to the square, and bounds for all varying
shader inputs over this set of directions, one can compute conservative bounds on
the reflectance function over any region:

R̂l
t =
[
Rl

t, Rl
t

]
, where

{
Rl

t ≤ min
x∈s

R(x),
Rl

t ≥ max
x∈s

R(x). (131)

In practice, a bounding shader [55, 59] is compiled based on the original shader,
where each instruction has been replaced by a sequence of instructions performing
the equivalent interval operation.
The range of R̂l

t for a specific shader and region s = (l, t), i.e., how tight the com-
puted interval is over s, depends on the extent of the region and the ranges of the
shader inputs over this region. The bounds will generally be very loose at coarse
levels, but they get progressively tighter at finer levels. Hence, the bounds may be
used to construct a hierarchical approximation of the reflectance, e.g., using the
midpoints of the intervals:

R̃l
t =
(

Rl
t +Rl

t

)
/2, (132)

and refining the approximation wherever the width of the interval, i.e., Rl
t−Rl

t,
is large. Interval analysis thus gives a fully automatic way of determining which
parts of the reflectance function need to be approximated at finer resolutions (as op-
posed to relying on existing importance sampling techniques as in Section 4.4.2).
Alternatively, we may compute the upper bounds only, Rl

t, and use these together
with the hierarchical rejection sampling method introduced in Section 4.2.2. This
method will also automatically refine the function where needed. It can be used
for sampling product distributions if the upper bounds of the other terms are also
available, which should not be a problem for the case of environment map lighting.

Compiler Optimizations There are two main culprits of the general approach
outlined above. First, the bounds computed using interval analysis, quickly grow
very large under certain circumstances. This can be addressed through the use
of higher-order bounded arithmetics, which track the dependencies between vari-
ables. We have left this extension for future work. Second, the cost of executing
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a bounding shader is often considerably higher than executing the original shader,
as each instruction has been replaced by several others. This causes the hierar-
chical construction of importance functions to be quite expensive, which partially
defeats the purpose. To lower the cost, we have developed several advanced com-
piler optimizations targeting interval analysis, which are presented in more detail
in Paper VI. The core idea is to extract and track compile-time bounds information,
and use this to optimize the generated code.
The approach is most easily explained by an example. Consider the multiplication
of two intervals, which in the general case is given by:

â · b̂ =
[
min(ab,ab,ab,ab), max(ab,ab,ab,ab)

]
, (133)

i.e., since one or both of the intervals â and b̂ may be negative or overlap zero,
we have to take all combinations of their lower and upper boundaries into ac-
count. For instance, [−3,2] · [−4,3] = [−9,12]. In the general case, this leads to
an arithmetic cost of 10 scalar instructions (4 mul and 6 min/max) for one interval
multiplication. However, if we can determine the maximum possible range of each
operand beforehand, e.g., that an interval is positive, â ∈ [0,∞], then more efficient
implementations are possible. For instance:

â · b̂ =

{ [
min(ab,ab),max(ab,ab)

]
if â ≥ 0,[

ab,ab
]

if â, b̂ ≥ 0.
(134)

The same can be applied if we know that one of the operands can only take scalar
values. Similar optimizations are possible for other instructions. Refer to Paper VI
for further examples.
Using a technique we call static bounds analysis, bounds information is propa-
gated through the shader code at compile time, in order to find the largest possible
range each instruction operates on. In practice, this is done by “executing” the
code at compile time using interval analysis, applying the widest possible inter-
val to each input. The result is a conservative range for the possible values of each
variable in the program, which allows the compiler to choose the most inexpensive
implementation of each interval operation in the code generation phase.
The static bounds can come from several different sources. One example is the
data type of variables, e.g., shading languages often support signed/unsigned nor-
malized types, which are limited in range. Another example is domain-specific
knowledge, e.g., that colors are positive or that the length of a normalized vector
is one. In addition, user annotations may be used to give the compiler additional
information about computations or shader parameters. Many instructions also nat-
urally limit the range of the result. For example, the outcome of an absolute value
or square root operation is always positive (if it exists). Such information is prop-
agated forward, and allows subsequent interval operations to be optimized.
A related technique that we have developed is valid range analysis. Here, the as-
sumption is made that, at runtime, each instruction will receive valid input. For
example, the input to a square root is assumed to be positive for the shader to
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generate valid results. This type of bounds information is propagated backwards
through the code to allow further optimizations. Note that handling this correctly,
and interval analysis in general, requires robust treatment of floating-point ex-
ceptions, such as Not-a-Number (NaN). This is discussed in detail in Paper VI,
together with many other practical aspects. The final result is that, for computa-
tion of single-sided (upper) bounds, 42–44% of the instructions can on average be
removed using our optimizations. Note that this is in addition to those normally
eliminated by standard compiler optimizations. For double-sided intervals (lower
and upper bounds), the savings are 24–27% on a range of example shaders of vary-
ing complexity. This is an important step towards using interval analysis for Monte
Carlo sampling, as it significantly reduces the cost of hierarchically bounding and
approximating unknown functions.

4.5 Estimation of Visibility
In many rendering problems, we are interested in computing the reflected radiance
due to light arriving from a specific surface or light source in the scene. Under this
assumption, the rendering equation involves a visibility term, V ∈ [0,1], which de-
notes the visibility between our integration point and the other surface (c.f., Equa-
tion 88). The prime example is the evaluation of direct illumination under distant
environment map lighting (Section 2.4.3), which is an important application of our
research.
We have explored two different ways of approximating the visibility function, in
order to use it for variance reduction purposes. Paper IV presents a method using
an inner-conservative visibility approximation, while Paper III introduces a more
general solution. I will now briefly describe the two methods.

4.5.1 Conservative Bounding Geometry

As mentioned in Section 4.1.2, the method presented in Paper IV performs triple
product importance sampling, including all three of the lighting, reflectance, and
visibility terms in the sampling. In this case, the visibility approximation, Ṽ (ωi),
must be inner-conservative, i.e., a direction must never be reported occluded if
there is a chance it is visible.
The approach we take is to compute a set of bounding spheres, which are placed
so that they are fully inside the opaque scene geometry. The bounding spheres are
computed as a preprocess before the rendering starts, using a method similar to
Wang et al.’s [151] work. To make the visibility queries faster, we also aggregate
the bounding spheres into a bounding volume hierarchy (BVH). The method is not
limited to using bounding spheres, but we chose to work with this shape in our
proof-of-concept implementation, as the sphere has a very simple geometry and
existing tools could be used for computing the bounding geometry.
At runtime, the hierarchy of bounding spheres is used to quickly construct a con-
servative visibility approximation, Ṽ (x), where x ∈ [0,1]2 represents directions on
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the sphere mapped to the unit square. Note that the visibility changes throughout
the scene, so this visibility approximation has to be recomputed at each new inte-
gration point in order to be conservative. To make this reasonably efficient, we tra-
verse the image hierarchy and the sphere BVH in parallel. Each square, s = (l, t),
in the image represents a frustum of directions, which is hierarchically tested
against the BVH. If the frustum does not intersect any bounding spheres, the square
is directly marked as visible (V = 1). On the other hand, if it is fully blocked by
a leaf node in the BVH, then all directions in s are guaranteed to be occluded
(V = 0). In case the visibility cannot be determined, the square is recursively sub-
divided, and the process repeated.
In practice, since Ṽ (x) is recomputed for each new surface point, the method is
limited to using low resolution and relatively few bounding spheres. In addition, it
only works well in cases where the scene geometry can be accurately approximated
using bounding spheres, or other simple shapes. These concerns are addressed in
our second method, which will be described next.

4.5.2 Visibility Caching

In Paper III, we use the visibility approximation as a control variate term, as de-
scribed in Section 4.1.3. This adds a lot of flexibility, as the visibility does not
have to be conservatively approximated – any approximation that is correlated to
the true function will work. Therefore, it is possible to cache and reuse Ṽ (x) over
many surface points. Our approach is conceptually similar to previous techniques
for sparse sampling and caching of irradiance [153] and radiance [70]. How-
ever, instead of storing relatively low-frequency indirect illumination, we sparsely
sample and cache the visibility function, which contains sharp discontinuities and
high-frequency effects. We call this visibility caching.
Apart from the sampling method itself, i.e., using control variates, one of our main
contributions is a thorough analysis of the visibility function. This was used to
find an empirically-based heuristic for controlling the weighting and insertion of
new cache records. Each cache record is stored as a bit mask with 22m bits, which
encodes a discrete image of 2m×2m pixels, representing the binary visibility func-
tion. In practice, resolutions of m = 5 or m = 6 were used, i.e., 1024–4096 visi-
bility samples per cache record. To allow hierarchical lookups, the bits are stored
along a space-filling curve in the Morton order [95]. Hence, the visibility ap-
proximation at coarser levels, l < m, can be found by counting bits in consecutive
segments of 22(m−l) bits, without having to explicitly store the hierarchical repre-
sentation. For details, refer to our paper.
In our analysis, we view the sampled approximations, Ṽ , as dependent random ob-
servations of the underlying unknown visibility function. The statistical correla-
tion between a large number of such approximations was measured by computing
the correlation coefficient (Equation 44) between each pair. The results are pre-
sented both in terms of the spatial variation for visual inspection, and as functions
of distance and normal directions. Examples are shown in Figure 22. Based on
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Figure 22: In order to design good heuristics for our visibility caching algorithm,
measurements of the correlation of the visibility function were performed on a
range of different scenes. One example is shown here, with the spatial variation
of the correlation shown on the top right. The bottom chart shows the average
correlation as a function of distance and difference in normals, which forms the
basis for the final heuristic.

these measurements, a robust heuristic for computing the relative importance of
different cache records was designed. The heuristic takes several different factors
into account, e.g., the distance between visibility approximations, the difference
in local surface normal, and a geometric term adjusting for the relative geometries
between two cache records.
At each surface point during rendering, we locate a small number of nearby cache
records, Ṽi, and evaluate the heuristic to find a weight, ξi, for each record. The
linear combination forms the final visibility approximation, that is:

Ṽ (x) = ∑
i

ξiṼi(x). (135)

An important advantage of our approach is that since Ṽ is used as a control variate,
errors in the approximation do not introduce artifacts or bias in the final render-
ing, only increased variance. Hence, the visibility cache records can be temporally
reused over multiple frames for rendering animations efficiently. During render-
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Figure 23: The visibility approximation computed using our visibility caching
algorithm presented in Paper III can also be used for other purposes than Monte
Carlo rendering. One such example is ambient occlusion, as shown here.

ing, we detect when the local visibility approximation is inaccurate compared to
the final exact visibility samples used to evaluate the Monte Carlo estimator (Equa-
tion 97). When this occurs, a new cache record is inserted, and outdated records
are removed. Hence, the local density of cache records is automatically adjusted
based on the properties of the visibility function, both spatially and temporally.
The visibility approximation created through visibility caching proved to be accu-
rate enough also for other purposes than using it as a control variate term. In our
paper, we show an example where the integral of Ṽ (x) is directly visualized as am-
bient occlusion (see Figure 23). Another use case is the direct visualization of the
control variate term, J =

∫
LR̃Ṽ dωi, which represents an accurate approximation

of the outgoing radiance. This is useful for pre-visualization of the final rendering.

4.6 Efficient Mapping of the Sphere

As we have seen, integrals in light transport simulation are commonly expressed
in terms of integrating some unknown directional quantity, f (ω), over differential
solid angle, dω , on the upper hemisphere, Ω, or sometimes the entire sphere. To
make the implementation easier, it is desirable to rewrite such integrals to be eval-
uated over the two-dimensional unit square, (s, t) ∈ [0,1]2. Working in the plane,
as opposed to on the (hemi)sphere, enables fast construction of hierarchical data
structures (e.g., quadtrees) to approximate the functions and guide the sampling.
Therefore, we seek a mapping from the unit square to spherical coordinates, with
known simple inverse and other desirable properties (see below).
Several different such mappings have been used throughout our work. In particu-
lar, in Paper V we extend an existing square-to-hemisphere mapping with recog-
nized useful properties, to work over the full sphere of directions. An important
contribution of our work in that paper is the highly optimized single instruction,
multiple data (SIMD) implementations of the transforms to the (hemi)sphere and
their inverses. I will give a brief overview here.
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4.6.1 Mapping Functions

Directions on the unit sphere are most intuitively described by spherical coordi-
nates ω = (θ ,φ), where θ ∈ [0,π] is the polar angle (for the full sphere), and
φ ∈ [0,2π] is the azimuthal angle (c.f., Figure 4 in Section 2.1.2). The relationship
between solid angle and spherical coordinates is given by:

dω = sinθdθdφ , (136)

which is easy to realize geometrically, as a differential patch at a polar angle θ

lies on a circle with radius sinθ . Hence, an integral over the hemisphere can be
written: ∫

Ω

f (ω)dω =

2π∫
φ=0

π/2∫
θ=0

f (θ ,φ)sinθdθdφ . (137)

To make Monte Carlo integration over the (hemi)sphere practical, we want to
express f (ω) as a two-dimensional function in the plane, f ′(s, t), by applying a
mapping M : (s, t)→ (θ ,φ). The mapping transforms positions in the unit square,
u=(s, t) ∈ [0,1]2, to directions on the (hemi)sphere. Using standard multivari-
ate calculus, the integral in Equation 137 is rewritten as an area integral by the
substitution:∫

Ω

f (ω)dω =
[ω=M(u)]

∫
[0,1]2

f (M(u)) |det(JM(u))|sinθdA, (138)

where JM is the Jacobian matrix of the mapping, M, i.e., its partial derivatives with
respect to u. Its determinant is:

det(JM(u)) =

∣∣∣∣∣ ∂θ

∂ s
∂θ

∂ t
∂φ

∂ s
∂φ

∂ t

∣∣∣∣∣= ∂θ

∂ s
∂φ

∂ t
− ∂θ

∂ t
∂φ

∂ s
. (139)

By appropriate choice of M, we can ensure an equal-area mapping, which has:

dω ∝ dA, (140)

i.e., a differential area in the square represents the same differential solid angle,
independent of the direction. This is a useful property, as it allows us to carry
out all sampling operations on the unit square, without adjusting for a potential
non-uniformity of the mapping. We will now look at two examples of equal-area
mappings that we have used, before introducing our optimized version.

Cylindrical Equal-Area Projection For implementing the sampling method de-
scribed in Paper I, we used the classical cylindrical equal-area projection, which
is essentially a cosine-weighted latitude–longitude mapping. Figure 16 shows ex-
amples of spherical functions represented in the cylindrical equal-area mapping.
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The mapping is derived from the simple projection of the sphere outwards onto a
cylinder. For the hemispherical case, the transform is:

M :
{

θ = cos−1 t
φ = 2πs

⇐⇒ M−1 :
{

s = φ

2π

t = cosθ .
(141)

This mapping is widely used in computer graphics because of its simplicity. It is
easy to show that it is area-preserving. First, note that its Jacobian determinant is:

det(JM) =

∣∣∣∣∣ 0 − 1√
1−t2

2π 0

∣∣∣∣∣ = 2π√
1− t2

=
2π

sinθ
, (142)

due to 1− t2 = 1− cos2 θ = sin2
θ . Inserted into Equation 138, we find that:∫

Ω

f (ω)dω = 2π

∫
[0,1]2

f (M(u))dA = 2π

∫
[0,1]2

f ′(s, t)dA, (143)

as expected. Note that the 2π scale factor comes from the difference in area be-
tween the hemisphere and the unit square.
The main drawback of the cylindrical equal-area projection is that its maximum
anisotropy, or distortion, tends to infinity towards the pole(s). A differential solid
angle maps to a region in the square that gets increasingly stretched out along
the s-axis, and compressed along t, as we get closer to θ = 0 or θ = π . This is
undesirable, as a large anisotropy reduces the benefit of having well-distributed
sampling points.

The HEALPix Mapping In the method proposed in Paper IV, we use the so-
called hierarchical equal area isolatitude pixelization (HEALPix) mapping [45]
for encoding precomputed lighting and reflectance data, as well as for representing
dynamically generated visibility approximations.
The mapping was originally developed for applications in astronomy, and has low,
well-controlled distortion. Different configurations are possible, but in the most
common variant, the sphere is divided into 12 square facets. Each facet is a curvi-
linear quadrilateral (quad) on the surface of the sphere, which can be hierarchically
subdivided into pixels of equal area. The mapping is designed so that the pixel
centers at any level of subdivision, lie at a discrete number of concentric rings of
constant latitude. These properties make it efficient to transform precomputed data
into a HEALPix representation. The number of rings is determined by the level
of subdivision, but the number of pixels in each ring is also different at different
latitudes. For details, we refer to the original paper by Gorski et al. [45], and the
official open-source implementation by NASA.12

For sampling purposes, the division into 12 distinct square facets presents a draw-
back compared to mappings that use only a single square, as it is difficult to ensure

12The official HEALPix web page is: http://healpix.jpl.nasa.gov/
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Figure 24: The concentric map from the square to the hemisphere [128] is shown
here. We extend the map to the sphere, and present highly optimized implementa-
tions of the forward and inverse transforms for both cases.

that samples are well-distributed across the boundaries. For example, in our im-
plementation, each facet was individually sampled using well-distributed points,
but samples in neighboring facets could end up arbitrarily close to each other. It
should also be noted that evaluating the HEALPix mapping function is relatively
expensive compared to some simpler alternatives. This is an issue in rendering
applications, where a large number of directions need to be mapped back and forth
between the (hemi)sphere and the plane.

4.6.2 Efficient Low Distortion Mapping of the (Hemi)Sphere

To address the deficiencies of both the simple cylindrical equal-area projection
and the HEALPix mapping, we devote Paper V to describe an efficient mapping
of the sphere and hemisphere, which has low distortion and operates over a sin-
gle unit square. The work builds on the so-called concentric map by Shirley and
Chiu [128], but extends it in several important ways discussed below.

Hemispherical Case In the original paper [128], points are mapped from the
square to the disc or hemisphere by mapping concentric squares to concentric cir-
cles. We will briefly review the algorithm, and prove that it is an equal-area map-
ping. Looking at the rightmost triangular sector in the square shown in Figure 24,
the mapping to the corresponding sector of the hemisphere is given by (similar
formulas apply in the other sectors):

M :
{

θ = cos−1(1−u2)
φ = π

4
v
u

where
{

u = 2s−1,
v = 2t−1. (144)

The proof of area preservation follows along similar lines as the proof for the cylin-
drical mapping (Equation 142). We take the Jacobian determinant with respect
to (u,v), and note that the initial transform from the unit square to (u,v) ∈ [−1,1]2

gives an extra scaling by four due to the chain rule. Also, note that cosθ = 1−u2
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(see the definition of M above), which gives:

det(JM) = 4

∣∣∣∣∣ −
−2u√

1−(1−u2)2
0

−π

4
v

u2
π

4u

∣∣∣∣∣ = 4
2u

sinθ

π

4u
=

2π

sinθ
, (145)

i.e., we have dω = 2π dA as before.
For practical purposes, we often need to compute the Cartesian coordinates, (x,y,z),
of the point on the sphere that corresponds to a direction (θ ,φ). Converting spheri-
cal coordinates to points on the hemisphere, Ω= {(x,y,z) | x2+y2+z2 = 1,z≥ 0},
is straightforward. For the concentric map, we have [128]:

x = cosφ sinθ = cosφ · r
√

2− r2

y = sinφ sinθ = sinφ · r
√

2− r2

z = cosθ = 1− r2,

(146)

where the last step uses polar coordinates on the unit disc, (r,φ), c.f., Figure 24.
In the first sector, we have r = u and φ = π

4
v
u , and similar expressions exist for the

other sectors. Note that in a typical sampling application, Equation 146 is evalu-
ated for each generated sample in order to compute ray directions for ray tracing.
This can be quite costly due to the trigonometric operations, and the branching
necessary to select the correct expressions for each sector.

Extension to the Sphere In Paper V, we extend the above mapping from the
hemisphere to the full sphere by combining the concentric map with the octahedral
map [111]. The octahedral map is a clever way to “fold” a unit square over the
sphere, by dividing it into eight triangles. Each such triangle maps to a quadrant
on one of the two hemispheres. Essentially, a square that is rotated by 45◦ and
inscribed in the unit square, maps to the upper hemisphere, while the four outer
triangles are folded down to cover the lower hemisphere. The four corners meet at
the south pole. Our new mapping is found by applying the concentric map within
each of the eight triangles. For details, refer to our paper.
We present the new mapping in terms of a transform (u,v)→ (r,φ), where (u,v)∈
[−1,1]2 as before, and the resulting polar coordinates are applied in Equation 146.
The expressions for r and φ , which are found using simple geometrical observa-
tions, are slightly more involved than before as the concentric lines are no longer
axis-aligned. For example, in the inner triangle of the first quadrant, we have:

r = u+ v (147)

φ =
π

4

(
v−u

r
+1
)
. (148)

There are eight such different expressions for (r,φ), one for each triangle, which
results in three levels of branching in a straightforward implementation.
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Optimizations A main contribution of our work is a highly optimized imple-
mentation of the mapping, which explores domain-specific knowledge to reduce
the complexity. These are optimizations that a compiler cannot easily perform.
First, we realize that all eight cases can be mapped to the same triangle in the
square using absolute values, and the result transformed back to the correct quad-
rant using sign extension. This entirely avoids branching. Second, we propose
specialized numerical approximations of the trigonometric operations. For this
purpose, we use minimax approximation [110] to find polynomial approximations
that minimize the maximum error over the numerical range we are interested in.
To further improve the precision we exploit the connection with the Taylor se-
ries expansions of cosine and sine, and note that the coefficients for terms of odd
(cosine) or even (sine) power are close to zero in the optimized polynomials. By
rewriting the optimization problems, we find higher-order minimax approxima-
tions with lower errors for a given number of nonzero polynomial terms. The
same techniques are applied to find an efficient inverse transform, i.e., a mapping
M−1 : (x,y,z)→ (s, t), which is often a useful operation.
In the paper, we show robust implementations of both algorithms, i.e., avoiding
division-by-zero and with well-controlled maximum errors. For efficiency, we ex-
ploit SIMD instructions to map multiple points in parallel. The published code
uses the Intel R© SSE instruction set, which operates on 4-wide floating-point vec-
tors. It would be straightforward to reimplement the code using a wider instruc-
tion set, or port it to the graphics processing unit (GPU). The final result is a 8.6×
speedup compared to a standard scalar implementation, which brings the execu-
tion time down to 18.7 clock cycles per point. We also show results for the inverse
transform, and analyze the average and maximum approximation errors.
The proposed mapping and implementation was successfully used for the research
presented in Paper II and III. In both cases, the functions involved (L, R, and V )
were represented in world space over the full sphere, rather than over the hemi-
sphere in the local frame. By working in world space, the lighting term, L, can be
represented as a single uncompressed image hierarchy, i.e., a mipmap hierarchy.
Our work on developing an efficient mapping of the sphere, was largely motivated
by this choice of representation.

4.7 Generating Samples with Good 2D Projections

In all the presented sampling methods, the qualities of the input samples play an
important role in reducing the variance. This is to be expected, as the use of
well-distributed sample points is generally a good idea in integration problems,
as discussed in Section 3.5. In our research, we have additionally found that in
many cases, it is also important that the projections of the sample points along
certain dimensions are well-distributed. By projection, we refer to the orthographic
projection of the samples along one or more of the coordinate axes. In Paper VII,
we present a method for generating ordered three-dimensional points with good
2D projection in the non-ordered dimensions.
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Figure 25: Left: The two-dimensional projection of the non-ordered dimensions
of the original digital (0,m,3)-net [51], on which we base our method. Right: Our
permutation of the generator matrices allows the point set to be iteratively created,
while projecting to the more well-distributed Larcher-Pillichshammer points [80]
in the non-ordered dimensions (xy).

4.7.1 Applications

One application for our work is rejection sampling algorithms, such as our hier-
archical method presented in Section 4.2.2. In this case, samples are generated in
dimension s+1 to solve an s-dimensional problem, and the extra dimension is used
to determine the random reject or accept of each sample (c.f., Equation 66, where
the coordinate in the extra dimension serves the same purpose as Ui). The location
of the accepted points in the remaining dimensions determine the final distribu-
tion. Hence, it is important that the projection of the samples is well-distributed.
The application also requires that the points are ordered in the first dimension,
i.e., each new sample added has a larger value along this axis, as the sampling
algorithm proceeds incrementally to generate samples where needed.
The application discussed in Paper VII is another important use case, which orig-
inally motivated the development of the new sampling method. In this case, the
goal is to render motion blur effects by computing the exposure over time (Equa-
tion 25) using Monte Carlo integration. The focus of the research presented in the
paper is on how to evolve the hardware rasterization pipeline to support stochastic
sampling of moving geometry efficiently. Using rasterization, the visibility from
a single point is evaluated for a large set of directions by testing all rays against a
single primitive, before proceeding to the next primitive. With stochastic rasteri-
zation [2, 38, 77], additional sampling dimensions are added to allow the sampling
time or the ray origin to be varied. In Paper VII, we focus on adding one extra
sampling dimension to represent time, t, and let each triangle move within the
frame. As such, we only consider the primary visibility from a pinhole camera,
i.e., the illumination from all directly visible surfaces is integrated over time, t,
and spatially over each pixel, x,y.
To reduce the effect of spatial aliasing, like jagged edges, it is important that the
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projection of the sample points on x,y is well-distributed. This is particularly im-
portant whenever there is only little or no motion blur. At the same time, it is
important that the samples are ordered in the time dimension to reduce the number
of samples that have to be generated and tested. To make traditional rasterization
of static triangles efficient, hierarchical techniques are commonly used to quickly
cull rays that are guaranteed not to intersect a particular primitive [90, 91]. To also
reduce the number of expensive ray-vs-moving triangle, we have developed hier-
archical tests for quickly culling rays in motion blur rendering. The core idea is to
compute conservative bounds in time for the overlap between a set of rays and the
moving triangle. Based on the time bounds, we generate only the sample points
that lie within the range. To make this efficient, the samples must be ordered in
time. In principle, the approach is similar to the hierarchical rejection sampling
method discussed earlier, which also generates only the relevant samples on-the-
fly. I will briefly describe the sample generation here, and refer to Paper VII for
further details on the rasterization culling tests.

4.7.2 Efficient Digital Construction

To allow a good projection and fast construction, we chose to work with digital
(t,m,s)-nets. Their stratification properties ensure that the two-dimensional pro-
jection is reasonably well-distributed (see Section 3.5.2). In comparison, stochas-
tic blue noise samples, such as Poisson-disk distributions, do not usually have this
property – individual points may very well project to the same coordinates. How-
ever, even with (t,m,s)-nets, there are large variations between different methods.
The first goal is to find a construction that is well-distributed in two dimensions.
The Larcher-Pillichshammer (LP) points [80] fulfill this goal. Grünschloß and
Keller [51] then showed how this digital net can be extended to three dimensions
to create a (0,m,3)-net in base 2, where the first two dimensions are the original
LP points. In their construction, the points are ordered along the first dimension,
i.e., one of the two dimension that make up the LP point set.
This is not ideal for our applications, as we want the ordered dimension to be dif-
ferent from the two dimensions that hold the well-distributed LP points. Therefore,
we have developed a permutation of the three original m×m generator matrices,
Ci, i = {1,2,3}, over the finite field F2. In the original method [51], C1 and C2
compute the LP points, where C1 makes ordered points. We transform the three
matrices into a new set of matrices, C′i = CiD, where D = C−1

3 C1. The matrix D
is chosen so that the new points will be ordered along the third component, but
still represent the original LP points in the first two. The core contribution is a
derivation of compact expressions for the new set of generator matrices:

C′1 = C1C−1
3 C1,

C′2 = C2C−1
3 C1, (149)

C′3 = C3C−1
3 C1 =C1.

It turns out that this is possible, and we refer to Appendix A of Paper VII for details
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on the derivation. The new permuted matrices are compactly given by:

C′1 =

((
m+1− l
m+1− k

)
mod 2

)m

k,l=1
,

C′2 =

((
m− l
k−1

)
mod 2

)m

k,l=1
(150)

C′3 =

 0 1
. .
.

1 0

 .

The result of using our new set of permuted generator matrices is visualized in
Figure 25 for m = 6, i.e., using 26 = 64 points. It is important to note that the
new method generates the same points as before, but they are created in a different
order, which better suits our applications. In our paper, we include compact C code
for constructing the digital net.
This section concludes the summary of my research contributions. For further
details on each algorithm, including discussions on related work, implementation
details, and comparison of the results, please refer to the original papers. In the
following section, we will look at the research methodology that I have applied
during my work.
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5 Research Methodology

Most research in computer graphics falls in the area of applied research, even
though there are exceptions where fundamental new theory has been developed
as a result of research focused on solving specific practical problems. This is also
largely true for my research – the primary target has been algorithmic development
of more efficient methods for solving the light transport problem. The underlying
problem is fairly well understood, even though the frontier is continuously moved
forward due to the development of faster computer hardware, and more impor-
tantly, better algorithms.
As we saw in Section 4, our contribution to the research community is a number of
novel tools and techniques for reducing the variance in light transport simulations.
In this section, I will briefly discuss my research methodology that lead to these
results, and also, the implementation and validation of our techniques.

5.1 Summary of Research Approach

5.1.1 Research Goals

The motivating application for my and my co-workers work is photorealistic ren-
dering. However, it has been our goal to develop methods that are as widely ap-
plicable as possible. Ultimately, the value of a new technique is a combination of
the magnitude of the improvement it gives, how often the method can be used, and
what theoretical insights it gives.
The methods for optimized interval arithmetic presented in Paper VI are good ex-
amples of work that is broadly useful. It applies to any application that makes use
of interval arithmetic, also outside the field of computer graphics. Similarly, our
hierarchical sampling techniques are not tied to any particular use case, although
there are clear applications in Monte Carlo rendering. The same can be said about
our many methods for computing products of functions efficiently, and the map-
ping of these to the unit square. Other parts of our work are more directly targeted
at solving light transport problems, e.g., the development of approximations of
the reflectance and visibility functions in Paper II and III. On the other side of
the spectrum is our generalized theory for multi-dimensional wavelet products in
Paper I, which borders on basic research.
As a second goal, we want to find solutions that are practical. Algorithms are often
quantitatively compared in terms of their performance on different problems, but
their qualitative properties are often just as important in practice. There are several
different aspects that make an algorithm practically useful. First, robustness is crit-
ical, i.e., that a method handles a wide range of inputs without giving unexpected
results. Second, methods that require minimal manual control are desirable. If
many different parameters need to be set and tweaked for good results, the practi-
cality of an algorithm is drastically reduced. Last, the implementation complexity
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is a very important factor. If two methods have comparable performance, the sim-
pler one is almost always preferable. The cost of implementation and debugging
should not be underestimated, so an important goal has been to find methods with
straightforward implementations.
Examples from all these areas can be found in our work. For instance, for the
methods in Paper V and VI, great effort was spent to ensure robust handling of de-
generate cases, such as division-by-zero and floating-point Not-a-Number (NaNs)
errors. Our product sampling methods are mostly without tweakable parameters,
with the exception of the visibility approximation described in Paper III. To aid the
implementation of our methods, we have in several cases published pseudocode
or actual source code. See, for example, the pseudocode in Paper II, the source
code for the (hemi)spherical mapping functions accompanying Paper V, and the
sample-generation code in Paper VII.
Last, an important personal goal has been to develop a deep theoretical under-
standing of the studied problems and the mathematical theory behind their solu-
tions. This forms the basis for further research.

5.1.2 Workflow

The workflow has evolved over time throughout the course of my research, and it
has differed slightly from project to project. However, the general approach has
been fairly systematic, and is summarized in the following points:

1. Problem formulation.

2. Study related previous work and the relevant theory to describe the problem.

3. Develop a mathematical framework and model for the solution.

4. Implementation and validation of the solution.

5. Evaluation against the most relevant state-of-the-art techniques.

6. Publication of method and results.

The formulation of the problem is often found as a direct consequence of the lim-
itations of previous work, or motivated by a specific problem that needs to be
solved in a larger system. Then, by studying relevant related work and theory, the
advantages and deficiencies of existing solutions are made clear. These two steps
have often been iterated to define an appropriate scope of the problem at hand, to
determine which methods to compare it against, and to make a rough outline of
the solution.
In step (3), the majority of the algorithmic development takes place. This is a cre-
ative process that is hard to predict, but I have found it valuable to first gain a very
detailed understanding of existing techniques. Finally, the implementation, test-
ing, and evaluation of the work in steps (4)–(5) are the parts that have often taken
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the largest amount of time. The final result is a finished publication describing the
new method, and evaluating its performance against previous alternatives.
In most cases, one or a few core ideas have formed the basis for each project.
We have generally spent a fair amount of work formalizing and developing these
ideas prior to implementation. The motivation for this is that the implementa-
tion and evaluation is made easier if a clear algorithmic description is available,
but at the same time, the implementation of new work can give valuable insights
that improve the algorithm. We have thus, in most cases, applied the above steps
repeatedly to iteratively refine the method, or even adjust the initial problem for-
mulation. I have also aimed at documenting the work along the way, often writing
a substantial part of a paper draft early in the process. In doing so, the framework
and theoretical model, by necessity, is forced to be well-defined early on.

5.1.3 Collaboration

Roughly half of the publications included in this dissertation are the result of col-
laborations in groups of four or more researchers. Notably, Paper I and IV, are
based on research conducted while visiting other universities (UCSD and Univer-
sité de Montréal, respectively), and Paper VI and VII are the result of collabora-
tions at Intel Corporation. Even though the first author is usually responsible for
doing a majority of the work, collaborating in larger groups allows faster progress
as each individual’s expertise comes to use. Early feedback and insights from oth-
ers have been found to be very valuable for improving the method and the results
in each project. This was also true for the remaining research projects presented
in Paper II, III and V, which were completed more independently in collaboration
with my supervisor.

5.2 Implementation and Evaluation

The implementation and evaluation of a new technique is a vital part in all applied
research. In our case, the implementation refers to the writing of a computer pro-
gram to perform the operations described by the new methods. This can be done
in the form of smaller standalone frameworks, or as part of a larger system.
Successful implementation is important for several different reasons. First, it
shows that a method is technically sound without any obvious flaws, which some-
times are difficult to find beforehand. To be sure of the conclusions, the imple-
mentation itself must be validated, i.e., we must assure ourselves that it performs
the intended operations. Second, it gives a good hint of a method’s practicality in
terms of implementation complexity and how well it can be integrated into exist-
ing code bases. Last, the implementation allows the real-life performance of a new
technique to be measured. A thorough evaluation often forms an integral part of
each publication, as the prime goal is to demonstrate better performance or wider
applicability than previous solutions. I will now briefly discuss the implementa-
tion, validation, and evaluation of our work.
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5.2.1 Implementation Strategies

For the implementation of our work, MathWorks MATLAB R© has been a valuable
tool for early prototyping and validation of the technical soundness. After sketch-
ing out and testing the core ideas, final implementations have been written in the
programming language C++. In many cases, this has also involved implementing
algorithms described in previous work for evaluation purposes. We have aimed at
making all implementations well-tested and reasonably optimized to ensure a fair
comparison.
The algorithm presented in the first publication (Paper I) was implemented in a
simple ray tracing-based renderer, which was written from scratch for my ear-
lier Master’s thesis research [20]. This framework was later redesigned and re-
implemented to form a more flexible ray tracer, internally called renderPet, in
which the algorithms described in Paper II, III, and V were implemented. This
renderer was similar in design to the open source pbrt system [106], and evolved
over time (during the years 2005–2008) to support animations, texturing, many dif-
ferent BRDF models, different importance sampling strategies, photon mapping,
different types of light sources, multithreading, and so on.
The method of Paper IV was separately implemented in a ray tracer primarily de-
veloped by the co-authors Luc Leblanc and Fabrice Rousselle. The final algorithm
was also compared against my implementation of wavelet-based importance sam-
pling (Paper I). The work described in the last two papers (Paper VI and VII) was
implemented in separate standalone frameworks at Intel Corporation. In the first
case, an object-oriented system of classes were written by me to auto-generate op-
timized Intel R© SSE intrinsics code, which was compiled using existing commer-
cial compilers. Finally, the part of Paper VII relevant to this dissertation, i.e., the
generation of high-quality sampling points, was implemented in a software-based
motion blur rasterization framework running on the GPU, which was written by
me partly for other purposes.

5.2.2 Validation

The Monte Carlo variance reduction techniques proposed in Paper I–IV are all
unbiased in their basic form (even though some biased extensions are presented).
The techniques have been verified by comparing the results against simplistic im-
plementations of unoptimized path tracing, i.e., naïve Monte Carlo sampling of the
rendering equation using uncorrelated pseudorandom numbers as input. By aver-
aging over repeated renderings using our methods, we have empirically verified
that the generated images have the expected mean. Similarly, the consistency has
been verified by letting the rendered images converge using many samples.
The compiler optimizations for interval arithmetic introduced in Paper VI were
similarly empirically validated. Since the optimizations are pure code optimiza-
tions, which should not change the computed intervals, the implementation was
validated by comparing the output against unoptimized interval arithmetic code.
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For this purpose, a large set of randomized inputs and several different test cases
were used.
The mapping functions described in Paper V were somewhat easier to validate.
First, the transform was mathematically proven to be area-preserving, and then the
optimized implementations were validated against unoptimized scalar reference
code, which has been extensively tested. Similarly, the method for generating
samples presented in Paper VII was mathematically proven and the output verified
against the expected result. In this case, the generated sampling points have the
same coordinates as an existing method, but occur in a different order to give better
two-dimensional projections. Validation is thus straightforward.
In addition to the above, in all of my work, I have tried to exercise good pro-
gramming practices to minimize the risk of errors. We do this, for example, by
using object-oriented design and testing each subset of the implementations, e.g.,
individual subroutines, before continuing with other parts.

