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Abstract - A customized image processor for 
real time convolution of an image has been de- 
veloped. Image convolution requires an extensive 
amount of calculation capacity and 1 / 0  commu- 
nication which is hard to sustain with standard 
processors in real time. Therefore, a customized 
processor has been designed with a tailored archi- 
tecture. The processors have a .total sustained cal- 
culation capacity of > 2G arithmetic operations/s 
at 20MHz clock frequency, surpassing that of 
TMS320C80 for this application due to the tai- 
lored architecture. 

I. INTRODUCTION 

The image convolution processor has been designed with 
the target application of grain quaility assessment 111 but 
is not restricted to  this application. Image convolution is 
used to detect certain features of an  image - in this case the 
grain - such as outline, color, lines, etc. One convolution 
detects one feature and if several features are of interest 
several convolutions have to be performed. Each convolu- 
tion is computationally very intensive and sufficient calcu- 
lation capacity is hard to  achieve, at reasonable hardware 
cost, with standard Digital Signal Processors (DSPs) or 
computers. Therefore, an algorithm specific DSP with a 
tailored processor architecture has been developed. To 
allow parallel convolutions, each performing one feature 
detection, four processor cores are implemented on each 
chip and a chip select scheme is used to  allow parallel cal- 
culations with up to sixteen chips. Each pixel value is used 
in several calculations and to  reduce 1/0 communication 
a pixel memory bank is placed on chip allowing each pixel 
to  be read only once. 

The processor has been developed in a design environ- 
ment for customized DSPs presented in [2]. No predefined 
processor cores have been used and a tailored architecture 
has been assembled with a general tool for hardware as- 
sembling [3], a DataPath Compiler (DPC). Besides trans- 
forming the processor specification into a netlist the DPC 
also generates a list of possible micro operations to  be per- 
formed on the architecture. Image convolution is highly 
data intensive and consequently the processor cores are 

dataflow dominated and require a very simple controller. 
However, the memory bank requires extensive address pro- 
cessing and a corresponding increase in controller com- 
plexity. The design environment facilitates the algorithm 
to  be specified in C and compiled into a microprogram. 
However, since the application requires a high calcula- 
tion capacity the algorithm has been microprogrammed by 
hand to  achieve an optimal solution. The microprogram 
has been simulated with a microcode simulator to  obtain 
consistency checks with high level algorithm simulations. 
A control unit synthesizer, COMA [4], has been used to 
generate the controller hardware from the microprogram. 
COMA generates a complete controller together with in- 
terconnection specifications to  datapath and I/O-units. 

The processor has been designed and simulated in the 
Plessey Classic70000 cell library, which guarantees coher- 
ence with the fabricated circuit, using x150k gates and 
is awaiting processing. The design environment does not 
tie the design to  a particular implementation technique 
or cell library and one processor core has been fabricated 
and successfully tested in a full custom process. 

11. TWO-DIMENSIONAL IMAGE CONVOLUTION 

Two-dimensional convolution [5, 61, h**x, is performed by 
scanning the Kl x hr2 image, x(kl ,  k z ) ,  with the M I  x Ad2 
kernel function, or pulse response, h ( k l , k z ) ,  figure 2. A 
value is calculated for each pixel according to  

where ml goes from -(MI - 1) /2  to  (MI - 1)/2 and 
m2 from -(M2 - 1 ) / 2  to  (M2  - 1)/2.  This operation is 
performed for 

MI - 1 MI - 1 5 k l <  K1- 1 +  - 
2 2 

and a filtered output image is produced. 



Figure 1: Block diagram of the image convolution processor. 

Figure 2: Convolution of an image by a kernel function. 

The image is scanned from the upper left corner of the 
image, first horizontally and then vertically, and one con- 
volution is completed when the kernel has reached the 
lower right corner of the image. To deal with border ef- 
fects an  image frame is added t o  the image data  according 
to figure 2. The frame can be set to  the background color 
of the image, or if the image is a sub-image to  the values 
of the pixels in the adjoining sub-images. Additionally, 
by adding the frame the output image will have the same 
size as the input image. The size of an image is not fixed 
but a limitation is put by the processor to  a width of 128 
pixels and a number of lines of 255. To achieve powerful 
and versatile filtering the size of the kernel, MlxM2, is set 
to  15 x 15 and the kernel function can be changed rapidly. 

