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AAbstract 

Magnetic resonance imaging (MRI) is a powerful medical imaging technique, used to 
detect and characterise a range of diseases and conditions. It is based on the use of a 
strong static magnetic field in combination with magnetic field gradients and pulsed 
radiofrequency electromagnetic fields to visualise various organs and structures in the 
body according to their morphology or function.  

Diffusion and perfusion MRI are established methods for quantitative measurements, 
often used in neurological and neurovascular clinical applications. Although these 
techniques are often used separately to investigate a number of diseases, combined 
diffusion and perfusion information can provide unique information, e.g. for 
assessment of whether stroke patients in the acute stage are likely to benefit from 
reperfusion therapy. This may be accomplished by identification of the so-called 
ischemic penumbra (i.e. the area surrounding the core of an infarct, exhibiting 
disturbed microcirculation but still viable and salvageable if the local blood supply is 
efficiently restored). This identification concept is often referred to as the diffusion–
perfusion mismatch. In oncological applications, a combination of diffusion and 
perfusion MRI is sometimes used in tumour characterisation and in attempts to 
monitor early treatment response. 

Quantitative diffusion MRI may be hampered by a bias induced by the so-called 
rectified noise floor in areas with low signal-to-noise ratio (SNR). Perfusion images 
acquired by arterial spin labelling (ASL), which is the technique investigated in the 
present work, suffer from inherently low SNR, and this is commonly addressed by 
averaging multiple repetitions, which leads to a prolonged acquisition time.  

In this doctoral thesis, a wavelet-based filtering method was presented and used for 
noise reduction in diffusion and ASL MRI. Furthermore, the performance of the 
proposed filtering technique was investigated, focusing on accuracy, precision and 
structural degradation, and a comparison with conventional Gaussian smoothing was 
included for ASL images. 

Additionally, a quantitative non-compartment modelling approach for assessment of 
blood water transit time through the microvasculature and the blood–brain barrier 
(BBB) was adapted to a clinical setup, and the effects of noise on the model were 
investigated. The model was further developed by introducing a bolus-tracking ASL 
solution that included a measured arterial input function (AIF) instead of a theoretical 
rectangular input function. Furthermore, it was explored whether effects of mildly 
damaged RBCs on microvascular parameters were detectable using the proposed 
modelling approach and by ASL-based CBF quantification. The extracted non-
compartment model parameters can be used separately or in combination with 



conventional perfusion and diffusion estimates, and potential applications range from 
diagnosis to monitoring of disease progression and follow-up of therapy. Changes in 
the blood water transit time in the microvasculature may be related to alterations in 
capillary water permeability, and may thus be useful in the assessment of BBB integrity. 
Disturbed BBB permeability has been attributed to a number of disease states, and may 
be relevant to, for example, early diagnosis of Alzheimer's disease, inflammation, 
tumour grading and ischemic stroke.  

Keywords: cerebral blood flow, perfusion, diffusion, arterial spin labelling, wavelets, 
filtering, denoising, blood-brain barrier, permeability 

  



SSummary in Swedish – Sammanfattning på 
svenska 

Avbildning med hjälp av magnetresonans (MR) är en teknik som används i klinisk 
diagnostik för att upptäcka och karakterisera en rad sjukdomstillstånd. Metoden baseras 
på en kombination av statiskt magnetfält, magnetfältsgradienter och pulsade 
radiofrekventa elektromagnetiska fält i en magnetkamera för avbildning av form och 
struktur (morfologi) samt vissa funktioner hos olika organ i kroppen. 