5.2.3 Evaluation of the Results

For the evaluation of our research results, we have used a variety of different meth-
ods. In each paper, we have aimed for comparing our techniques against the best
previously known methods for solving the same problem. In practice, this often be-
comes a matter of selecting a representative subset of previous work. The choice is
somewhat limited by which methods are available as published source code, code
that is available from the original authors, or that can be re-implemented with rea-
sonable effort. In our research, we have used all three approaches, i.e., in several
cases we have compared against the original implementations of related work, and
in other cases, we have implemented previous work for comparison purposes. For
details on each project, I refer to the original publications.
In order to compare the results against previous methods, we have used both qual-
itative and quantitative measures. First, most of our papers present qualitative
results in the form of rendered images to highlight the visual impact of different
aspects of each algorithm. Visual results are important, as the ultimate goal of
computer graphics is to generate images faster or with better quality than before.
With images it is also easy to demonstrate the effect of, for example, different
approximations or the benefit of using more well-distributed sampling points. In
two projects – the mapping functions described in Paper V, and the compiler op-
timizations in Paper VI – no meaningful visual results were generated and only
quantitative results are reported.
For the rendering methods presented in Paper I–IV, the visual quality is directly
related to the amount of computation time spent, as the Monte Carlo simulations
converge towards a noise-free result. However, differences in the implementations
of the compared methods, especially if they are written by different people, may
make a fair comparison difficult. Therefore, we have generally presented visual
results generated using a fixed number of random samples per integration point,
together with the computation times in seconds. In some cases (Paper II and III),
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we have also presented visual equal-time comparisons, where the algorithms are
allowed to run for a fixed amount of time and the results compared. In addition
to still images, we have produced visual results in the form of moving images in
several projects. This is important as the visual results must be temporally stable
for rendering of animations, which is a critical consideration in our research field.
In addition to the visual results, we include a quantitative evaluation in each paper.
For the Monte Carlo techniques, we measure the mean squared error (MSE) of the
estimators, which is standard practice. The MSE of an estimator, θ̃ , of an unknown
quantity, θ , is defined as:

MSE(θ̃) = E[(θ̃ −θ)2] = V (θ̃)+

E(θ̃)−θ︸ ︷︷ ︸
Bias

2

. (151)

If the estimator is unbiased, then the MSE is equal to the variance (c.f., Equa-
tion 40). In our work, we have presented both unbiased methods and a few biased
extensions for further reduction of the variance.13 The mean squared error is an
appropriate metric in this case, as it captures both the variance and the bias (if it
exists). In practice, for evaluating the error, we let θ̃ be a rendered image, and θ

an unbiased reference rendering, generated with a very large number of samples.
The MSE is then given as the squared error averaged over all pixels in the images.
Other quantitative measures are the total execution time and the memory consump-
tion of each technique, given different parameters. We generally try to report both
measures, although the memory consumption is only listed in case it is of practical
importance. The execution time is particularly important in Paper V, as its focus
lies on very fast mapping of points between the spherical and planar domains. In
this project, we additionally report the maximum approximation error, in addition
to the mean error, as we are interested in an upper bound on the error. For the in-
terval arithmetic optimizations proposed in Paper VI, we similarly present runtime
performance of the optimized code, but also instruction counts. The latter gives a
clear picture of how well different compiler optimizations work. Paper VII reports
both instruction counts and simulated memory bandwidth, computed using a sim-
ple architectural simulator. In this case, the actual runtime performance is difficult
to estimate, as the research targets hardware innovations.

13In cases where data for both unbiased and biased methods have been presented in the same chart,
we have vaguely used the term variance, even though MSE would have been more descriptive.
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6 Conclusion and Future Work

The primary purpose of this introductory chapter has been to give an overview of
our research and to tie its different parts together in a coherent framework. As we
have seen in Section 4, even though each of the publications focus on a specific
method or subproblem, they all serve as building blocks to help make Monte Carlo
simulation of light transport more efficient. It has also been my intention to give
enough background material in Section 2 and 3, that our work should be accessible
by those working in other areas of computer graphics, or perhaps even in other
research fields. The Monte Carlo method is widely used, and I hope that, at least,
parts of our research on hierarchical variance reduction techniques will be much
more widely useful than what we have shown in our example applications.
Focusing on our applications, we note that unbiased Monte Carlo rendering is an
active research area, despite its relatively long history in computer graphics. In
fact, the approach is also gaining popularity in the industry, e.g., in high-quality
offline rendering for product visualization, or rendering of special effects and an-
imated feature films – areas which have previously been dominated by scanline-
based renderers, such as RenderMan [4]. Even for real-time graphics, there has
recently been attention on generalizing the hardware rasterization pipeline to sup-
port stochastic sampling [2, 77] (see also Paper VII). In this case, the goal is
not full light transport simulation, but to solve the imaging integral over time and
aperture (assuming a thin lens model) using Monte Carlo integration with a small
number of random samples per pixel.14

There are many reasons for the increasing popularity of unbiased Monte Carlo
methods. First, the simplicity of the approach is attractive, since it allows physi-
cally accurate simulation of light transport in a wide range of settings, without the
need for too many specialized approximations or tricks to simulate certain effects.
These can otherwise lead to an enormous software complexity. Using a more brute
force approach based on stochastic sampling can reduce the cost of software de-
velopment. It may also reduce the amount of time artists need to spend to get the
desired results. Second, Monte Carlo techniques make it is easier to control the
errors in the rendering. Insufficient sampling undeniably results in random noise,
while the errors introduced by the approximations of other rendering techniques
may have widely different characteristics.
Additionally, Monte Carlo techniques are by definition relatively straightforward
to parallelize to a multi-threaded execution, since they work with many indepen-
dent random samples. This is an important factor, as the prevailing trend in hard-
ware development is to increase the number of compute cores, rather than the
clock frequency or memory bandwidth available to each core. This is exemplified
by the widespread use of programmable graphics processors, which typically have
a large number of cores, but also by today’s multicore CPUs that usually have four

14In practice, the samples are often deterministic low-discrepancy points or otherwise somewhat
restricted in their randomness due to hardware limitations.
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to eight physical cores.
In the research presented in this dissertation, we have focused on variance reduc-
tion techniques that are applied locally at each integration point in a light transport
simulation. This reduces the problem to a two-dimensional integral over incident
directions, which has allowed us to develop advanced techniques for explicitly
computing and sampling accurate probability distributions. We have developed
the first methods for explicitly computing product distributions, and used these to
apply importance sampling and control variate techniques to reduce the variance.
Upon reflection, the common theme throughout our work has been to apply hierar-
chical techniques for analyzing, evaluating, and sampling the involved functions.
The hierarchical nature of our algorithms is key to performance, as it allows us to
focus the computations to regions of the domain that are important.
There are many avenues for future work. While we have focused on handling arbi-
trary complex materials under direct illumination, it would be interesting to apply
similar hierarchical sampling techniques to indirect illumination. This would re-
quire constructing an approximation of the incident indirect light field to guide the
sampling. For this purpose, inspiration may come from recent advances in interac-
tive global illumination (see the survey by Ritschel et al. [117]). An approximate
global illumination solution may, for example, serve as a control variate term for
unbiased Monte Carlo rendering.
Another interesting direction would be to combine our hierarchical sampling meth-
ods with techniques for automatically adapting the sampling rate based on a pre-
dicted variance. For the presented results, we have generally used a fixed number
of samples per integration point (e.g., pixel), though this is not required. Indeed,
there are often large local variations in the number of samples needed to reach a
certain variance, and recent methods for adaptive sampling [52, 119] show great
promise. In our methods, we already build accurate approximations of the un-
known integrands, i.e., by estimating and multiplying multiple terms. It would
be interesting to use this machinery to adaptively determine appropriate sampling
rates, in order to reach a consistent noise level across the image. On a similar
note, there is great potential for applying filtering and reconstruction techniques
to further reduce the variance (at the expense of adding bias). Recent work by
Lehtinen et al. [82, 83] has clearly shown that even sparse random samples con-
tain enough information for a high-quality reconstruction of the original signal,
although it comes at a high cost. It may be possible to exploit hierarchical tech-
niques similar to ours, to make high-quality filtering and reconstruction possible
at a more reasonable cost.
On a practical level, it would be important to develop data-parallel implementa-
tions of our algorithms that exploit the wide vector units of current processors.
The work presented in Paper V is an example of this, but we have not specifi-
cally focused on providing vectorized implementations in the remaining papers.
This would be important to maximize the efficiency of our algorithms on mod-
ern CPUs. It should be noted that the development of good parallel programming
tools, such as the ispc language [107], have made the task somewhat easier.
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6. CONCLUSION AND FUTURE WORK

In conclusion, there are many interesting and important directions for further study.
Hierarchical techniques have always been important in computer science, and our
research has shown that much can be gained by developing hierarchical Monte
Carlo techniques. The research I have presented here is the result of many years
of hard work, but it still only represents a small step towards fully photorealistic
rendering, simulating all the advanced interactions of light and matter. We are at an
interesting point in time, however, where fast algorithmic development combined
with massively parallel hardware, changes the landscape of innovation.
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ABSTRACT

We present a new technique for importance sampling products
of complex functions using wavelets. First, we generalize previous
work on wavelet products to higher dimensional spaces and show how
this product can be sampled on-the-fly without the need of evaluat-
ing the full product. This makes it possible to sample products of
high-dimensional functions even if the product of the two functions
in itself is too memory consuming. Then, we present a novel hier-
archical sample warping algorithm that generates high-quality point
distributions, which match the wavelet representation exactly. One
application of the new sampling technique is rendering of objects with
measured BRDFs illuminated by complex distant lighting — our re-
sults demonstrate how the new sampling technique is more than an
order of magnitude more efficient than the best previous techniques.
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1. INTRODUCTION

1 Introduction

In many areas of science, the integral of two or more complex functions needs to be
evaluated efficiently. In computer graphics, we have the rendering equation [12],
which contains a product of the incident lighting and the material properties of a
given object. To evaluate this integral it is common to use Monte Carlo sampling to
sample unknown elements of the integral such as visibility. Monte Carlo sampling
relies on random sampling of the integral, and is a widely used method for evaluat-
ing complex functions. Unfortunately, Monte Carlo methods are computationally
costly, and to increase the efficiency, it is necessary to include as much information
about the integral as possible in the sampling process. For this purpose importance
sampling is a powerful technique. The goal of importance sampling is to distribute
samples according to the known elements of the space being sampled in order to
reduce the variance due to these elements. In the case of the rendering equation,
efficient techniques exist for distributing the samples according to the reflection
model being used, or the incident lighting, but not according to both. In the case
of known complex lighting and sophisticated reflection models, it would be much
more powerful to distribute the samples according to the product of both as shown
in Figure 1, but currently there is no efficient method for doing this.

x

Figure 1: Left: BRDF importance sampling and environment map importance
sampling. Right: Importance sampling of the combination of BRDF and environ-
ment. With our new technique we can efficiently sample the product of the BRDF
and the environment map without evaluating the full product. Sampling the product
results in a superior sampling distribution (shown in the right image) compared
with sampling the individual functions (shown on the left). 100 samples were used
for each image. The BRDF is a measured acrylic blue material, shown for a sin-
gle normal and viewing direction, and the environment map is Grace cathedral.
Sample points for the product were generated in 0.1 milliseconds.
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In this paper, we introduce a novel method for importance sampling the product of
two or more complex functions. Our algorithm uses wavelets to represent the func-
tions under consideration. Given two functions represented in the Haar wavelet
basis, it has recently been shown that the wavelet decomposition of the product
can be directly computed using tripling coefficients [22]. As a first contribution,
we generalize this theory to products of higher dimensional spaces. Second, we
introduce a novel hierarchical sample warping scheme that can be folded into the
wavelet product evaluation. The new sampling scheme provides high-quality sam-
ple distributions as shown in Figure 1, but more importantly it enables the sam-
pling of a complex product without the need for evaluating the full product. This
makes the sampling very fast (it can be used on-the-fly during rendering), and it
makes it possible to sample according to the product of high-dimensional func-
tions for which the actual product would take up too much space to be practically
useful. Our results demonstrate that the new sampling technique provides superior
sampling and quality when rendering models with measured material properties
illuminated by complex distant high-dynamic range lighting.

2 Previous Work

In this section, we review previous work on importance sampling in computer
graphics. Most of the previous work uses importance sampling in the context of
the rendering equation [12]:

L(x,ωo)=Le(x,ωo)+
∫

Ω

fr(x,ωi,ωo)Li(x,ωi)cosθidωi,

which is fundamental for rendering realistic images. Here, we need to evaluate the
product of the BRDF, fr, the incident radiance, Li, and a cosine-term.

BRDF importance sampling is an important and commonly used technique for
increasing the efficiency of ray tracing based algorithms. Several important BRDF
models can be directly importance sampled, including the Phong model [28], the
Ward model [31], and the Lafortune model [15]. See Pharr and Humphreys [25]
for more examples. Complex BRDF models such as the Torrance-Sparrow model
cannot be analytically inverted and require numerical approximations. Both the
Ward model and the Lafortune model have been used to approximate measured
BRDF data.
Other work has addressed the problem of importance sampling measured BRDFs.
Lalonde [16] used a wavelet representation of the BRDF and presented a novel
importance sampling scheme based on random sampling of the wavelet tree. Sim-
ilar methods were used in [5, 4]. Matusik [20] also used wavelets to represent
BRDFs and he presented a numerical method for sampling the BRDF data. Re-
cently, Lawrence et al. [18] introduced a technique for sampling BRDFs based on
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a factored representation. They represent the BRDF in Rusinkiewicz’s parameter-
ization [27], which is compact and compresses well, and their technique can be
used for directly importance sampling a 4D BRDF efficiently. BRDF importance
sampling is an effective technique, but these methods do not take into account the
lighting in the scene, and they become inefficient with complex lighting.

Environment map sampling is another powerful method for rendering objects
under complex lighting captured in a high-dynamic range environment map [9].
LightGen [6], Agarwal et al. [1], Kollig and Keller [13], and Ostromoukhov [24]
all resampled the environment map by placing pre-integrated directional lights at
the brightest locations. This is an efficient method for rendering non-specular ma-
terials illuminated by environment map lighting, but as the materials get increas-
ingly specular these methods need a very large number of lights to adequately rep-
resent the environment map. Cabral [3] and Ramamoorthi and Hanrahan [26] used
spherical harmonics to directly filter the environment map according to the BRDF
— these methods do not support efficient sampling, and the spherical harmonics
representation is efficient only when the BRDF is smooth and non-specular.

Monte Carlo rendering has a long history in computer graphics starting with
the seminal work by Cook et al. [7] and Kajiya [12]. There are numerous Monte
Carlo techniques for solving the rendering equation. See Dutré et al. [10] for an
overview. Most Monte Carlo techniques use the BRDF sampling methods or the
environment map sampling methods just described to solve the rendering equa-
tion. Some methods such as path tracing [12, 14] and photon mapping [11] have
been extended to importance sampling of the product of the BRDF and the light-
ing. Both approaches are based on the use of a coarse representation combined
with adaptive sampling in order to evaluate the rendering equation. Their effi-
ciency is limited by the coarse representation and they are too costly in the case of
complex lighting and specular BRDF models. Veach and Guibas [30] presented a
novel technique for combining estimators in Monte Carlo methods using multiple
importance sampling. Multiple importance sampling is a powerful method for ad-
dressing the situation where either the lighting or the BRDF is complex, as it will
pick the best of the available sampling techniques. When both lighting and the
BRDF are complicated, multiple importance sampling provides less of an advan-
tage, as it cannot account for the product of the two. It is likely to waste samples
in regions with little or no influence on the final result.
Recently, Burke et al. [2] presented a novel technique for rendering objects with
complex materials illuminated by an environment map. Their technique uses im-
portance sampling of either the environment map or the BRDF and applies rejec-
tion sampling to discard samples if the product of the BRDF and the lighting is
not large enough to motivate sampling. This helps reduce the number of samples,
but the method is very costly due to the rejection sampling scheme. If both the
BRDF and the lighting are complex, Burke et al. reports that more than 90% of the
samples are rejected, requiring further evaluation of the functions to locate good
samples.
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wavelet multiplication

nA nB
vA

vB

A

B

wavelet multiplicationinitial point
distribution

points distributed according to
importance of product

Rendering of pixel A

Rendering of pixel B

Figure 2: This figure shows the main steps of our technique. An initial point
distribution is warped according to the wavelet product of BRDF and environment
map. For each pixel, a new well-distributed sampling is computed, taking both
BRDF and environment map into account. The generated sample distribution will
be different for two different pixels A and B, since the BRDF changes across the
surface.

In contrast to the previous work our method is capable of efficiently importance
sampling the product of the lighting and the BRDF. In the following sections we
will describe how this is done by using a compact wavelet representation com-
bined with a generalized wavelet product, and a novel hierarchical sample warping
scheme.

3 Overview

Figure 2 gives an overview of the elements of our new sampling technique for the
particular example of sampling the product of an environment map and a BRDF.
First, we take a high-quality point distribution. Second, we perform a hierarchical
evaluation of the wavelet product. As this product is evaluated, the point distri-
bution is warped hierarchically according to the evaluated product. The wavelet
product is only completed for regions with one or more samples. The final output
is a sample distribution that exactly matches the product of the wavelets without
the need of evaluating the full product.
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4 Wavelets and Wavelet Products

In this section, we first review the Haar basis notation, since it is used throughout
the paper. Other bases can be used as well, but the product tends to get much more
complex. The wavelet product in two dimensions is described in Section 4.2. Fi-
nally, in Section 4.3, we present a new contribution: a generalized wavelet product,
which works in higher dimensions.

4.1 The Haar basis
For the normalized Haar basis, the one-dimensional mother scaling function, φ(x),
and the mother wavelet function, ψ(x), are defined as [19, 29]:

φ(x) :=
{

1, for 0≤ x < 1
0, otherwise , ψ(x) :=

 1, for 0≤ x < 1/2
−1, for 1/2≤ x < 1

0, otherwise.

The normalized scaling and wavelet basis functions are:

φ
l
t (x) := 2l/2

φ(2lx− t),

ψ
l
t (x) := 2l/2

ψ(2lx− t),

where l is the level and t the translation of the functions. The Haar basis is or-
thonormal, meaning that the inner product of two basis functions is zero except
when they are the same, in which case the inner product is one.
Expanding a one-dimensional image, H, in the Haar basis is described as:

H(x) = H0
0,0φ

0
0 +∑

l
∑

t
H l

t,1ψ
l
t = ∑

i
HiΨi, (1)

where the second subscript for the basis coefficients, H l
t, f , is zero for the scaling

function, and one for the wavelet basis functions. Thus, H0
0,0 is the scaling coef-

ficient, and H l
t,1 are the detail coefficients. The last step in Equation 1 shows the

shorthand notation that we will use, where l, t, and the second subscript, indicating
the type of basis function, have been “baked” into a single vector parameter i, as
done by Ng et al. [22]. Note that this notation generalizes to higher dimensions,
such as for two-dimensional images.
As can be seen in Equation 1, only a single scaling coefficient plus scaling function
are used. However, as shown in Figure 3, the scaling coefficients at other levels
are computed as a part of the decompression process. The scaling coefficient for a
certain level l and translation t holds the average of all pixels under the support of
the scaling function. This is a key observation, also used by Lalonde [16], that we
will use in Section 5. In the example figure, the two scaling coefficients for, e.g.,
level 1 are 8 and 2.
It should also be noted that a good approximation is obtained if only the n largest
coefficients in Equation 1 are kept. This provides lossy compression.
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Figure 3: The 1D image (upper, left) is: [8,10,9,5,0,0,4,4], and its unnormalized
(used here because it is simpler to display) Haar representation is: [5,3,1,−2,
−1,2,0,0]. The image is then reconstructed one level at a time as follows: [5]→
[5+3,5−3] = [8,2]→ [8+1,8−1,2−2,2+2] = [9,7,0,4] and so on.

4.2 Two-Dimensional Wavelet Product

As a side result in their research on triple products, Ng et al. [22] showed that for
a product G = E ·F of two-dimensional images, a wavelet representation of G =

∑GiΨi can be directly computed from the wavelet representations of E = ∑EjΨj
and F = ∑FkΨk, that is, without decompressing them. We will briefly review the
theory behind such wavelet products here.
The wavelet product we want to compute is described by:

G = E ·F ⇔∑GiΨi =
(
∑EjΨj

)
·
(
∑FkΨk

)
(2)

Taking the inner product of Ψi with the equation above yields the ith basis coeffi-
cient for G:

Gi = ∑
j

∑
k

CijkEjFk, where (3)

Cijk =
∫ ∫

Ψi(x)Ψj(x)Ψk(x)dx. (4)

The terms Cijk are called tripling coefficients, and the Ψ are two-dimensional basis
functions.

4.3 Generalized Wavelet Product

In this section, we will generalize Equation 4, in order to compute the ith basis
coefficient of the product, G = E ·F , where G and E have n dimensions each, and
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F has m dimensions, and 0 < m ≤ n. Equation 4 and the related Haar tripling
coefficient theorem [22] only work for n = m = 2. In the following, we assume
that the non-standard decomposition technique [29] is used.
For the generalized case, Equation 3 still holds, but the computation of tripling
coefficients (Equation 4) is different and depends on m and n as shown below.
Assume we have the following vectors x = (x1,x2, . . . ,xn), x = (x1,x2, . . . ,xm),
m≤ n, and that we want to compute the ith basis coefficient of G(x) = E(x) ·F(x).
The derivation can be found in Appendix A, and the main result is summarized in
Equation 5.

Cijk =
∫
· · ·
∫

︸ ︷︷ ︸
n

Ψi(x)Ψj(x)Ψk(x)dx

=
m

∏
q=1

c
α(ijk,q) ×

n

∏
p=m+1

∆
α(ij,p) (5)

Here, c
α(ijk,q) is used to denote a one-dimensional tripling coefficient, and the ∆

α(ij,p)
is, what we call, a one-dimensional non-standard coupling coefficient. The func-
tions α(ijk,q) and α(ij,q) pick out the relevant parameters from i, j, and k for the
q:th dimension. See again Appendix A for the details on notation, and on how to
compute the non-standard coupling coefficients for the Haar basis.
To be able to evaluate Equation 5, we need the following theorem.

One-dimensional Haar Tripling Coefficient Theorem The integral, c
α(ijk,q) , of

three one-dimensional Haar basis functions is non-zero if and only if the support
of the basis functions overlap and either of these two cases hold:

1. Two are identical basis functions, and the third basis function, at level l, is
either a scaling function sharing their level, or the third basis function is at
a strictly coarser level, l ⇒ c

α(ijk,q) =±2l/2.

2. There is one scaling function at level l1, and both the other basis functions
are at strictly coarser levels, l2 and l3 ⇒ c

α(ijk,q) =±2(l2+l3−l1)/2.

The proof of the theorem can be found in Appendix B. Applying this theorem
twice to the two-dimensional case yields the same results as the two-dimensional
Haar tripling coefficient theorem as expected.
Developing techniques for computing tripling coefficients in higher dimensions
in the same manner as Ng et al. [22] did for two dimensions appears to be time-
consuming as each dimension would probably need a separate derivation and the-
orem. Instead, we have presented the fundamental result in Equation 5 together
with the theorem above that allows for product computations in any dimensions
without decompressing the wavelet images. In summary, the generalized tripling

125



PAPER I: WAVELET IMPORTANCE SAMPLING:
EFFICIENTLY EVALUATING PRODUCTS OF COMPLEX FUNCTIONS

coefficients are computed as a simple product of one-dimensional tripling coef-
ficients, and it has the same sublinear properties as the triple product for lossy
approximations.

5 Importance Sampling

Assume an n-dimensional wavelet-compressed function:

H = ∑
i

HiΨi (6)

Sampling the wavelet requires computing the probabilities of different regions of
the wavelet tree. We define these recursively such that the probabilities of the child
regions at each wavelet node sum to 1. Using the scaling coefficients for a given
region, the child probablities are defined as:

Pl
i =

H l
i,0

∑t H l
t,0

(7)

The simplest method of importance sampling a wavelet-represented function would
be to treat the wavelet as a decision tree for hierarchical random thresholding. Pre-
vious work on sampling wavelets have used this method [16, 5]. Another technique
could be to ignore the hierarchical structure and randomly threshold according to
values of the squares at the finest level. However, neither technique produces high
quality point distributions, and thresholding according to the finest level requires
the computation of the full wavelet product. In the following section, we present
an alternative hierarchical warping algorithm that rapidly produces high-quality
multi-dimensional sample distributions without having to evaluate a full wavelet
product.

5.1 Hierarchical Warping
Our hierarchical warping technique transforms a uniformly distributed set of sam-
ples into a warped set of samples according to the wavelet tree. The warping
algorithm begins at the coarsest level and proceeds recursively through each level
of the wavelet hierarchy. One level of our warping algorithm in two dimensions is
illustrated in Figure 4.
When warping multi-dimensional points, we consider each dimension individu-
ally. Starting with the first dimension, we split the input point set into two halves.
For the following dimension, we split each of these new point sets into two new
sets, and so on. The process can be thought of as building a kD-tree of the sample
points.
To get the correct distribution when splitting the point set along a certain dimen-
sion, we need to compute the total probability for each half of that dimension.
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Figure 4: Warping input points (a) according to one level of a wavelet-compressed
importance map where the quadrant percentages (b) are derived from the wavelet
coefficients for the current region using Equation 7. The initial point set is first
partitioned into two rows with heights determined by their total probabilities (c)
and then scaled to fit within the rows (d). Finally, each row is individually divided
horizontally according to the probabilities of its child regions (e) and the points
are again scaled to fit within the regions to arrive at the warped points for that
level (f). The process repeats at step (a) for each child region using its allotted
point set as input.

These are simply the sum of the child region probabilities within each half, call
these probabilities Pl

i,x− and Pl
i,x+, where Pl

i,x+ = 1−Pl
i,x−. To perform a split, we

first divide the input sample points about a splitting plane positioned so that the
lower set contains Pl

i,x− fraction of the volume and the upper set contains Pl
i,x+.

Next, both of these point sets are scaled to fit back within the unit interval. The
procedure is then repeated independently on these two point sets, but along the
subsequent dimensions until all points have been warped along each dimension.
At the completion of one level of n-dimensional warping, the algorithm recurses
on all of the child regions which have at least one sample allocated. At each level
of the hierarchical process, the expected number of points in each child region is
proportional to the probability of that region. Hence, by induction, once recur-
sion terminates the overall distribution of the warped points follows the energy
distribution in the whole importance function.
Our warping algorithm is straightforward to use with low discrepancy points as
generated by quasi-Monte Carlo methods [23]. Figure 5 demonstrates the effect
that changing the input point set has on the quality of the output distribution. Con-
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Importance Maps Random Hammersley

Figure 5: Two example importance functions and 256 warped samples using uni-
form random points and Hammersley points. Our warping algorithm is able to
preserve the quality of input point set.

sequently, our warping technique allows for variance reduction during rendering
by using quasi-Monte Carlo sample points instead of uniform random points. This
is shown in Figure 6.

5.2 Rapidly Sampling Wavelet Products

It is important to note that our sample warping technique only relies on the scal-
ing coefficients at each level of the hierarchy. As shown in Section 4.2 and 4.3,
coefficients of a wavelet product can be computed efficiently on-the-fly. In the
Haar basis, it is trivial to reconstruct the necessary scaling coefficients from these
wavelet coefficients. Hence, it is possible to rapidly warp points according to a
wavelet product by computing product coefficients as needed.
In fact, our warping algorithm works particularly well for wavelet products be-
cause if no samples are placed in a particular region we do not have to further
evaluate the product for that area. This gives significant savings because it elimi-
nates the need to compute coefficients for regions that are not being sampled. This
is particularly true in our context where, for example, a highly specular BRDF is
typically close to zero for a large portion of the integration domain.

6 Rendering

In this section, we will describe the application of wavelet-based importance sam-
pling of products to the rendering of scenes with general BRDFs under complex
direct illumination. The equation for evaluating direct illumination (derived from
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Figure 6: Variance as a function of the number of samples used for rendering a
simple scene illuminated by St. Peters cathedral. On the right are images ren-
dered using 32 samples per pixel and their corresponding variance images. The
warping scheme tends to preserve properties of the initial point distribution, hence
the variance with Hammersley points is significantly lower than with uniform ran-
dom points. Using 64 Hammersley points results in less variance than using 512
random points.

the rendering equation [12]), is:

L(x,ωo)=
∫

Ω

fr(x,ωi,ωo)Li(x,ωi)v(x,ωi)cosθidωi.

In our implementation, we are considering illumination Li(x,ωi) provided by a
high-dynamic range environment map, and we fold the cosine term into the BRDF
and work with the reflectivity, ρ(x,ωi,ωo). Therefore, a Monte Carlo estimator
for the above integral can be written as:

L̄(x,ωo)=
1
N

N

∑
i=1

ρ(x,ωi,ωo)Li(x,ωi)v(x,ωi)

p(ωi)
. (8)

By representing the BRDF and the environment map as wavelets, we can distribute
samples according to their product, H = ∑HiΨi. The probability associated with
a sample ωi is expressed in terms of wavelet scaling coefficients as:

p(ωi) = c
H l

t,0

H0
0,0

, (9)

where H l
t,0 is the scaling coefficient for the wavelet square in which the sample

lies, and c = 2nl/2 is a constant derived from the normalized Haar wavelet decom-
position, assuming n-dimensional products.
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Unbiased vs Biased Rendering We could use equation 8 to directly render an
unbiased image by sampling the BRDF, environment map, visibility and divide by
the sample probabilities. However, by accepting a small bias introduced by the
wavelet approximation:

H l
t,0 ≈ ρ(x,ωi,ωo)Li(x,ωi)/c, (10)

the rendering can be made significantly less noisy since two of the terms, which
are a major source of variance, cancel out in the division. Combining Equation 10
with Equations 8 and 9, we arrive at:

L̄(x,ωo)≈
H0

0,0

N

N

∑
i=1

v(x,ωi). (11)

The scaling coefficient H0
0,0 is already available, as it was needed during the warp-

ing step, and we are using the fact that it represents the pre-integrated value of the
BRDF multiplied by the environment map. Thus, rendering is reduced to simple
sampling of visibility. Areas with no occlusion will be noise-free since the pre-
integrated value is known from the wavelet multiplication. In shadows, noise is
inevitable, but since the samples are distributed according to the combination of
the BRDF and the environment map, the sampling quickly converges towards a
noise-free result.

6.1 2D Wavelet Importance Sampling
We represent a general 4D BRDF reparameterized about the reflected direction as
in [26]. This is stored as a 2D tabulation of 2D wavelets. Since the environment
map has to be represented in the same coordinate space as the BRDF in order to
perform a wavelet product, we replicate the 2D environment re-centered about an
array of 2D directions. We found this representation more appropriate than having
a 6D BRDF and a 2D environment map as in [22], since it stores less redundant
data. Furthermore, most scenes contain many BRDFs but typically only one or a
few environment maps.
With our representation, two of the dimensions overlap between the environment
map and the BRDF, allowing us to perform wavelet importance sampling on the
product in 2D. We represent functions on the sphere in 2D as simple spherical
maps sampled over (θ ,φ), but other parameterizations, such as cube maps, would
also work. Note that if a non-uniform parameterization is used, the solid angle
each pixel represents must be taken into account. To prevent aliasing, we use
super-sampling when creating the wavelet representations.
To get a smooth result, we bilinearly interpolate between the four nearest wavelets
in both the environment map and the BRDF. Compression is achieved by discard-
ing wavelet coefficients below a certain threshold. We handle color by storing
wavelet coefficients as RGB triplets instead of single values. When sampling ac-
cording to RGB wavelets, we distribute samples according to the luminance and
multiply each sampled value by the normalized color.
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6. RENDERING

Figure 7: The Buddha model in Grace cathedral rendered with different measured
BRDFs. From left to right: latex fabric, silver paint, gold, blue metallic, brown
wax, blue acrylic, green metallic, and copper. Wavelet importance sampling was
performed on-the-fly, using 30 Hammersley samples per pixel. The BRDFs were
stored with a wavelet sparsity of around 1.5%. The images were rendered in 53–66
seconds at resolution 400×800.

6.2 4D Wavelet Importance Sampling

In addition to representing BRDFs as tabulated 2D wavelets, we have done some
initial experiments with a true 4D×2D wavelet product using the theory in Sec-
tion 4.3. Here, we store the environment map as a regular 2D map, and work
with simple rotationally symmetric BRDFs represented as 4D functions in world-
space. The first two dimensions specify the central BRDF direction, and the last
two dimensions represent outgoing light direction.
This technique allows us to distribute 4D sample points according to the wavelet
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product as a preprocess, and eliminates the need to perform on-the-fly wavelet
products during rendering. After warping, the wavelets need no longer to be kept
in memory, and the warped 4D points are stored in a kD-tree with 2D keys and 2D
values per key for efficient range searching during rendering. At render time, we
find the n closest sample points in the first two dimensions, and use the last two
dimensions of these sample points as world-space light sample directions. We also
apply a weighting kernel to the chosen samples based on the deviation from the
actual BRDF direction.

7 Results

This section demonstrates our results of the new sampling technique. All results
have been generated on a 3.4GHz PC.
The first example, shown in Figure 7, is a rendering of a Buddha model with dif-
ferent measured BRDFs illuminated by a high-dynamic range environment map.
From left to right, the selected BRDFs change from mostly diffuse to mostly specu-
lar. All images have been rendered with 30 visibility samples based on the product
of the BRDF and the environment map. Note that the full range of BRDFs are
practically noise-free, even with this low number of samples.
Previous work on rendering objects illuminated by high-dynamic range environ-
ment maps have focused on the sampling of either the environment map or the
BRDF. In Figure 8 and 9, we compare our method to structured importance sam-
pling [1]. We optimized the amount of jittering in structured importance sampling
to reduce banding in the shadow, while avoiding excessive noise in the glossy
reflection. We also compare our method to wavelet-based BRDF importance sam-
pling, i.e., not using the wavelet product.
The wavelet product sampling technique produces images with low levels of noise
at just 10–30 samples, while structured importance sampling needs 100 or more
samples to produce similar results. In particularly difficult cases, even 1000 sam-
ples are not enough to accurately capture glossy effects (see Figure 10). BRDF im-
portance sampling performs relatively well for the glossy Buddha, but very poorly
for the diffuse floor, giving an overall quality worse than that of structured im-
portance sampling. Performing the wavelet product sampling on-the-fly obviously
adds some overhead. With our current implementation it is only possible to use ap-
proximately half the number of samples for equal rendering times. As the number
of samples grows, this difference becomes smaller.
Figure 11 shows the effect of using a sparse wavelet representation of the BRDF.
We have found that for most measured BRDFs, a wavelet resolution of 64× 64,
and about 2% of the wavelet coefficients are enough to produce renderings in-
distinguishable from reference images. This combined with reparameterization,
allows us to store general BRDFs in around 300kB (resolution 16×16×64×64)
or in higher resolution (32×32×128×128) using 5MB. The memory usage could
be further optimized, but it is not a major obstacle at this point. The computation
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Figure 8: Wavelet importance sampling of the product compared to structured
importance sampling of the environment map (Grace cathedral) and to wavelet-
based BRDF importance sampling with varying number of samples. From left
to right: 1, 3, 10, 30, 60, 100 samples per pixel. The larger image on the top
left represents ground truth and was rendered using brute force ray tracing. The
light directions generated by structured importance sampling were jittered to avoid
banding in the shadows. Note that structured importance sampling does not work
well with very few number of samples, whereas wavelet product sampling quickly
gives a good approximation. BRDF importance sampling works relatively well
for the glossy Buddha, but very poorly for the diffuse floor (see Figure 9). The
rendering times for structured importance sampling were between 4–103 seconds,
and for wavelet product sampling between 15–205 seconds, using a wavelet res-
olution of 64×64. The variance plot in the upper right corner clearly shows that
our algorithm outperforms the other two.
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Figure 9: The diffuse floor from the scene shown in Figure 8, rendered using
BRDF importance sampling, structured importance sampling of the environment,
and wavelet importance sampling, respectively. Sampling according to the BRDF
alone gives little guidance for diffuse materials, and taking the lighting into ac-
count is critical for fast convergence, as the bottom two rows show.

time for creating the BRDFs is a few minutes, and is not included in the rendering
times. For the pre-rotated lighting environment, we use a denser sampling of 644

or 1284, as the lighting is typically more rapidly varying. In our implementation,
the wavelet environment maps can take up to a couple of hours to create, mainly
due to extensive super-sampling.
Figure 12 compares a dragon scene rendered using sample points warped on-the-
fly by a tabulated set of 2D wavelet products and the same scene rendered using
sample points warped as a pre-process by a full 4D×2D wavelet product. Both
versions used 30 samples per pixel, but since no wavelet products were evaluated
during render time with the 4D version, it rendered a factor 2.1 times faster.
Figure 13 shows a complex scene with 12 different measured BRDFs applied to
two car models, illuminated by the eucalyptus grove light probe. This shows that
with our technique, it is possible to render complex scenes under realistic lighting
conditions with very few number of samples. The sampling handles highly glossy
materials equally well as more diffuse ones.

