
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A parallel 2Gops/s image convolution processor with low I/O bandwidth

Öwall, Viktor; Torkelson, Mats; Egelberg, Peter

Published in:
[Host publication title missing]

DOI:
10.1109/ASIC.1995.580688

1995

Link to publication

Citation for published version (APA):
Öwall, V., Torkelson, M., & Egelberg, P. (1995). A parallel 2Gops/s image convolution processor with low I/O
bandwidth. In [Host publication title missing] (pp. 87-90) https://doi.org/10.1109/ASIC.1995.580688

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ASIC.1995.580688
https://portal.research.lu.se/en/publications/76898a1c-dcc8-41b0-a578-1bf9227d35e3
https://doi.org/10.1109/ASIC.1995.580688

A Parallel 2Gops/s Image Convolution Processor
with Low 1/0 Bandwidth

Viktor Owall and Mats Torkelson
vitt@tde.lth.se and torkel@tde.lth.se

Dept. of Applied Electronics, Lund University, Box 118, 221 00 Lund, Sweden

Peter Egelberg
egel @agro. se

Agrovision AB, 223 70 Lund, Sweden

Abstract - A customized image processor for
real time convolution of an image has been de-
veloped. Image convolution requires an extensive
amount of calculation capacity and 1 / 0 commu-
nication which is hard to sustain with standard
processors in real time. Therefore, a customized
processor has been designed with a tailored archi-
tecture. The processors have a .total sustained cal-
culation capacity of > 2G arithmetic operations/s
at 20MHz clock frequency, surpassing that of
TMS320C80 for this application due to the tai-
lored architecture.

I. INTRODUCTION

The image convolution processor has been designed with
the target application of grain quaility assessment 111 but
is not restricted to this application. Image convolution is
used to detect certain features of an image - in this case the
grain - such as outline, color, lines, etc. One convolution
detects one feature and if several features are of interest
several convolutions have to be performed. Each convolu-
tion is computationally very intensive and sufficient calcu-
lation capacity is hard to achieve, at reasonable hardware
cost, with standard Digital Signal Processors (DSPs) or
computers. Therefore, an algorithm specific DSP with a
tailored processor architecture has been developed. To
allow parallel convolutions, each performing one feature
detection, four processor cores are implemented on each
chip and a chip select scheme is used to allow parallel cal-
culations with up to sixteen chips. Each pixel value is used
in several calculations and to reduce 1/0 communication
a pixel memory bank is placed on chip allowing each pixel
to be read only once.

The processor has been developed in a design environ-
ment for customized DSPs presented in [2]. No predefined
processor cores have been used and a tailored architecture
has been assembled with a general tool for hardware as-
sembling [3], a DataPath Compiler (DPC). Besides trans-
forming the processor specification into a netlist the DPC
also generates a list of possible micro operations to be per-
formed on the architecture. Image convolution is highly
data intensive and consequently the processor cores are

dataflow dominated and require a very simple controller.
However, the memory bank requires extensive address pro-
cessing and a corresponding increase in controller com-
plexity. The design environment facilitates the algorithm
to be specified in C and compiled into a microprogram.
However, since the application requires a high calcula-
tion capacity the algorithm has been microprogrammed by
hand to achieve an optimal solution. The microprogram
has been simulated with a microcode simulator to obtain
consistency checks with high level algorithm simulations.
A control unit synthesizer, COMA [4], has been used to
generate the controller hardware from the microprogram.
COMA generates a complete controller together with in-
terconnection specifications to datapath and I/O-units.

The processor has been designed and simulated in the
Plessey Classic70000 cell library, which guarantees coher-
ence with the fabricated circuit, using x150k gates and
is awaiting processing. The design environment does not
tie the design to a particular implementation technique
or cell library and one processor core has been fabricated
and successfully tested in a full custom process.

11. TWO-DIMENSIONAL IMAGE CONVOLUTION

Two-dimensional convolution [5, 61, h**x, is performed by
scanning the Kl x hr2 image, x(kl , k z) , with the M I x Ad2
kernel function, or pulse response, h (k l , k z) , figure 2. A
value is calculated for each pixel according to

where ml goes from -(MI - 1) /2 to (MI - 1)/2 and
m2 from -(M2 - 1) / 2 to (M2 - 1)/2. This operation is
performed for

MI - 1 MI - 1 5 k l < K1- 1 + -
2 2

and a filtered output image is produced.

Figure 1: Block diagram of the image convolution processor.

Figure 2: Convolution of an image by a kernel function.

The image is scanned from the upper left corner of the
image, first horizontally and then vertically, and one con-
volution is completed when the kernel has reached the
lower right corner of the image. To deal with border ef-
fects an image frame is added t o the image data according
to figure 2. The frame can be set to the background color
of the image, or if the image is a sub-image to the values
of the pixels in the adjoining sub-images. Additionally,
by adding the frame the output image will have the same
size as the input image. The size of an image is not fixed
but a limitation is put by the processor to a width of 128
pixels and a number of lines of 255. To achieve powerful
and versatile filtering the size of the kernel, MlxM2, is set
to 15 x 15 and the kernel function can be changed rapidly.