111. PROCESSOR ARCHITECTURE 

The processor performs four convolutions in parallel and 
produces an output of four pixel operation values each 
16th/clock cycle. The processor is divided into six main 
parts according to figure 1: four identical processor cores, 
a pixel memory bank, and a controller with address pro- 
cessors. Each processor core performs multiplications for 
one column of the kernel function, i.e. 15 multiplications, 

requiring 15 pixel and kernel values each clock cycle (cc). 
If these values are fed from input ports each clock cycle 
a high input bandwidth would be required. However, by 
studying figure 2 and 1 we see that  each pixel, except the 
extreme corner pixels, are used in several calculations; a 
pixel in the center of the image is used in 15 x 15 pixel 
operations. Therefore, the pixel memory bank of figure 1 
is used to store pixels values and reduce the input band- 
width. A single 8bits input bus is used for both kernel 
function, pixel values, and image size. However, kernel 
and pixel values only use the 6 least significant bits. 

A .  Processor Core 

Each of the processor cores contains fifteen multipliers, 
handling one line of the kernel function, an adder tree, 
and an  accumulator, figure 3. Each multiplier handles 
one line of the kernel function and the core architecture 
enables one pixel operation to  be calculated in 16 clock 
cycles when the pipe is filled, one extra clock cycle for 
loop counter initialization. The multipliers are 6 x 6bits 
Booth multipliers producing a 1 2  bit output each clock 
cycle. The calculated values are added in a tree structure 
of adders and pipeline registers, 14 adders and 30 pipeline 
registers, and stored in an accumulator. The first adder 
has a width of 11 bits as the least significant bit of the 
multiplier output is truncated to  reduce the width of the 
adders in the tree. In the tree structure the number of 
bits increases to  avoid overflow in the adders, i.e. one 
bit each level. The accumulator has to  add values from 
sixteen clock cycles and the final number of bits in the 
accumulator becomes 18. When a pixel operation value 
has been calculated the result is fed to  the output register 
and the accumulator is reset. The inclusion of circuitry to  
detect how many pixel calculations are above a specified 
threshold is planned in a future version. This threshold 
circuitry would reduce the output bandwidth to one or a 
few values for each image. 

When the pipe is filled 15 multiplications and 15 ad- 
ditions are performed in each processor core each clock 
cycle. The processor is designed for a clock frequency 
of 20MHz resulting in >2G arithmetic operations/s, cor- 
responding to  >2Gmac/s. The adders are of carry-ripple 
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Figure 3: Schematic diagram of a processor core. 

type, and the limiting delay is that  of the 18 bit accu- 
mulator. A change t o  a faster type of adder, like carry- 
look-ahead or carry-select, will increase the possible clock 
frequency but this has not been an objective of the design. 

B. Kernel Function 

Each processor core requires 15 kernel values each clock 
cycle. Therefore? the kernel function is placed in dis- 
tributed RAMs throughout the processor cores t o  decrease 
the number of data transfers. The kernel function is often 
used for several consecutive calculations while a change 
in kernel function should not be too time consuming to  
achieve versatility. Thus, each RAM is connected t o  an 
input port through an input register, figure 1. The pro- 
cessor structure could read one value each clock cycle and 
the speed at which a new kernel function can be changed 
depends on external circuitry. The current version of the 
processor is designed to  read kernel and pixel values from 
a FIFO memory with a read cycle of three clock cycles 
at 20MHz. Consequently, the loading of new kernel func- 
tions for the processor cores requires 4 ~ ( 1 5 ~ 1 5 )  x3 cc. A 
decrease in clock cycles could be achieved by either using 
a faster external FIFO or increasing the number of inputs. 

C. Pixel Memory Bank 

To fully utilize the processor capacity 15 pixel values have 
to  be passed to  each processor core each clock cycle. How- 
ever, each pixel value is used in several calculations, fig- 
ure 2. Therefore, a Pixel Memory Bank (PMB) is imple- 
mented on chip storing all pixel values to  be used in con- 
secutive calculation enabling each value to  be read only 
once. To achieve this 14 complete lines and the first 15 
pixel values of a 15th line have to  be stored on chip, corre- 
sponding to  the 15 lines of the kernel. These pixel values 
are stored in 15 line memories connected in series with 
intermediary registers, figure 1. .The size of the line mem- 
ories limits the width of the image while the number of 
lines is limited by the width of the input bus. These are 
set to 128 and 255 respectively not including the frame. 
The size of an image is read at the beginning of each con- 
volution through the 8bits input port. 