8 Conclusions and Future Work

We have presented a new general tool for importance sampling products of com-
plex functions. Our technique is not limited to a specific subset of functions, nor
is it limited by the dimensionality of the functions. As an example we used the
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Structured 300 Structured 1000

Reference Wavelet product 100

Figure 10: Part of the Buddha rendered using structured importance sampling
(without jittering) with 300 samples, 1000 samples, and wavelet sampling of the
product using 100 samples per pixel and a wavelet resolution of 128×128. Even
with a large number of samples, structured importance sampling fails to capture
some of the more subtle details in the lighting. See for example the area between
the model’s feet.

evaluation of the rendering equation, considering general BRDFs under direct il-
lumination by an environment map. Wavelet importance sampling of the BRDF
times the environment map proved to give superior sample distributions, enabling
us to render essentially noise-free images using as few as 30–100 samples per
pixel.
There are many possible applications for wavelet importance sampling of products.
For example, our technique could be used for importance sampling of 4D surface
light fields [21, 17] multiplied by general BRDFs, or even by 6D bidirectional
texture functions [8]. Another new application is importance sampling over the
time domain for rendering animations more efficiently. For example, the product
of a time-varying environment map and a BRDF could be used to generate samples
that are well distributed in both time and space. We are confident our work will be
useful in a wide variety of problems involving importance sampling of complex
functions.
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0.5% 1.0% 2.0% 5.0%

Figure 11: Buddha with a measured BRDF (oxidized steel), rendered with dif-
ferent levels of BRDF compression. From left to right: 0.5%, 1%, 2%, and 5%
sparsity. In practice, a sparsity of 1%–2% produces good results for a wide vari-
ety of materials.

Figure 12: Glossy dragon in Galileo’s tomb rendered using 30 samples per pixel.
The left image was rendered using on-the-fly 2D wavelet products and the right
image used 4D wavelet products as a pre-process. The right image rendered 2.1
times as fast.

In the future, we are planning to apply wavelet importance sampling to some of
these problems, and further investigate the effect of different parameters on the
result. A deeper more theoretical analysis of how the properties of the initial point
distribution are affected by the warping would be useful.
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Figure 13: Scene with 12 different measured BRDFs illuminated by the eucalyptus
grove at UC Berkeley. The product of environment map and BRDF was sampled
on-the-fly using 10 samples per pixel. The image was rendered in 804 seconds
using ray tracing, at a resolution of 4000×1600.
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A Multi-Dimensional Wavelet Product

In this appendix, we will show how to derive Equation 5. Recall that we want to
compute the ith basis coefficient of the product, G = E ·F , where G and E have n
dimensions each, and F has m dimensions, and 0 < m ≤ n. Furthermore, assume
we have the following vectors x = (x1,x2, . . . ,xn), x = (x1,x2, . . . ,xm), m≤ n. For
an orthonormal basis, the ith basis coefficient of G(x) = E(x) ·F(x) is computed
by projecting G onto the ith basis function:

Gi =
∫
· · ·
∫

︸ ︷︷ ︸
n

Ψi(x)G(x)dx =
∫
· · ·
∫

Ψi(x)E(x)F(x)dx

=
∫
· · ·
∫

Ψi(x)

(
∑

j
EjΨj(x)

)(
∑
k

FkΨk(x)

)
dx

= ∑
j

∑
k

(
EjFk

∫
· · ·
∫

Ψi(x)Ψj(x)Ψk(x)dx
)

= ∑
j

∑
k

CijkEjFk, where

Cijk =
∫
· · ·
∫

︸ ︷︷ ︸
n

Ψi(x)Ψj(x)Ψk(x)dx. (12)

Note that Ψi and Ψj are n-dimensional basis functions, and Ψk is an m-dimensional
basis function. The above reasoning works for an arbitrary orthonormal basis even
though the focus of our work is on the normalized Haar basis. A crucial insight to
generalizing Haar wavelet products to higher dimensions is that higher dimension
Haar basis functions are separable. For example, in the two-dimensional case this
means:

Ψi = Ψ
l
t,f(x1,x2) =


φ l

t1(x1)ψ
l
t2(x2), if f = 01,

ψ l
t1(x1)φ

l
t2(x2), if f = 10,

ψ l
t1(x1)ψ

l
t2(x2), if f = 11.

(13)

Here, the index i includes all information from l, t, and f. Also, note that t= (t1, t2)
is a vector of translations, and f = ( f1, f2) is an 2-bit vector that determines which
combination of basis functions should be used. For n dimensions, this general-
izes to vectors of n elements. A n-dimensional image, H, is then described as
H = ∑i HiΨi (see Equation 1). To simplify notation, we introduce the following
function:

χ
α(i,q)(xq) :=

{
φ l

tq(xq), if fq = 0,
ψ l

tq(xq), if fq = 1,
(14)

where α(i,q) = (l, tq, fq), i.e., it picks out the parameters related to the q:th dimen-
sion of i. Thus, our shorthand for Equation 13 becomes Ψi(x1,x2) = χ

α(i,1)(x1)

χ
α(i,2)(x2). This reasoning generalizes to higher dimensions as well.
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The n-dimensional Haar basis functions can be written as products of 1D scaling or
wavelet functions: Ψi(x) = ∏

n
q=1 χ

α(i,q)(xq), where q is simply a dimension index.
This separability property is used below to prove that the tripling coefficient from
Equation 12 can be computed as a product of one-dimensional integrals:

Cijk =
∫
· · ·
∫

︸ ︷︷ ︸
n

Ψi(x)Ψj(x)Ψk(x)dx

=
m

∏
q=1

∫ χ
α(i,q)(xq)χα(j,q)(xq)χα(k,q)(xq)dxq︸ ︷︷ ︸

1D tripling coefficient

×
n

∏
p=m+1

∫ χ
α(i,p)(xp)χα(j,p)(xp)dxp︸ ︷︷ ︸

1D non-standard coupling coefficient


=

m

∏
q=1

c
α(ijk,q) ×

n

∏
p=m+1

∆
α(ij,p) . (15)

In the last line in the equation above, c
α(ijk,q) is used to denote a one-dimensional

tripling coefficient, and ∆
α(ij,p) is, what we call, a one-dimensional non-standard

coupling coefficient. Similar to before, the functions α(ijk,q) and α(ij,q) pick
out the relevant parameters from i, j, and k for the q:th dimension. For the Haar
basis, ∆

α(ij,p) = 1 if the corresponding two basis functions, identified by α(i, p) and
α(j, p), are exactly the same1. If the two basis functions are overlapping and the
finest of the basis functions is a scaling function, then ∆

α(ij,p) =±2(l1−l2)/2, where
l1 and l2 are the levels of the two involved basis functions and l1 < l2. The sign is
determined by the signs of the basis functions where they overlap.

B Proof: 1D Haar Tripling Coefficient Theorem
For this proof, we assume that the normalized Haar basis is used, and for that the
wavelet basis functions have vanishing integrals. In the following, support of the
three basis functions must overlap, otherwise c

α(ijk,q) = 0.

Case 1: All basis functions at the same level Since the support of all basis func-
tions at the same level are disjoint, the three basis functions must share the same
translation, t. Due to orthonormality, the product of two identical basis functions
must be a constant function, 2l/2× 2l/2 = 2l with the same support as the terms
in the product. The integral of a constant function times the third basis function
is zero if the third basis function is a wavelet function due to vanishing integrals
of the wavelets. If the third basis function is a scaling function, thus with height

1This is the same case as for the standard coupling coefficient, i.e., a Kronecker delta.
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2l/2, then c
α(ijk,q) = 2l × 2l/2× 2−l = 2l/2, where l is the level of the three basis

functions and 2−l is the width of the basis functions.

Case 2: Exactly two basis functions at the same level We first assume that
the basis functions sharing level are at a finer level than the third basis function.
The third function will therefore be constant over the support of the two functions
sharing level. Thus, the two functions sharing level need to be exactly the same
due to orthonormality. Using similar reasoning as for case 1, the tripling coefficient
becomes c

α(ijk,q) =±2l/2, where l is the level of the third basis function (at a coarser
level), and the sign is determined by the sign of the third basis function where the
finer functions overlap. In all other cases, c

α(ijk,q) = 0.
Next, we assume that the basis functions sharing level are at a coarser level than
the third basis function. The product of the two coarser basis functions will be
constant over the support of the finer basis function. Hence, due to vanishing
integrals, c

α(ijk,q) = 0, if the third basis function is a wavelet function. If the third

basis function is a scaling function, then c
α(ijk,q) = ±2l1/2× 2l2/2× 2l3/2× 2−l1 =

±2(l2+l3−l1)/2, where l1 is the finest level, and l2 = l3 is the level of the basis
functions sharing level.

Case 3: All three basis functions at different levels Due to orthonormality, the
product of the two coarsest basis functions must be a constant function ±2l2/2×
2l3/2 over the support of the finest basis function. Again, due to vanishing integrals,
c

α(ijk,q) = 0 if the basis function at the finest level is a wavelet function. Using

similar reasoning to case 2, c
α(ijk,q) =±2l1/2×2l2/2×2l3/2×2−l1 =±2(l2+l3−l1)/2

when the basis function at the finest level is a scaling function. This concludes the
proof.
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ABSTRACT

We present a practical algorithm for sampling the product of envi-
ronment map lighting and surface reflectance. Our method builds on
wavelet-based importance sampling, but has a number of important
advantages over previous methods. Most importantly, we avoid using
precomputed reflectance functions by sampling the BRDF on-the-fly.
Hence, all types of materials can be handled, including anisotropic
and spatially varying BRDFs, as well as procedural shaders. This
also opens up for using very high resolution, uncompressed, environ-
ment maps. Our results show that this gives a significant reduction
of variance compared to using lower resolution approximations. In
addition, we study the wavelet product, and present a faster algorithm
geared for sampling purposes. For our application, the computations
are reduced to a simple quadtree-based multiplication. We build the
BRDF approximation and evaluate the product in a single tree traver-
sal, which makes the algorithm both faster and more flexible than pre-
vious methods.
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1. INTRODUCTION

1 Introduction

Despite more than thirty years of research, faster and more flexible methods for
solving the rendering equation [14] are needed to meet the demands of the in-
dustry. For high quality images, the interaction of light and materials must be
accurately simulated. To obtain realistic results, the incident lighting at a real set
can be captured in a high-dynamic range image, and used for lighting the scene [8].
Although many different methods have been proposed, high quality rendering un-
der environment map lighting is still a difficult problem, especially in scenes with
realistic materials.
We focus on computing direct illumination using Monte Carlo integration, i.e., the
integral of the rendering equation is estimated using stochastic point sampling.
The integral involves a product over incident lighting, surface reflectance, and
visibility. Too few samples or a poor sampling distribution results in undesired
noise. With importance sampling, noise is reduced by sampling important direc-
tions more densely. This is, however, difficult as some parts of the integrand are
unknown.
Recently, several methods for sampling according to the product of lighting and
BRDF have been proposed. Clarberg et al. [5] presented a general framework for
wavelet-based importance sampling of products. Our algorithm is inspired by their
work, but we remove most of its limitations. In two stage importance sampling [7],
heuristics are used to build a BRDF approximation per pixel. In the same spirit,
we draw samples samples from the BRDF and build a hierarchical representation
on-the-fly, and effectively avoid storing tabulated BRDFs. This is important, as
many real world materials exhibit spatially varying reflectance (see Figure 1), and
in the industry, complex procedural shaders and shading models with many pa-
rameters are common. The high dimensionality makes these materials expensive
to precompute and store.
Importance sampling using hierarchical warping only requires the scaling coeffi-
cients, or local averages, of the product. Therefore, we first simplify the wavelet
product to directly compute the product averages from the individual wavelet co-
efficients. Then, we show that in our application, we can further reduce the com-
plexity. We build the BRDF approximation hierarchically, and at the same time,
compute the product by multiplying leaf nodes and propagate the results up. Both
these steps are performed in a single tree traversal, which makes our algorithm
very fast.
By sampling in world space, it is sufficient to use a single two-dimensional en-
vironment map, which is stored as a mipmap hierarchy [34]. This enables very
high resolution, uncompressed, lighting (e.g., 4k×4k resolution), with practically
no precomputation. The key contributions are:

I We build a hierarchical approximation of the BRDF per pixel, based on a
small number of point samples. Any shader that supports BRDF importance
sampling can be used, as we do not rely on heuristics [7].
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I A fast quadtree-based method for computing the product is presented. Com-
pared to wavelet importance sampling [5], our algorithm is faster, avoids
precomputation, and supports high resolution lighting.

I We also present an optimized wavelet product, which can be useful in many
other applications.

I Our prototype implementation compares favorably to previous state-of-the-
art methods, and presents a viable alternative for production rendering, where
precomputation of BRDFs is infeasible.

2 Related Work

At a high level, most algorithms for photo-realistic rendering can be classified
as either deterministic, stochastic, or a combination of the two. For a general
overview, we refer to popular books on the subject [21, 11]. Veach [28] gives an
excellent overview of Monte Carlo methods for light transport problems. In the
following, we limit our discussion to methods for computing the direct illumina-
tion.
Importance sampling reduces the variance by taking known information about the
integrand into account to guide the sampling efforts. High-intensity regions have a
larger impact on the result, and hence more samples should be placed here. There
are several algorithms that sample according to only one of the involved functions,
e.g., environment map sampling [1, 20], and BRDF importance sampling [24, 33,
2, 18, 6, 17]. Work has also been done on linearly combining estimators from
multiple importance functions [29].
Recent methods have approached the problem of sampling the product of light-
ing and surface reflectance. One approach is to first draw samples from only one
of the terms, and then adjust these samples to (approximately) follow the product
distribution. This can be done by importance resampling [4, 27], where the ini-
tial samples are assigned weights and resampled into a smaller set, or by rejection
sampling [4], where unimportant samples are discarded. Similar to our algorithm,
these methods supports spatially varying BRDFs. However, they may be ineffi-
cient when both the lighting and material have complex high-frequency features,
since many samples will be useless.
In wavelet importance sampling [5], the lighting and BRDF are stored as sparse
Haar wavelets, and multiplied on-the-fly using the wavelet product [19]. The prod-
uct is sampled by hierarchically transforming a uniform point set (e.g., Halton
points) into the desired distribution, using a warping process. The resulting sam-
ples are of high quality, but due to memory constraints, their method is limited
to relatively low resolution lighting. In addition, the use of tabulated materials
is a severe restriction in many applications. Cline et al. [7] remove some of the
limitations by hierarchically splitting the environment map based on peaks in the
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Figure 1: Examples of procedural shaders with varying diffuse, specular, and
shininess coefficients, rendered with our algorithm. Methods using precomputed
BRDFs cannot easily handle these types of materials, as the high dimensional-
ity would lead to long precomputation times and excessive memory usage. Our
method samples the BRDF and builds the importance function on-the-fly, thus sup-
porting all kinds of spatially varying materials without precomputation.

BRDF. The product is approximated using summed area tables, and sampled with
the previously mentioned warping.
A number of other methods exist, which are not directly based on importance sam-
pling. Ghosh and Heidrich [12] exploit visibility information to lower the variance.
They use bidirectional importance sampling to find partially occluded pixels, and
then apply Metropolis-Hastings mutations to reduce the noise in these regions.
Donikian et al. [9] use adaptive importance sampling. The image is divided into
small blocks, and for each block, the sampling density and a pixel estimate are
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updated until convergence is achieved. The lightcuts framework [31, 30] splits the
rendering integrals into sets of gather points and light points. A product traver-
sal of these sets together with conservative termination criteria make for efficient
rendering. In the same spirit, Hašan et al. [13] formulate the problem as a many-
light problem. They sparsely sample the transfer matrix on the GPU, and obtain
impressive results.

3 Algorithmic Overview

The outgoing radiance, Lo, in a direction ωo at a point in the scene, is given by the
integral over all incident directions, ω , as follows [14]:

Lo(ωo) =
∫

L(ω)B(ωo,ω)V (ω)dω, (1)

where L is the incident illumination by an environment map, B is the reflectance
function (see Equation 13), and V is a binary visibility term. The unbiased Monte
Carlo estimator, L̂o, is given by:

L̂o =
1
N

N

∑
i=1

L(ωi)B(ωi)V (ωi)

p(ωi)
, (2)

where N is the number of samples, and ωi the sampling directions. For clarity, we
have omitted ωo.
In our algorithm, we build a piecewise constant approximation, B̃, of the re-
flectance function on-the-fly, and use the product with the exact lighting, L · B̃,
as our importance function. Thus, the probability density function is equal to:

p(ω) =
L(ω)B̃(ω)

Lns
, (3)

where Lns =
∫

L(ω)B̃(ω)dω . The normalization by Lns is necessary since, per
definition,

∫
p(ω)dω = 1. The value of Lns is given by the root node in hierarchy

of the product L · B̃. When working with wavelets, this is equal to the first scaling
coefficient of the wavelet product. Combining Equations 2 and 3, we arrive at:

L̂o =
Lns

N

N

∑
i=1

B(ωi)V (ωi)

B̃(ωi)
, (4)

As we can see, the only remaining variance comes from the visibility, and the
relative inaccuracy of our BRDF approximation, B(ω)/B̃(ω). The main differ-
ence to wavelet importance sampling [5], is that we use the exact lighting in-
stead of a wavelet approximation, L̃. Hence, we avoid the variance introduced
by L(ω)/L̃(ω), which can be significant with high-resolution environment maps.
We also build B̃ on-the-fly, thereby removing the requirement of precomputed ma-
terials.
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Figure 2: The sample warping algorithm by Clarberg et al. [5]. A uniform point
set (left) is split according to the relative intensity of each sub-quad, and the points
rescaled into the desired distribution (right). When repeated hierarchically, we get
a simple algorithm for sampling any importance function with a quadtree struc-
ture.

Equation 4 assumes all functions are scalar-valued. In practice, the lighting and
the reflectance are usually in RGB color. We perform all computations on the three
color channels, but use the luminance of the result as importance function. This is
standard practice, but it should be noted that it adds some chrominance noise.

4 Fast Product Evaluation and Sampling

In wavelet importance sampling [5], the individual importance functions are stored
as compressed Haar wavelets, and multiplied in the wavelet domain [19]. How-
ever, for importance sampling using sample warping (Figure 2), all we need are the
averages of the quadtree nodes of the product. It is unnecessary to first compute
the wavelet coefficients, and then reconstruct the averages.
This is a key observation, which we exploit to make the computations faster. We
introduce two novel algorithms; an optimized wavelet product (Section 4.1) and
a quadtree-based product (Section 4.2). All results were generated using the lat-
ter, so the reader may want to skim through the next section. Please refer to Ap-
pendix A and B for an introduction to wavelets and an overview of the terminology.

4.1 Fast Wavelet Product

Let q=〈l,u,v〉 be a quad in an image F(x), as illustrated on the right. We want to
compute the average over q, when F is a product of two images: F =G ·H. We
call this value the parent sum of F , or psumF(q) for short, following the convention
of Ng et al. [19]. The terms psum and “average” are used interchangeably, as they
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represent the same thing.
The psum of a node at 〈l,u,v〉 is the sum of the coefficients of
all overlapping basis functions at strictly coarser scales, k < l,
scaled by ±2k. The sign depends on in which quadrant of
the basis function that 〈l,u,v〉 lies. We note that psumF(q) can
also be computed by integrating over G ·H restricted to q. We
define the restricted basis, Ψ〈q〉, of a node q as:

Ψ
〈q〉 =

{
φ

l
uv,ψk1 , . . . ,ψkN

}
, (5)

where k is the set of indices of all wavelet basis functions that are under the support
of q, and exist at the same or finer scales. The basis Ψ〈q〉 is orthonormal due to
the properties of the Haar basis, and represents a subtree of basis functions with
an extra scaling function appended to its root, see Figure 3. The expansion of an
image F(x) in the basis Ψ〈q〉 represents the restriction of F to q:

F |q = ∑
i

f 〈q〉i Ψ
〈q〉
i (x) =

{
F(x), if x ∈ q,
0, if x /∈ q, (6)

f 〈q〉 =
{

2−l psumF(q), fk1 , . . . , fkN

}
, (7)

where the scaling coefficient is equal to the node average (psum) scaled by 2−l ,
and the detail coefficients are the same as the corresponding coefficients of the
complete wavelet decomposition (Equation 16).
When F is a product of two functions, i.e., F = G ·H, we can compute the average
over q by integrating over the restrictions of G and H, and obtain the following:

psumF(q) =
1

Aq

∫
G|q ·H|q dx

=
1

Aq

∫ (
∑

i
g〈q〉i Ψ

〈q〉
i

)(
∑

j
h〈q〉j Ψ

〈q〉
j

)
dx

=
1

Aq
∑

i
∑

j
g〈q〉i h〈q〉j

∫
Ψ
〈q〉
i Ψ

〈q〉
j dx

=
1

Aq
∑

j
g〈q〉j h〈q〉j , (8)

due to orthonormality. By inserting the area of q, which is Aq = 2−2l , and the
coefficients (Equation 7), we arrive at:

psumF(q) = psumG(q) · psumH(q)+22l
N

∑
i=1

gkihki︸ ︷︷ ︸
csumGH (q)

(9)
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Figure 3: On the left, a complete 1D wavelet basis tree, and on the right, a re-
stricted basis consisting of a subtree of basis functions plus a scaling function. In
two dimensions, each node has three basis functions and four children.

Here, we have introduced the notation csumGH(q) for the sum of the product of all
coefficients in G and H, for which the wavelet functions are identical and exist
under the support of q, at the same or finer scales. We call this the children sum of
the product G ·H.
From a practical point of view, Equation 9 greatly simplifies the evaluation of the
wavelet product. Given two wavelet trees, we can traverse them in parallel and
precompute all csum values in a single tree traversal. As only coefficients for iden-
tical basis functions contribute, the recursion is terminated whenever a leaf node
is found in one of the two trees. After computing a tree of csum values, impor-
tance sampling is reduced to hierarchically evaluating Equation 9 and warping the
samples according to the intensities at each level.

4.2 Bottom-up Quadtree Product
In this section, we look at the problem of multiplying two quadtree representations,
G and H. That is, the psum values are known, but not the wavelet coefficients. Our
application presented in Section 5 is an important example of a case where this is
useful. We build a quadtree approximation of the BRDF on-the-fly, and we wish
to multiply it with an environment mipmap hierarchy, in order to sample the result.
First, we note that for all leaf nodes in G and H, we can compute the product
average by simply multiplying the individual averages, as follows:

psumF(q) = psumG(q) · psumH(q), (10)

where q is a leaf node in G and/or H. This follows from the fact that a quadtree
leaf node is per definition constant. Hence, all its wavelet coefficients under the
support of q are zero, and we can drop the csumGH term in Equation 9. Similarly, in
all of H’s children nodes, qc, under the support of a leaf node q in G, the product
is given by:

psumF(qc) = psumG(q) · psumH(qc), (11)
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and vice versa. Thus, we can multiply a leaf node with any other node under its
support, to get the corresponding product average.
For interior nodes, Equation 10 does not hold. However, the product average of
a node, q, can always be expressed as the average of its four immediate children
nodes in the product tree, as follows:

psumF(q) =
1
4

4

∑
i=1

psumF(q+ i), (12)

where we assume q+ i denotes the ith child of q. This leads to a simple bottom-up
algorithm for computing the product quadtree. We traverse the trees of G and H
in parallel, and for all leaves, we compute the product using Equation 10, and then
propagate the result up using Equation 12. This can be done in a single depth-first
traversal.
Once the product tree is setup, we sample it using hierarchical sample warping [5],
starting at its root. When a leaf is reached, we proceed by evaluating Equation 11
only for the nodes where it is needed, i.e., for nodes with one or more samples.
This algorithm gives an efficient way to sample the product of two quadtree rep-
resentations, and in addition, we completely avoid the added complexity of using
wavelets. Pseudo-code and more details on our application are given in the follow-
ing section.

5 Implementation

Next, we discuss the implementation of our algorithm for direct illumination under
environment map lighting.

5.1 Sampling in World Space
A fundamental limitation of the wavelet product and the quadtree product, is that
the functions must be defined over the same domain. Environment map lighting is
given in world space, while a general BRDF is a 4D function in local space. Re-
parameterization to world space gives a 7D function (or 6D for isotropic materials),
which is clearly impractical. Clarberg et al. [5] solve the problem by pre-rotating
the lighting into local space for a dense set of directions. This limits their algorithm
to low resolution lighting, e.g., 1282 or 2562 (∼1GB compressed).
Using a low resolution approximation of the lighting to guide the sampling, intro-
duces a substantial amount of noise when a higher resolution environment map is
used, as we will see in Section 6. For realistic high-frequency lighting, environ-
ment maps of 1k×1k to 4k×4k resolution are common. As pre-rotation of such
large maps is currently infeasible due to memory usage and precomputation time,
importance sampling must be performed directly in world space. This also requires
the BRDF to be in world space.
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One option is to rotate a 2D slice of the BRDF into world space on-the-fly using
wavelet rotation matrices [32]. This can be made fast enough by exploiting the
sparsity of the matrices and the BRDF, but the memory is still a limiting factor. For
example, with 642 distinct rotations, and a source and target resolution of 642, the
rotation matrices require about 2GB. We have tried this approach, but the results
were satisfactory only for diffuse materials. For glossy BRDFs, the misalignment
of the specular peak due to the discretization introduces a large amount of noise.
The solution we settled for, is instead to build a BRDF approximation in world
space on-the-fly, based on a small number of point samples. The approximation is
multiplied by the environment map using the fast quadtree-based product, and the
result is sampled using warping.

5.2 Environment Map
The environment map is stored as a single uncompressed high resolution image,
together with its mipmap hierarchy. Each pixel in the hierarchy stores the average
over its four immediate children pixels. With the quadtree-based product (Sec-
tion 4.2), we do not need to store the wavelet coefficients. Hence, the memory
requirement is only 33% larger than the environment map itself. As we do not
rely on tabulated materials, the total setup time is reduced to computing a single
mipmap hierarchy. For a 4k×4k map, this takes less than one second.
To represent directions on the sphere, we use a mapping from the sphere to a
single quad, which is based on the octahedral map [22], but with an area-preserving
parameterization. The details are given in Appendix C.

5.3 BRDF Approximation
For a specific viewing direction, ωo, the bidirectional reflectance distribution func-
tion (BRDF) is a two-dimensional function over all incident directions, ω . We
define the local reflectance function, B, as the BRDF, fr, times the cosine term in
world space, as follows:

B(ω) =

{
fr(ωo,ω)(ω ·n), ω ·n > 0,

0, ω ·n≤ 0,
(13)

where n is the surface normal. Assume we have a set of point samples, S =
{B(ω1), . . . ,B(ωN)}, taken from the reflectance function. In the next section, we
will describe how S is chosen. The problem is to reconstruct a continuous surface,
B̃, which is a reasonable approximation to B. This is a scattered data interpolation
problem, and ideally, we would like to use higher-order techniques. However, in
our framework, we are limited to a piecewise constant quadtree approximation.
We build a quadtree by recursively dividing the set of samples, S, until only one
sample per node remains. This is illustrated in Figure 4. Each internal node stores
the average (brdf_psum) of its four children, and empty leaf nodes are assigned
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Figure 4: Based on a set of point samples mapped onto the unit square (left), we
build a quadtree approximation of the reflectance function by recursively subdi-
viding the set until only one sample per node remains (right).

the value of their nearest parent. We also augment our quadtree nodes with a field
storing the product average (prod_psum) over the node, as follows:

struct node
brdf_psum : BRDF parent sum (average)
prod_psum : product parent sum (average)
ch[4] : children pointers

end

Pseudo-code for building the BRDF approximation and computing the product
tree is given in Algorithm 1. Input to the algorithm is the set of all BRDF samples,
S={B(ωi)}, and the root node of the tree, located at q = 〈0,0,0〉.

5.4 Obtaining the BRDF Samples

The quality of B̃ naturally depends on how the samples, S, are chosen. Dense sam-
pling results in a finer subdivision, and the area of each leaf node is approximately
proportional to the inverse of the local sampling density. We assume the samples
are drawn from some probability density pB(ω).
Uniform sampling works well for diffuse materials. However, for more specular
BRDFs, we would likely miss high-frequency features. Therefore, we adopt an
importance sampling strategy. The error in the reconstruction, ε , is equal to the
difference between the original and the approximated function. Since B̃ will be
used as an importance function, it is desirable to distribute the approximation error
evenly. It is likely that ε is larger in high-intensity regions than in regions with low
intensity. Hence, ideally, we want the sampling density to be proportional to the
reflectance function, i.e., pB(ω)∝ B(ω). This way, we get higher precision around
important features, such as bright specular peaks, and less resolution in smoother
regions.
However, for many analytical reflectance models, sampling according to the BRDF
times the cosine term is non-trivial. We often have to choose pB(ω) ∝ fr(ωo,ω).
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1 function BUILDPRODUCT(quad q, node n, samples S)
2 if size(S) = 1 then
3 n.brdf_psum = S[1].value
4 n.prod_psum = S[1].value×L.psum(q)
5 else
6 n.ch[1..4] = new node() // initialized to null
7 Split S into bin[1..4] based on S[i].position
8 j = indices of non-empty bins
9 for i ∈ j

10 BUILDPRODUCT(q+i, n.ch[i], bin[i])
11 n.brdf_psum = avg( n.ch[ j].brdf_psum )
12 for i /∈ j
13 n.ch[i].brdf_psum = n.brdf_psum
14 n.ch[i].prod_psum = n.brdf_psum ×L.psum(q+i)
15 n.prod_psum = avg( n.ch[1..4].prod_psum )
16 return

Algorithm 1: Recursive function for building the approximation, B̃, based on a
set of point samples, S, while simultaneously computing all product averages in a
single tree traversal. The mipmap hierarchy of the environment map is denoted L,
and the avg() function computes the average of the supplied values. The current
node is identified by q, and q+i is assumed to identify the ith child of q.

The exact choice of sampling density is not critical as it does not affect the correct-
ness of our algorithm, but only the quality of the resulting importance function. As
the sampling is done on-the-fly, it is in many cases preferable to choose a slightly
inferior, but faster, sampling strategy.
Some examples of BRDFs for which analytical sampling is well known include
the modified Phong model [15], and the anisotropic Ward and Ashikhmin mod-
els [33, 2] among others. Many of these sampling strategies are already imple-
mented in existing rendering packages. This is a great advantage, as it makes the
implementation of our algorithm a relatively easy task.
For measured materials, a number of sampling methods exist. We can use, for
example, wavelet-based methods [16, 18, 6] or factorization [17]. Also note that
the BRDF sampling step can be precomputed for all materials that are not spatially
varying. We discretize the outgoing direction, and for each direction, a set of
samples in local space is computed. At runtime, the samples are rotated into world
space, which is very fast. We have found that a few hundred point samples is
enough to build a quadtree approximation with a quality equivalent to, or better
than, wavelet-compressed tabulated BRDFs [5].
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1 function WARPPRODUCT(points P, quad q, node n)
2 if q.level = max_level then
3 Compute probability density for each P[i]
4 Store P in sample array
5 return
6
7 for i = 1 to 4
8 if is_leaf(n) then
9 w[i] = intensity(n.brdf_psum×L.psum(q+i))

10 else
11 w[i] = intensity( n.ch[i].prod_psum )
12 Compute splitting planes based on w[1..4]
13 Warp P into bin[1..4]
14
15 for i = 1 to 4
16 if size(bin[i]) > 0 then
17 if is_leaf(n) then
18 WARPPRODUCT(bin[i], q+i, n)
19 else
20 WARPPRODUCT(bin[i], q+i, n.ch[i])
21 return

Algorithm 2: Recursive algorithm for warping an initially uniform point set, P,
according to the product quadtree. When a leaf node is reached, the sampling con-
tinues according to the environment map, L, up to its full resolution. The intensity()
function computes the luminance of an RGB color.

5.5 Product Sampling

After computing the product quadtree (Algorithm 1), we proceed by sampling it
using sample warping [5]. At each level, a horizontal and two vertical splitting
planes are computed based on the product averages of the four immediate children,
and the samples are rescaled accordingly, as illustrated in Figure 2.
When a leaf node in the product tree is reached, the sampling continues according
to the environment mipmap hierarchy. Thus, although the BRDF approximation is
of limited resolution, the sample warping is not terminated until the full resolution
of the environment map is reached. Pseudo-code is given in Algorithm 2.

6 Results

We have implemented the algorithm described in Section 5 in a custom ray tracer
loosely based on pbrt [21]. All images are unbiased and were rendered on a
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MacBook Pro with Intel Core 2 Duo 2.40GHz (using only one core). The current
implementation does not use any SIMD-optimizations. However, this would be
fairly straightforward to add, since many of our operations are performed on four
children nodes in parallel. For all tests, the BRDFs were sampled on-the-fly, but
it should be noted that precomputed samples (Section 5.4) can be used to further
improve the performance in many cases.
Low-discrepancy points with good spectral properties are essential for lowering
the variance in any Monte Carlo technique. We use the method of Dunbar and
Humphreys [10] to quickly generate Poisson-disk points that are fed to the sam-
pling algorithm.
Figure 5 compares our algorithm with two state-of-the-art methods for product
importance sampling: wavelet importance sampling (WIS) by Clarberg et al. [5],
using the unbiased version of their algorithm, and Cline et al.’s [7] two stage impor-
tance sampling. Both these methods are based on sampling the product of lighting
and BRDF. The scene is lit by a 1k×1k light probe featuring a small strong light
source: the sun. The dragon uses a Phong shader, and the ground plane is purely
diffuse. For sampling the BRDFs, 256 point samples each were used for the diffuse
and specular lobes. The rendering times at 1024×768 pixels resolution, using one
primary ray per pixel and varying number of visibility samples, were (min:sec):

#samples Cline et al. Clarberg et al. Our algorithm
10 1:00 2:40 1:39
30 2:22 3:16 2:15

100 7:22 5:12 4:09
300 19:13 10:15 9:14

This scene presents a major challenge for WIS, which is limited to a low resolution
wavelet approximation of the lighting (e.g., 1282 or 2562). The error introduced
by the approximation, i.e., L(ω)/L̃(ω), significantly increases the variance, espe-
cially in unoccluded regions. In addition, their method shows banding in noisy
regions, which comes from the varying accuracy of the importance function due to
bilinear interpolation of the wavelet terms. We completely avoid these problems
by sampling in world space.
Two stage importance sampling handles this scene much better, and similar to our
algorithm, it supports spatially varying reflectance functions. However, for equal
variance, our algorithm gives a 1.5×−2.7× reduction in the number of visibility
samples, as shown by the plot in Figure 5. It should be noted that a direct compar-
ison of the results is difficult, as the rendering systems differ slightly and the exact
speed depends on what type of shaders are used. The reported timings suggest that
our ray tracer is faster than Cline et al.’s, although the acceleration data structure
is the same (pbrt). Figure 6 shows an equal-time comparison for a simple scene
lit by the “kitchen” light probe.
Our algorithm is essentially a two step method. First, the shader is sampled, and
then the product is computed and sampled. An important consideration is the allo-
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Figure 5: We compare our method (bottom row) with wavelet importance sam-
pling (top row) [5], and two stage importance sampling (middle row) [7], using
10, 30, and 100 visibility samples/pixel. For this test, we used 256 BRDF samples
for the diffuse floor, and 512 BRDF samples for the glossy green material. All
images are unbiased, and ground truth is shown on the top left. Clarberg et al.’s
method is noisy in unoccluded areas, as their low-resolution lighting approxima-
tion fails to capture the precise location of the small bright light (the sun). Cline
et al.’s method gives better results, but exhibits more noise than our algorithm in
shadow regions due to their more crudely approximated importance functions. For
equal variance, our method gives a 1.5×−2.7× reduction in the number of visibil-
ity samples compared to their method. The variance was measured on the rendered
HDR images before tone-mapping. The light probe is courtesy of Paul Debevec.

cation of samples between the two steps. In Figure 7, we have varied the number
of BRDF samples (specular+diffuse), while keeping the rendering time constant
by adjusting the number of visibility samples. The optimal ratio is, of course,
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Figure 6: Two images rendered in equal time (28 seconds) using two stage im-
portance sampling (left) [7], and our algorithm (right). The noise is significantly
reduced.

determined by the relative speed of BRDF evaluations versus ray tracing. In our
implementation, peak performance is reached with about 100–500 BRDF samples.
Interestingly, Figure 7 also shows that the cost of constructing and sampling the
importance function grows only linearly with the number of point samples used
for approximating the material.

7 Discussion

We have presented several practical improvements to wave-let importance sam-
pling [5]. To avoid the limitations of tabulated materials, we build a BRDF approx-
imation on-the-fly. We also replace the wavelet product with a simpler quadtree-
based product, computed in a single traversal, and thus effectively avoid wavelets
altogether. The precomputation is reduced to a creation of a mipmap hierarchy for
the lighting, and the memory requirements are very modest.
The proposed algorithm has much in common with Cline et al.’s method [7]. The
main differences are the evaluation of the product (quadtree vs summed area table)
and the construction of the BRDF approximation. We rely on BRDF importance
sampling, while Cline et al. use heuristics specifically designed for each sup-
ported BRDF. Their approach does not require importance sampling of the shader,
which is a big advantage, but finding good heuristics for general materials can
be tedious. On the other hand, our algorithm may be difficult to use with some
complex shaders, for which none or only poor sampling strategies exist.
The two methods produce comparable results, although the noise in occluded re-
gions is lower with our algorithm. This indicates that our quadtree-based BRDF
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Figure 7: Equal-time comparison for different sample allocations using the scene
in Figure 5. The green line shows the variance for different numbers of BRDF
samples (x-axis) and visibility samples (blue line). In this example, the best results
are obtained with approximately 100–500 BRDF samples. This shows that our
algorithm is robust with respect to the choice of sampling rates, and a reasonable
default value (e.g., 256 BRDF samples) works well in most cases.

approximation is slightly more accurate. In production rendering, the main bottle-
neck is currently the shading. Methods for creating good BRDF approximations
based on a minimal number of shader evaluations are needed. We hope our work
will stimulate research in that direction.
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A. WAVELET PRIMER: THE 2D HAAR BASIS

A Wavelet Primer: The 2D Haar Basis

The two-dimensional (nonstandard) Haar basis is an orthonormal basis made up
of translations and dilations of mother basis functions defined over the unit square.
The normalized scaling basis functions and wavelet basis functions are defined
as [25]:

φ
l
uv(x,y) = 2l

φ(2lx−u,2ly− v), (14)
ψM

l
uv(x,y) = 2l

ψM(2lx−u,2ly− v), (15)

where u,v are integer translations in [0,2l − 1], and l is a positive integer repre-
senting the scale, which goes from coarse to fine. The mother wavelet functions,
ψM , are defined in Figure 8, and the mother scaling function is φ(x,y) = 1 for
x,y ∈ [0,1]2, and 0 elsewhere. A two-dimensional image, F , with 2k×2k elements
can be exactly represented in the basis consisting of the first scaling function and
all wavelet functions up to scale k− 1. For convenience, we denote this basis
Ψ = {φ0,ψ1, . . . ,ψN}, where φ0 = φ 0

0,0 and ψ j are the wavelet functions, sequen-
tially numbered. The expansion of F can be written:

F =
N

∑
i=0

fiΨi, (16)

where fi are the wavelet coefficients, which are given by the inner product: fi =∫
F(x,y)Ψi(x,y)dxdy. We call f0 the scaling coefficient, and the rest detail coeffi-

cients.