Diffusions- och perfusionsviktade MR-bilder kan tillhandahålla information utöver vad 
som återges i konventionella morfologiska MR-bilder. Diffusionsviktade bilder 
används för avbildning av vattenmolekylers termiska rörelse i vävnaden, och graden av 
rörelse ger information om underliggande vävnads- och cellstruktur. Tekniken kan 
därmed bidra till att avslöja en rad sjukdomar, t.ex. tumörer, vissa skelettsjukdomar 
samt sjukdomar i hjärnans blodkärl. Studier av kapillärt blodflöde (genomblödning, 
perfusion) är också av stor vikt för diagnostik av cerebrovaskulära sjukdomar, samt vid 
tumörsjukdomar där ökat blodflöde och förändrad mikrovaskulatur kan relatera till 
aggressivitetsgrad hos tumören. I detta avhandlingsarbete studeras en 
perfusionsmätningsteknik som kallas arteriell spinnmärkning (arterial spin labelling, 
ASL), som är en icke-invasiv MR-metodik för kvantifiering av cerebralt blodflöde. 
Fördelar med ASL-tekniken, liksom med diffusionsmätningarna, är bl.a. att varken 
joniserande strålning eller exogena kontrastmedel krävs för undersökningen. I samband 
med hjärninfarkter kan en kombination av de båda teknikerna bidra till att, i ett tidigt 
skede, upptäcka de områden i hjärnan som fortfarande kan räddas (den s.k. ischemiska 
penumbran) om rätt behandling sätts in i tid. 

En av begränsningarna med båda de ovan nämnda teknikerna är systemets signal-till-
brusförhållande (signal-to-noise ratio, SNR). Kvantifieringen av vissa 
diffusionsbaserade parametrar försvåras av det så kallade brusgolvet, som är ett 
systematiskt fel i MR bilderna i situationer där SNR är lågt. Kravet på god signal finns 
även i ASL-tekniken, som generellt lider av lågt signal-till-brusförhållande, och detta 
medför att ett stort antal medelvärderingar av signalinsamlingen ofta krävs, med relativt 
långa undersökningstider som följd.  

I detta doktorsavhandlingsarbete presenteras en filtreringsmetod för att minska 
systemfelet (brusgolvet) i diffusionsviktade bilder samt för att minska antalet 
medelvärderingar för kvantitativa blodflödesmätningar med ASL-tekniken, inklusive 
analys av filtreringarnas effekter på bildkvaliteten. 

Denna avhandling beskriver också en metod för mätning av vattnets passagetider i  
mikrovaskulaturen samt genom blod-hjärnbarriären. En anpassning av modellen till 



klinisk MR-utrusning presenteras, samt en ytterligare vidareutveckling av modellen 
som validerats i prekliniska experiment. Förhoppningen är att parametrar som beskriver 
vattnets transporttider, eventuellt i kombination med konventionella diffusions- och 
perfusionsparametrar, kan bidra till bättre förståelse för sjukdomar som påverkar blod-
hjärnbarriären. Exempel på potentiella tillämpningar av intresse är Alzheimers sjukdom, 
inflammationer, tumörkarakterisering och stroke. 
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Chapter 1  

IIntroduction 

Over the past three decades, diffusion and perfusion magnetic resonance imaging 
(MRI) techniques have been increasingly used in neurological and neurovascular 
clinical applications. Diffusion measurements allow the visualisation of the 
translational thermal mobility of tissue water, revealing information about tissue 
microstructure, membrane permeability and, potentially, proportions of extracellular 
and intracellular water, whereas perfusion imaging, using endogenous or exogenous 
tracers, is employed to obtain information on the hemodynamic and microvascular 
status. There are several clinical applications in which these techniques are useful. For 
example, diffusion imaging is often applied to early detection and assessment of stroke, 
tumour characterisation and evaluation of multiple sclerosis (1), and perfusion imaging 
is beneficial in the identification of tissue at risk after acute stroke, evaluation of 
neurodegenerative conditions and tumour assessment and characterisation (2).  

It was relatively early proposed that the combination of diffusion- and perfusion-based 
imaging techniques can contribute considerably to the diagnostic information about 
certain pathological conditions, and application to ischemic stroke in the acute stage 
appeared to be particularly promising (3). The major goal is to determine the 
characteristics and extent of an acute ischemic stroke and to predict the size of the final 
infarct so as to be able to provide optimal treatment to the patient (4). A particularly 
important phenomenon is the so-called perfusion–diffusion mismatch, which provides 
a practical measure of the tissue at risk, often referred to as the ischemic penumbra, i.e. 
a region with impaired microcirculation that is, nevertheless, still viable and salvageable 
if the local blood supply is efficiently restored (5,6). In clinical practice, this region can 
be identified by MRI in terms of a mismatch between the respective lesions identified 
by perfusion-weighted imaging (PWI) and diffusion-weighted imaging (DWI) (7). 
Even though DWI is accurate and superior to CT for acute ischemic stroke diagnosis, 
particularly within 12 h of symptom onset (8), non-contrast-enhanced CT has 
remained the current diagnostic standard owing to its widespread availability and its 
well-established capacity to exclude intracerebral haemorrhage, which is of the utmost 