Figure 4: Initial filling of the pixel memory bank. 

At the beginning of a convolution the PMB is filled 
according to  figure 4 to  allow the first pixel operation. 
Pixel values use the same FIFO and input port as the 
kernel values with the corresponding limitations in speed. 
As the kernel moves through the image only one pixel 
value is read for each pixel operation, one value is shifted 
between the line memories, and one value is discarded. 
Hereby, the input bandwidth is reduced from 15 pixels/cc 
to  1 pixel/l6cc during the calculation phase of the micro- 
program. At the end of a line the first 14 pixel values of 
the next line are read at  a maximum speed of 1 pixel/3cc. 

IV. MICROPROGRAM AND CONTROLLER 

The processor cores require a very simple controller with 
just a single control signal while the PMB and the kernel 
RAMs require extensive address calculations and loop con- 
trol. Therefore, a control unit synthesizer, COMA [4], has 
been used which synthesizes a complete controller from 
a microprogram. Two address processors calculate ad- 
dresses in parallel to  the PMB. However, by increasing 
the clock cycle count a single address processor could be 
used. Loop control is separated from the address calcula- 
tions to  increase the throughput of the processor, and two 
loop counters are used, figure 1. 

By using COMA it is easy t o  change the microprogram 
if the specification changes and synthesize a new con- 
troller. Modifications of the microprogram could include a 
flexible kernel size and communication with faster external 
circuitry. COMA has a range of controller architectures 
to  choose from; ranging from a simple FSM controller to  a 
decomposed hierarchical controller structure. The size of 
the controller depends both on the implementation tech- 
nique of the control logic, i.e. PLA, random logic, etc., 
and the structure of the microprogram. In the designed 
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processor in Plessey Classic70000 cell library the control 
logic has been implemented by synthesizing random logic 
from truth tables using the Synopsys software. The con- 
troller architecture resulting in the lowest gate count was 
a decomposed controller structure with separate microin- 
struction logic, generating control signals, and sequencing 
logic, handling subroutine addresses, figure 5. The address 
field of the microinstruction memory was divided into two 
separate parts, a subroutine and a program counter, which 
resulted in a lower gate count than that of a single address 
field [4]. A separate flag handling module was used to  han- 
dle conditional statements and loops depending on both 
external signals and signals from loop counters. 

Sequencing 

t 1 End of Subroutine 
State 

Evaluate State i External 

Flag handling 

Loop control 

Figure 5 :  Controller architecture. 

V. RESULTS 

The image convolution processor has been designed and 
extensively simulated in the Plessey Classic70000 cell li- 
brary and awaits fabrication. However, the Plessey design 
system guarantees the fabricated circuit to  coincide with 
simulations and the design is presented in this paper. The 
processor has been designed and simulated for a clock fre- 
quency of 20MHz. The useable gate count for the proces- 
sor cores, the control structure, and registers in the pixel 
memory bank totals 42k gates while the final gate count 
depends significantly on the implementation of RAMs, i.e. 
the pixel and the kernel memories. In Classic70000 the fi- 
nal gate count become x150k gates. 

As the design environment does not tie the design to  
a particular implementation technique or cell library, one 
processor core with kernel RAMs was fabricated and suc- 
cessfully tested in a full custom process, figure 6. Note the 
large number of required I/O-ports. A one micron stan- 
dard CMOS technology was used and the circuit contains 
> 50 000 transistors. The fabricated processor core had 16 
multipliers instead of 15 and the die area is x8 x 6.5 mm’. 

VI. CONCLUSION 

An algorithm specific digital signal processor for im- 
age convolution has been designed for the Plessey Clas- 
sic70000 cell library with a calculation capacity surpass- 
ing that of standard processors. Image convolution re- 
quires a high calculation capacity as well as a large 

Figure 6: Die photo of the processor core. 

amount of data for each calculation. Four tailored pro- 
cessor cores enables four convolutions to be performed 
in parallel with a total sustained processing capacity 
of > 2G arithmetic operations/s at a clock frequency of 
20MHz. Powerful and versatile filtering is achieved with a 
large kernel of 15x15 values and the use of an on-chip pixel 
memory bank decreases the input bandwidth and enables 
the use of a single input bus with preserved processing 
capacity. 
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