Figure 8: The two-dimensional Haar mother wavelet basis functions, ψM , are
defined over the unit square with the values +1 where red, −1 where blue, and 0
elsewhere.

B Quadtree Encoding and Wavelet Products

The scale and translation of a basis function uniquely identifies the wavelet square
in which it resides. We use 〈l,u,v〉 to denote a square at scale l and offset u,v.
All squares at the same level are disjoint, and each has an area of A = 2−2l . Since
a square has four children, it is natural to encode 2D wavelet coefficients in a
quadtree structure [3, 26]. With sparse wavelet representations, one or more of
the coefficients and/or children of a node may be missing. Hence, empty interior
nodes are possible.
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The product of two 2D images, F =G ·H, can be efficiently computed directly in
the wavelet basis [19]. The theory has later been generalized to higher dimensions
[5], and to include multiple terms [26]. The quadtree structure of the Haar basis is
essential for reducing the cost. Sun and Mukherjee [26] showed that the product
can be described as directed paths through the tree of basis functions. In the same
spirit, we exploit the structure to optimize the sampling of wavelet products.

C Area-Preserving Mapping of the Sphere

To simplify the sampling, we need an area-preserving mapping that, ideally, maps
a single square to the sphere, with low distortion and fast analytical forward and
inverse transforms. We combine the octahedral map [22] with the parametrization
of Shirley and Chiu [23] to obtain a mapping with all the desired properties, as
illustrated in Figure 9. As the mapping is an important practical aspect of our
implementation, we repeat the formulas here.

Figure 9: The square is divided into n×n pixels, which are mapped to the same
number of irregularly shaped quads with equal area on the sphere.

The “inner” quad (rotated by 45◦) maps to the northern hemisphere, while the
outer four triangles are folded down to cover the southern hemisphere. Shirley
and Chiu map a square to the unit disk, and then to the hemisphere, to obtain an
area-preserving mapping. Figure 10 illustrates the square-to-disk mapping for the
inner triangle of the first quadrant. Given a point (u,v) in the triangle, the lengths
of a and b are a = (u+ v)/

√
2 and b =

√
2v. The mapping to the disk is:

r =
√

2a = u+ v,

φ =
π

4
b
a
=

π

2
v

u+ v
. (17)

Similar transforms apply to the other quadrants. The point (r,φ) is then projected
onto the northern hemisphere, while preserving fractional area, as follows [23]:

(x,y,z) = (r
√

2− r2 cosφ , r
√

2− r2 sinφ , 1− r2). (18)
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C. AREA-PRESERVING MAPPING OF THE SPHERE

This mapping uses the same number of trigonometric operations as the cylindrical
equal-area projection, but the distortion is much more well-behaved. The inverse
transform is well-defined and fast to compute. Interpolation across the seams is
also easy due to the boundary symmetry of the octahedral map [22].

(0,1)

(1,0)(0,0)
u

v

{{
a

b

{ {{v

u v

φ{r

Figure 10: The mapping of the first quadrant to the disk.
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ABSTRACT

The visibility function in direct illumination describes the binary
visibility over a light source, e.g., an environment map. Intuitively,
the visibility is often strongly correlated between nearby locations in
time and space, but exploiting this correlation without introducing no-
ticeable errors is a hard problem. In this paper, we first study the sta-
tistical characteristics of the visibility function. Then, we propose a
robust and unbiased method for using estimated visibility information
to improve the quality of Monte Carlo evaluation of direct illumina-
tion. Our method is based on the theory of control variates, and it
can be used on top of existing state-of-the-art schemes for importance
sampling. The visibility estimation is obtained by sparsely sampling
and caching the 4D visibility field in a compact bitwise representation.
In addition to Monte Carlo rendering, the stored visibility information
can be used in a number of other applications, for example, ambient
occlusion and lighting design.
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1. INTRODUCTION

1 Introduction

In photo-realistic rendering, the lighting is often divided into direct and indirect
illumination, which are evaluated separately. The indirect illumination is typically
low-frequency, as it is the accumulated result of a long (infinite) series of bounces,
and efficient algorithms for sparsely sampling and reusing indirect illumination
exist. The direct illumination is given by an integral over the incident lighting,
surface reflectance, and visibility [16]. As we will see in Section 4, the visibility
is often strongly correlated between nearby points. Our goal is to exploit this
correlation to obtain faster Monte Carlo (MC) rendering with higher quality.
The direct illumination often shows high-frequency features such as sharp shad-
ows, bright specular reflections, and so on. Due to this high-frequency behavior,
the algorithms used for indirect illumination, e.g., photon mapping [15], (ir)radiance
caching [33, 19, 11], and statistical PCA-based filtering [22], are not directly ap-
plicable. These algorithms essentially perform a low-pass filtering of the radiance
field, which may lead to visible artifacts such as blurred shadows when applied to
direct illumination.
Current state-of-the-art methods for Monte Carlo evaluation of direct illumination
are based on importance sampling the product of lighting and reflectance [3, 27, 5,
6, 4]. However, none of these methods take visibility into account. A simple exam-
ple where product sampling gives poor results is a glossy surface reflecting a bright
light source, which is partially occluded. Product sampling directs most samples
toward the occluded light, but occasionally a sample hits the light, resulting in a
locally high noise level. An example is shown in Figure 1.

Figure 1: Techniques for importance sampling only the product of the lighting and
BRDF suffer, in general, from excessive noise in occluded regions (left). By adding
a control variate term taking visibility into account, we can significantly reduce the
problem (right). Both images are unbiased and rendered using 10 samples/pixel.
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We propose a simple, yet efficient, method to exploit correlation in the visibility
function to improve the results. Our approach is based on control variates [17],
which is a classic MC technique. The idea is to subtract a correlated approximation
from the function we want to integrate, and thus reduce the variance of the remain-
ing part, as illustrated in Figure 2. The difference between the two functions is
sampled, and the integral of the approximation is added back as a correction term.
In our case, we estimate the visibility from nearby samples, and use the triple
product of lighting, reflectance and visibility as a control variate term.
Our technique presents an unbiased way of reusing visibility information to im-
prove the rendering quality. The key question is how to obtain the visibility ap-
proximation. We have opted for a strategy inspired by radiance caching [19]. We
sample the 4D visibility field sparsely over all visible surfaces, and store the infor-
mation as 2D visibility maps at selected positions. These maps are interpolated to
yield a visibility approximation for the current pixel. It is important to stress that,
although we cache visibility data, the primary purpose is to reduce the number
of shader evaluations. By spending some extra effort on evaluating the visibility
(which is relatively cheap), we reduce the number of samples needed in the impor-
tance sampling step, thus keeping the number of expensive shader evaluations at a
minimum.

2 Related Work

The method of control variates, or correlated sampling, has been used in several
computer graphics papers. Lafortune and Willems [20] used a constant ambient
term as control variate. Later, they stored an approximation of the incident radi-
ance in a 5D tree [21] in order to reduce the variance in path tracing. Szirmay-
Kalos et al. [25] used a radiosity solution as a control variate for a subsequent
Monte Carlo step. Szécsi et al. [24] combine correlated and importance sampling
to improve the quality of direct illumination. This approach is similar to ours, but
their approximation ignores visibility and assumes a diffuse BRDF. Fan et al. [8]
combine samples from multiple functions, which are used as control variates. This
can be seen as a generalization of multiple importance sampling [28].
A few techniques for exploiting coherence in Monte Carlo evaluation of direct illu-
mination exist. Ghosh et al. [13] exploit temporal coherence in the illumination to
efficiently render scenes under animated environment map lighting. Samples are
generated for the first frame using traditional methods, and then updated for sub-
sequent frames using a sequential Monte Carlo sampling strategy. In other work,
Ghosh and Heidrich [12] target spatial coherence in visibility. First, bidirectional
importance sampling is used to find pixels that are partially occluded. In a second
step, they apply Metropolis-Hastings mutations to reduce the noise in these re-
gions. This method only works for occluded regions. In contrast, our approach
lowers the variance overall, and exploits both temporal and spatial coherence.
Donikian et al. [7] divide the image into 8×8 blocks, and use adaptive importance
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2. RELATED WORK

Figure 2: The idea behind control variates is to subtract a function, g, with known
integral, J, from the function, f , we want to integrate, and thus reduce the variance
of the remaining part, f −g.

sampling to iteratively refine probability density functions (pdf) for the blocks and
pixels. In early iterations, more emphasis is put on the block pdf, thereby automat-
ically exploiting spatial coherence. Their algorithm has many clever twists, but
since they start without prior knowledge of the lighting and BRDF, many shadow
rays are needed (often above 1000 rays/pixel).
Methods for reducing the number of shadow tests have a long history in computer
graphics (see, e.g., [31, 23, 10]). The goal of these algorithms is to select a small
set of representative lights out of a large number of light sources, usually by means
of sorting or spatial data structures, but without taking the BRDF into account.
Recent algorithms for many-light rendering [30, 29] share the same goal, but do
not explicitly exploit visibility correlation.
Hart et al. [14] use lazy visibility evaluation to compute direct illumination in
scenes with many area light sources. They build a “blocker map” for each pixel,
exploiting spatial visibility coherence by a flood-fill algorithm in screen space.
Similarly, Agrawala et al. [1] exploit image-space correlation to render soft shad-
ows from area light sources. Ben-Artzi et al. [2] recently presented a clever method
for reducing the number of shadow rays needed for environment map illumination.
They partition the environment map into a set of preintegrated lights, and use a
coarse-to-fine evaluation of the image. By sharing occluder information between
neighboring pixels and directions, they can significantly reduce the number of rays
traced. These methods are somewhat similar to our visibility cache, but do not ex-
ploit temporal coherence. We also use the original unapproximated environment
map.
The main difference to previous methods is that we try to solve the combined prob-
lem, taking both reflectance, lighting, and visibility into account, while exploiting
visibility correlation. Our algorithm builds on existing work on importance sam-
pling and is an unbiased Monte Carlo technique, which means it can be used for
reference renderings and with very high-resolution environment maps. Our algo-
rithm also has a broader applicability, and can be used for efficient ambient occlu-
sion and lighting design, i.e., fast preview of complex lighting and shadowing. An
important contribution is also our statistical analysis of the visibility function.
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3 Mathematical Foundation

The outgoing radiance, Lo, due to direct illumination is given by an integral over
the incident lighting, the reflectance (BRDF times a cosine-term), and the visibility
[16]. We denote these terms L, B, and V , respectively. The traditional Monte Carlo
estimator for Lo using importance sampling is:

〈Lo〉=
1
N

N

∑
i=1

LBV
p(ω)

, (1)

where p(ω) is the importance function. Note that we have omitted the arguments
of L, B and V for clarity. In the following, we denote approximations of the exact
functions by adding a tilde, e.g., B̃. Several recent sampling algorithms explic-
itly compute and sample an approximation of the product LB. For example, in
two-stage importance sampling [6] and quadtree-based product sampling [4], hier-
archical approximations of the reflectance, B̃, are multiplied with the exact lighting
L, i.e., p(ω) ∝ LB̃.
We propose to include a binary estimation of the visibility, Ṽ , to lower the vari-
ance. A natural approach would be to use the triple product LB̃Ṽ for importance
sampling. However, this requires Ṽ 6= 0 wherever V 6= 0, as zeroes in Ṽ effectively
stop the exploration of those regions of the integral and may lead to bias. Since we
do not know which parts of V are truly zero, Ṽ has to be nonzero over the entire
domain to guarantee correctness. One approach would be to add a small constant,
ε , and sample according to Ṽ + ε . However, in regions where Ṽ = 0, but V = 1,
we would get excessive noise as we divide by p(ω) in Equation 1, which in this
case is very small. We avoid these problems by sampling according to the product
p(ω) ∝ LB̃ as before, and use LB̃Ṽ as a control variate. Equation 1 is rewritten as
follows:

〈Lo〉=
1
N

N

∑
i=1

LBV −αLB̃Ṽ
p(ω)

+ α

∫
LB̃Ṽ dω︸ ︷︷ ︸

J

. (2)

It is easy to show that this is an unbiased estimator for Lo, as the MC evaluation of
αLB̃Ṽ converges to αJ as N→ ∞.
With existing importance sampling methods that already compute hierarchical rep-
resentations of LB̃ [6, 4], including a third term, Ṽ , in the product is relatively inex-
pensive. More details will be given in Section 5. One interpretation of Equation 2
is that we compute a rough estimate, J, of the direct illumination based on approx-
imations, and then evaluate the difference between this and the correct solution
using Monte Carlo integration. The rest of this paper deals with the computation
of Ṽ .
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3. MATHEMATICAL FOUNDATION

3.1 Variance Analysis

In the following, we assume that our algorithm is implemented on top of a scheme
for importance sampling the product of lighting and reflectance. In practice, we
use the quadtree-based method of Clarberg et al. [4]. For this case p(ω) = LB̃/Lns,
where Lns represents the unoccluded illumination, and Equation 2 can be rewritten:

〈Lo〉=
Lns

N

N

∑
i=1

[
B
B̃

V −αṼ
]

︸ ︷︷ ︸
Y

+αJ. (3)

We use the variables Y as defined above, Z=BV/B̃ and W=Ṽ to represent random
observations of the respective functions, and note that the variance of the estimator
in Equation 3 is equal to: L2

ns σ2
Y /N, where σ2

Y denotes the variance of Y given by:

σ
2
Y = σ

2
Z +α

2
σ

2
W −2ασ

2
ZW . (4)

Here, σ2
ZW denotes the covariance of Z and W . The variance is minimized when

α = σ2
ZW/σ2

W , in which case:

σ
2
Y = σ

2
Z(1−ρ

2), (5)

where ρ is the statistical correlation (Pearson’s product-moment coefficient) be-
tween Z and W . This is defined as follows:

ρ =
σ2

ZW
σZσW

, −1≤ ρ ≤ 1. (6)

The correlation coefficient, ρ , is a convenient measure of similarity, as it always
lies in the range [−1,1], where ρ = 1 indicates a positive linear relationship, ρ =
−1 a negative linear relation, and values in-between indicate a weaker correlation.
Equation 5 implies that, assuming we know the value of α , introducing a control
variate term reduces the variance of the original estimator [4] by up to a factor
1−ρ2. Using control variates is attractive since the variance goes to zero when
the correlation ρ is ±1, while in the worst case there is no correlation ρ = 0, and
the variance is unchanged.
However, finding the optimal α is difficult in practice, as the values of σ2

ZW and σ2
W

are unknown. The variance of the visibility approximation can be computed, but
σ2

ZW has to be estimated based on samples. In our tests, the additional computation
was not motivated by a large enough quality improvement. In addition, bias is
introduced if the same samples are used for estimating σ2

ZW as for evaluating the
integral. Instead, we use α=1, which works well because Ṽ is reasonably close to
BV/B̃.
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4 The Visibility Function

The visibility function, V , measures the visibility between a point, x, and a light
source, L. This can be written as a function of world-space direction, ω , as follows:

V (x,ω) =

{
1, if L is visible,
0, otherwise. (7)

By definition, the lower hemisphere is always occluded. If we restrict x to the
surfaces of a scene, V becomes a four-dimensional function. Our goal is to exploit
coherence in V to improve the rendering quality. An important question is, how
much coherence is there in a typical scene? To answer this, we have performed
extensive statistical measurements.

4.1 Correlation Measurements
Intuitively, looking at two random points, xi and x j, the correlation between Vi =
V (xi,ω) and Vj =V (x j,ω) should be stronger the smaller the distance, d= ||xi−
x j||, is between them. An important factor is also the angular difference, θ =
cos−1(ni ·n j), between the surface normals at the two points. As the lower hemi-
sphere of V is always occluded, the similarity between Vi and Vj is likely to be
smaller if the surface frames are rotated relative to each other.
We have estimated the average correlation, ρ̄ , as a function of distance and normal
difference, i.e., ρ̄(d,θ), on a suite of test scenes. This was done by distributing a
set of sample positions (about 700k) over the visible surfaces, and then measuring
the correlation between the visibility functions using a large number of randomly
chosen pairs of positions, {xi,x j}. Each measurement gives an estimate of ρ for a
specific d and θ . These were stored in bins representing small discretized intervals
of d and θ . Finally, for each bin, the mean and standard deviation of the correlation
estimates were computed. In total, 1.9−3.2 ·1010 correlation estimates per scene
were done, each based on 96×96 visibility samples over the sphere. The results
are summarized in Figures 3–6.

4.2 Test Scenes
Four different test scenes were used (see Figure 4). The scenes (a) and (b) repre-
sent different camera angles in a garden scene (available on the Autodesk Maya
2008 DVD) tessellated to about 2 million triangles. This scene features extremely
difficult occlusion due to the small and highly detailed geometry. The third scene
(c) is simpler, although it contains a number of plants not visible in the image,
while the last (d) is even simpler with mostly flat surfaces. As we measure the cor-
relation as a function of world space distance, it is important to know the relative
sizes of objects. In (a) and (b), the tulips have a diameter of about 0.8 units, while
the average height of the grass is 3.8 units. The mushrooms in (c) have a height
and diameter of about 1.3, while the cubes in (d) have a side length of 5.0 units.
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Figure 3: Analysis of the visibility correlation in scene (a) from Figure 4. All
pairs of measurement points were sorted into bins based on their distance and
normal difference. The left graph shows the correlation for points that are nearby
in distance (d < 0.2), and the right graph shows the correlation for points nearby
in direction (θ <2◦). The dashed lines represent the standard deviation (±σ ).

4.3 Discussion

The average correlation, ρ̄(d,θ), provides an interesting footprint of the statistical
properties of V . In scene (d), for example, the geometry mainly consists of flat
surfaces, i.e., the cubes’ faces. Each combination of two such surfaces gives a
distinct horizontal line in the correlation plot, as θ is constant, and the range of d
is limited by the location and extent of the two surfaces. As expected, the overall
correlation is smaller in scenes with “difficult” visibility. However, even for the
garden scene, there is a significant amount of correlation between nearby locations.
In general, the visibility at surface points with similar normals is highly correlated,
even when they are relatively far from each other.
To visualize the spatial distribution of the visibility correlation, we compute the
average correlation within a local neighborhood around each point. Only visibility
samples within a distance dmax, and with θ <θmax were considered. The values of
dmax and θmax were set as to include mainly the part of ρ̄ where the correlation is
high (red/orange). This can be seen as cutting out the top-left part of the correlation
plot, and computing its average value at different positions in the scene.
Our results show that the visibility is often highly correlated over large smooth
surfaces. More interestingly, we found that the correlation can be high even in
places of very complex geometry, e.g., the grass in the background in (a) and deep
inside the vegetation in (b). In some parts of (c) and (d), the average correlation is
surprisingly low, even on smooth surfaces. This happens when the search distance,
dmax, is too large and samples from nearby surfaces with different visibility are
included in the average. This shows that, in order to approximate the visibility
function from nearby samples, a uniform distribution is not enough. We must be
able to refine the approximation where needed.
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Figure 4: Measurements of the visibility correlation in four different scenes (a)–
(d). The four false-color renderings on the right show the spatial distribution of the
visibility correlation. For each pixel, we have computed the average correlation
to all nearby points within a certain distance and normal difference, (dmax,θmax),
represented by a box in the correlation plots in Figure 5 and 6.
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Figure 5: The average visibility correlation as a function of normal difference, θ ,
and world space distance, d, in scenes (a) and (b). All correlation values have
been clamped to ρ∈ [0,1] to make the differences more noticeable, as the correla-
tion is rarely below 0. White represents combinations (d,θ) for which there was
not enough data. In total, about 1.7−3.0 ·1014 pairs of visibility samples were
considered for each image. As expected, the correlation is close to 1 in the top-left
corners.

5 Exploiting Coherence: The Visibility Cache

Our goal is to construct an approximation, Ṽ , which is as close to V as possible. For
this purpose, we evaluate V at a sparse set of locations {xi}, and store the resulting
2D visibility maps in a median-balanced kd-tree for efficient range search. We call
this structure the visibility cache as the concept is similar to (ir)radiance caching
[33, 19].
Each visibility map is called a cache record, and encodes the visibility over the
sphere in world space. Essentially, these maps are just low-resolution black and
white images representing the visibility of the background. A weighted average of
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Figure 6: The average visibility correlation as a function of normal difference, θ ,
and world space distance, d, in scenes (c) and (d).

visibility maps is multiplied by the environment map and the reflectance at each
pixel. This gives a good approximation of the direct illumination, which is used as
a control variate term.
There are several advantages with our representation over working in the local
surface frame. First, we need to quickly integrate our cache records against LB̃
obtained by the importance sampling algorithms [6, 4], which operate in world
space. Second, interpolation becomes trivial, as we do not have to perform rota-
tions. The approximated visibility at a point, x, is obtained as a linear combination
of n nearby cache records:

Ṽ (x,ω) =
n

∑
i=1

βiṼ (xi,ω) = ∑βiṼi. (8)

As a first step, we send a small number, Nstartup, of rays (e.g., 1000) uniformly
distributed over the image, and insert a cache record at the first hit along each ray.
This bootstrapping of the cache completes very quickly and is only done for the
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first frame in an animation. Otherwise, the algorithm is a one-pass method, and
new records are inserted along the way. Next, we will describe how the weights,
βi, are found.

5.1 Cache Lookups
In order to find a small set of n (typically 3–4) cache records that are representative
for the visibility at x, we start by performing a range search in the kd-tree. The
search is restricted to the m (typically 10–20) nearest records that are within a
distance dmax, and that have a similar surface orientation, i.e., θi < θmax, where
θi denotes the angle between the normals at x and xi. We compute a weight,
wi =wg · ŵ(d,θ), for each record and then pick the n records that score the highest.
These weights are then used as βi after normalization so that ∑βi = 1.
The purpose of ŵ is essentially to relate d to θ in a sensible way. In our measure-
ments, we have seen that the correlation often falls off near linearly with increasing
θ , while there is a quicker dropoff in the beginning with increasing distance, d, and
slower at the end. Figure 3 shows a typical example of this. We have designed a
function w, which mimics this behavior (see Figure 7), and is given by:

w(d,θ)=(1−θ/π)

(
1− x

1+λx

)
, where x=

d
dmax

, (9)

and λ controls how steep the initial dropoff is (we use λ = 5). Equation 9 gives
a weight in the range [w,1], where the lower limit, w, can easily be derived from
dmax and θmax. Before use, we normalize w to the unit interval by setting ŵ =
(w−w)/(1−w).
The motivation for first looking at a larger neighborhood, and then picking a
smaller set of records, is that we want to find records with matching surface orien-
tation. Statistically seen, these should be good approximations to V , at least if they
are reasonably close. In Figure 8, we illustrate a case where a larger search region
is beneficial. On a rough surface, e.g., using displacement mapping, our method
only includes records with similar normals, while ignoring others, even if they are
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Figure 7: The weighting function used in cache lookups.
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Figure 8: To create a visibility approximation at the yellow points, we locate the m
nearest cache records, and then select only the ones with similar normal directions
(green).

closer. To keep the cache density approximately constant in screen space, we also
compute the area of the current pixel projected onto the plane passing through x
with normal n. The maximum search range, dmax, is then set to a fixed constant
times the square root of the projected pixel area [26].
Finally, we include a geometric term, wg, to reduce the weights of records that
lie “in front” or “behind” the current point x. Consider the two cases shown in
Figure 9. It is desirable to reduce the weight for the record at xi in the rightmost
case, as part of the hemisphere at x must be occluded by the (unknown) geometry
holding xi. The same holds true for the inverse case; if x is in front of xi, part
of xi’s hemisphere must be occluded. The angle, ϑ , between the normal and the
vector, v, pointing toward the record, gives an indication of the induced error. We
use the simple formula wg =

√
1−|n · v| as an approximation.

{{

Figure 9: If we only consider the distance and normals, the weight for the record
at xi would be the same in both these cases, as the distance, d, and the normals, n
and ni, are the same. However, the information stored at xi is clearly less relevant
at x for the case on the right. Thus, we include a geometric term, which takes the
angle ϑ into account.
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5.2 Adaptive Refinement

During rendering, we insert a new cache record whenever the local cache density
is too low. Our strategy is somewhat similar to adaptive refinement in (ir)radiance
caching [18]. We first use a geometry-based criteria, inserting a new record when
the weight of the highest ranked record according to Equation 9 is below a pre-
determined threshold, i.e., max(wi) < wmin. This will locally increase the cache
density on curved surfaces.
Second, heuristics are used to decide whether to use the existing records or insert
a new. We measure the average difference between the n nearby records found as
described in the previous section. The difference, δi j, between two visibility ap-
proximations, Ṽi and Ṽj, is defined as the probability of a random sample returning
different values. As Ṽ are discrete visibility maps, this is simply the number of
pixels with different values in Ṽi and Ṽj, divided by the total number of pixels. The
average difference, δ̄ , is the mean over all combinations of the n records, which is
fast to compute as n is very small. If the difference is above a certain threshold,
i.e., δ̄ > δ̄max, we insert a new cache record at the current position, x.
As we explicitly compare the stored visibility information, our method automati-
cally inserts new cache records in regions of difficult occlusion. This happens even
if the surface, on which the records themselves are placed, is simple. Records near
an occluder will “see” different things, and hence the cache will be locally refined
until the difference is below the threshold. The results of our two refinement cri-
teria, the geometry-based and the average visibility difference, are visualized in
Figure 10.
The insertion of a new record in the kd-tree is done by adding it to the leaf node
enclosing its position. If a leaf gets too large (e.g., more than four records), we
split it along its median. As each insertion makes the tree progressively more
unbalanced, we occasionally rebalance the whole tree. As the number of stored
records is rather small (in the order of 10,000), this only takes a few milliseconds.
Note that we use a standard 3D kd-tree based on position only. To further speed
up the proximity search, it would be possible to use a higher-dimensional tree,
splitting on both position and normal orientation. Our rendering application is
multi-threaded, so we also protect all accesses to the kd-tree with a read-write
lock. This way, multiple threads may read simultaneously, but only one at the time
can write.

5.3 Exploiting Temporal Coherence

A major advantage of the visibility cache is that we can reuse our world-space
cache records over time, thereby reducing the computations performed per frame.
In many cases, changes in visibility are local and do not affect the whole scene,
and for the case of just a moving camera, the visibility field does not change at
all. As we use the visibility approximations as control variates, reusing slightly
inaccurate visibility information will not introduce bias or artifacts, only increase
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Figure 10: The red dots show the locations of cache records. The geometry-based
criteria (left) puts more records on surfaces of high curvature, while the heuristic
based on measuring the average visibility difference (right) focuses on regions
of difficult occlusion. Note that this method efficiently finds the regions of low
correlation (see Figure 4).

the noise.
To avoid the visibility information from deteriorating, we automatically remove
inaccurate cache records. In computing the outgoing radiance using Equation 2,
we have to evaluate both the exact visibility, V , and the approximation, Ṽ , for
each of the sampling directions obtained by importance sampling. We count the
number of rays for which the visibility approximation is off, and accumulate this
value in the cache records. At the end of each frame, we remove all records above
a predefined threshold, εmax, e.g., 5% misses. Another method is to sort the records
according to their error rate and remove the k worst performing. To keep the cache
small, we also remove all records that have not been used for a certain number
(e.g., 10) of frames.

5.4 Setting the Thresholds
The different parameters controlling the behavior of the visibility cache can be
classified based on which feature they control, as shown in Table 1. This makes
their setup more intuitive. Some of the parameters are non-critical and reasonable
default values work well, e.g., Nstartup =1000 and θmax =30◦. Others can be de-
rived automatically, e.g., dmax =5% of the image width in pixels. The thresholds
controlling the insertion (wmin and δ̄max) and removal (εmax) of cache records have
a direct impact on the size of the cache, and have to be manually set.
In general, we have seen that the cache adapts well to different scenes. With the
same parameters, a scene with complex occlusion will get more cache records than
a scene with simple geometry. This also means that for a dynamic animation se-
quence, more records will be allocated to difficult frames. We have found it useful
to have a couple of predefined setups (i.e., low/medium/high scene complexity),
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Category Parameter Description

initialization Nstartup Number of initial records
search dmax Max search distance

θmax Max normal difference
insertion wmin Minimum weight allowed

δ̄max Max average visibility
difference between nearby
records

removal εmax Max number of wrong visi-
bility queries

Table 1: The parameters controlling the visibility cache.

and then manually adjust the threshold values only if needed.
It would be interesting to look into ways of automatically determining good start-
ing values for the different parameters. We could perhaps use statistics gathered
during the initial bootstrapping phase to estimate the scene complexity. Some of
the work by Feixas et al. on analyzing scene complexity [9] could potentially be
used for this purpose. This has been saved for future work.

5.5 Implementation

To create a visibility map, we divide the domain into 2M×2M pixels, and eval-
uate the visibility through ray tracing with one ray per pixel. The sample loca-
tions are stratified within the cells, and to improve the blue-noise characteristics of
the sampling pattern, we perform a small number (10–30) of iterations of Lloyd-
relaxation. We use an area-preserving mapping [4] of the sphere, which is based
on the octahedral map.
Since V is a binary function, we have opted for a compact bitwise representation
of the cache records. In total we need 22M bits to store an uncompressed visi-
bility map. The bits are encoded using the Z-order (Morton-order) space-filling
curve. The index, z, of a two-dimensional coordinate, (x,y), is found by bitwise
interleaving the binary representations of its coordinates, x= (xM−1 . . .x0)2 and
y = (yM−1 . . .y0)2 respectively, as follows:

z = (yM−1xM−1 . . .y1x1y0x0)2. (10)

Due to its locality-preserving behavior, this encoding implicitly provides a quadtree
representation of the visibility. The bits representing a node are always consecu-
tive, so the visibility can be found by simple bit shifts and logical operations,
e.g., if a node contains all zeroes, it is fully occluded. At higher levels, we use a
secondary hierarchy with 2-bit values indicating full/partial/no visibility. See Fig-
ure 11. Another advantage of using a bitwise representation is that we can very
quickly find the mean difference, δi j = ∑ |Ṽi − Ṽj|/22M , between two visibility
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Figure 11: We encode the binary visibility map as a two-level Z-order hierarchy,
which gives an implicit quadtree representation.

maps. We compute δi j as follows:

δi j =
#nonzero bits in Ṽi⊕Ṽj

22M , 0≤ δi j ≤ 1, (11)

i.e., we xor the binary visibility representations and count the number of nonzero
bits in the result. This can be done very efficiently using SIMD-optimized code.
To quickly find J=

∫
LB̃Ṽ dω (see Equation 2), which serves as an approximation to

the sought-after integral, we traverse the quadtree representation of LB̃ [4], starting
at its root. For each node, we look at the visibility, and stop the recursion if the
node is occluded. If it is fully visible, we add up the integral of LB̃ over the node,
which is already computed in the importance sampling step, and if the node is only
partially visible, we recursively traverse its four children.

6 Other Applications

The visibility cache is an adaptively and sparsely sampled representation of the
4D visibility field. Our prime application is Monte Carlo rendering. However, the
same framework can be used in a number of other applications.

6.1 Ambient Occlusion

Ambient occlusion [34] is a widely used technique for adding realism to local
shading models. The ambient occlusion term, A, is the integral of the visibility
function over the hemisphere, taking solid angle into account, as follows:

A(x) =
∫

Ω

V (x,ω)(n ·ω)dω. (12)

This can be evaluated using ray tracing, but for high-quality results without band-
ing, up to 1000 rays/pixel are needed. By replacing V by our visibility approxima-
tion, Ṽ , obtained from the cache, we get a quick approximation of A. For example,
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Reference (2776 seconds) Visibility Cache (44 seconds)

Figure 12: The left image shows a ray traced ambient occlusion reference image
using 4 samples/pixel and 1024 rays per shading point. For the right image, we
have used our visibility cache for evaluating the ambient occlusion term, using
on average 17.7 rays per shading point. The speedup is a factor 63× for this
scene. However, some artifacts are visible, e.g., around the door, and the overall
appearance is a bit softer.

for full HD rendering (resolution 1920×1080) and a visibility cache with 20k
records of resolution 32×32, the amortized cost is only 5 rays/pixel. Since the
cache is adaptively refined, the method handles regions of difficult occlusion very
well.
We compute the ambient occlusion term, A, during the creation of each new visi-
bility record, and store the value in the cache record. For shading a pixel, we lo-
cate the m nearest records and compute a weighted average of their preintegrated
A values, rather than first selecting a smaller set of records as before. To get a
smoother solution, we use a Gaussian filter, whose width is set based on the pro-
jected pixel area. We also compute the distance, Ri, to the nearest intersection at
each cache record in order to better detect small geometric features, similar to [26].
If max[wi · (1−d/Ri)] < wmin, then a new record is inserted. Figure 12 shows the
result for a typical scene containing about 259k triangles. A major strength of our
approach is that the solution is noise-free, although a few artifacts due to the sparse
sampling exist.

6.2 Lighting Design

The integral, J, over the control variate term (see Equation 2), is an approximation
of the outgoing radiance based on the exact lighting and approximations of the
reflectance and visibility, B̃ and Ṽ respectively. By directly visualizing J, we get
a very quick preview of the direct illumination. This can be useful for, e.g., fine-
tuning the lighting in a scene before starting a production-quality rendering.

189



PAPER III: EXPLOITING VISIBILITY CORRELATION IN DIRECT
ILLUMINATION

Reference Preview (12,500 cache records)

Figure 13: Direct visualization of the control variate term gives a quick preview
without doing any per-pixel sampling. After the BRDF quadtrees have been setup,
the environment map can be replaced and/or rotated freely, providing an almost
instant preview of the shading, including glossy effects.

Figure 13 shows a preview image computed using 12,500 cache records. The
output is fairly blotchy, but the quality is good enough to judge where shadows and
highlights fall. More advanced interpolation strategies should improve the quality,
and we plan to develop this idea further. The main execution cost currently lies
in computing B̃ per pixel. A system for caching and interpolating B̃ (i.e., a shader
cache), similar to our visibility cache, would be one way of decreasing the cost.