111. PROCESSOR ARCHITECTURE

The processor performs four convolutions in parallel and
produces an output of four pixel operation values each
16th/clock cycle. The processor is divided into six main
parts according to figure 1: four identical processor cores,
a pixel memory bank, and a controller with address pro-
cessors. Each processor core performs multiplications for
one column of the kernel function, i.e. 15 multiplications,

requiring 15 pixel and kernel values each clock cycle (cc).
If these values are fed from input ports each clock cycle
a high input bandwidth would be required. However, by
studying figure 2 and 1 we see that each pixel, except the
extreme corner pixels, are used in several calculations; a
pixel in the center of the image is used in 15 x 15 pixel
operations. Therefore, the pixel memory bank of figure 1
is used to store pixels values and reduce the input band-
width. A single 8bits input bus is used for both kernel
function, pixel values, and image size. However, kernel
and pixel values only use the 6 least significant bits.

A . Processor Core

Each of the processor cores contains fifteen multipliers,
handling one line of the kernel function, an adder tree,
and an accumulator, figure 3. Each multiplier handles
one line of the kernel function and the core architecture
enables one pixel operation to be calculated in 16 clock
cycles when the pipe is filled, one extra clock cycle for
loop counter initialization. The multipliers are 6 x 6bits
Booth multipliers producing a 1 2 bit output each clock
cycle. The calculated values are added in a tree structure
of adders and pipeline registers, 14 adders and 30 pipeline
registers, and stored in an accumulator. The first adder
has a width of 11 bits as the least significant bit of the
multiplier output is truncated to reduce the width of the
adders in the tree. In the tree structure the number of
bits increases to avoid overflow in the adders, i.e. one
bit each level. The accumulator has to add values from
sixteen clock cycles and the final number of bits in the
accumulator becomes 18. When a pixel operation value
has been calculated the result is fed to the output register
and the accumulator is reset. The inclusion of circuitry to
detect how many pixel calculations are above a specified
threshold is planned in a future version. This threshold
circuitry would reduce the output bandwidth to one or a
few values for each image.

When the pipe is filled 15 multiplications and 15 ad-
ditions are performed in each processor core each clock
cycle. The processor is designed for a clock frequency
of 20MHz resulting in >2G arithmetic operations/s, cor-
responding to >2Gmac/s. The adders are of carry-ripple

8%

~. Line 14 Line 1 Line2 Line 3 Line4 - - - - - - - Line 13 Line 14 Line 15
. . . kernel .y-- kemel kernel

Z -1 Z-
. .

Register
output

Line 1 Line2 Line 3

output

Line 15

Figure 3: Schematic diagram of a processor core.

type, and the limiting delay is that of the 18 bit accu-
mulator. A change t o a faster type of adder, like carry-
look-ahead or carry-select, will increase the possible clock
frequency but this has not been an objective of the design.

B. Kernel Function

Each processor core requires 15 kernel values each clock
cycle. Therefore? the kernel function is placed in dis-
tributed RAMs throughout the processor cores t o decrease
the number of data transfers. The kernel function is often
used for several consecutive calculations while a change
in kernel function should not be too time consuming to
achieve versatility. Thus, each RAM is connected t o an
input port through an input register, figure 1. The pro-
cessor structure could read one value each clock cycle and
the speed at which a new kernel function can be changed
depends on external circuitry. The current version of the
processor is designed to read kernel and pixel values from
a FIFO memory with a read cycle of three clock cycles
at 20MHz. Consequently, the loading of new kernel func-
tions for the processor cores requires 4 ~ (1 5 ~ 1 5) x3 cc. A
decrease in clock cycles could be achieved by either using
a faster external FIFO or increasing the number of inputs.

C. Pixel Memory Bank

To fully utilize the processor capacity 15 pixel values have
to be passed to each processor core each clock cycle. How-
ever, each pixel value is used in several calculations, fig-
ure 2. Therefore, a Pixel Memory Bank (PMB) is imple-
mented on chip storing all pixel values to be used in con-
secutive calculation enabling each value to be read only
once. To achieve this 14 complete lines and the first 15
pixel values of a 15th line have to be stored on chip, corre-
sponding to the 15 lines of the kernel. These pixel values
are stored in 15 line memories connected in series with
intermediary registers, figure 1. .The size of the line mem-
ories limits the width of the image while the number of
lines is limited by the width of the input bus. These are
set to 128 and 255 respectively not including the frame.
The size of an image is read at the beginning of each con-
volution through the 8bits input port.

Figure 4: Initial filling of the pixel memory bank.