7 Results

We have implemented our algorithm for direct illumination on top of a recent tech-
nique for product importance sampling [4], which samples the product of a distant
area light source (e.g., an environment map) and the local BRDF. All parts of their
algorithm are carried out unchanged. The only difference is that, for each pixel, we
perform a lookup in our visibility cache, and evaluate the obtained visibility ap-
proximation for each of the sampling directions. These visibility approximations
are subtracted from the estimator, and finally the integral of the triple product,
J =

∫
LB̃Ṽ , is computed and added to the result, as described by Equation 3. All

results were generated on a Mac Pro with an Intel “Penryn” 45nm processor at
3.2GHz, using 2 cores.
The performance was evaluated on three scenes of different complexity; garden1
and dynamics from Figure 4, and the garage scene in Figure 13. For most tests we
have used a visibility map resolution of 32×32 pixels. In simple scenes where ray
tracing is fast, a higher resolution of 64×64 pixels can be used, but the extra cost
is usually not motivated by a large enough quality improvement. The settings used
for our three test scenes are summarized in Table 2, and the rendering results are
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Scene garage dynamics garden1
#Records 14,300 6,200 17,100
Record size 32×32 64×64 32×32
Avg rays/pixel 3.81 6.61 4.56

Table 2: The number of cache records and resolutions used for three of our test
scenes. The last row shows the amortized cost of the visibility cache, measured as
the average number of shadow rays/pixel at 1600×1200 pixels resolution.

garage
#Samples 10 30 100 300
Time [4] 103.0 155.3 325.1 779.1
Time [our] (s) 124.9 178.3 346.8 800.9
Overhead (s) 21.9 23.0 21.7 21.8
Overhead (%) 21.3% 14.8% 6.7% 2.8%
Variance ratio 0.212 0.339 0.497 0.633

dynamics
#Samples 10 30 100 300
Time [4] 65.0 82.1 135.2 280.5
Time [our] (s) 85.0 102.6 157.9 303.4
Overhead (s) 20.0 20.5 22.7 22.9
Overhead (%) 30.8% 24.9% 16.8% 8.1%
Variance ratio 0.405 0.533 0.641 0.734

garden1
#Samples 10 30 100 300
Time [4] 229.1 451.8 1211.7 3220.6
Time [our] (s) 309.2 534.7 1307.1 3306.8
Overhead (s) 80.1 82.9 95.4 86.2
Overhead (%) 34.9% 18.3% 7.9% 2.7%
Variance ratio 0.775 0.997 1.190 1.244

Table 3: Statistics for three of our scenes rendered at 1600×1200 pixels resolution.

presented in Table 3. We present the variance reduction as the ratio of variance in
the images rendered with our algorithm to the ones rendered using only importance
sampling [4].
For the garage scene there is a significant variance reduction, ranging from almost
5× at 10 samples/pixel to 37% at 300 samples/pixel. The lighting in this scene is
representable for scenes where ordinary product importance sampling fails to give
good results. The majority of the light is coming from a few large, bright light
sources, which are occluded by the building. Hence, most rays are occluded, and
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Reference Our algorithm Clarberg et al. [4]

Figure 14: Equal-time comparison between our algorithm and that of Clarberg
et al. [4], using 30 and 39 samples/pixel respectively. The rendering time is 178 s
at resolution 1600×1200, and the variance is reduced by 51.4%, i.e., to less than
half.

there is strong noise in the shadow regions. This is similar to what happens in
Figure 1. In these types of scenes, our algorithm gives a large improvement at a
modest cost. Figure 14 and 15 show a comparison between our method and that of
Clarberg et al. [4]. At equal rendering time (178 s), the variance is reduced to less
than half (variance ratio 0.489).
The dynamics scene is a hard case as it has very little occlusion. The control
variate term gives a noise reduction also in unoccluded regions, but we have found
the effect to be much stronger in shadows. However, our algorithm still gives a
37–60% reduction of variance, at a rendering time overhead of only 8% to 31%.
There is a net win, but the improvement is not as large as we had hoped for.
Finally, the garden1 scene presents a worst-case scenario with near-random visi-
bility. Our analysis in Section 4 shows that there is a rather weak correlation in
the visibility function. In order to exploit this, a large number of cache records
would be needed. Using a reasonable number of records (17,100), we achieve
only a very modest variance reduction at 10 and 30 samples/pixel. At the higher
sampling rates, there is actually an increase in variance. This may seem counter-
intuitive, since Equation 5 states that the variance can only decrease with control
variates. However, that is under the assumption that the optimal value of α is
known (Section 3), which is not the case.
The memory overhead of our visibility cache is very modest. Each cache record
of resolution 32×32 occupies 172 bytes (including additional book-keeping data),
which means a cache with 14,300 records (as we used for the garage scene) uses
2.4 MB memory. This fits well within the L2 cache on modern CPUs. In gen-
eral, we have found the algorithm to complement existing methods for product
sampling very well. A strong feature of our algorithm is that it provides a more
robust solution than product sampling alone, as illustrated by Figure 1. The largest
quality improvement is achieved in scenes with heavy occlusion, and especially in
scenes with bright light sources that are occluded. Both these cases are difficult
for product importance sampling. For more results, we refer to the supplemental
video.
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Clarberg et al. [4] Our algorithm

Figure 15: Equal-time comparison with crops from the full resolution images in
Figure 14.
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Figure 16: The distribution of cache records for the garden1 scene, which presents
a difficult case for our algorithm.

8 Limitations and Discussion

We have restricted the analysis and algorithm to binary visibility. This makes
an efficient bitwise implementation possible, but it also implies that only non-
local lighting can be used, i.e., light sources that lie outside the convex hull of the
scene. Our algorithm is, in theory, not limited to only distant lighting, but it makes
most sense when combined with recent methods for importance sampling under
environment map illumination [6, 4]. These algorithms exploit the fact that the
lighting, L, does not change per pixel.
By storing the distance to the nearest occluder rather than just a binary value, we
could adapt our method to handle local lighting. This would require substantial
changes to the implementation, and the size of the visibility records would grow
considerably, making its usefulness questionable. It would, however, be interest-
ing to perform a similar analysis as in Section 4 to the case of local visibility. For
binary visibility, nearby points and points with similar normals have highly corre-
lated visibility. We expect the same to be true for local visibility, but new questions
arise, e.g., how occluder distance correlates with normal/positional differences. It
would also be interesting to perform a statistical analysis of the other terms in the
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rendering equation. This could be useful for improving, e.g., indirect illumination.
Implementation-wise, there are a couple of issues we would like to address. The
direct visualization of visibility in Section 6 reveals that the interpolation is far
from perfect. With better weights, we believe most of the artifacts in the ambient
occlusion and lighting design examples can be removed. This would also further
reduce the noise in MC rendering. An approach similar to irradiance gradients [32]
should be possible. There are also a number of optimization to do, e.g., caching
the visibility difference between nearby records instead of recomputing them for
each lookup, using SIMD in the integration of the triple product, and so on.

9 Conclusion

The contribution of this paper is twofold. First, we study the statistical properties
of the visibility function. Our insights here can be useful when designing algo-
rithms taking visibility into account. We believe this is the next logical step in
photo-realistic rendering, as many existing algorithms only consider the product
of lighting and reflectance.
Second, we propose to use control variates to incorporate a visibility approxima-
tion in MC rendering. The key idea is to evaluate the difference between the exact
function and the estimation from our visibility cache. The method is attractive in
that it can exploit both spatial and temporal coherence, without introducing bias.
We believe the same concept can be applied to other applications, e.g., radiance
caching.
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ABSTRACT

We present an efficient method for importance sampling the prod-
uct of multiple functions. Our algorithm computes a quick approxi-
mation of the product on-the-fly, based on hierarchical representations
of the local maxima and averages of the individual terms. Samples
are generated by exploiting the hierarchical properties of many low-
discrepancy sequences, and thresholded against the estimated product.
We evaluate direct illumination by sampling the triple product of en-
vironment map lighting, surface reflectance, and a visibility function
estimated per pixel. Our results show considerable noise reduction
compared to existing state-of-the-art methods using only the product
of lighting and BRDF.
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1. INTRODUCTION

1 Introduction

Monte Carlo methods are widely used in photo-realistic rendering, but many sam-
ples are needed for noise-free results. Importance sampling is a popular way to
improve the performance by concentrating the sampling efforts to important re-
gions. Ideally, the sampling density should be proportional to the function itself,
but this is hard to achieve in practice. In this paper, we focus on integrating the
direct illumination under environment map lighting. The problem involves a prod-
uct of the lighting, surface reflectance, and local visibility. This product has to
be computed on-the-fly for each pixel, as precomputation is infeasible due to the
large amounts of data.
We store hierarchical representations of the local maxima and averages of the in-
volved functions. For any interval, the product of the functions’ individual max-
ima is always a conservative estimate of the product’s local maximum. This can be
used for rejection sampling, but many samples would be rejected in regions where
the maximum is overly conservative. Instead, we compute an approximation of
the product by hierarchically multiplying the local averages. The estimation is
then refined in regions of potential high contribution, indicated by the local max-
imum. Samples are generated by thresholding against this approximated product,

Figure 1: Our algorithm can sample the product of multiple functions exhibiting a
very wide range of frequencies. This image results from sampling the triple product
of environment map lighting, surface reflectance, and estimated visibility.
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exploiting the hierarchical properties of many low-discrepancy sequences.
Unlike many previous methods, we aim for quickly generating samples approxi-
mately following the product distribution. In terms of overall performance, this is
better than going through great effort to create a small set of near optimal samples.
This is particularly true today, when ray tracing has reached interactive speeds.
The complexity of our product approximation grows only linearly with the num-
ber of terms. Hence, it is possible to use more than two functions at a small extra
cost. As a proof of concept, we conservatively approximate the visibility per pixel,
and directly sample the triple product of lighting, BRDF, and visibility.

2 Previous Work

In this paper, we concentrate on computing the direct illumination using Monte
Carlo integration. For a general overview of Monte Carlo methods, we refer
to [11, 7]. In this context, the rendering equation [12] involves an integral over the
product of lighting, material reflectance, and visibility. These are all potentially
high-frequency, which makes it expensive to compute their product. In addition,
the exact visibility is unknown, and must be locally estimated.
Many techniques exist for importance sampling only one of the three functions.
Numerical BRDF models can often be analytically inverted, e.g., [2, 25], and mea-
sured materials can be efficiently sampled [15, 16]. Another example is environ-
ment map sampling [1, 14, 19]. It is also possible to draw samples from a weighted
combination of multiple functions [23]. However, none of these methods take the
product of the functions into account.
Talbot et al. [22] suggest importance resampling, where an initial set of samples
is first drawn from a simpler distribution. Then, by giving the samples appro-
priate weights and resampling the initial set, they obtain samples approximately
following the product distribution. Burke et al. [3] generate a large set of samples
according to one of the product’s individual terms, and use either rejection sam-
pling or resampling to pick out the most important ones based on the remaining
terms.
Other work has focused on explicitly estimating and sampling the product. Clar-
berg et al. [4] precompute wavelet representations of the lighting and materials.
These are multiplied on-the-fly, and uniform points are warped into the desired
distribution. Cline et al. [5] avoid the precomputation by using a summed-area ta-
ble for the light source, which is hierarchically divided into smaller regions based
on peaks in the BRDF. A major advantage is that spatially varying materials are
supported.
We compute an approximation of the product by hierarchically multiplying pre-
computed representations of the maxima and averages of the individual terms.
The approximation is adaptively refined, and samples are placed by hierarchical
thresholding of low-discrepancy sequences, similar to [19]. Quasi-random num-
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bers [17] are crucial for reducing the variance, and have a long history in computer
graphics [13]. Our simple approach has a number of advantages. First, it gives a
very fast algorithm. Second, our method allows inexpensive on-the-fly rotations of
the involved functions (e.g., the BRDF), which means we avoid storing redundant
pre-rotated data, and thus reduce memory requirements. Third, we can include
additional terms in the product at a small cost. This opens up for novel sampling
strategies.
As a proof of concept, we include a third importance function, representing an
estimation of the visibility. We use a conservative approximation of the geometry
with inner spheres [24], and build a low resolution visibility map per pixel. By
including a visibility term, we effectively avoid sampling in directions guaranteed
to be occluded. Very few other techniques exist, which exploit visibility to reduce
the variance. Ghosh et al. [9] propose a two-pass method. First, they apply bidi-
rectional importance sampling [3] to compute an initial estimate and to identify
partially occluded pixels. Then, the noise is reduced by redistributing the variance
from nearby pixels using Metropolis sampling.

3 Approximate Product Importance Sampling

Our sampling method is based on hierarchical thresholding of candidate points
against an estimate of the function to be sampled. The idea is to gradually fill the
sampling domain, and then perform a rejection test. Thresholding, or rejection
sampling (see Figure 2), is a classic Monte Carlo technique for sampling an ar-
bitrary function. First, we extend the method to efficiently handle the product of
multiple functions, by using a conservative estimate of the product’s maximum.
Then, we introduce a fast approximation of the product to avoid a large number of
slow evaluations of the individual functions. We use 1D examples throughout for
clarity, but our method generalizes to any dimension.

3.1 Hierarchical Sample Generation

We generate candidate samples using low-discrepancy sequences that can be hi-
erarchically constructed. By this we mean any sequence where samples can be
iteratively added, while being uniformly distributed. One example is the van der
Corput (VDC) sequence [17, 21]. Using a VDC sequence in base b, a sample’s
position, Xi, is defined as the radical inverse of its index i. Any positive integer i
in base b can be expressed as a sequence of digits dm . . .d2d1 uniquely defined by
i = ∑

m
j=1 d jb j−1. The radical inverse is obtained by reflecting these digits about

the decimal point. For instance, if b = 2, the radical inverse of 4 = (100)2 is
(0.001)2 = 0.125.
This sequence can be constructed recursively, in which case each subdivision mul-
tiplies the number of samples by b. We set a maximum level of subdivision L,
which will generate N = bL samples, and define a sample’s threshold value as
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q

Figure 2: In rejection sampling, samples are first drawn from a simpler envelope
distribution, q(x), and then randomly thresholded against the importance function
p(x). This can be illustrated as filling the space under q(x) with random points,
and then rejecting all points above p(x). The probability of accepting a sample,
xi, is equal to p(xi)/q(xi).

Yi = i/N. Now, for f (x), such that 0≤ f (x)<1, a sample is rejected if f (Xi)< Yi.
This process is illustrated in Figure 3. Note that our definition of threshold values
assures that, as samples are generated, their threshold values are strictly increasing.
This is a key point that will be exploited in the following section.

3.2 Sampling using Max-trees

The efficiency of rejection sampling relies on how well the envelope function ap-
proximates the desired importance function. A bad fit means more tested samples,
many of which will be discarded. Consider the case of sampling a product with
multiple terms:

f (x) = ∏
i

fi(x). (1)

The construction of a good envelope function for Equation 1 can be a difficult
problem. For example, in the case of direct illumination, the individual terms
represent lighting, BRDF, and visibility.
We propose to precompute a hierarchical representation of the maximum for each
individual term, which we call the max-tree. The max-tree is created by recursively
subdividing the domain, storing the maximum over each child in a tree structure.
For discrete functions, e.g., environment maps, finding the maximum over a region
is straightforward. For analytical functions, such as many BRDFs, it is in some
cases possible to derive an expression for the maximum. However, to remain gen-
eral, we rely on point sampling of the function, and use extensive oversampling to
reduce the risk of missing peaks. This assumes the function is reasonably smooth,
but it gives no guarantee of finding the true maximum.
By multiplying together the individual maxima, we get an upper bound for the
product. More formally, for any region [a,b] in the function domain, the following
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Figure 3: Sample generation gradually filling the space using a van der Corput
sequence. Note that Yj > Yi for j > i.

holds true:

max
x∈[a,b]

f (x)≤∏
i

(
max

x∈[a,b]
fi(x)

)
. (2)

Note that this upper bound gives a tighter fit at finer subdivisions. We generate
samples by recursively subdividing the domain, while evaluating Equation 2 at
each level. Since samples are hierarchically generated and have ever increasing
threshold values, we can safely stop the recursion as soon as a sample threshold
value is larger than the local maximum, as illustrated in Figure 4. This effectively
limits the number of generated samples.

3.3 Product Approximation

To speed up the sampling, we compute an approximation of the product, against
which potential samples are thresholded. Hence, we avoid the expensive evalu-
ation of the involved functions (e.g., environment map and BRDF) for each can-
didate point. On the negative side, we get samples only approximately following
the target distribution, which increases the variance. However, in our application,
faster sampling more than enough makes up for this, in terms of overall quality vs
time.
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Figure 4: Using the local maximum (solid black line), we can prune branches
where all subsequent samples will be rejected (orange boxes), and thereby reduce
the rejection rate.

Previous work on importance sampling for direct illumination has used product
approximations based on, e.g., wavelets [4] and summed-area tables [5]. We take a
simpler approach, and multiply the local averages of the individual terms. Looking
at an interval [a,b], we use:

1
b−a

∫ b

a
∏

i
fi(x)dx≈∏

i

(
1

b−a

∫ b

a
fi(x)dx

)
, (3)

where the individual local averages,
∫ b

a fi(x)dx/(b−a), are precomputed and stored
in an average-tree, similar to our max-tree. We denote the piecewise constant im-
portance function obtained this way by h(x).
Equation 3 is clearly a crude approximation to the product, especially at coarse
levels in the hierarchy. However, it converges towards the correct result at finer
subdivisions. Note that, by construction, we adaptively refine the approximation
where the function maximum is large, thereby minimizing the approximation error
in regions having a significant contribution to the integral. This is a key point of
our method. A challenging example is shown in Figure 5.
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Figure 5: Two non-overlapping peaks present a challenging case. Our product
approximation (red) fails at coarse levels, as seen on the left. However, the large
maximum (blue) around the left peak, will trigger further subdivision until the
missing peaks are found, as shown on the right.

3.4 Avoiding Bias

The deterministic nature of low-discrepancy sequences implies a fixed distribu-
tion of sample positions. To avoid bias, we use scrambling [20, 8] and randomly
permute the assignment of sample positions when subdividing. The discretization
of threshold values is another source of bias, which we address by adding a ran-
dom offset in the range [0,1/N) to each threshold value. This is a well-known
technique [11], which ensures that, on average, the correct number of samples is
selected.
The use of a low-discrepancy sequence based on the radical inverse yields samples
at fixed positions, aligned on a grid defined by the level of subdivision. As the
samples only cover a subset of the domain, the solution will be biased. To address
this fact, all results in this paper were generated using the VDC-sequence with
jittering on sample positions. However, it is possible (but more costly) to achieve
better blue noise properties by taking the local neighborhood into account using
structural indices, as in, e.g., Polyomino-based sampling [18].

3.5 Sample Count

As mentioned in Section 3.1, the number of candidate samples is N=bL, where b is
the subdivision factor and L is the maximum level of subdivision. Since candidates
are uniformly distributed, the average number of accepted samples n̄ is equal to N
scaled by the integral of the importance function, H=

∫
h(x)dx, as follows:

n̄ = H×bL. (4)

To obtain n samples on average, we scale h by a factor c, which is given by:

c =
n

H×bL . (5)
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It is essential that c ·h(x) remains in [0,1) for our rejection test to be valid. This is
ensured by increasing L up to the point where c · h(x) < 1. Note that c varies per
pixel and cannot be precomputed.
As h(x) is defined through the sampling process, its integral H is initially unknown.
In order to estimate the number of samples that will be generated, we approximate
H by performing two subdivisions and then computing the average of h(x) at that
level. If the final number of samples widely differs from n, we refine c and repeat
the process. In our application, using a 20% tolerance, the average number of
sampling iterations rarely exceeds 1.3.

3.6 Unbiased Monte Carlo Integration

In importance sampling, the probability density function does, by definition, in-
tegrate to 1. We draw samples from the scaled product approximation, c · h(x),
which must be divided by its integral, c ·H, in order to meet this criteria. Since
h(x) is piecewise constant, its integral can easily be computed by summing the
contribution of all leaf nodes during the sampling process:

H =
1
bL

m

∑
i=1

hi×bL−li , (6)

where hi is the value of h(x) over the i th node, and li ∈ [0,L] is the node’s level
in the hierarchy. The size of the i th node with respect to the maximum level of
subdivision, L, is equal to bL−li . The resulting unbiased Monte Carlo estimator,
〈F〉, for the integral F =

∫
f (x)dx is:

〈F〉= H
n

n

∑
i=1

f (xi)

h(xi)
, (7)

where H is computed using Equation 6. Note that the term H plays the same role
as Lns (i.e., “exitant radiance in the absence of shadows”) used in [3, 4].

4 Application – Direct Illumination

The computation of direct illumination from distant HDR environment map light-
ing [6] is a problem that has generated considerable interest in recent years. The
outgoing radiance is given by [12]:

Lo(x→ωo)=
∫

Ω

L(x←ωi)ρ(ωi↔ωo)V (ωi)dω, (8)

where the lighting (L), reflectance (ρ), and visibility (V ), are integrated over the
hemisphere. We define ρ as the BRDF weighted by the cosine of the incident
angle, i.e., ρ = fr(ωi↔ωo)(ωi ·N), as commonly done.
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Figure 6: After a rotation in the HEALPix mapping, the source quad usually over-
laps a number of quads at the destination. The precomputed average at the red dot
is linearly interpolated from the nearest neighbors, marked with blue dots. Simi-
larly, we ensure that the local maximum is conservative by implicitly considering
all quads marked dark gray.

Our algorithm can be used to efficiently sample the product L ·ρ . We also show
that an approximated visibility term, Ṽ , can be included. By sampling according to
the triple product L ·ρ ·Ṽ , we further reduce noise in regions with large occlusion.
Results with and without the visibility term are presented in Section 5.

4.1 HEALPix Mapping

All involved functions are defined over the (hemi)sphere, while our algorithm de-
pends on hierarchical subdivision of the domain into quads. We use the HEALPix
(Hierarchical Equal Area isoLatitude Pixelization) mapping [10], and divide the
sphere into 12 faces (see Figure 6), as described by Gorski et al. [10]. Each face
is a curvilinear quad, which can be recursively subdivided into 2×2 smaller quads
of equal area. We apply our sampling scheme on each face separately.
The HEALPix mapping has a number of desirable properties: (1) hierarchical rep-
resentation, (2) area preservation, and (3) low distortion. The preservation of area
simplifies our implementation, as we do not have to compute form factors. Low
distortion is important when rotating between different domains (see Section 4.3).

4.2 BRDF Representation

A general BRDF is a 4D function parameterized over incident and outgoing direc-
tions, (θi,φi) and (θo,φo) respectively. Isotropic BRDFs, currently implemented
in our system, are reduced to 3D functions depending only on θi, θo, and |φi−φo|.
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We store isotropic materials as 2D slices, i.e., one 2D reflectance map (θi, |φi−φo|)
for each θo. Each slice is first encoded as a mipmap image, and then mapped to
the HEALPix representation. Only the data for the upper hemisphere is stored.
All materials in the scene are resampled into this representation as a precomputa-
tion step. To avoid missing features, we use oversampling and assume the BRDF
is reasonably smooth. This approach is taken by most algorithms using tabulated
materials, and rarely presents a problem. The reflectance maps (as well as the en-
vironment map) are stored in RGB color, and the local maxima and averages are
computed per channel. During sampling, we threshold against the luminance, Y ,
computed using the perceptual weighting: Y =0.299R+0.587G+0.114B.

4.3 Rotations

In our application, the lighting is given by a 2D environment map in world space,
while material reflectance is defined in the local surface frame. Hence, a rotation
between the two domains must be performed. This can be precomputed as in [4],
but the increased memory requirements would limit us to low-resolution represen-
tations. Instead, our algorithm was designed to support fast on-the-fly rotation of
the importance functions.
The estimations of a quad’s maximum and average (Equations 2 and 3) are both
local operators, depending only on the values of the corresponding nodes in each
term. Hence, we can simply rotate the coordinates used for locating a quad in the
hierarchical representation. However, after rotation, a quad usually covers multiple
quads at the destination. The low distortion in the HEALPix mapping helps reduce
the overlap, but special care has to be taken to ensure that our estimation of the
maximum remains conservative. We proceed as illustrated in Figure 6.

4.4 Visibility Approximation

One of the advantages of our method is that we can inexpensively include addi-
tional terms in the product. A natural extension is to use an estimated visibility
map to steer samples away from occluded directions.
We use a visibility estimation inspired by [24]. Each object in the scene is approx-
imated by a set of inner spheres. These spheres are aggregated into a hierarchy, but
only leaves act as occluders (to preserve inner conservativity). To create a visibil-
ity map, we traverse the sphere hierarchy and the HEALPix hierarchy in parallel.
If the cone enclosing a quad of the HEALPix mapping is completely occluded by
a leaf sphere, the quad is marked as occluded (zero visibility). Other quads are
set to fully visible (one). Then, we propagate these values upwards and store their
maxima and averages.
The cost of building the visibility approximation is independent of the number of
samples. Hence, the amortized cost is smaller for high-quality rendering, where
more samples are used. In our implementation, a visibility map is built per pixel,
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which is expensive with many occluders. Another approach is to re-use the visi-
bility estimate over several pixels, or use adaptive updates. We have saved this for
future work. Other occluder primitives can also be added. In addition to spheres,
our implementation supports infinite planes.
The visibility term gives a large variance reduction where the information is accu-
rate. In other parts, e.g, along shadow edges, the effect is smaller. To handle such
regions, we have experimented with adaptive sampling. We increase the number
of samples for each pixel where the number of occluded visibility rays is above a
certain threshold, e.g., 50%, and repeat the sampling process.

4.5 Early Termination and Biased Evaluation
In our algorithm presented in Section 3, samples are always placed in leaf nodes at
the maximum level of subdivision. This gives an importance function that is accu-
rate, but at a higher cost. Here, we present two optional extensions for increasing
the performance.
First, we propose to terminate the recursion as early as possible. For this, we
identify branches with at most one sample. Our sample threshold values are, by
definition, strictly increasing. Thus, when we reach a point where the next thresh-
old value is larger than the local maximum, only the current sample can possibly
be accepted. Instead of traversing the hierarchy up to the leaf level, we place the
sample in the current node and terminate. This gives a faster algorithm, but at the
expense of a small increase in variance.
Second, we propose a biased version of our algorithm. Instead of point sampling
the exact L and ρ in evaluating the rendering equation, we use the local averages
as sample values for samples placed in large nodes. To avoid visual artifacts, e.g.,
with highly specular materials, we combine unbiased and biased evaluations. This
is best explained with an example. Consider the case where the BRDF and the
environment map are precomputed up to levels 5 and 8 respectively. If a sample
is placed in a node at level 7, we compute the exact BRDF value, but use the pre-
computed average of the environment over the node. The sample is then assigned
the product of these values. Note that this approach, although biased, is consistent,
i.e., it converges towards the correct solution.
We have found the combination of these two extensions to be extremely useful.
When a sample is placed at lower levels in the hierarchy (large nodes), the average-
tree approximately gives us the integral over the node, instead of a single point-
sampled value. This significantly reduces the variance. In Section 5, we present
results using both the unbiased and the biased versions.
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5 Results

All results were obtained on a MacBook Pro with an Intel Core 2 Duo 2.4GHz
(using 1 core), and all functions were stored uncompressed in quadtrees of differ-
ent depths. At depth n, each of the HEALPix mapping’s 12 faces contains 2n×2n

quads. In all images, the environment map was stored at depth 8, and occupies
24 MB. For a 4k×4k angular map, the setup time was 1.46 s.
Isotropic BRDFs are represented with 50 slices computed for outgoing angles uni-
formly distributed in [0,π/2]. The only user set parameter is the BRDF resolution.
In practice, we use depth 5 for most materials, while diffuse materials (e.g., the
ground in Figure 1) are stored at depth 4, and highly specular materials (e.g., the
sphere in Figure 8) are stored at depth 6. The precomputation times for measured
materials [16] are:

Depth n Memory Precomputation
4 2.55 MB 0.36 s
5 9.78 MB 1.35 s
6 38.45 MB 5.31 s

The estimated visibility function is computed at depth 4 and occupies 8 KB. Fig-
ure 7 illustrates a practical situation where a Buddha is approximated by 110 inner
spheres. It should be noted that the cost of estimating visibility is independent
of the number of samples, and the cost of including a third term in the prod-
uct is marginal. For this scene, adding visibility increases the rendering time by
about 14 seconds. The rendering times for the left image in Figure 7, at resolution
256×256, were:

Number of Non-adaptive Adaptive
Samples No Visibility Visibility Visibility

16 4.1 s 17.8 s 18.3 s
128 14.7 s 28.5 s 33.0 s
512 49.8 s 64.0 s 81.0 s

Figure 8 and 9 show a comparison against several recent techniques. Results with
sampling of only the BRDF or the environment map are also included. The ma-
terial is a normalized Phong with diffuse and specular lobes. The shininess coef-
ficient is 5000 for the sphere and 10 for the plane. These values were chosen to
illustrate a full range of frequencies. Strong light blocked by occlusion results in a
high noise level with algorithms sampling only the product of lighting and BRDF.
This effect is diminished by taking visibility into account.
This scene presents an extremely easy case for our visibility estimation, only in-
creasing the rendering time by 11% (with 64 samples). This is not representative
for the general case, but it shows, as a proof of concept, that including a visibility
approximation can dramatically lower the noise. More sophisticated algorithms
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Reference

No Visibility Visibility Visibility and Adaptive

Figure 7: Images illustrating the impact of adding visibility information and adap-
tive sampling, using 16 samples per pixel and biased rendering. The two gray scale
images (bottom row) show the percentage of occluded rays, where black is 100%
and white 0%. The bottom right image shows the sphere approximation used for
the Buddha. The topmost image is a reference.
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Reference Reference without plane

4
sa
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16
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m

pl
es

64
sa

m
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es

BRDF Environment WIS [4] TSIS [5] Our Our Our
unbiased unbiased biased unbiased no visibility no visibility visibility

unbiased biased biased

Figure 8: Comparison with other recent methods. For WIS, we used wavelets of
1282 resolution, 2–5% sparsity and Poisson points as input. For TSIS, we did not
use adaptive sampling. BRDF sampling was done analytically, and environment
map sampling with the unbiased version of our algorithm. For our algorithm, the
BRDFs for the plane and the sphere were precomputed to HEALPix levels 5 and 6
respectively, and we did not use adaptive sampling. Ground truth is shown at the
top. Visibility sampling effectively removes noise due to occlusion.

for estimating the visibility term have been left for future work. The images also
show that our biased extension gives strong noise reduction, while being consis-
tently closer to the reference. The rendering times were: 1

1Note that the timings are not directly comparable as the algorithms were implemented in different
ray tracers. However, all systems show a performance similar to pbrt [21].
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#Samples 4 16 64 256
HT unbiased 5.1 s 7.3 s 10.0 s 20.4 s

HT biased 2.3 s 3.2 s 4.8 s 9.9 s
HT+Vis biased 2.8 s 3.7 s 5.3 s 10.3 s

WIS [4] 6.4 s 6.7 s 7.8 s 11.3 s
Two-stage [5] 0.8 s 1.8 s 5.8 s 19.3 s

Figure 1 illustrates the robustness of our method and its applicability to a wide
range of materials, ranging from diffuse to highly specular, in a lighting environ-
ment with an extreme dynamic range.

Figure 9: Variance as a function of the number of samples for the methods com-
pared in Figure 8. The variance was measured after tone-mapping.

6 Discussion and Future Work

Our sampling scheme is based on hierarchical thresholding against an approx-
imated importance function. The approximation is computed from hierarchical
representations of the local maxima and averages, and enables several important
features. First, we can sample products of multiple functions, including rotations
between different domains. Second, many useful optimizations are possible, e.g.,
early termination and biased integration, which improve speed and reduce noise.
Although our method requires the involved functions to be smooth and bounded,
we have found it to be very robust.
For estimating the direct illumination, our results compare favorably to existing
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state-of-the-art methods. As a proof of concept, we include a visibility term es-
timated per pixel, and show that it is possible to significantly reduce the noise
due to occlusion. Exploiting visibility information to speed up the computation
of direct illumination is an interesting direction of research. We would also like
to remove some of the limitations of our algorithm, most importantly the precom-
putation step. One possibility could be to compute the necessary data on-the-fly
directly from analytical or factorized BRDFs. This would allow spatially varying
materials, which is important in a number of applications.
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ABSTRACT

We present a fast vectorized implementation of a transform that
maps points in the unit square to the surface of the sphere, while
preserving fractional area. The mapping uses the octahedral map
combined with an equal-area parameterization, and has many desir-
able features such as low distortion, straightforward interpolation, and
fast inverse and forward transforms. Our SIMD implementation com-
pletely avoids branching, and uses polynomial approximations for the
trigonometric operations, along with other tricks. This results in up
to 9 times speedup over a traditional scalar implementation. Source
code is available online.
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1. INTRODUCTION

1 Introduction

Spherical and hemispherical functions are abundant in computer graphics. Exam-
ples include environment maps, BRDFs, visibility data, surface maps for spheri-
cally parameterized objects, and so on. To handle such data, we need a mapping
from the (hemi)spherical domain to the plane. The best choice of mapping de-
pends on the application. For example, the cube map is convenient because of
its simplicity and hardware support, but it is not area-preserving (pixels near the
corners represent a smaller solid angle).
In many cases, it is desirable to use an equal-area mapping, i.e., a mapping which
preserves fractional area. In applications integrating functions over the (hemi)sphere,
area-preservation significantly simplifies the implementation as we do not have to
take the solid angle of each pixel into account. The prime example is the evaluation
of the rendering equation [4], which involves an integration over the hemisphere.
Another desirable property is low distortion, i.e., the aspect ratio of pixels on the
sphere should be close to one. Otherwise, square pixels can be mapped to long,
thin segments on the sphere, which causes aliasing and reduces the useful reso-
lution. It is also desirable to have as few discontinuities as possible in order to
simplify interpolation.
In this paper, we describe a fast implementation of a mapping with all these prop-
erties: equal-area, low distortion, and support for straightforward interpolation
across edges. The mapping uses the octahedral map [5] combined with an area-
preserving parameterization [6]. The described mapping has been successfully
used for importance sampling purposes [1].
The current trend is microprocessors with many cores and wide data paths. By ex-
ploiting data parallelism using SIMD (single instruction, multiple data) vectoriza-
tion, the performance of many applications can be greatly improved. We provide a
SIMD implementation (using Intel SSE) of the described mapping that is up to 9×
faster than a straightforward scalar implementation, and roughly 4× faster than an
optimized scalar version. Most of this paper deals with the technical details of our
implementation, such as avoiding branching, polynomial approximations of the
trigonometric operations, etc. We believe this is of interest to a wide audience, as
knowledge about how to write SIMD code is becoming increasingly important to
fully utilize the enormous performance available in modern CPUs.

2 Equal-Area Mapping

2.1 Hemisphere

For mapping the hemisphere, we use the concentric map [6], which maps con-
centric squares to concentric circles on the hemisphere, while preserving frac-
tional area. See Figure 1. For the first sector, i.e., where φ ∈ [−π

4 ,
π

4 ], a point
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z

x

y
u

v

r

Figure 1: The concentric map [6] transforms concentric squares in the plane to
concentric circles on the hemisphere. The mapping preserves fractional area and
has a relatively low distortion.

(s, t) in the unit square P = [0,1]2 is transformed to a point on the hemisphere
H = {(x,y,z) | x2+y2+z2=1,z≥ 0} as follows:

(s, t)→ u = 2s−1
v = 2t−1 →

r = u
φ = π

4
v
u
→

x = cosφ · r
√

2− r2

y = sinφ · r
√

2− r2

z = 1− r2
. (1)

Similar transforms apply to the other sectors. The z-coordinate in the last step is
equal to z = 1− r2 = cosθ , where θ is the angle from the z-axis. Hence, sinθ =√

1−cos2 θ = r
√

2− r2, which explains the equations for x and y.
As noted by Shirley and Chiu, this simple mapping has a number of desirable prop-
erties. Most importantly, it preserves fractional area, which means a uniform point
distribution in the square will map to a uniform distribution on the hemisphere.
Second, the mapping preserves adjacency, i.e., nearby points in the square map to
nearby points on the hemisphere. Last, the distortion is relatively well-behaved,
which is important in order to reduce aliasing when sampling functions over the
hemisphere.

2.2 Sphere
To get an equal-area mapping of the sphere, we combine the concentric map with
the octahedral map [5], which is a clever way to “fold” a square over the sphere.
The square is divided into eight triangles, where the four innermost triangles are
mapped to the northern hemisphere, while the outer four are folded down to cover
the southern hemisphere. Thus, each triangle maps to a quadrant in one of the two
hemispheres, as illustrated in Figure 2. We rotate the concentric map by 45◦ and
insert it into the inner quad of the octahedral map. To the best of our knowledge,
this combination of the two mappings was first used in [1].
The transform from the unit square P to the sphere S = {(x,y,z) | x2+y2+z2=1}
is easy to derive. As before, the first step is to transform (s, t) to a point (u,v)∈
[−1,1]2. We start by considering the innermost triangle in the first quadrant, as
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Figure 2: The octahedral map [5] is obtained by folding a quad into an octa-
hedron, which is projected onto the sphere using an arbitrary parameterization.
Image courtesy of Emil Praun and Hugues Hoppe.

u

v

u

v

u v

v
v-u

a

b

u

v

u v

v

v-u

ab

Figure 3: The concentric map applied to the first quadrant of the octahedral map.
The inner region (yellow) maps to the northern hemisphere, while the outer (blue)
maps to the southern. The lengths a and b are found using simple trigonometry.

shown in Figure 3. The lengths of a and b are a = (u+v)/
√

2 and b = (v−u)/
√

2,
and the transform to the unit disk is given by:

r =
√

2a = u+ v,

φ =
π

4
b
a
+

π

4
=

π

4

(
v−u

r
+1
)
, with 0≤ φ ≤ π

2
, (2)

where φ is measured from the positive u-axis (hence the addition of π

4 ). The
outermost triangle maps to the southern hemisphere, and its parameterization is
obtained by mirroring the innermost triangle about the diagonal. Here, b = (v−
u)/
√

2 as before, but a differs slightly and is given as a = (2− u− v)/
√

2. The
transform to the unit disk is:

r =
√

2a = 2−u− v,

φ =
π

4
b
a
+

π

4
=

π

4

(
v−u

r
+1
)
, with 0≤ φ ≤ π

2
. (3)

Note that the computation of φ is the same in both these cases, only r differs. The
mapping from the disk to the sphere is the same as the last step of Equation 1,
except that the z-component is negated, i.e., z = −(1−r2), if we are in the outer
triangle. The final mapping is shown in Figure 4, and a proof of area-preservation
is given in Appendix A.
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So far, we have ignored the remaining quadrants. However, following a similar
reasoning as above, the transforms are easily derived. A straightforward imple-
mentation, similar to Shirley and Chiu’s version for the hemisphere, results in
three levels of if-statements as there are 8 different cases (four quadrants, each
divided into two triangles). The main execution cost lies in this branching, together
with the trigonometric operations.

3 SIMD Implementation

We will now describe how each part of the algorithm can be efficiently written
using the x86 streaming SIMD extensions (SSE). SSE code can be written directly
using inline assembly language instructions, or using compiler intrinsics (which
we use). Carefully hand-optimized assembly code can be faster, but is tedious
and error-prone to write. Intrinsics, which is a C/C++ mapping of the assembly
instructions, enable features like compiler optimizations and automatic register al-
location, which make them easier to use. Intrinsics are also likely to be more
forward compatible (e.g., if more registers are added, the code can, after recompi-
lation, automatically benefit). With SSE, four floating-point values are processed
in parallel, but future generation CPUs will likely have wider data paths. As we do
not use any horizontal operations, it is trivial to adapt our implementation to such
architectures.

3.1 The Square to Sphere Transform

3.1.1 Avoiding Branching

In SIMD code, branching is handled using conditional instructions which set a bit
mask based on the outcome of some comparison. By executing both branches and
selecting the correct result based on the mask using logical operations (and, or,
not), the equivalent of a “parallel” if-statement is created.
In our case, there are 8 different ways to compute (r,φ), which makes this approach
inefficient. Hence, we take an alternative route and map the problem to the first
quadrant by taking the absolute values of u and v. A similar approach is used to
find r without using any conditional instructions (we will come back to this in a
moment). We use the following:

φ
′ =

π

4

(
|v|− |u|

r
+1
)
, where φ

′ ∈ [0,
π

2
]. (4)

In the last step of Equation 1, we need to compute the sine and cosine of φ , but
we only have φ ′ to work with. Using standard trigonometric rules, we find the
following expressions for sinφ and cosφ in each of the four quadrants:
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quadrant φ sinφ cosφ

1 φ ′ sinφ ′ cosφ ′

2 π−φ ′ sinφ ′ −cosφ ′

3 φ ′−π −sinφ ′ −cosφ ′

4 −φ ′ −sinφ ′ cosφ ′

Based on this, we realize that:

sinφ = sign(v) · sinφ ′

cosφ = sign(u) · cosφ ′
where sign(x) =

{
+1 if x≥ 0,
−1 if x < 0. (5)

Fortunately, both the absolute-operator needed in Equation 4, and the sign-operator
used in Equation 5, can be efficiently implemented using simple logic instruc-
tions. In the IEEE-754 standard for floating-point numbers, the most signifi-
cant bit (MSB) represents the sign, where 0 is positive and 1 means negative.
Hence, taking the absolute value is simply a matter of and’ing by the bit mask
01 . . .1b = 0x7F . . .F, and changing the sign can be done by xor’ing with the
sign-bit: 10 . . .0b = 0x80 . . .0. More formally:

|u| = u & 0x7FFFFFFF,
sign(u) · x = (u & 0x80000000)⊕ x, (6)

where ⊕ represents xor, and & means and. In practice, we use the andnps
instruction (and a value with the logical inverse of another) to avoid loading two
different constants from memory as 0x80 . . .0 is the inverse of 0x7F . . .F.
We apply a similar reasoning to find r (Equations 2 and 3) and the z-coordinate
(Equation 1) without branching. First, we compute the signed distance, d, along
the diagonal in the first quadrant, so that d=1 at the origin, d=−1 at the upper-
right corner, and d = 0 halfway in-between. By taking the absolute value, we
can thus compute r as 1− |d|. Also note that a positive distance (inner triangle)
represents points on the northern hemisphere, while negative values map to the
southern hemisphere. Hence, the sign of d can be used to set the sign of z. We
arrive at the following:

d = 1− (|u|+ |v|), and
r = 1−|d|,
z = sign(d) · (1− r2).

(7)

3.1.2 Avoiding Division-by-Zero

In the center and the four corners of the square, r is exactly zero and Equation 4
results in a division-by-zero. To get a robust solution, we set φ ′ = 0 if r = 0. This
is a valid behavior as these points map to the south and north poles, respectively,
where the value of φ ′ does not matter. Using intrinsics, the test can be compactly
written as follows:

mask = _mm_cmpneq_ps(r, ZERO); // compare r to zero
phi = _mm_and_ps(phi, mask); // clear phi to 0..0 if r=0
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The cmpneqps (compare not equal) instruction compares r with a predefined
zero-constant, and based on the result, φ ′ is either cleared to zero, or kept un-
changed. This is valid since the bit sequence 0 . . .0 also represents a floating-point
zero in the IEEE-754 standard.

3.1.3 Approximating the Trigonometric Operations

Using simple logical operations, we map the problem to the first quadrant, and
from there, sign extension moves the result back to the correct quadrant. The only
remaining difficulty is the trigonometric operations needed to compute x and y in
Equation 1. As sin and cos are not part of the SSE instruction set, polynomial
approximations have to be used. Table-based approaches are not recommended
as multiple values are computed in parallel, which means multiple memory ac-
cesses at different locations and bad cache performance. The most straightforward
approach is to truncate the Taylor series (Equation 8) for sine and cosine to an
arbitrary number of terms.

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ . . . and cosx = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . (8)

The Taylor series are obtained by expanding the power series around the point
x=0. However, the absolute error grows the further from x we get. In our case,
the input is in the range φ ′ ∈ [0, π

2 ]. If we truncate the expression for sinx after,
e.g., the 7th degree term, we get a maximum absolute error of 1.57 · 10−4, which
is quite large. The power series can be expanded around a point somewhere in the
middle of the interval, but the basic problem remains – the error increases quickly
as we move away from the chosen point.
A better approach is to use the minimax polynomial approximation, which is the
polynomial that minimizes the maximum approximation error. This has a number
of interesting properties. The Chebyshev equioscillation theorem (see, e.g., [3])
states that for a minimax polynomial of degree n over an interval a≤ x≤ b, there
exist at least n+2 points in the domain where the error between the polynomial
and the approximated function oscillate in sign and are of equal magnitude. Thus,
the minimax polynomial gives us a well-controlled error over the entire range.
Remez algorithm [2] can be used to find the polynomial, but as the details are
quite technical, we use the implementation provided by the numapprox package
in MapleTM. As an example, the 7th order minimax approximation of sinx for
x ∈ [0, π

2 ] is:

sinx ≈ −1.947 ·10−8 +1.00000155x−0.000020227x2−0.16657x3 (9)
−0.00023977x4 +0.0086393x5−0.00020575x6−0.00013731x7,

with a maximum error of only 2.00 · 10−8, as compared to 1.57 · 10−4 for the
Taylor approximation of the same order. However, note that the evaluation is more
expensive, as every term has a nonzero coefficient (7 vs. 3 mul’s). To reduce
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the complexity, we set coefficients for terms of even power to zero, as these are
relatively small anyway. This is done by rewriting the problem as:

sinx≈ xp(x2)
y=x2
⇐⇒

sin
√

y
√

y
≈ p(y). (10)

After a change of variables, y=x2, we can find a 3rd order polynomial p(y), which
after insertion on the left side gives a 7th order approximation of sinx with all even
coefficients set to zero. Note that the range used for the minimax optimization
must be updated to y ∈ [0, π2

4 ] as x ∈ [0, π

2 ]. The maximum error is now 1.18 ·10−6

at a cost of 4 mul’s, which is a good compromise.
In our case, we need to compute both sinφ ′ and cosφ ′. The first thing that comes
to mind is to approximate only the sine, and then apply the rule cosx=

√
1− sin2 x

to find the cosine. However, the approximation of sinx, which we call f (x), results
in an error εs(x) = sinx− f (x). By analyzing εs(x) over the range 0 ≤ x ≤ π

2 ,
we find that the largest error is εs = 1.18 · 10−6 at x = π

2 . The error in the cosine
approximaton at this point would be:

|εc|= |cosx−
√

1− (sinx− εs)2|=
√

εs(2− εs)≈
√

2εs = 0.0015, (11)

which is too large. Hence, we have to perform two separate polynomial approxi-
mations (sine and cosine) in order to reach an acceptable precision.
Last, we note that the computation of φ ′ in Equation 4 includes a multiplication by
π

4 . By rescaling the coefficients of the minimax polynomials so that we approxi-
mate sin(π

4 x) rather than sinx, and similarly for the cosine, this extra multiplication
can be avoided (without changing the approximation error as we only rescale the
input). Finally, we arrive at:

sin(
π

4
x) ≈ 0.785398x−0.0807407x3 +0.00248440x5−0.0000341486x7,

cos(
π

4
x) ≈ 0.999993−0.308371x2 +0.0157863x4−0.000298371x6, (12)

where x ∈ [0,2], and the coefficients have been rounded to 6 significant digits (see
the source code for full precision).

3.2 The Sphere to Square Transform

The inverse transform, i.e., the mapping of vectors on the sphere to points in the
unit square, is useful in a number of applications. The main steps are:

– Map the problem to the first quadrant by taking the absolute of (x,y).
– Compute φ ′ from (x,y) using atan, and compute r from z.
– Convert (r,φ ′) to (u,v) in the first quadrant.
– Flip the sign bits of (u,v) to move the point to the correct quadrant.
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– Map points from [−1,1]2 to the unit square [0,1]2.

As many parts of the implementation resemble those described in Section 3.1, we
will only briefly go over the details.

3.2.1 Approximating the Arctan-function

Our input is a normalized 3D vector (x,y,z). To compute φ ′, which is the rotation
in the first quadrant of the xy-plane, we start by computing the absolute values |x|
and |y|. The rationale for this is the same as before, i.e., to move the problem to
the first quadrant. Then, the rotation is found using: φ ′=atan |y||x| . Since there is no
SSE version of atan, we have to use a polynomial approximation here as well.
However, it proved hard to find an approximation that yields enough precision for
all inputs, as |y||x| →+∞ as |x| → 0. Therefore, we apply the rule:

atan α =

{
atan α if α < 1,
π

2 − atan 1
α

if α ≥ 1,
(13)

to reduce the input range to [0,1], i.e., we let |x| and |y| switch places if |x| <
|y|. Using the SSE instructions minps (minimum of two values) and maxps
(maximum of two values), α can be efficiently computed as:

α =
min(|x|, |y|)
max(|x|, |y|)

, 0≤ α ≤ 1. (14)

With this reduced range, it is easier to find a good minimax approximation. We
strive for about the same precision as in the approximations of sine and cosine. For
the atan-function, rational minimax approximations are known to give low errors.
In our case, a 3rd/2nd order approximation would be sufficient (maximum error
of 7.28 · 10−6). However, the necessary division is rather slow and have a long
latency. Thus, we opted for a 6th order polynomial approximation, which avoids
the division and uses the same number of coefficients. As we will see later, it is
useful to include a multiplication by 2

π
so that the approximation returns an angle

in [0, 1
2 ] rather than [0, π

4 ]. Our final approximation is (note α ∈ [0,1]):

2
π

atan α ≈ 4.06531 ·10−6 +0.636227α +0.00615523α
2−0.247326α

3 +

0.0881627α
4 +0.0419157α

5−0.0251427α
6, (15)

and the maximum error is 4.07 · 10−6. Last, we need to evaluate Equation 13
(scaled by 2

π
). This can be done using a compare instruction followed by four

logic/arithmetic instructions, as follows:

__m128 mask = _mm_cmplt_ps(x, y); // mask = x<y ? 11..1 : 0
__m128 c = _mm_and_ps(mask, ONE); // c = x<y ? 1.0 : 0.0
mask = _mm_and_ps(mask, SIGNBIT); // mask = x<y ? 10..0 : 0
phi = _mm_xor_ps(phi, mask); // phi = x<y ? -phi : phi
phi = _mm_add_ps(c, phi); // phi = x<y ? 1-phi : phi
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3.2.2 Finding the Radius

The computation of r differs depending on whether we are in the northern or the
southern hemisphere (z ≥ 0 or z < 0). By rearranging the terms in the equations
for z given in Section 2.2, we find that:

r =
{ √

1− z if z≥ 0√
1+ z if z < 0

⇐⇒ r =
√

1−|z|. (16)

Again, by taking the absolute value, we avoid branching.

3.2.3 Mapping from Disc to Square

The computation of the point (u,v) in the square, corresponding to the point (r,φ ′)
in the disc, is relatively straightforward. We assume, for now, that the point lies in
the “inner” triangle (northern hemisphere). By inverting the expressions for r and
φ (Equation 2), we can compute (u,v) as:{

r = u+ v
φ ′ = π

4

( v−u
r +1

)
= . . .= π

2
v
r

⇐⇒
{

v = r · 2
π

φ ′

u = r− v
(17)

Then, if we are in the southern hemisphere (z < 0), the point (u,v) is reflected
about the diagonal in the square as follows:

u′ = 1− v and v′ = 1−u. (18)

This is implemented using a compare instruction followed by logic/arithmetic in-
structions similar to what we did in Section 3.2.1. The next step is to sign-extend
(u,v) based on the original signs of x and y, i.e., we take the point from the first
quadrant to its correct position. Finally, we transform the point to the unit square,
[−1,1]2→ [0,1]2, which completes the transform.

3.3 Precision
The approximations of the trigonometric operations were chosen to provide suf-
ficient precision for all but the most demanding applications. To measure the ap-
proximation errors, we transformed a large number (109) of random points in the
square to the sphere, using both the “exact” scalar version of the algorithm (us-
ing built-in trigonometric instructions) and our SSE-optimized version. The error
was measured as the Euclidean distance in 3D between the resulting points on the
sphere. As the error is very small, this measure is approximately the same as the
arc length in radians on the unit sphere.
For the inverse transform, a large number of points over the sphere were mapped to
points in the square. To measure the error, these 2D points were transformed back
to the sphere using the exact algorithm, and the Euclidean distance was measured
as before. The maximum and average errors are given in Table 1. The average
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error is in the order of 3 · 10−6 in both directions. As a comparison, the diagonal
of a single pixel in a 4096×4096 image has a shortest length of 7.7 · 10−4 when
mapped to the sphere.1 The average error is thus only about 0.3% of the edge
length of a pixel in a 4k map. The maximum error is well-behaved in the square to
sphere transform. In its inverse, there are a few bad cases where the error goes up
to about 1/3 of a pixel (again assuming a 4k map), even though the average error
is low. If a higher precision is required, it is easy to increase the order of the arctan
approximation.

transform maximum error average error
square→sphere 7.49 ·10−6 3.37 ·10−6

sphere→square 2.43 ·10−4 3.19 ·10−6

Table 1: The maximum and average approximation errors of the forward and
inverse transforms. The errors were measured as the Euclidean distance between
the points on the unit sphere representing the exact and approximated directions.

4 Boundary Symmetry

4.1 Tiling
Each edge of the octahedral map is folded about its midpoint so that its two end-
points meet. This boundary symmetry [5] is useful as it means the map can be
tiled by mirroring the mapping about both its axes for every other occurrence2, as
shown in Figure 4 (c). Hence, lookups for coordinates outside the [0,1)2 range are
trivial, and interpolation across the edges of the map is well-defined and without
singularities.
For a map with N×N pixels, where N=2k is a power-of-two, the coordinate trans-
form from a point (s, t) to integer pixel coordinates (x,y), can be efficiently done
using logic operations. We scale the input by N and truncate:

x = bs ·Nc and y = bt ·Nc, (19)

where b.c is the floor-operator The bits 0 . . .k−1 of the binary representation of x
and y hold the pixel coordinates within the square, while bits k,k+1, . . . indicate
which repetition of the tiling we are in. Mirroring needs to be done when either x
or y is at an odd number of repetitions. We can thus xor x and y, and look at the
kth bit to decide whether to mirror or not:

m = (x⊕ y) & N, if
{

m = 0 → do not mirror
m 6= 0 → mirror (20)

1With a map of N×N pixels, there are 2N pixels crossing the equator, while the circumference of
the unit sphere is 2π . Hence, the shortest diagonal is of length π/N.

2This is a variant of the “mirrored repeat” tiling used by OpenGL.
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(a) (b) (c)

Figure 4: Our mapping transforms square pixels (a) into curvilinear quads on the
sphere (b), while preserving fractional area. The boundary symmetry [5] of the
octahedral map is shown in (c). The rightmost image is courtesy of Emil Praun
and Hugues Hoppe.

The final positions are computed as (x,y) mod N, followed by x=(N−1)−x (and
similar for y) if m 6= 0. The mod-operator translates to an and by N−1, which is
the bit mask with 1’s at the positions 0 . . .k−1, and 0’s elsewhere.

4.2 Bilinear Interpolation
For bilinear interpolation, the four pixels nearest to the point (s, t) must be ac-
cessed, and their respective interpolation weights computed. In a map of N×N
pixels, we define each pixel’s center to be at (x+0.5,y+0.5)/N, where (x,y) are
the integer coordinates of the pixel. To find the coordinates of the top-left pixel,
we scale (s, t) by N and offset by 0.5, as follows:

x = bs ·N−0.5c and y = bt ·N−0.5c. (21)

The fractional distance (αx,αy) from the top-left pixel’s center is given by: αx =
(s ·N−0.5)−x (similar for αy). Based on this, the coordinates and the weights for
the bilinear interpolation are given by:

pixel x-coordinate y-coordinate weight
0 x y (1−αx) · (1−αy)
1 x+1 y αx · (1−αy)
2 x y+1 (1−αx) ·αy
3 x+1 y+1 αx ·αy

As the coordinates may lie outside the {0, . . . ,N−1} range, we perform the wrap-
ping described in Section 4.1 on each of the four pixels. For this purpose, we have
written a code snippet which computes all four pixel positions, and their respective
weights, in parallel using SIMD instructions. We store x and y as 16-bit integers
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and pack all eight combinations into a single 128-bit XMM register. Using SSE2
integer instructions, we perform the wrapping on all eight values in parallel. Fi-
nally, the coordinates are unpacked into 32-bit integers and the pixel addresses
computed using bit shifts.
The lack of a floor-operator in the SSE/SSE2 instruction set presents a minor dif-
ficulty. One option is to use cvttps2dq (convert float to int with truncation),
but this gives unexpected results for negative inputs as it truncates towards zero.
Instead, we rewrite the floor-operator using rounding:

bxc= round(x−0.5). (22)

The cvtps2dq (convert float to int) instruction performs correct rounding (as-
suming the rounding control bits in the MXCSR register have been correctly setup).
Thus, Equation 21 can be rewritten:

x = round(s ·N)−1 and y = round(t ·N)−1. (23)

In total, we use 27 SSE/SSE2 instructions to compute all pixel indices and weights.
As we use 16-bit integers, the map size is limited to 64k × 64k pixels.

5 Performance

We have implemented three different versions of the forward and inverse trans-
forms: 1) a straightforward scalar version with branching and trigonometric op-
erations, 2) an optimized scalar version using the tricks described here, and 3) a
vectorized version using SSE instructions to transform four points/vectors in paral-
lel. To evaluate the performance, we have run the algorithms on sets of N random
2D points in the unit square, and N random 3D vectors on the sphere respectively,
using a large number of iterations.
As the computations are performed repeatedly on the same data, we largely avoid
cache effects and measure pure computational performance. For the larger datasets,
the memory bandwidth limits the performance slightly. The total memory use for
each test is 20N bytes, and all timings are reported as clock cycles per single trans-
form. Thus, transforming a set of N points/vectors takes approximately Nt clock
cycles, where t is the reported timing. Note that N has to be a multiple of four,
as we use 4-wide SIMD code. All tests were executed on an Intel 45nm quad-
core “Penryn” CPU running at 3.2GHz using one core, and the code was compiled
using gcc 4.0.1 on Mac OS X 10.5.2.
The performance of the square to sphere transform is summarized in Table 2. The
vectorized version is a factor 3.5×–4.2× faster than the optimized scalar code, and
6.5×–8.6× faster than the standard version. The numbers for the inverse transform
(sphere to square) are listed in Table 3. Here, the speedup is a factor 4.6×–5.0×
compared to the optimized scalar code, and 5.0×–6.4× compared to the standard
version. Theoretically, SSE-optimized code should be up to a factor 4× faster than
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a corresponding scalar implementation, as it uses 4-wide instructions. However,
the differences in the instruction sets make it possible to exceed this limit. For
example, branching is avoided by using compare-instructions together with logical
operations.
The achieved speedup can make a significant difference. As an example, con-
sider ray tracing with 256 rays/pixel, with sampling directions computed in the
unit square and mapped to the sphere using our transform. With a fast ray tracer
capable of 5 million rays/second on a single core, the total rendering time for a
1 megapixel image would be about 61.0 seconds, using the standard scalar trans-
form. With the SIMD version, the rendering time goes down to 52.7 seconds – a
13.5% improvement.

N scalar standard scalar optimized SSE optimized
256 121.9 77.9 18.8
4k 156.2 77.9 18.7

64k 160.7 78.0 18.7
1M 162.4 80.4 22.8
16M 162.5 80.5 22.8

Table 2: Execution times of our three different implementations of the square to
sphere transform, using datasets of N 2D points as input. The timings are reported
as number of clock cycles per transformed point.

N scalar standard scalar optimized SSE optimized
256 114.7 106.9 23.0
4k 145.1 115.8 23.2

64k 147.8 115.7 23.2
1M 149.1 117.7 25.6
16M 149.0 117.5 25.6

Table 3: Execution times for the inverse transform, i.e., sphere to square. The
timings are reported as number of clock cycles per transformed vector.
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A Proof of Area Preservation

Here, we present a formal proof that the described mapping, P : (u,v)→ (x,y,z),
from the square to the sphere, indeed preserves fractional area. The magnitude of
the vector product of the partial derivatives of P with respect to u and v gives the
area-distortion, dA, of the transform:

dA =

∥∥∥∥∂P
∂u
× ∂P

∂v

∥∥∥∥=
∥∥∥∥∥∥

yuzv− zuyv
zuxv− xuzv
xuyv− yuxv

∥∥∥∥∥∥ , (24)

where we have used the shorthand notation xu for ∂x/∂u, and so on. We consider
the inner triangle of the first quadrant in the square (u,v) ∈ [−1,1] (see Figure 3),
and expand the expressions for the partial derivatives of (x,y,z) with respect to u
and v. Due to symmetry, the same proof applies to the other parts of the map.
Using the chain rule, and noting that ru=rv=1 (as r = u+ v), we get:

xu = xrru + xφ φu = xr + xφ φu,
xv = xrrv + xφ φv = xr + xφ φv,

(25)

with similar expressions for the y and z components. Combining Equation 24
and 25, and simplifying, we obtain:

dA =

∥∥∥∥∥∥
(φv−φu)(yrzφ − zryφ )
(φv−φu)(zrxφ − xrzφ )
(φv−φu)(xryφ − yrxφ )

∥∥∥∥∥∥ . (26)

Further, the partial derivatives of φ (Equation 2) can be written:

φu =−
π

2
v

(u+ v)2 and φv =
π

2
u

(u+ v)2 , (27)

which gives:

φv−φu =
π

2
1

u+ v
=

π

2r
. (28)

Now, we are ready to write down the expressions for the partial derivatives of
(x,y,z) with respect to r and φ :

xr = 2(1−r2)√
2−r2

cosφ xφ = −r
√

2− r2 sinφ

yr = 2(1−r2)√
2−r2

sinφ yφ = r
√

2− r2 cosφ

zr = −2r zφ = 0

(29)

Applying Equation 28 and 29, Equation 26 reduces to:

dA = π

∥∥∥∥∥∥
yφ

−xφ

1− r2

∥∥∥∥∥∥ = π

√
y2

φ
+(−xφ )2 +(1− r2)2 = . . . = π. (30)
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Hence, the fractional area grows by a factor π when we go from the square (u,v)∈
[−1,1] to the sphere S . This is consistent with our expectations as the area of the
square is 4, and the surface area of the unit sphere is 4π .
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ABSTRACT

Programmable shading provides artistic control over materials and
geometry, but the black box nature of shaders makes some render-
ing optimizations difficult to apply. In many cases, it is desirable to
compute bounds of shaders in order to speed up rendering. A bound-
ing shader can be automatically derived from the original shader by a
compiler using interval analysis, but creating optimized interval arith-
metic code is non-trivial. A key insight in this paper is that shaders
contain metadata that can be automatically extracted by the compiler
using data flow analysis. We present a number of domain-specific op-
timizations that make the generated code faster, while computing the
same bounds as before. This enables a wider use and opens up possi-
bilities for more efficient rendering. Our results show that on average
42–44% of the shader instructions can be eliminated for a common
use case: single-sided bounding shaders used in lightcuts and impor-
tance sampling.
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1. INTRODUCTION

1 Introduction

The advent of highly realistic computer-generated graphics in feature films and
games has largely been made possible by the separation of rendering algorithms
and visual content. Programmable shading provides means for artists to create
wonderful environments, without having to deal with much of the technicalities of
the renderer. From the rendering system’s point of view, a shader is a black box,
which can only be point-sampled. This presents a problem, as higher level infor-
mation about a shader is often required to make use of more efficient rendering
algorithms. For example, in global illumination where the light transport integrals
are very complex, it is critical to be able to compute bounds of a shader in order
to use algorithms such as lightcuts [29, 28] and importance sampling. In a ras-
terization pipeline, shader bounds may be used to avoid computations that do not
contribute to the image [10].
A shader bounding function for an arbitrary shader can be carefully handcrafted,
but this is tedious and error-prone for all but the simplest shaders. Alternatively,
a compiler can be used to automatically derive a bounding function using interval
analysis [13, 10, 26]. The compiler transforms the shader instructions to oper-
ate on intervals rather than single values. The end result is a bounding shader,
which given bounds on the shader inputs computes bounds on its outputs, i.e., a
conservative range of possible outputs. Some examples are shown in Figure 1.
There are two factors directly affecting the efficiency of the rendering system: the
execution time of the bounding shader, and the tightness of the computed bounds.
In this paper, we focus on generating faster bounding shaders, without changing
the computed bounds. Naïve transformation from scalar to interval shader code is
relatively straightforward for a compiler. Each arithmetic instruction is replaced
by an instruction sequence that performs the same operation on intervals. How-

Figure 1: The bounding shader s computes bounds for the shaded result at a spe-
cific shading point, x, or cluster of points, x̂, given bounds on the light directions,
ω̂i. This is critical functionality in lightcuts and importance sampling. The right
image shows a ray tracing application, where a bounding shader is used to find
the closest intersection.
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ever, by exploiting domain-specific knowledge and data flow analysis, we show
that it is possible to achieve much better results. Although we focus on interval
arithmetic (IA) [17], where an interval is simply represented as a minimum and
a maximum value, higher-order methods such as affine arithmetic [5], or Taylor
model arithmetic [3] can also be used.
One of our key contributions is a method we call static bounds analysis, in which
bounds are propagated through the shader at compile time in order to determine
the type and possible range of each variable. This information allows us to gen-
erate optimized interval arithmetic code. Similar results cannot be achieved using
standard compiler techniques. We also propose an optional extension called valid
range analysis, which exploits the fact that some instructions put strict limits on
their inputs. Another important contribution is the use of dynamic bounds as-
sumptions, which creates a fast path for the common case, but falls back on a more
general bounding shader if the assumptions fail at runtime.

2 Related Work

Originally developed in the 1950s to compute bounds on rounding errors in numer-
ical computations, interval analysis [17] is now used in a wide range of scientific
and engineering disciplines.

Hardware/Software Support for Interval Analysis Specialized hardware ar-
chitectures with support for interval analysis have been proposed, see, e.g., [23],
but the extra area/power is hard to motivate for non-scientific workloads. Software
implementations provide more flexibility and are currently the only alternative for
graphics applications. There are, however, few compilers with support for inter-
val analysis on existing hardware [24, 1], and most users are left to using publicly
available libraries [27] or GPU implementations [4]. It should be noted that none
of the existing implementations apply any interval-specific compiler optimizations.

Interval Analysis in Computer Graphics A full overview is beyond the scope
of this paper, so we limit the discussion to a few selected applications. Snyder [25]
use interval analysis to robustly solve a wide range of problems related to para-
metric surfaces. Mitchell [16] proposed to use interval arithmetic for robust ray
tracing of implicit surfaces, which initiated a lot of work in this direction. See Hi-
jazi et al.’s survey [14] for an overview. Collision detection is another successful
application of interval analysis, with methods for implicit surfaces [7], rigid bod-
ies [21], and articulated models [33]. Some applications, especially with long in-
terval computation chains, benefit from using higher-order methods, such as affine
arithmetic [5] and Taylor models [3].

Programmable Shading Programmable shading has been a keystone in offline
rendering for more than two decades. The RenderMan shading language [9] was
one of the first languages for production-quality rendering, and it introduced many
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of the concepts used by today’s shading languages. Programmable shading is also
critical for bringing flexibility to ray tracing systems [19]. GPUs capable of exe-
cuting shaders first appeared in 2001, and recent graphics APIs define many types
of shaders, each performing a specific task in the graphics pipeline.

Interval Analysis of Programmable Shaders A variety of applications have
used interval analysis to compute bounds of shaders. Greene and Kass [8] bound
shaders that can be expressed in data flow form (i.e., shaders without intricate con-
trol flow) to achieve error-bounded antialiasing. They use a compiler to automati-
cally generate interval arithmetic code [15]. Standard compiler optimizations (e.g.,
common-subexpression elimination) and mathematical simplifications are applied,
but no interval-specific optimizations. Heidrich et al. [13] compute bounds on pro-
cedural RenderMan shaders using affine arithmetic for sampling purposes. They
note that affine arithmetic should not be used for expressions involving only non-
affine values, and that it is important to use optimized approximations, e.g., square
instead of general multiplication, where possible. A similar framework has been
used for ray tracing of procedural displacement shaders [12].
In real-time graphics, interval analysis has recently been used to compute conser-
vative bounds for fragment programs over a tile of pixels in order to discard, or
cull, shading computations [10]. The authors propose a hardware architecture ca-
pable of interval arithmetic, thereby avoiding the problem of generating optimized
scalar code from an interval-based shader. Later work has extended this concept to
compute bounds on vertex programs and cull base primitives prior to tessellation
in a DirectX 11-style pipeline using Taylor model arithmetic [11].
Velázquez-Armendáriz et al. [26] present a basic compiler for automatic bound-
ing shading generation, and showcase its utility on a wide range of photo-realistic
rendering examples. We extend their work with a number of domain-specific op-
timizations for generating faster code.

3 Interval Analysis Primer

The goal of interval analysis is to compute conservative bounds for arbitrary com-
putations. This is done by redefining all operations to operate on intervals rather
than individual values. We limit ourselves to extended real numbers (i.e., including
±∞), and define an interval as:

â = [a,a] = {x ∈ R |a≤ x≤ a}. (1)

3.1 Arithmetic Operations
The basic arithmetic operations are easily extended to operate on intervals. Addi-
tion and subtraction become:

â+b̂ =
[
a+b,a+b

]
and â−b̂ =

[
a−b,a−b

]
. (2)
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Multiplication is slightly more complicated due to the cases where one or both of
the intervals overlap zero:

â · b̂ =
[
min(ab,ab,ab,ab),max(ab,ab,ab,ab)

]
. (3)

Some operations, such as division, are more complex:

[a,a]/
[
b,b
]
= [a,a] ·

(
1/
[
b,b
])
, where

1/
[
b,b
]
=

{ [
1/b,1/b

]
if 0 /∈

[
b,b
]
,

[−∞,∞] if 0 ∈
[
b,b
]
.

(4)

In the last example, useful information is lost if the denominator interval contains
zero. This problem is not limited to division, but applies to any function that is
piecewise continuous, e.g., tan. By working with multi-intervals,

â =
⋃

i

[ai,ai], (5)

we can split
[
b,b
]

into [b,0]∪
[
0,b
]

and get:

1/
[
b,b
]
= [−∞,1/b]∪

[
1/b,∞

]
if 0 ∈

[
b,b
]
. (6)

Such multi-intervals may be further split, or merged if overlapping, depending on
the operations performed. We propose using multi-intervals for the compile-time
analysis, but single intervals at runtime for efficiency reasons.

3.2 General Functions
A function, f : Rn→ R, may be extended to interval form to compute bounds for
the result based on bounds of the arguments. We define the interval extension, f̂ ,
of f as:

f̂ (x̂)⊇ { f (x) |x ∈ x̂}. (7)

Using interval arithmetic, we treat x̂ = (x̂1, . . . , x̂n) as individual intervals and com-
pute intervals for each intermediate result independently. Tighter bounds may be
achieved by keeping information on how the intermediate results depend on x̂.
These dependencies may be modeled as linear functions (affine arithmetic), or at
a higher cost, as general polynomials (Taylor model arithmetic).

3.3 Rounding Considerations
In practice, an application using interval arithmetic is forced to work with floating-
point numbers of finite precision. Most general purpose implementations are de-
signed to guarantee interval enclosure of real operations, i.e., produce mathemat-
ically conservative results. This requires outward rounding, where the computa-
tions of the upper/lower intervals are rounded up/down respectively.
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Scanner / Parser

shader source code

non-optimized IRfront end

middle end
Optimizer

(optionally incl. value-changing transforms)

Optimizer
(non value-changing) 

Lift to interval form

Bounds analysis

Lower to scalar form

optimized IR

interval IR (BS)

interval IR + bounds (BS)

optimized IR (BS)

middle end

back end

Optimizer
(non value-changing) 

Platform-specific analysis
and code generation

optimized IR (BS)

optimized IR

machine code (BS)machine code (shader)

Platform-specific analysis
and code generation

Figure 2: The middle end of the compiler performs initial optimizations on the
intermediate representation (IR) before lifting it to interval form (right) to get a
bounding shader (BS). After bounds analysis and lowering to optimized scalar
form, further non-value changing optimizations may be applied. The front and
back ends are the same as in a traditional shader compiler (left).

In computer graphics, most applications ignore round-off errors and view the re-
sult of a shader evaluation as ground truth. Thus, it is sufficient to compute bounds
that are conservative only up to machine precision. That is, a shader should never
return a result outside the bounds computed by the corresponding bounding shader,
but we need no guarantee that the bounds are mathematically conservative. This is
ensured if there is a path through the bounding shader that executes the same se-
quence of floating-point operations, using the same rounding mode as in the orig-
inal shader. Normally, this is always the case, as each interval operation performs
the equivalent floating-point operation on all relevant combinations of extreme
values, and then picks the outer bounds using min/max operations.
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3.4 Application to Shader Languages

In addition to arithmetic operations, shader languages (e.g., RenderMan, GLSL,
and HLSL) support functionality such as conditionals, loops, and texture lookups,
which must be handled. Many of these features have been extensively studied.
Interval-based texture lookups can be done using mipmap hierarchies of minimum
and maximum values [18]. The bounds on the texture coordinates are used to
compute an appropriate mipmap level, from which a number of min/max samples
are drawn. Cube map lookups can be handled similarly. Previous work has also
explored how to handle noise functions and derivatives [13].
Conditionals present a problem, as whenever overlapping intervals are compared,
the condition is not unambiguously true or false. One solution is to use step
functions and rewrite conditional expressions as arithmetic [13]. A more general
method, which we use, is to evaluate both execution paths and merge the results.
This is most easily done by transforming the intermediate representation to static
single assignment (SSA) form [6], and treating the Φ functions that are inserted
at joints in a non-standard way (they are normally replaced by copies) as selector
functions [26] .

4 An Optimizing Interval Compiler

In this section, we will introduce a compiler infrastructure and a number of op-
timizations targeted at generating faster bounding shaders. There are two main
steps involved. First, we lift the original shader to interval form, i.e., replace scalar
instructions by their interval arithmetic equivalents. This lifting step is straightfor-
ward, and can be done trivially by a compiler with an intermediate representation
(IR) supporting interval instructions.
The second step is to lower the shader on interval form to efficient scalar code. The
standard approach is to replace each interval instruction by a general sequence of
scalar instructions performing the desired interval computation. However, better
results can be obtained if we have prior knowledge about what range of values
each instruction operates on. Much of this paper deals with automatic extraction
of such information through bounds analysis.
Figure 2 shows the proposed design of an optimizing compiler for automatic gen-
eration of bounding shaders (BS). We will focus on the algorithms enclosed in
dashed red, and first look at some examples to highlight the types of optimized
interval to scalar conversions that are possible. Then, we will discuss the lifting
step and introduce several novel algorithms for compile-time bounds analysis.

4.1 Lowering to Optimized Scalar Form

Most interval operations can be implemented in a variety of ways depending on
the generality of the computation. For example, multiplying two positive intervals

250



4. AN OPTIMIZING INTERVAL COMPILER

is much easier than the case where the intervals may overlap zero. Our goal is to
select the most compact implementation possible, exploiting bounds information
determined at compile time.
We define a table of implementation alternatives for each instruction, along with
the necessary conditions. There is always a fully general implementatation, which
works under any condition. This job is tedious, but fortunately has to be done only
once. Note that the listed conditions are applied at compile time, so the imple-
mentation must be valid for all possible runtime intervals matching the condition.
Next, we will look at a few illustrative examples.

Multiplication The table below shows different possibilities for evaluating the
multiplication operator with scalar-scalar, scalar-interval, and interval-interval
operands. In this case, knowing the signs of one or both of the operands enables
significantly more efficient code (the cases where â and b̂ are reordered have been
left out for brevity):

expr condition implementation #inst
x · y any x · y 1

x · â
any [min(xa,xa),max(xa,xa)] 4

x≥ 0 [xa,xa] 2
x≤ 0 [xa,xa] 2

â · b̂

any
[
min(ab,ab,ab,ab),
max(ab,ab,ab,ab)

] 10

â≥ 0 [min(ab,ab),max(ab,ab)] 6
â≤ 0 [min(ab,ab),max(ab,ab)] 6

â, b̂≥ 0 [ab,ab] 2
â≤ 0≤ b̂ [ab,ab] 2
â, b̂≤ 0 [ab,ab] 2

Square If the operands of a multiplication come from the same source, we can
use a more efficient square operator:

expr condition implementation #inst
x2 any x · x 1

â2
any [max(a,−a,0)2,max(−a,a)2] 7

â≥ 0 [aa,aa] 2
â≤ 0 [aa,aa] 2

Absolute Value Some operations can be completely removed under special cir-
cumstances. An absolute value, for example, requires no evaluation for positive
operands:
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expr condition implementation #inst

|x| any |x| 1
x≥ 0 x 0

|â|
any [max(a,−a,0),max(−a,a)] 5

â≥ 0 [a,a] 0
â≤ 0 [−a,−a] 2

Square Root Other instructions are valid only on a limited range, e.g., a square
root requires a positive argument. If we at compile time can guarantee the result
will be Not-a-Number (NaN), we generate a compiler warning (shown in red) as
this condition likely indicates a programming error:

expr condition implementation #inst
√

x
any

√
x 1

x < 0 NaN 0
√

â
any [

√
a,
√

a] 2
â < 0 [NaN, NaN] 0

Additional Notes It is often the sign of operands that differentiate between im-
plementation alternatives, but there are exceptions. The interval pow(â, b̂) func-
tion, for example, is monotonically increasing if â ≥ 1, and decreasing if â ≤ 1.
The general case requires 4 pow and 6 min/max instructions, but it can be reduced
to only 2 pow in some cases.
In these examples, we have counted each basic instruction (add, mul, neg etc) as
a single instruction for simplicity. Assuming the bounding shader is executed on
a throughput-oriented architecture, this should be a rough approximation of its
execution cost. Naturally, the cost depends on the hardware and the exact imple-
mentations chosen.