At the beginning of a convolution the PMB is filled
according to figure 4 to allow the first pixel operation.
Pixel values use the same FIFO and input port as the
kernel values with the corresponding limitations in speed.
As the kernel moves through the image only one pixel
value is read for each pixel operation, one value is shifted
between the line memories, and one value is discarded.
Hereby, the input bandwidth is reduced from 15 pixels/cc
to 1 pixel/l6cc during the calculation phase of the micro-
program. At the end of a line the first 14 pixel values of
the next line are read at a maximum speed of 1 pixel/3cc.

IV. MICROPROGRAM AND CONTROLLER

The processor cores require a very simple controller with
just a single control signal while the PMB and the kernel
RAMs require extensive address calculations and loop con-
trol. Therefore, a control unit synthesizer, COMA [4], has
been used which synthesizes a complete controller from
a microprogram. Two address processors calculate ad-
dresses in parallel to the PMB. However, by increasing
the clock cycle count a single address processor could be
used. Loop control is separated from the address calcula-
tions to increase the throughput of the processor, and two
loop counters are used, figure 1.

By using COMA it is easy t o change the microprogram
if the specification changes and synthesize a new con-
troller. Modifications of the microprogram could include a
flexible kernel size and communication with faster external
circuitry. COMA has a range of controller architectures
to choose from; ranging from a simple FSM controller to a
decomposed hierarchical controller structure. The size of
the controller depends both on the implementation tech-
nique of the control logic, i.e. PLA, random logic, etc.,
and the structure of the microprogram. In the designed

89

processor in Plessey Classic70000 cell library the control
logic has been implemented by synthesizing random logic
from truth tables using the Synopsys software. The con-
troller architecture resulting in the lowest gate count was
a decomposed controller structure with separate microin-
struction logic, generating control signals, and sequencing
logic, handling subroutine addresses, figure 5. The address
field of the microinstruction memory was divided into two
separate parts, a subroutine and a program counter, which
resulted in a lower gate count than that of a single address
field [4]. A separate flag handling module was used to han-
dle conditional statements and loops depending on both
external signals and signals from loop counters.

Sequencing

t 1 End of Subroutine
State

Evaluate State i External

Flag handling

Loop control

Figure 5 : Controller architecture.

V. RESULTS

The image convolution processor has been designed and
extensively simulated in the Plessey Classic70000 cell li-
brary and awaits fabrication. However, the Plessey design
system guarantees the fabricated circuit to coincide with
simulations and the design is presented in this paper. The
processor has been designed and simulated for a clock fre-
quency of 20MHz. The useable gate count for the proces-
sor cores, the control structure, and registers in the pixel
memory bank totals 42k gates while the final gate count
depends significantly on the implementation of RAMs, i.e.
the pixel and the kernel memories. In Classic70000 the fi-
nal gate count become x150k gates.

As the design environment does not tie the design to
a particular implementation technique or cell library, one
processor core with kernel RAMs was fabricated and suc-
cessfully tested in a full custom process, figure 6. Note the
large number of required I/O-ports. A one micron stan-
dard CMOS technology was used and the circuit contains
> 50 000 transistors. The fabricated processor core had 16
multipliers instead of 15 and the die area is x8 x 6.5 mm’.

VI. CONCLUSION

An algorithm specific digital signal processor for im-
age convolution has been designed for the Plessey Clas-
sic70000 cell library with a calculation capacity surpass-
ing that of standard processors. Image convolution re-
quires a high calculation capacity as well as a large

Figure 6: Die photo of the processor core.

amount of data for each calculation. Four tailored pro-
cessor cores enables four convolutions to be performed
in parallel with a total sustained processing capacity
of > 2G arithmetic operations/s at a clock frequency of
20MHz. Powerful and versatile filtering is achieved with a
large kernel of 15x15 values and the use of an on-chip pixel
memory bank decreases the input bandwidth and enables
the use of a single input bus with preserved processing
capacity.

REFERENCES

P. Egelberg, 0. Mbnsson, and C. Peterson. “Assessing
Cereal Grain Quality with a Fully Automated Instru-
ment Using Artificial Neural Networks Processing of
Digitized Color Video Images”. In Proc. of the SPIE’s
Int. Sympsaum on Photonzc Sensors l3 Controls for
Commercaal Applzcataons, Boston, November 1994.

V. owall et.al. “A GSM Speech Coder Implemented
on a Customized Processor Architecture”. In Proc. of
the IEEE ISCAS, pages 235-238, 1993.

L. Brange and M. Torkelson. “A Basic CAD-tool for
module generation”. In Proc. of ESSCIRC, 1989.

V. owall. Synthesis of Controllers from a Range of
Controller Architectures. PhD thesis, Lund University,
Sweden, December 1994.

J. S. Lim. Two-Dimensional Signal and Image Pro-
cessing. Prentice-Hall, 1990.

W. K. Pratt . Dzgatal Image Processing. John Wiley &
Sons, Inc., 1991.

90