4.2 Lifting to Interval Form
In the lifting step, we analyze the dependency graph to determine which instruc-
tions are operating on interval data. Those instructions are replaced by their equiv-
alents operating on intervals rather than scalar values, e.g., an add instruction is
replaced by an interval-add and so on. We assume the user or application specifies
which inputs are given as intervals. This can be accomplished by annotating se-
lected inputs with an interval keyword [24], or by designing the compiler API
to allow sufficient control. Next, we will look at a simple example. Consider the
function:

float f(interval float a, interval float b) {
float c = abs(a);
return sqrt(c * b);

}
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After lifting this to interval form and converting to three-address code on SSA
form [6], we get:

expression #inst
â0← â
b̂0← b̂
ĉ0← |â0| 5
t̂1← ĉ0 · b̂0 10
t̂2←

√
t̂1 2

return t̂2
sum: 17

The cost of each interval operation is measured in terms of scalar instructions,
assuming the most general implementation of each instruction, as defined in Sec-
tion 4.1. This is what a compiler not using our optimizations would generate.

4.3 Static Bounds Analysis
As we have seen in Section 4.1, there is a lot to gain from using optimized im-
plementations of the interval operations. We propose to use data flow analysis
to determine conservative bounds on each shader variable at compile time. First,
initial bounds are assigned to each shader input. The bounds are then propagated
through the shader using a generalized form of interval arithmetic. The method
is related to constant propagation [31], but instead of compile-time constants, we
track bounds for the runtime range of each variable. These are then used to pick
the most efficient implementation of each instruction when lowering the code to
scalar form. Next, we will go over the details.

Initial Bounds The data type of a variable is the first source of loose conservative
bounds, simply due to the range of representable numbers the variable can hold.
Most shading languages support at least a subset of the following basic types:

data type possible range
half, float, double {x ∈ R |−∞≤ x≤ ∞,NaN}
integer (n bits) {x ∈ Z |−2n−1 ≤ x≤ 2n−1−1}
unsigned integer (n bits) {x ∈ Z | 0≤ x≤ 2n−1}
boolean {true,false}
signed normalized {x ∈ R | −1≤ x≤ 1}
unsigned normalized {x ∈ R | 0≤ x≤ 1}

For aggregate types, such as vectors and matrices, we assign bounds to each ele-
ment individually based on its basic type.
Shader languages usually also support a number of pre-defined state variables with
basic information about the point being shaded. In HLSL, these are accessed using

253



PAPER VI: AN OPTIMIZING COMPILER FOR AUTOMATIC SHADER BOUNDING

shader input semantics, e.g., SV_Position (D3D10), and in GLSL there are
built-in variables, such as gl_FragCoord. Some state variables have strict limits
set by the rendering system. For example, SV_Position in the pixel shader
specifies the sample position in screen space coordinates (x,y), and the depth z
in normalized device coordinates. Hence we know that z ∈ [0,1] and x,y ∈ [0,N],
where N is the size of the largest supported render target.
To be fully general, we represent a variable’s compile-time bounds as a union of
zero or more discrete values and zero or more disjoint intervals. Given a variable,
x, we define its bounds, Bx, as:

Bx =
⋃

i

Bi
x, where Bi

x =

{
xi, or
[xi,xi] .

(8)

Additionally, we have found it useful to store flags indicating whether a variable
can be NaN, and whether both positive and/or negative zeros are possible. The
latter is particularly useful to optimize division so that 1/[0,x] = [1/x,∞] rather
than [−∞,∞] if the denominator is known to exclude −0.

Bounds Propagation In the compile-time propagation of bounds information,
we use a generalized form of interval arithmetic, which handles bounds on the form
in Equation 8. For binary operations, z← x op y, we evaluate all combinations of
discrete values and/or intervals in x and y:

Bz =
⋃
i, j

(Bi
x op B j

y). (9)

Any overlapping bounds are merged to create a new disjoint set of bounds rep-
resenting the possible values of z. Unary operations, y← op x, are handled by
applying the operator to each Bi

x. Type casts retain bounds as far as possible and
may be a source of additional bounds information. For instance, a bool cast to float
in GLSL/HLSL will be a variable in {0,1} rather than [−∞,∞].
In practice, a variable rarely has more than a single interval bound or a few discrete
values, but there are cases that give rise to more complex bounds information. For
example, branches can introduce different assignments to a variable, and divisions
may introduce multi-intervals (Equation 6). Functions that introduce discontinu-
ities, e.g., the step function, is another example. For instance, ĉ← â · step(x, b̂)
will be in the range {0}∪ [a,a] if x∈ b̂. Note that if 0 ∈ â, we would merge the
result and only propagate [a,a].
Many shader instructions grow the bounds, and as we start with often very loose
compile-time bounds, it appears there would be little to gain from static bounds
analysis. Fortunately, there is a long list of shader instructions with strict limits on
their output:
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instruction max output range
sign(x), step(c,x) {0,1}
fract(x), smoothstep(c1,c2,x) [0,1]
clamp(x,c1,c2) [c1,c2]
abs(x), exp(x), pow(x,y), sqrt(x),

[0,∞]rsqrt(x), length(x), acosh(x)
cosh(x) [1,∞]
sin(x), cos(x), tanh(x), noise(x) [−1,1]
arcsin(x), arctan(x) [−π

2 ,
π

2 ]
arccos(x) [0,π]
atan 2(y,x) [−π,π]
mod(x,y) [min(y,0),max(y,0)]

This shows that even with unbounded shader inputs, we are likely to introduce
useful bounds information during bounds propagation. Other examples of when
an unbounded input can result in reduced bounds is division, e.g., 1/[1,∞] ∈ [0,1],
and squares, [−∞,∞]2= [0,∞].

Example The algorithm is best illustrated by an example. Applying the method
to the program in Section 4.2 gives:

expression bounds #inst
â0← â

←
−−
−−
−−
−−

â0 ∈ [−∞,∞]

b̂0← b̂ b̂0 ∈ [−∞,∞]
ĉ0← |â0| ĉ0 ∈ [0,∞] 5
t̂1← ĉ0 · b̂0 t̂1 ∈ [−∞,∞] 6
t̂2←

√
t̂1 t̂2 ∈ [0,∞] 2

return t̂2
sum: 13

In this case, the inputs â and b̂ can lie anywhere in [−∞,∞], as we have no addi-
tional metadata. At the | · | instruction, ĉ0 is limited to positive numbers, which
means the multiplication ĉ0 · b̂0 can be done using an optimized positive ·unknown
interval multiplication (6 vs. 10 instructions).

4.4 Valid Range Analysis
Some operations put restrictions on the range of valid arguments. For example,
the argument to a square root must be positive, otherwise NaN is returned. Other
examples are:

instruction valid input range
log(â), sqrt(â), rsqrt(â), pow(â,x) â ∈ [0,∞]
arcsin(â), arccos(â), atanh(â) â ∈ [−1,1]
acosh(â) â ∈ [1,∞]
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We can generate more efficient code if we at compile time make the assumption
that all such instructions will receive valid input at runtime. This puts bounds on
the valid range of variables, which can be propagated backwards through the code
to put stricter bounds on the possible runtime range of variables. Applied to the
same example as before:

expression bounds valid range #inst
â0← â â0 ∈ [−∞,∞]

−−
−−
−−
−→

â ∈ [−∞,∞]

b̂0← b̂ b̂0 ∈ [−∞,∞] b̂ ∈ [0,∞]
ĉ0← |â0| ĉ0 ∈ [0,∞] â0 ∈ [−∞,∞] 5
t̂1← ĉ0 · b̂0 t̂1 ∈ [−∞,∞] b̂0 ∈ [0,∞] 2
t̂2←

√
t̂1 t̂2 ∈ [0,∞] t̂1 ∈ [0,∞] 2

return t̂2
sum: 9

Here the values in the bounds column have been determined using static bounds
analysis in a first pass. We note that the square root puts a limit on its argument,
t̂1 ≥ 0, for the result to be valid. Tracking this backwards, we find that b̂0 must be
positive for the result of t̂1← ĉ0 · b̂0 to be positive (as ĉ0 is known to be positive).
Hence, the interval multiplication can be replaced by an efficient 2 instruction
version for positive ·positive interval (Section 4.1).
It is important to point out that since we assume each instruction will produce valid
results, the generated bounding shader will be undefined if executed for bounds vi-
olating this assumption. There is no way to detect this solely based on its output,
so valid range analysis must only be used when the application knows it is safe
for a given input. This can be ensured by first executing a bounding shader with
this optimization disabled (i.e., using NaN checks). Also note that several itera-
tions of static bounds analysis and valid range analysis may be necessary for the
best results. After an initial pass, the refined bounds may be propagated further
using static bounds analysis. This may in turn introduce possibilities for further
improvements in a backwards pass. We iterate until convergence, which in our
experience occurs within a few iterations, although pathological cases may exist.

4.5 Dynamic Bounds Assumptions
In general, if an input parameter’s bounds are limited, the generated code will
be more efficient. Several versions of a bounding shader can be generated with
varying extents of input bounds assumptions. At runtime, we dynamically select
the most restrictive (fastest) version that is valid for the current input. For instance,
a restrictive version of the bounding shader may assume a texture access returns
a value in [0,1], and more general versions [0,∞] (e.g., for HDR textures) and
[−∞,∞]. The appropriate version is then determined at runtime when a specific
texture is bound to the shader. An alternative approach is to reactively compile
specialized bounding shaders when an assumption is met. This is a more viable
approach if the input parameter space is large.
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4.6 Complex Control Flow

With interval arithmetic, whenever the control flow graph diverges, we must po-
tentially execute both paths and at joints merge the results. This is easy for if-then-
else branches (see Section 3.4), but more complex situations may lead to a tree of
possible execution paths, where the result is the union of all possible outcomes.
Previous work has thus been limited to statically unrollable loops [26].
We handle dynamic loops with interval conditions by, at runtime, accumulating
the outcome of each iteration where the loop potentially terminates. Consider,
for example, a loop on the form do x̂ = . . . while(x̂< c). When the condition is
unambiguously true, i.e., x< c, we loop as expected. Otherwise, we accumulate
the result, x̂∪ = [min(x,x∪),max(x,x∪)], where x̂∪ is initially empty, and continue
looping until the branch condition is unambiguously false, i.e., x≥ c. At that point,
x̂∪ holds conservative bounds for the union of all outcomes. At compile-time, the
same technique is hard to apply due to often very wide compile-time bounds, and
we resort to assuming that variables coming from back edges in the graph are
unbounded. In some cases, it may help to iterate through loops a few times to
refine the compile-time bounds.
Recursive functions, ŷ= f (x̂), can be handled similarly in the bounds analysis by
first assuming x̂ and ŷ are unbounded, and by replacing all recursive calls to f by
the return value ŷ. This will give possibly refined compile-time bounds on ŷ, and
the analysis can be iterated. Finally, the refined bounds are used to generate an
optimized version of f, which includes real recursive calls. In practice, as noted
previously [10], it is hard to guarantee runtime termination of interval code with
complex control flow. One way is to manually add explicit termination criteria,
e.g., maximum loop iterations or recursion depth, but how to do this automatically
is an unsolved problem.

4.7 NaN and Infinity Issues

To guarantee correct results, a rigorous approach to detect and handle floating-
point exceptions in the bounding shader must be used. The IEEE 754 standard
specifies that all operations that produce a floating-point output must propagate
NaNs, except for minimum and maximum operations (e.g., minps in SSE returns
the source operand if one operand is NaN). This presents a problem, as we can
construct bounding functions that give erroneous bounds [20]. Another way NaNs
can be suppressed is through conditionals involving operands with NaN values.
We have identified three main approaches in the context of bounding shaders
(sorted from strict to relaxed):

1. Propagate NaNs. If we make sure that NaNs are always propagated, we will
get an indication that an invalid operation has occured. This requires explicit
NaN detection for each min/max operation (at an overhead of 3 SSE instruc-
tions). We also have to ensure NaN values in branches are propagated.

257



PAPER VI: AN OPTIMIZING COMPILER FOR AUTOMATIC SHADER BOUNDING

2. Suppress NaNs. Assume the original shader never returns NaNs for any in-
put generated by the rendering system – this is not unreasonable, as there is
little point trying to bound a shader resulting in NaNs. Under this assump-
tion, we may clamp the inputs to any instruction in the bounding shader that
could generate NaNs, as we know the inputs will never fall outside the valid
range in the original shader. It also requires us to redefine multiplication, so
that 0 ·±∞ = 0.

3. Do not care about NaNs. This may be the most reasonable approach in
certain situations, as some applications can tolerate errors or do not depend
on the bounds being strictly conservative for correctness.

In all these cases, if a bounding shader returns a NaN, it should be interpreted as
“bounds could not be computed”. This may trigger further subdivision of the input
bounds or a fallback on a more general technique.

4.8 Influence on Standard Compiler Optimizations
Some standard compiler optimizations are relatively more important for bounding
shaders than for conventional shaders. For example, common-subexpression elim-
ination is highly useful, as similar computations often are performed for the lower
and upper bounds (see, e.g., Equation 3). In many cases only one of the shader out-
puts needs to bounded, or only the lower or upper bound of an interval computed.
An example is depth culling [10], where only zmin is used. Hence, executable
backward static slicing [32] (cf., dead code elimination) is very important.
As outlined in Section 3.3, we have to be careful not to introduce different rounding
errors compared to the original shader in order to guarantee conservative results
(up to machine precision). Therefore, we do not allow value-changing compiler
transformations (i.e., optimizations that may change the floating-point precision)
to be applied after the shader has been lifted to interval form. However, before the
lifting step, such optimizations are allowed with respect to the bounding code, as
shown in Figure 2. It is theoretically possible to perform value-changing optimiza-
tions also after separating the intermediate representations, but these would have
to be performed in tandem on both IRs. We have left this possibility for future
work.

5 Implementation

We have implemented a compiler prototype in C++, which uses metaprogramming
to build a program graph; our implementation is based around a class Var, which
implements all necessary shader functionality in overloaded operators and friend
functions. Rather than computing a result, each function inserts a corresponding
node in the program graph. Each assignment allocates a new temporary, which
directly gives us an intermediate representation in SSA form. Macros are used
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to insert appropriate constructs for loops and conditionals. The graph nodes im-
plement Equation 9, which is used to propagate bounds information through the
graph. The type of each variable, i.e., scalar or interval, is also determined in this
step. Last, each node outputs an optimized sequence of scalar instructions. To
compile a shader, all variables are replaced by Var (or a wrapper to handle vec-
tors); all inputs are assigned a type and initial bounds (default±∞), and the shader
is executed to generate the bounding shader.
Currently, two back ends have been implemented: one for SSE, which uses auto-
vectorization to generate 4-wide data parallel bounding shaders, and one for HLSL.
In our prototype, the back ends output C++/HLSL source code, which is finally
passed through standard optimizing compilers. This setup has enabled us to quickly
prototype and debug various optimizations, as it builds on existing compiler infras-
tructures to provide input parsing and optimized code generation. A production-
quality bounding shader compiler is under development, but that is a much larger
project.

6 Results

Here, we present results for a variety of bounding shaders. The effect of our opti-
mizations are measured in terms of instruction count and execution speed for the
generated kernels. All SSE/SSE2 code was compiled with Microsoft Visual Stu-
dio 2008 using /O2 /fp:precise (to ensure floating-point consistency), and
executed on an Intel Core 2 Extreme QX9650. We will first look at BRDF bound-
ing shaders for lightcuts and importance sampling purposes. Finally, we will show
some GPU results.

6.1 Lightcuts

It has recently been demonstrated [26] that interval arithmetic is a viable solution
to generate the bounding functions required by lightcuts [29, 28]. Let s(x,ωi)=
fr(x,ωo,ωi)cosωi be a cosine-weighted BRDF, where x denotes a single shading
point including all associated attributes. The upper bound at a single gather point
for a cluster of lights, is given by s(x, ω̂i), i.e., only the light direction, ωi, is an
interval. Correspondingly, the upper bound for multiple gather points, e.g., to
support depth-of-field and motion blur, is s(x̂, ω̂i). Here all inputs are intervals.
Table 1 shows instruction counts and execution times using Intel SSE for the
two types of bounding shaders, compared to the original point-sampled shaders,
s(x,ωi), for a range of physically-based BRDFs. Fractal iteratively evaluates a
fractal and interpolates between multiple Cook-Torrance lobes, and contains dy-
namic loops with both interval and scalar loop conditions. The other shaders do
not contain complex control flow. With previous techniques, the average instruc-
tion counts are 3.1× (single) and 4.8× (multiple gather points) those of the origi-
nal shaders. With our optimizations, 41.8–43.9% fewer instructions are generated,
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Shader s(x,ωi) s(x, ω̂i) s(x̂, ω̂i)
#instr before after before after

Diffuse 20 2.8× 1.6× 5.8× 3.2×
Phong 149 2.1× 1.2× 4.5× 2.7×
IsoWard 151 3.3× 1.6× 4.7× 2.2×
Ward 174 3.4× 1.8× 5.3× 2.7×
Ashikhmin 486 2.8× 1.9× 3.8× 2.3×
Fractal 447 4.1× 2.6× 4.5× 3.0×
Average 3.1× 1.8× 4.8× 2.7×

Shader s(x,ωi) s(x, ω̂i) s(x̂, ω̂i)
#cycles before after before after

Diffuse 20 32 26 58 36
Phong 182 311 205 559 330
IsoWard 192 445 273 510 317
Ward 218 495 325 623 420
Ashikhmin 514 1289 813 1535 898
Fractal 1297 4546 3155 4323 3036
Average 2.3× 1.6× 3.0× 1.9×

Table 1: Instruction count (top) and execution time (bottom) compared to the orig-
inal shaders using SSE for the two types of single-sided bounding shaders needed
for lightcuts, before and after our optimizations are applied. The number of in-
structions is reduced by on average 41.8% and 43.9%, respectively. This saves
32.8–36.7% in clock cycles. All numbers exclude the overhead of NaN handling.

which translates to a 32.8–36.7% saving in execution time. Note that the optimized
bounding shaders compute the exact same bounds as before. It is also interesting
to note that bounding shaders are in general faster than would be expected based
on instruction count. This is likely due to more opportunities for register renaming
and latency hiding.
The effect of different optimizations are shown in Figure 3 for two representative
shaders: an isotropic version (αx=αy) of the Ward BRDF [30], and the complex
anisotropic Ashikhmin model [2]. To get these results, we specified loose compile-
time bounds on each shader’s inputs; all values were assumed to be finite, and all
material parameters such as diffuse and specular color, and shininess, were as-
sumed to be non-negative. These values are fetched from the respective material
channels (e.g., textures) in the shader setup, but the cost of this has not been in-
cluded. Note that the use of textures instead of runtime shader constants, has no
impact on our optimizations, as we only work with compile-time bounds.
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Figure 3: The effect of our various compiler optimizations on two representa-
tive single-sided BRDF bounding shaders using SSE. The baseline is single-sided
bounding shaders compiled using standard compiler optimizations (interval).
Bounds analysis (bounds) significantly reduces the code size by tracking compile-
time bounds and choosing optimized implementations of the interval operations.
The overhead of robust NaN propagation is marked with a dashed box. This de-
creases when compile-time analysis of NaNs is enabled (NaN). Our optimizations
targeted at optimizing divisions (div), shrink the compile-time bounds by track-
ing the signs of zeros (see Section 4.3), which further reduces the total instruction
count.
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6.2 Importance Sampling

Importance sampling of arbitrary programmable shaders has traditionally been a
difficult problem, and specialized methods have been developed for various re-
flectance models. By hierarchically evaluating s(x, ω̂i) over the hemisphere, a
piecewise constant upper bound is created, which can be used as an importance
function [26]. Note that s(x, ω̂i) is the same shader as in lightcuts (see Table 1 and
Figure 3 for results).
A natural extension would be to use both bounds of s, i.e., lower and upper, in order
to create a more accurate importance function. A step in this direction was taken by
Rousselle et al. [22], although they used precomputed max and average trees rather
than a min/max hierarchy. The function ŝ(x, ω̂i) can be used to build an importance
function for a single point, and ŝ(x̂, ω̂i) for a cluster of shading points. When both
bounds are computed, it is harder for the compiler to remove entire computation
chains, and we are mainly limited to detect cases where faster implementations
of specific operations can be used, e.g., positive instead of general multiplication.
Despite this, our optimizations reduce the instruction count by around 25% (see
Table 2).
It is interesting to compare the instruction counts for single vs double-sided inter-
vals in Tables 1 and 2. With standard compiler optimizations, going from double-
sided to code specialized for single-sided intervals, only saves on average 5%.
With our optimizations, the savings are ∼27%. For Fractal, the difference is
smaller due to control flow making it harder to eliminate long computations chains,
but there is still plenty of optimization potential locally.

Shader s(x,ωi) ŝ(x, ω̂i) ŝ(x̂, ω̂i)
#instr before after before after

Diffuse 20 3.4× 2.8× 6.7× 4.9×
Phong 149 2.2× 2.1× 4.8× 4.0×
IsoWard 151 3.4× 2.4× 4.9× 3.2×
Ward 174 3.5× 2.5× 5.4× 3.7×
Ashikhmin 486 2.8× 2.3× 3.8× 3.0×
Fractal 447 4.2× 2.8× 4.6× 3.1×
Average 3.2× 2.5× 5.0× 3.7×

Table 2: Instruction count compared to the original shaders using SSE for double-
sided bounding shaders, before and after optimization. A prime application is
importance sampling. The number of instructions is reduced by on average 23.8%
and 27.1%, respectively. All numbers exclude the overhead of NaN propagation.
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Steiner Mitchell Kummer

Figure 4: Examples of implicit surfaces evaluated using interval arithmetic to find
the first intersection along each ray.

6.3 Implicit Surfaces
To measure the performance of optimized bounding code on the GPU, we have
implemented a simple ray tracer for implicit surfaces, f (x,y,z)= 0, that runs in
the pixel shader. The algorithm hierarchically evaluates the surface equation using
interval arithmetic to compute its minimum, in order to locate the first intersection
along each ray using an existing algorithm [16]. Figure 4 shows renderings of
three well-known implicit surfaces. The table below summarizes the number of
generated shader instructions for the bounding kernels, and their execution times
on an NVIDIA GTX285 GPU. The instructions are counted per-component in the
case of vector operations. As can be seen, the reduction in instruction count is
20–35%, and in clock cycles 15–31%.

#instructions Steiner Mitchell Kummer
original 13 16 20
interval (before) 74 51 64
interval (after) 48 (-35.1%) 41 (-19.6%) 44 (-31.3%)

#cycles Steiner Mitchell Kummer
original 11.5 14.9 17.5
interval (before) 62.7 44.8 55.9
interval (after) 43.6 (-30.5%) 38.3 (-14.6%) 41.4 (-25.8%)

7 Conclusions and Future Work

We believe techniques for automatically extracting shader bounds will be increas-
ingly important to close the gap between artistic control and fast rendering. In this
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paper, we have showed that bounding shaders based on interval arithmetic can be
significantly optimized by performing bounds analysis and case selection at com-
pile time. To the best of our knowledge, this is the first time data flow analysis
has been used to optimize interval code generation. Although we have focused on
computer graphics applications, many of the techniques would be directly appli-
cable in many other fields. It is important to remember that our focus is entirely
on compiler optimizations, and that the generated code computes the exact same
bounds as before, only faster.
All of our results assume bounds are tracked individually, with no knowledge about
the relationship between, e.g., the components of vectors. With higher-level infor-
mation, e.g., specifying that vectors are normalized, it is possible to further opti-
mize the code. The effect of this can be simulated by inserting clamps after dot
products of normalized vectors, which saves an additional 13.3%–28.4% for the
Ashikhmin shaders. It would be interesting to explore these kinds of optimizations
and generalizations to higher-order arithmetics.
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ABSTRACT

We present a hierarchical traversal algorithm for stochastic raster-
ization of motion blur, which efficiently reduces the number of inside
tests needed to resolve spatio-temporal visibility. Our method is based
on novel tile against moving primitive tests that also provide temporal
bounds for the overlap. The algorithm works entirely in homogeneous
coordinates, supports MSAA, facilitates efficient hierarchical spatio-
temporal occlusion culling, and handles typical game workloads with
widely varying triangle sizes. Furthermore, we use high-quality sam-
pling patterns based on digital nets, and present a novel reordering that
allows efficient procedural generation with good anti-aliasing proper-
ties. Finally, we evaluate a set of hierarchical motion blur rasteri-
zation algorithms in terms of both depth buffer bandwidth, shading
efficiency, and arithmetic complexity.
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1. INTRODUCTION

1 Introduction

At the heart of every rendering engine there is some form of visibility computa-
tions. A more advanced algorithm allows effects such as motion blur and depth
of field to be rendered by a more elaborate camera model. Depth of field helps
to direct the viewer’s attention, and motion blur reduces temporal aliasing, so that
lower frame rates can be used. Both these effects are also highly desired in the
field of real-time graphics.
While an incredible amount of research and engineering effort has been spent on
perfecting and fine-tuning the algorithms and the corresponding hardware units for
rasterizing static triangles [11, 29, 28, 23, 22], the same is far from true for raster-
ization of motion-blurred geometry. However, there has been increased research
activity in this field [8, 2, 10, 24, 6], but much remains to be done before the rel-
ative efficiency of rasterizing triangles with blur effects is close to that of static
triangle rasterization. To be able to add correct motion blur to current and future
games, one of our goals is to support efficient rendering of motion blur with mixed
sizes of the triangles, i.e., both large triangles and smaller triangles, generated by,
e.g., tessellation.
To that end, we present what we believe is the first hierarchical rasterization algo-
rithm for motion-blurred triangles. We strive for an algorithm that extends current
real-time GPU pipelines, while retaining many of its important features, such as
per-tile occlusion culling, mixed triangle sizes, shading after visibility, and multi-
sampling anti-aliasing (MSAA).

Our contributions are:

I A hierarchical algorithm for motion blurred triangle rasterization, including
a low-cost tile vs moving triangle overlap test that returns a conservative
time interval of overlap.

I Modification of an existing hardware-friendly sampling pattern for use in
motion blur rasterization with high-quality anti-aliasing. We present an ef-
ficient algorithm for computing the samples within a time interval on the
fly.

I Detailed performance evaluation of several different motion blur rasteriza-
tion algorithms in terms of arithmetic intensity, memory bandwidth usage,
and shading efficiency.

We hope that our new algorithms will advance the field of motion blur rasterization
so that in the near future, fixed-function rasterization units will have support for
such effects.
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2 Related Work

Efficient rendering of motion blur has been a long-standing problem in computer
graphics. Existing solutions often rely on approximate post-processing based meth-
ods or stochastic ray tracing [9]. We will not go into detail on these methods, and
instead focus on rasterization-based methods for correct motion blur that can be
integrated into future hardware GPU pipelines.
A brute-force technique is to draw the scene at N different times and average the
result using accumulation buffering [20, 16]. The resulting strobing artifacts can
be replaced by noise by using stochastic rasterization [8]. Here, a bounding box
around the blurred triangle is traversed, and all samples are tested against the prim-
itive displaced according to the samples’ times. This becomes inefficient when the
bounding box is large compared to the primitive. The screen space area of the
traversed region can be reduced using either an oriented bounding box (OBB) in
2D homogeneous space [2], or the convex hull in screen space [24]. Existing (two-
dimensional) hierarchical rasterization methods can be leveraged to efficiently tra-
verse these bounds, but all temporal samples still have to be tested. This becomes
expensive with large motion. In contrast, our algorithm derives temporal bounds
per tile to cull samples.
Fatahalian et al. [10] improve the situation for stochastic micropolygon rasteri-
zation by partitioning the time domain into multiple intervals (initially proposed
by Pixar), or by using interleaved sampling [17] with a fixed number of sample
times. Both methods rasterize the primitive independently for each time/interval,
which generates samples in an incoherent order, i.e., sparse in screen space. For
a REYES pipeline with shading at the vertex level, this is not a problem, but ap-
plied to a graphics pipeline with shading at the fragment level, it makes reusing
shading over multiple samples (MSAA) difficult. Per-tile occlusion culling also
becomes substantially more expensive. Furthermore, each triangle has to be setup
multiple times. In contrast, our algorithm uses a coherent screen space traversal
order, which facilitates MSAA and efficient occlusion culling. Figure 1 shows the
spatio-temporal coverage of each algorithm.
Although a hard problem, analytical determination of visibility has been explored.
Most recently, Gribel et al. [14] presented a method for analytical motion blur
rasterization where the samples’ temporal overlaps with a moving primitive are
analytically determined and stored in linked lists per pixel. Our work is similar in
that we analytically determine conservative time bounds, but we do this for entire
tiles of pixels and the generated samples are stored in a traditional multi-sampled
render target. The use of a tiled traversal with temporal bounds allows us to quickly
reject samples.
Hierarchical occlusion culling is critical for achieving good performance in mod-
ern GPUs by early determining if a tile is entirely occluded (zmax-culling) [25] or
entirely visible (zmin-culling) [3]. However, motion blur makes culling using a tra-
ditional hierarchical z-buffer [13] less efficient. By storing multiple temporal depth
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Figure 1: The three-dimensional sampling space, (x,y, t), traversed with differ-
ent methods for stochastic motion blur rasterization. Sample-in-triangle inside
tests are performed for all samples within the red regions. Our algorithm, based
on novel hierarchical tile tests with temporal overlap computations, significantly
reduces the amount of inside tests compared to using the convex hull in screen
space [24]. With interleaved sampling [17] the samples are restricted to a fixed
number of pre-defined times.

values (tz-slice) [2], or a full temporal pyramid of depth values (tz-pyramid) [4]
per node, efficiency can be improved. Our rasterization order, i.e., one tile at the
time, together with conservative temporal bounds, makes the use of these occlu-
sion culling techniques efficient and straightforward.

3 Overview

Our hierarchical motion blur traversal algorithm works entirely in two-dimensional
homogeneous space (2DH) to robustly handle moving triangles crossing the z =
0 plane. The first step is conservative backface culling [26] and temporal view
frustum culling. Each triangle vertex moves along a line in 2DH, and by finding
the intersection of these three lines with each frustum plane, we obtain the time
interval, [ts, te], when the moving triangle is inside the view frustum.
The traversal algorithm for a triangle can be summarized as follows, where a tile
is a rectangular block of pixels:

1 BBOX = Compute moving triangle bounding box
2 for each tile in BBOX [hierarchical traversal]
3 TIME = Compute time interval of overlap
4 Occlusion culling of tile in TIME
5 for each sample in tile in TIME
6 Test sample against primitive

273



PAPER VII: HIERARCHICAL STOCHASTIC MOTION BLUR RASTERIZATION

screen space

originx

w

tile

tile frustum plane

x

y

screen space

tile

tile frustum plane

origint=0 t=0

t=1

t=1

Figure 2: A moving triangle is enclosed by an AABB in 2DH with linear per-vertex
motion. The left figure shows the xw plane, with indicators when the moving AABB
enters (green dot) and exits (red dot) the tile frustum. The right illustration shows
the screen space view of this example.

To compute a screen space bounding box around the moving triangle, we bound
the screen space projections of the six vertices (the triangle vertices at ts and te)
if the moving triangle is entirely in front of the z = 0 plane, and revert to the
conservative bounding approach presented by McGuire et al. [24] otherwise.
In Section 4, we introduce the tile vs moving triangle tests (line 3), which form the
necessary basis for our hierarchical traversal algorithm. The output for a certain
tile is either trivial reject, or a conservative time interval where overlap possibly
occurs. The computation of per-tile time bounds greatly reduces the number of
temporal samples that are tested for fast moving primitives, as large subsets of the
spatio-temporal samples within a tile can be discarded. It also makes hierarchical
occlusion culling simple and efficient. For each tile, we only test the primitive
against occlusion information in the relevant time interval (line 4).
As with all stochastic methods, the statistical distribution of the sample points
has a large impact on the result. Stochastic rasterization has the additional con-
straints that the samples must be consistent from primitive to primitive (otherwise
cracks may appear), and extremely fast to generate as the sampling takes place in
the inner loop of the rasterizer. We have chosen to base our samples on binary
(t,m,s)-nets [27] for their extensive stratification properties. Section 5 introduces
a remapping of a known pattern to provide a temporally ordered sequence that is
extremely inexpensive to compute in hardware. Last, we discuss temporal filtering
for high-quality shading of the generated samples in Section 6, followed by im-
plementation details and a thorough evaluation in Sections 7 and 8, respectively.
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4 Tile Tests with Temporal Bounds

It is well-known that efficient rasterization of static geometry can be obtained by
hierarchical testing of a tile of pixels against a triangle [23]. This is done by
overlap testing the bounding box of the triangle against the tile, and also testing
each triangle edge against the tile [1]. We will extend this to moving geometry,
where the bounding box becomes a moving box, and the triangle edges sweep
through space.

More specifically, we derive tight bounds for the overlap between a screen space
tile and a triangle with linear per-vertex motion in three dimensions. Each vertex,
pi, moves from the position qi at t =0, to ri at t =1, that is: pi(t)=(1−t)qi + tri.
All computations are performed in 2D homogeneous coordinates, with a vertex
defined as p = (px, py, pw). The main idea is to find a conservative time interval,
t̂tot = [ttot , ttot ], in which the moving triangle overlaps the tile. Per-sample tests
are then done only for samples whose times belong to the time interval. In the
following, we first describe how a tile is tested against a moving box, and then
how a tile is tested against a moving triangle edge.

4.1 Frustum Plane–Moving AABB Overlap

We create a moving AABB in 2DH by bounding the triangle at t=0 and t=1 and
interpolating between the two AABBs. This is an approximation to the true swept
bounding box, but it is guaranteed to be conservative at all times. Based on a tile
on screen, we then setup four frustum planes that are aligned to the sides of the
tile. Each frustum plane, πi, passes through the origin and is defined by its plane
equation ni ·p = 0, where ni is the plane’s normal. A point p is outside the plane
if ni ·p > 0. If a point is inside all planes, then it is inside the frustum. For static
geometry, it is sufficient to test the corner of an enclosing AABB that is farthest
in the negative direction (n-vertex) relative to πi [12], in order to determine if the
box is entirely in the positive half-space. The sign bits of the plane’s normal, ni,
directly decides which corner is the n-vertex. We note that the same holds for
linearly moving bounding boxes, as the orientations of the frustum planes remain
constant. Figure 2 shows an example of a moving triangle, whose moving AABB
intersects with two tile frustum planes.

The point of intersection in time between the moving n-vertex and a plane πi is
given by:

ni · ((1− t)qn + trn) = 0 ⇐⇒ t =
ni ·qn

ni · (qn− rn)
, (1)

where (1−t)qn+trn is the moving n-vertex for πi. Let d0 = ni ·qn and d1 = ni ·rn.
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Figure 3: Edge equations as functions of t for a specific (x,y) location. We are
interested in finding the time intervals where e < 0 (highlighted in turquoise).

The temporal overlap, t̂i, between the AABB and the plane πi is given by:

t̂i =


/0 if d0,d1 > 0 both outside
[max(0, t),1] else if d0 > 0 qn outside
[0,min(1, t)] else if d1 > 0 rn outside
[0,1] otherwise both inside,

(2)

where t is computed using Equation 1. The temporal overlap between all the tile
planes and the moving AABB is given by t̂box =

⋂
i t̂i, where we can test for fine-

grained trivial rejection after each iteration of the loop over the four frustum planes,
πi.

4.2 Moving Triangle Edge Tests
For triangles with linear vertex motion in three dimensions, each triangle edge
sweeps out a bilinear patch. The corresponding time-dependent edge functions
are quadratic in t. To determine if a screen space tile overlaps the swept triangle,
we evaluate the triangle’s three edge equations for the four corners of the tile and
check if any corner is inside all three edges. In that case, we again determine a
time interval in which the triangle conservatively overlaps the tile to reduce the
number of per-sample inside tests.
The edge equation for a triangle with linear per-vertex motion can be written as
follows [2]:

e(x,y, t) = n(t) · s = (ft2 +gt +h) · s, (3)

where s = (x,y,1) is a sample position in screen space. For a given s, we have
a maximum of two roots to e(x,y, t) = 0, and up to two time intervals per edge,
t̂i = [t, t], where the sample is inside (e < 0). Some examples are given in Figure 3.
Handling near-linear edge motion in an efficient and robust way is extremely im-
portant, because often a large portion of the triangles in a scene will have close to
linear motion. In these cases, directly finding the roots of e=0 involves a division
with a very small quadratic coefficient, which may lead to numerical instability.
Therefore, we have devised a robust test that performs well when the edge equa-
tions are near-linear, and that is increasingly conservative when the quadratic term
grows. We bound the quadratic edge function’s projection within a screen space
tile using lines with constant slopes. This linearization of the overlap test greatly
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ex,y(t) = at2+bt+c

t
t

(0,c)

(1,a+b+c)

(1,b+c)

t

Figure 4: The lower bound of a quadratic polynomial from Equation 4 is bounded
by a linear approximation around t = 0.

reduces the computations needed. The edge function (Equation 3) is linearized
according to:

e(x,y, t) = n(t) · s≥ o · s+ γt, ∀s ∈ S, (4)

where S is a region in screen space, e.g., the bounding box of the swept triangle.
With n(t)= ft2 + gt +h, we rewrite the edge function for a certain screen space
position, s, as [14]:

n(t) · s = f · s t2 +g · s t +h · s = at2 +bt + c, (5)

where a = f · s, b = g · s and c = h · s. It can be shown that this curve is included
in the triangle given by the points (0,c),(1,b+ c) and (1,a+ b+ c) as seen in
Figure 4. We search for a lower linear bound of the curve’s slope, which is given
by:

min(b,a+b) = min(g · s,(f+g) · s). (6)

A conservative minimal slope, γ , for all s ∈ S, is given by:

γ = min
s∈S

(g · s,(f+g) · s). (7)

If we set o = n(0) = h, we have obtained a linearized version of the edge equation
according to Equation 4. This linear representation is conservative even if the edge
function has a large quadratic term. Note that γ can be computed in the triangle
setup using the moving triangle’s screen space AABB as S. For more accurate
bounding, γ can be recomputed on a coarse tile level, using the tile extents as S.
Given the linearization, the tile vs moving edge test is considerably simplified. By
looking at the signs of the xy-components of o, we only need to test one tile corner,
s. A conservative time for the intersection of the triangle edge and the tile is given
by:

o · s+ γt = 0 ⇐⇒ t =−o · s
γ

. (8)

Note that − o
γ

can be precomputed, so the time of overlap for a tile only costs 2
MADD per edge. Depending on the sign of γ , the tile’s temporal overlap, t̂k, with
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edge ek is defined as:

t̂k =
{

[max(0, t),1] if γ < 0,
[0,min(1, t)] otherwise, (9)

where t is computed according to Equation 8. Once all three triangle edges have
been tested, the temporal overlap between the tile and the swept triangle is given
by t̂edges =

⋂
k t̂k, where we can test for fine-grained trivial rejection after each

iteration of the loop over edges (ek). The final interval is the intersection of the
intervals from both the moving box test (Section 4.1) and the moving edge test,
i.e., t̂tot = t̂box

⋂
t̂edges.

Given t̂tot , we first perform spatio-temporal occlusion culling, and for the surviv-
ing tiles and time intervals, we proceed with individual sample-in-triangle inside
tests. The following section describes the computation of our sampling positions,
(x,y, t).

5 Sampling

In a motion blur rasterizer, each pixel is associated with a number of fixed (x,y, t)
samples. The samples must be the same from triangle to triangle to get correct
visibility, but vary randomly from pixel to pixel to reduce temporal and spatial
aliasing. Stochastic sampling introduces noise, and it is well-known that sample
points with good statistical properties, e.g., large minimum distance, provide a
good balance between noise and aliasing. For us, it is also desirable that the sam-
ples project to a good distribution in (x,y) for high-quality anti-aliasing of static
primitives.
Our application imposes a number of further constraints. First, sampling needs to
be fast and use minimal storage, as it is performed at the core of the rasterizer.
Second, each pixel should have the same number of samples to simplify hardware
design. Additionally, since our tile tests compute the temporal overlap, t̂tot , it is
important to be able to quickly find the relevant samples for a tile, i.e., the samples
should be ordered in t. These requirements severely restrict our options. For
example, Poisson disk points are not guaranteed to project to a good distribution
in two dimensions, and it may be hard to guarantee a fixed number of samples.
For these reasons, we have chosen to work with sampling distributions that are re-
alizations of digital (t,m,s)-nets [27]. Although often used for quasi-Monte Carlo
integration in offline rendering [19], we believe samples based on digital nets are
ideal also for motion blur rasterization due to their extensive stratification proper-
ties and ease of construction. Next, we will give a brief introduction (see Nieder-
reiter’s work [27] for more details), and introduce a novel variation of a known
method for generating three-dimensional samples with good properties. Our sam-
ples are ordered in t and have a good spatial distribution when projected to screen
space.
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Figure 5: Example of a (0,4,2)-net in base 2. The five figures illustrate all ele-
mentary intervals with area bt−m =2−4 over the unit square, where each one has
exactly bt =20 =1 samples. We present a method for procedural construction of
three-dimensional (t,m,s)-nets with properties targeted at motion blur rasteriza-
tion.

Definition A set of bm s-dimensional points x j=(x(1)j , . . . ,x(s)j ) is a (t,m,s)-net
in base b if every elementary interval of volume bt−m contains exactly bt points,
where b≥2 and 0≤t≤m are integers. The elementary intervals are discrete subin-
tervals of space:

E =
s

∏
i=1

[
ai

bli
,

ai +1
bli

)
⊆ [0,1)s, (10)

where 0 ≤ li and 0 ≤ ai <bli are integers. The volume constraint gives ∑
s
i=1 li =

m− t. An example in two dimensions is shown in Figure 5. In our case, s=3 and
we work exclusively with binary numbers (b= 2) for efficiency reasons. Lower
t value (referred to as “quality”) gives better stratification, i.e., fewer points per
stratum. Hence, we are interested in (0,m,3)-nets in base 2, which have 2m points
and exactly one point per elementary interval. This property ensures that samples
near in time are spatially far apart, and vice versa, which is important to minimize
noise.
A digital (t,m,s)-net can be defined using a set of generator matrices C1, . . . ,Cs
over a finite field Fq, where q is prime [27]. Fq consists of elements numbered
{0, . . . ,q−1}, and all arithmetic operations are performed modulo q. Since we
work in base 2, q = 2 and the Ci matrices are binary m×m matrices. The ith

component of the jth point is given by:

x(i)j =
(
2−1, . . . ,2−m)

Ci

 d0( j)
...

dm−1( j)


 ∈ [0,1), (11)

where dk( j) are the bits of j, j∈{0, . . . ,2m−1}, with d0 being the least significant
bit. The matrix-vector product Ci (d0( j) · · ·dm−1( j))T is performed in F2.

Our Method Three-dimensional digital nets with good 2D projections are not
very well explored. Grünschloß and Keller [15] propose one method based on
reordering of the Sobol’ sequence, where the first two dimensions are the Larcher-
Pillichshammer (LP) points [19], which have a good spatial distribution. The first
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Figure 6: The original samples [15] are ordered in the first component. The
projection onto the other two dimensions are shown on the left for m= 6. After
our permutation, the non-time dimensions project to the Larcher-Pillichshammer
points (right), which give better spatial anti-aliasing.

component is sequentially ordered, i.e., x(1)j = j
2m . Unfortunately, we have ob-

served that the projection onto the other two dimensions is not as well-distributed,
exhibiting a structure of diagonal lines. See Figure 6 (left). This leads to inferior
spatial anti-aliasing, as our algorithm uses the ordered dimension as time.
To address this, we propose a permuted construction that is ordered in t, while still
projecting to the LP-points in the remaining two dimensions, as shown in Figure 6
(right). Our samples are given by the generator matrices (see Appendix A for
details):

C′1 =
((

m+1− l
m+1− k

)
mod 2

)m

k,l=1
, (12)

C′2 =
((

m− l
k−1

)
mod 2

)m

k,l=1
and C′3 =

 0 1
. .
.

1 0

 .

These binary matrices are visualized in Figure 7. The figure compares our matrices
to the original matrices of Grünschloß and Keller, denoted C1,C2,C3. Note that
our modified matrices compute the same set of points as before, but the points are
generated in a different order. The order is important, as our input is a sequential
index in time, and the remaining two dimensions are used as the spatial sample
position. We want the projection to screen space to be as good as possible for
high-quality spatial anti-aliasing. This is especially important for static and slowly
moving primitives, where the user gets plenty of time to study the quality. Note that
reordering the points by permuting the matrices is not the same as just assigning
the dimensions differently.
Although the matrices look deterring, they make an efficient procedural compu-
tation of samples possible. Addition equals XOR in F2, so entire columns of the
matrix-vector product in Equation 11 can be added using single XOR operations.
Additionally, we omit the leftmost vector multiplication and view the result as the
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C1 C2 C3 C′1 C′2 C′3

Figure 7: The right three images show examples of our generator matrices for
m= 40. The first two components are given by shifted and reflected Sierpiňski
triangles. These two matrices generate the same points as C1 and C2, but permuted
into an order that better suits our purposes (ordered in t).

digits of a fixed-point representation. The following C-function computes the xy-
coordinates of the point with sequential index j, i.e., sample time t = j/2m ∈ [0,1),
for any m<32. All coordinates are integers in {0, . . . ,2m−1}.

1 void GetXY(uint j, const uint m, uint& x, uint& y)
2 {
3 x = y = 0;
4 uint c1 = 0x3, c2 = 0x1 << (m-1);
5 for (j <<= 32-m; j != 0; j <<= 1)
6 {
7 if (j & 1u<<31) // Add matrix columns (XOR)
8 {
9 x ^= c1 >> 1;

10 y ^= c2;
11 }
12 c1 ^= c1 << 1; // Update matrix columns
13 c2 ^= c2 >> 1;
14 }
15 }

The algorithm examines j one bit at the time, starting at its high bit m−1, and adds
up columns of C′1 and C′2. The matrices are computed on the fly, using only bit
shifts and XOR operations. In hardware, the above algorithm can be implemented
using a very small number of gates. During rasterization, we generate samples
for t ∈ t̂tot at the finest hierarchical level in the traversal. For example, with 4×4
pixel tiles at 16 samples/pixel, we have 256 samples, so m = 8 and the samples’
xy-coordinates are interpreted as 2.6 bits fixed-point numbers (i.e., the top two bit
gives the pixel position, and the lower six bits the sub-pixel placement). Through-
out the paper, we also quantize time to 64 discrete values (see Section 7), although
this is not a necessity.
To avoid a repeating sample pattern, we apply random digit scrambling [19] to
the generated xy-coordinates, as it gives good results at an extremely low cost.
Conceptually, the sampling domain is hierarchically split in half along each spatial
dimension, and the two halves randomly permuted. The same permutations are
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Figure 8: Comparison between stratified random sampling (left) and sampling
based on digital nets (right), at two different sampling rates. The regularity in the
digital net based pattern gives a noticeably smoother appearance, while avoiding
obvious aliasing.

applied to all samples within a tile. In base 2, this operation can be performed by
a bitwise XOR between the xy-coordinates and two independent random bit vec-
tors. We compute the random vectors based on a hash of the tile position, which
ensures consistency from frame to frame. The regular structure of the scrambled
digital net gives low noise without any obvious aliasing artifacts. Note that ran-
dom digit scrambling also largely preserves the properties of the projected samples
(Figure 6), which is an important aspect. To increase the randomness, a sub-pixel
jittering can be applied, but we have not found that to be necessary. Figure 8 shows
the rendering quality compared to traditional stratified random sampling, where xy
and t have been independently stratified per pixel.

Discussion An alternative to using procedurally generated samples is to store a
lookup table of samples, ordered in t. This allows for more flexibility, but incurs
an additional hardware cost. Inspired by Grünschloß and Keller [15], we have
experimented with randomized permutation-based search for (0,m,3)-nets with
larger minimum point distance than the above construction, but the results of this
has been left for future work.
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6 Shading

A core feature of our algorithm is that we visit a particular pixel at most once for
a certain triangle. This is similar to McGuire et al.’s work [24], but different from
interleaved and interval rasterization [17, 10], where a pixel may be visited many
times for the same triangle. Using our traversal order, it is therefore possible to use
multisampling anti-aliasing (MSAA) strategies with temporal filtering [21, 24],
which is not feasible for interleaved and interval rasterization since they slice the
time dimension. As will be seen in Section 8, multisampling can give a consid-
erable reduction in shader cost, which is a big advantage when implementing the
traversal algorithm in an existing GPU pipeline. It should be noted that decou-
pled shading solutions [30, 7] show more promise to further reduce the shading
cost. However, the multisampling approach can be implemented on current hard-
ware with no, or very small, modifications as shown by McGuire et al [24], which
makes it a good first step towards a graphics hardware solution fully supporting
motion blur. Although our shading system is very similar to previous work, we
describe it briefly since being able to use multisampling is currently an important
feature of our algorithm.
We base our temporal shader filtering on the work of Loviscach [21] and McGuire
et al. [24]. The basic idea is to use anisotropic texture filtering to integrate textures
over the motion footprint by modifying the derivatives. By integrating over time
in the shader, it is possible to sample the shader only once per pixel, and write the
result to all covered samples.
We assume that the only varying shader inputs are the barycentric coordinates
u(x,y, t),v(x,y, t), and disregard from explicit shader input variables representing
the sample time. For texture filtering, we need to estimate the texture footprint.
The integration domain is given by a fourth order rational function in t, but we
choose to make the same approximations as Loviscach [21], and use his approach
for perturbing the screen space texture gradient axes to account for the temporal
derivative. McGuire et al. [24] present an approximation where the screen space
gradients use a fixed axis in texture space. However, this method suffers from
severe aliasing for some view directions, as can be seen in Figure 9.
We compute ∂u

∂x , ∂u
∂y and ∂u

∂ t by finite differences (same for the partial derivatives
of v). For each quad of 2×2 pixels with at least one sample covered, we evaluate
the shader at five points: each of the four pixel centers at t = 0.5 for the quad, in
order to compute x and y derivatives using finite differences, and one additional
point for one of the samples at t =1 to compute a per-quad approximation of the
temporal derivative. For a more fine-grained temporal derivative, one can shade
the entire quad at two distinct times and compute per-pixel temporal derivatives,
or shade on a per sample/pixel basis, which would shade four points to compute
per-pixel ∂u

∂x , ∂u
∂y , and ∂u

∂ t derivatives (and the partial derivatives of v). We use
the quad approximation in all our tests. The shading approach integrates very well
into existing pinhole camera rendering systems with MSAA support with relatively
modest modifications to the hardware.
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Figure 9: Comparison between the filter kernel approximations proposed by
McGuire et al. (top) and Loviscach (bottom). The results are rendered on an
NVIDIA GeForce 290 GTX with 16× anisotropic filtering. Note the severe alias-
ing in the top row. This is due to over-emphasizing the motion contribution, and
the approximation of the screen space filter kernel as a fixed (1,1)-vector.

It should be noted that our approach for computing derivatives may lead to shading
samples that lie outside the triangle. This can cause shading artifacts, but we have
not found them to be significant in our test scenes. McGuire et al. [24] used a
different approach and picked the last covered time sample as the shading sample,
but reprojected to t = 0. This has other implications such as overblurring due
to too large filter kernels. Working out a strategy for correct shader filtering and
derivative computations with stochastic sampling is an interesting problem that
deserves a thorough evaluation. However, we leave that for future work.
With interleaved rasterization [17, 10] in a pipeline with shading after visibility,
there are no adjacent screen space samples with the same sample time. Without
introducing large hardware changes (e.g., a shader cache) the spatial derivatives
can be computed in two ways. One option is to compute derivatives per sample
by executing the shader at three spatial positions. The other option is to compute
derivatives using finite differences from four nearby samples with the same time,
while taking the perturbed sample positions into account. This method produces
coarser derivatives, as the samples with the same time are typically separated by
two or more pixels. In either case, as we shade at all sample times, the tempo-
ral derivatives are less important and can be ignored without much loss in image
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quality. We chose to use the first alternative for the statistics presented in this
paper, as the quality more closely matches that of our derivatives. Furthermore,
coarse derivatives will degrade the quality even for static scenes compared to cur-
rent graphics API specifications, which we want to avoid.

7 Implementation

Hierarchical Rasterizers To evaluate our algorithm, we have implemented four
rasterizers called CONVEX, OUR, INTERVAL and HIERARCHICAL INTERLEAVE
in a software rasterization pipeline that can execute DX11 traces, but lacks a gen-
eral shading system. In order to evaluate shading and sampling quality, we have
also designed a GPU rasterizer which performs stochastic rasterization in a pixel
shader, similar to McGuire et al.’s work [24].
CONVEX (based on McGuire et al. [24]) traverses all tiles within an AABB over-
lapping the screen space convex hull (CH) of the moving triangle. The original
paper uses a two-step algorithm that triangulates the convex hull and rasterizes
stochastically in the pixel shader (to run on current GPUs). In our software imple-
mentation, each tile is tested against the CH edges, and if it overlaps, all spatio-
temporal samples within the tile are tested against the triangle. Both approaches
perform hierarchical rasterization, but the latter may be more efficient in hardware,
as a tile is visited only once.
OUR algorithm is similar, but uses the tile tests with temporal bounds introduced
in Section 4 instead of the CH edges. The temporal bounds significantly reduce
the number of samples that must be tested.
INTERVAL is based on Pixar’s motion blur algorithm (described by Fatahalian et
al. [10]). The main difference compared to CONVEX and OUR is the iteration or-
der, where INTERVAL has an outer loop over sample times instead of over tiles.
This is the only algorithm that cannot be easily extended to hierarchical rasteri-
zation. We still use a tiled traversal approach for the sake of hierarchical depth
culling, but we have no test for trivially rejecting a non-overlapping tile.
HIERARCHICAL INTERLEAVE is a hierarchical 2DH version of Fatahalian et al.’s
interleaved rasterizer [10], where the triangle is rasterized with an interleaved sam-
pling pattern. Like INTERVAL, this algorithm has the outer loop over sample times
rather than tiles. Note that for mixed triangle sizes, adding a hierarchical test to
Fatahalian et al.’s [10] interleaved rasterizer improves performance a lot, which is
to be expected since the target of the original paper was micropolygon rendering.
All algorithms perform backface culling [26] and view-frustum culling (including
temporal bounds). In all tests, we use the same high-quality interleaved sampling
patterns, described in Section 5, with 64 fixed times. The reason for this is that
the edge functions can be pre-computed for 64 times in the triangle setup and
reused over the triangle, which gives substantially reduced costs for our test scenes.
The inside test, which uses 2DH edge equations, is therefore identical for all four
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CONVEX OUR

Iteration order Tiles Tiles
Screen space bbox BBox of CH Bound tri over [0,1]
Tile test CH edges Swept tri
Occl. & sample test t ∈ [0,1] t ∈ t̂tot
Shading MSAA MSAA
Sampling pattern Arbitrary Ordered in t

INTERVAL HIER. INTERLEAVE

Iteration order Sample times Sample times
Screen space bbox Bound tri over [ti, ti+k] Bound tri at ti
Tile test None Tri edges at ti
Occl. & sample test t = [ti, ti+k] t = ti ∀i
Shading Supersampling Supersampling
Sampling pattern Ordered in t Interleaved

Table 1: Algorithm comparison. CH denotes the screen space convex hull of the
moving triangle. For INTERVAL, we divide the N unique sample times in N/k
intervals.

algorithms. The traversal strategies are summarized in Table 1.
Using a sample pattern with a fixed set of sample times, there is an amount of mo-
tion where a fast moving triangle has no spatial overlap between adjacent times,
ti and ti+1. Figure 10 illustrates this. In this case, there is little temporal coher-
ence to exploit, i.e., each tile has only one or a few covered samples. Therefore,
we propose a fallback to HIERARCHICAL INTERLEAVE traversal whenever the
individual bounding boxes no longer overlap. We use a simple heuristic to de-
cide when this occurs. The dimensions of the bounding boxes at t =0 and t =1
are w0× h0 and w1× h1, respectively, and the swept bounding box ws× hs. If
we rasterize at N unique times, HIERARCHICAL INTERLEAVE traversal is chosen
whenever min(w0,w1)< ws/N or min(h0,h1)< hs/N. We use this fallback in all
our measurements of OUR, CONVEX, and INTERVAL. It is primarily activated for
very small, fast moving triangles.
At 16× multisampling, we use three hierarchical levels with 16× 16, 8× 8, and
4× 4 pixel tiles for all algorithms except HIERARCHICAL INTERLEAVE (which
uses 32× 32, 16× 16 and 8× 8 pixel tiles). Depth culling is performed on the
coarsest and finest levels, and trivial reject or time overlap test are performed on
the two finer levels. These configurations were determined by extensive evaluation
of both arithmetic cost and bandwidth usage. We use coarser tile levels for HIER-
ARCHICAL INTERLEAVE since the tile tests are executed for each sample time ti.
For HIERARCHICAL INTERLEAVE, a single tile test at 4×4 pixel tiles culls at most
4 samples with t = ti. In contrast, up to 256 samples with t ∈ [0,1] can be culled
for 4×4 pixel tiles with our tile tests.
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Figure 10: Two moving triangles are rasterized at four fixed times for illustrative
purposes. With little motion, the individual bounding boxes (red) overlap, which
makes a screen space traversal in the swept bbox (green) preferable. At higher
motion, the bounding boxes separate and HIERARCHICAL INTERLEAVE traversal
is more efficient.

Time-Dependent Occlusion Culling A traditional z-max buffer stores one con-
servative z-max value for each screen space tile. We use a time-dependent z-max
buffer [2, 4], which contains multiple temporal depth values per tile for increased
culling efficiency in the presence of motion blur. For better efficiency, our algo-
rithm uses the tile’s temporal overlap, t̂tot (Section 4), to avoid performing occlu-
sion queries for time intervals when the triangle does not overlap. Our simulator
uses a fully associative cache backing the depth and z-max buffers with 64 bytes
cache lines. In the following, we denote the number of different sample times
represented in one cache line as s. A corresponding z-max value then represent s
times over a screen space tile whose spatial extents is proportional to 1/s to make
it fit in the cache line. A coarse z-max buffer is either constructed for each of
the 64 times, and hence s = 1, or for a group of consecutive times (representing a
smaller screen space area), where s > 1. In all cases, we have one z-max value for
each cache line of sample depths.
The temporal coherence may be further exploited by constructing a temporal hier-
archy [4]. We explored this with a two-level spatio-temporal cache-backed hierar-
chy, but were not able to reduce bandwidth usage. This is partly due to the cache
line grouping of values – large chunks of geometry must be successfully culled in
order to avoid reading z-max data – and partly due to the added cost of keeping
another level of z-max data in the cache. Also note that our tests are not using
any depth compression. However, a two-level temporal hierarchy decreased the
arithmetic cost by around 5–10%, and we use it for all algorithms.

8 Results

Our test scenes are presented in Figure 11 and include various types of motion,
triangles sizes, and geometry distributions. All results were generated using our
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Figure 11: Our test scenes with two frames from the StoneGiant demo (courtesy
of BitSquid), one from the Heaven 2 demo (courtesy of Unigine Corp.), and the
SubD11 animation from Microsoft DX SDK (June 2010). Motion blur has been
added to all scenes.

own simulation framework described in Section 7 with 16 samples per pixel. We
present results for the depth buffer bandwidth, the number of shader executions,
and the number of arithmetic operations required for rasterization. In most charts,
we have also included a standard hierarchical rasterizer without motion blur. This
is referred to as STATIC.
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8. RESULTS

Depth Buffer Bandwidth Reducing memory bandwidth usage is incredibly im-
portant, and therefore, we start with a study on depth buffer bandwidth usage. Fig-
ure 12 (top) shows the depth buffer memory bandwidth usage from cache misses
(including both sample depths and z-max values) when the number of sample times
per cache line, s, is varied. Grouping more times into a cache line increases the
penalty of larger motion, but lowers the bandwidth usage for parts of the scene
moving slowly. For our algorithm, s = 4 is preferable for a wide range of mo-
tion. We use this number for all measurements for OUR, CONVEX, and INTERVAL
since they have similar access patterns. Note, however, that our algorithm performs
slightly fewer hierarchical occlusion queries than CONVEX since we use the results
from the tile test to avoid testing some time intervals. More aggressive temporal
grouping (s = 16) only pays off for very small motion, while no temporal group-
ing (s = 1) is more efficient for extreme motion. HIERARCHICAL INTERLEAVE
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Figure 12: Bandwidth usage for z and z-max at 16 samples per pixel. Left: varying
amount of motion with a 16kB depth cache. A higher temporal z-max resolution
(lower s) scales better with increasing motion, but has a higher constant cost. s= 4
is a suitable choice for OUR, as the crossover occurs at extreme motion (outside
the graph). Right: varying cache size with fixed amount of motion. The minimum
cache requirement for our algorithm is to accommodate all N time layers and
the z-max storage. Our algorithm with s = 4 scales well to decently small cache
sizes. CONVEX is not shown as it behaves similar to our algorithm, with the only
difference that more z-max queries are performed.
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scales differently, and the benefit for grouping sample times into the same cache
line is low even for static scenes. This is an effect of the traversal order, where
the triangle is fully traversed for one sample time before continuing with the next.
For larger triangles, this may lead to eviction of the first cache line before starting
traversal for the next sample time. Therefore, we use the s = 1 framebuffer layout
for the HIERARCHICAL INTERLEAVE algorithm.
To determine a suitable cache size, we ran the bandwidth measurements with var-
ious cache sizes as presented in Figure 12 (bottom). Our algorithm needs a mini-
mum cache size of 2kB (and in the case of s = 1, it needs 8kB) to avoid a 100%
miss rate. However, above this minimum, it scales better than HIERARCHICAL
INTERLEAVE traversal for decreasing cache sizes. In fact, HIERARCHICAL IN-
TERLEAVE does not level out until the cache becomes very large (128kB–1MB).
For the remaining comparisons, we use a 16kB cache for all algorithms. This cor-
responds to approximately 256 fully covered pixels worth of data, not counting
z-max storage.
As shown in Figure 12 and 15–17 (top row), the depth buffer bandwidth (including
both sample depths and z-max values) to external memory is relatively constant for
the HIERARCHICAL INTERLEAVE traversal order with increasing motion, while it
is increasing somewhat for OUR, CONVEX, and INTERVAL. Our algorithm be-
comes less efficient than HIERARCHICAL INTERLEAVE at some point. However,
extreme motion is needed to reach the break-even point, and our algorithm consis-
tently outperforms the competing algorithms except for the difficult StoneGiant2
scene with extreme motion (>4×). In Figure 13 (top), we see that our algorithm
uses less bandwidth than HIERARCHICAL INTERLEAVE for the SubD11 anima-
tion. In fact, in most frames, OUR uses only about 50% of that of HIERARCHICAL
INTERLEAVE, even though the scene is animated at a low frame rate (24 fps) and
contains frames with relatively large motion. Our algorithm also uses slightly less
bandwidth than CONVEX since our tile tests with temporal bounds enable more ef-
ficient occlusion culling. This is particularly noticeable in the frames with largest
motion. The depth buffer bandwidth of INTERVAL is similar to our algorithm but
with one important difference. Since INTERVAL does not have a trivial reject test
we need to perform depth culling for all tiles overlapping the triangle bounding
box. This is not significant for small triangles or for scenes with only motion in
the x- or y-directions. However, for SubD11 which contains large sliver triangles,
this leads to many unnecessary depth culling queries and increases bandwidth sig-
nificantly.

Shading Efficiency Figure 13 (bottom) shows the number of shader executions
per frame for the SubD11 animation. For OUR and CONVEX, we use multisam-
pling, while HIERARCHICAL INTERLEAVE traversal has to resort to supersam-
pling due to the traversal order (i.e., for each time, there is only one sample per
tile in the interleaved sampling pattern). For INTERVAL, we use 16 time intervals.
This implies that within each time interval, there is one sample per pixel in the
interleaved sampling pattern. As can be seen, the benefit of multisampling is very
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Figure 13: Depth buffer bandwidth (top) and number of shader executions (bot-
tom) for the SubD11 animation.

high for SubD11. Also, INTERVAL is more efficient than HIERARCHICAL INTER-
LEAVE since shading is computed once per interval (16×) rather than per sample
time (64×), and quad-fragment shading and finite differences can be used.
At extreme motion relative to the primitive size, we effectively revert to supersam-
pling. This happens at >4× motion for the StoneGiant2 scene, which is highly
tessellated (see the middle row in Figures 15–17. It is questionable whether this
extreme motion will be usable for real-time rendering (> 60 fps). In all cases, the
shading overhead compared to STATIC is often quite high. Given these observa-
tions, we conclude that better long term solutions for shading may be cache or
object-space based approaches, as discussed in Section 6. However, we believe
that a multisampling approach for motion blur is likely to be adopted by hardware
vendors as an intermediate step towards a pipeline with decoupled shading.

Rasterization Cost We have instrumented our code with cost estimations for the
critical stages of the rasterization algorithm: triangle setup, tile test, sample test,
and interpolation setup. We only account for the cost of the more complex opera-
tions such as ADD, MUL, RCP, etc., and disregard from the cost of bit-twiddling
and control logic. Therefore, our results should not be seen as absolute costs for
an implementation, but rather demonstrate the general trend of the algorithms and
how they relate. We intentionally do not use sample test efficiency [10] as an effi-
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Figure 14: Arithmetic cost breakdown for different traversal algorithms on the
SUBD11 animation at 16× samples per pixel. Note that the CONVEX traver-
sal has substantially higher number of sample tests, due to the lack of temporal
bounds per tile. Due to the lack of hierarchical testing, INTERVAL and INTER-
LEAVE also suffer from excessive sample testing. Hence, we only use the improved
HIERARCHICAL INTERLEAVE in our measurements.

Static BBox Box Edge Box+Edge
SubD11 8.5 (58) 6.2 (32) 1.8 (4.9) 1.7 (4.5) ×109

Heaven 160 (200) 17 (21) 17 (22) 14 (18) ×109

Table 2: Efficiency of our tile tests in terms of average total arithmetic cost per
frame (maximum in parenthesis). The combination of the two tests gives a cost
efficient and robust tile test.
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Figure 15: The total depth buffer bandwidth, #shader executions, and arithmetic
cost for the StoneGiant1 scene, as functions of the motion amount, where 1× de-
notes a modest motion amount and 4× represents extreme motion. See screenshots
in Figure 11. Note that CONVEX has the same number of shader executions as
OUR

ciency measure, since it only includes a part of the rasterization cost. For example,
sample test efficiency would benefit of using as small tiles as possible, but in prac-
tice, the best tradeoff is found with medium sized tiles where the sum of the tile
test cost and sample test cost is minimized.
In Figure 14, we show a breakdown of the costs for the different stages of the ras-
terizer for the SubD11 animation. HIERARCHICAL INTERLEAVE has a significant
triangle setup cost, due to that each triangle is bounded at N = 64 discrete times.
Also, the interpolation setup is more expensive, as the shading is supersampled.
Additionally, the sample test work is increased due to a larger screen space tile
size. We have experimented with finer tile sizes, but that resulted in a substantial
increase in the tile test cost, making the overall cost increase. INTERVAL performs
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Figure 16: The total depth buffer bandwidth, #shader executions, and arithmetic
cost for the StoneGiant2 scene, as functions of the motion amount.

quite poorly for this test scene. The reason for this is that the model contains large
sliver triangles and since the INTERVAL rasterizer lacks a hierarchical tile-overlap
test, it performs many unnecessary sample tests. For CONVEX, the cost of sample
testing dominates, and varies widely. Our algorithm has more expensive per-tile
tests, but they manage to cull a larger part of subsequent work. The total arithmetic
cost using our two tile tests (moving box and moving edge) is presented in Table 2.
We also measured the efficiency of our linearized edge test compared to directly
solving the quadratic edge equation per tile. On the entire SubD11 animation (the
scene with most complex motion), the linearized test results in 8% more inside
test, but reduces the total arithmetic cost by 13% thanks to less expensive per-tile
computations. On the Heaven scene, the linearized test results in 4% more inside
test, but a total cost reduction of 24%.
In Figures 15–17 (bottom row), we show how the four different motion blur al-
gorithms scale with increased motion. StoneGiant1 and Heaven both have motion
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Figure 17: The total depth buffer bandwidth, #shader executions, and arithmetic
cost for the Heaven scene, as functions of the motion amount.

blur from a camera translation and show similar trends despite a large difference in
tessellation. For modest motion (<1×), our algorithm has about half the traversal
cost of HIERARCHICAL INTERLEAVE, and has roughly the same cost at extreme
motion. INTERVAL scales similar to our algorithm but has lower overall perfor-
mance. CONVEX is efficient for small motion, but the arithmetic cost grows very
quickly for larger motion. StoneGiant2 is a highly tessellated frame with a camera
rotation, so that each triangle gets similarly long motion trails. There are about a
million triangles in the two front-most spiders alone. This is a worst-case scenario
for a screen space hierarchical traversal, as a large fraction of the scene geometry
is near pixel-sized. Here, HIERARCHICAL INTERLEAVE handles extreme motion
robustly at a significant cost (around 40 Gops per frame). Our approach is com-
petitive up to about 2× motion. At extreme motion levels, nearly all triangles are
completely separated (see Figure 10), so there is no gain in using a screen space
traversal algorithm.
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9 Conclusions

This paper has described the first efficient algorithm for hierarchical rasterization
of motion blur. The algorithm builds on novel tile tests that compute the tempo-
ral overlap between a screen space tile and a moving primitive. We have shown
that these temporal bounds are important to reduce the volume of tested samples
and enable efficient hierarchical occlusion culling. We have further devised a high
quality sampling method that uses the temporal bounds to quickly generate sam-
ples with good statistical properties. Our method is based on reordering of a known
three-dimensional digital (t,m,s)-net to better fit the requirements for motion blur
rasterization. Finally, we have provided extensive measurements of depth buffer
bandwidth usage, arithmetic intensity, and shader efficiency for MSAA on modern
complex workloads, which we have not seen in other studies.
In this paper, we have taken one step towards efficient motion blurred rendering
on graphics processors. Our focus has been on a rather non-intrusive change to
current GPUs. One area that needs more work is efficient shading, which makes
the next natural step to add a decoupled shading cache [30, 7]. This is left for
future work at this point. In addition, it would be interesting to transform the
algorithms into using efficient fixed-point math robustly. We hope that our work
will help drive a continued interest in stochastic rasterization as a realistic method
to achieve high-quality motion blur in future graphics pipelines.

Acknowledgements
Thanks to Tobias Persson from BitSquid for letting us use the StoneGiant demo,
and to Denis Shergin from Unigine for letting us use images from Heaven 2.0.
Tomas Akenine-Möller is a Royal Swedish Academy of Sciences Research Fellow
supported by a grant from the Knut and Alice Wallenberg Foundation. In addition,
we acknowledge support from the Swedish Foundation for strategic research.

296



A. DERIVATION OF OUR GENERATOR MATRICES

A Derivation of Our Generator Matrices

We base our sampling method on the (0,m,3)-net proposed by Grünschloß and
Keller [15]. Their first two generator matrices, giving the Larcher-Pillichshammer
(LP) points, are defined as:

C1 =

 0 1

. .
.

1 0

 and C2 =

({
1 if k ≤ l,
0 else

)m

k,l=1
, (13)

and the third component is generated by the matrix:

C3 =

((
l
k

)
mod 2

)m

k,l=1
. (14)

To make the generated point set better suited for motion blur rasterization with
our algorithm, we propose a new construction based on the matrices C′i = CiD,
where D = C−1

3 C1. D is chosen so that C′3 = C3C−1
3 C1 = C1, which generates

points ordered in the third component, while keeping the first two components as
the LP-points. Note that C3 is an upper triangular matrix as

(l
k

)
= 0 if k > l, and

its determinant is thus the product of the diagonal entries, det(C3) = ∏
m
i=1
(i

i

)
= 1,

which shows it is of full rank and therefore invertible.
We start by computing the inverse C−1

3 . Note that C3 is closely related to the
Pascal matrix Pn(i, j) =

( i−1
j−1

)
,1 ≤ i, j ≤ n. Its inverse, P−1

n is known [5] and has

elements P−1
n (i, j) = (−1)i− j

( i−1
j−1

)
. In F2, −1 = 1, and hence the term (−1)i− j

disappears and P−1
n = Pn (mod 2). The elements of C3 are the same as the lower-

right submatrix of size m×m of PT
m+1 mod 2. This result lead us to believe that

C3 is its own inverse in F2, i.e., C−1
3 =C3. As a proof, we show that the elements

of C3C−1
3 =C2

3 = I are:

C2
3(k, l) =

m

∑
i=1

(
i
k

)(
l
i

)
mod 2 = . . .=

{
1 if k = l,
0 if k 6= l, (15)

for 1 ≤ k, l ≤ m. First, note that nonzero terms in the sum can only occur when
both binomial coefficients are nonzero, i.e., when k≤ i≤ l, due to

(l
k

)
= 0 if k > l.

Hence, in the lower left, k > l, all elements are zero. For k ≤ l, the sum can be
expanded using a double counting combinatorial proof [18]:

m

∑
i=1

(
i
k

)(
l
i

)
=

l

∑
i=k

(
i
k

)(
l
i

)
= 2l−k

(
l
k

)
. (16)

In the upper right, k < l, C2
3(k, l) = 2l−k

(l
k

)
mod 2 = 0, as all elements are multi-

ples of 2. Along the diagonal, k = l, the sum reduces to 20
(k

k

)
= 1, which concludes
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the proof. Finally, our new matrix, C′1, for computing the first component of the
points is given by:

C′1 =C1D =C1C3C1 =

((
m+1− l
m+1− k

)
mod 2

)m

k,l=1
, (17)

as pre and post-multiplication by the exchange matrix, C1, results in flipping C3
vertically and horizontally. To compute, C′2, we start with C2C3, which is given by:

C2C3(k, l) = . . .=

{
∑

l
i=k
(l

i

)
mod 2 if k ≤ l,

0 if k > l,
(18)

as the rows of C2 are zero for columns i < k, and
(l

i

)
= 0 if i > l. Through ex-

periments, we have found that ∑
l
i=k
(l

i

)
=
(l−1

k−1

)
(mod 2), k ≤ l. The formal proof

of this can be found by deduction. Finally, C′2 is given by flipping this matrix
horizontally, i.e., replacing the column index l by m+1− l, as follows:

C′2 =C2D =C2C3C1 =

((
m− l
k−1

)
mod 2

)m

k,l=1
. (19)

This completes the derivation of our new set of generator matrices.
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