importance before thrombolysis initiation (9,10). In PWI, the commonly mapped 
parameters in this context are the cerebral blood volume (CBV), the cerebral blood flow 
(CBF) and the mean transit time (MTT), whereas common DWI measures include 
fractional anisotropy (FA) and mean diffusivity (MD). In addition, the combination of 
DWI and PWI can be used to characterise tumours (i.e. distinguish different tumour 
types, assess tumour grade and attempt to determine tumour margins) (11). The 
addition of approaches related to transcapillary permeability (either by water or 
exogenous contrast agents) may provide further information, and may help to improve 
the determination of tumour grade (12), to distinguish different tumour types (13), 
and to monitor various types of cancer therapy as well as contribute to the assessment 
of early treatment response (14).   

However, the noise in diffusion and perfusion imaging is often cited as a problem. In 
DWI, the low signal-to-noise ratio (SNR) conditions, occurring particularly at high 
degrees of diffusion encoding (i.e. high so-called b-values), are particularly problematic 
because the noise introduces a bias in the signal, often referred to as the rectified noise 
floor (15). In perfusion MRI, contrast-agent-based techniques, such as dynamic 
susceptibility contrast MRI (DSC-MRI) and dynamic contrast-enhanced MRI (DCE-
MRI), typically include noise-sensitive operations such as deconvolution or 
compartment modelling (including curve fitting). In arterial spin labelling (ASL), 
which is addressed in this doctoral thesis, the perfusion-weighted images suffer from 
inherently low SNR, as further described below. 

Reduction of the noise contribution is thus of considerable importance for better 
quantification of diffusion and perfusion parameters. In Paper I, an edge preserving, 
wavelet-domain filtering method was presented and evaluated. It was used to decrease 
the signal bias in DWI caused by the rectified noise floor. In the study reported in Paper 
II, wavelet denoising was applied to ASL images, and the influence of the filtering was 
investigated using simulations as well as human data acquired by a clinical MRI scanner. 
The novel wavelet-based approach was compared with conventional Gaussian 
smoothing, with focus on the accuracy and precision of CBF estimates and on the 
structural image degradation at different noise levels. Paper III describes a non-
compartment model for time-resolved ASL data that is assumed to provide additional 
physiological information related to capillary function. The model was adapted to 
clinical MRI data acquisitions, and its noise sensitivity was investigated. The measured 
transit-time estimates were compared with numerical results from previously reported 
parameters of similar scope obtained using other techniques. Finally, Paper IV reports 
the investigation of capillary function, which is assumed to be reflected by CBF and 
water transport times, in rats with reduced red blood cell (RBC) deformability, as well 
as an improved version of the non-compartment model of water transport that allows 
the use of an experimental arterial input function (AIF).  



Chapter 2  

BBasic aspects of cerebral microstructure and 
microcirculation 

2.1 Microstructure and water diffusion 

Brain tissue is a cellular organisation that can be divided into several categories 
according to cell density, i.e. (i) tightly packed cellular tissue, (ii) organised tissue, (iii) 
fibrous tissue and (iv) low-cellularity/defective cell membranes. The varying cell 
architectures affect the water diffusion characteristics, and the water restriction also 
varies in different directions, particularly in fibrous tissue, such as white matter axons, 
which demonstrate highly anisotropic diffusion, whereas diffusion in benign neoplasms 
is typically more isotropic; furthermore, diffusion is low in tightly packed epitheloid 
tissues.  

Biological tissue can be divided into intracellular and extracellular spaces. It is presumed 
that water diffusion in the extracellular space (where water molecules experience 
relatively free diffusion) is faster than in the intracellular space (restricted diffusion) 
(16), and this may be due to the internal microstructure of the cells, i.e., the presence 
of organelles, microtubules and periplasmic spaces (17). Furthermore, the diffusivity of 
water molecules is restricted in areas with high cellularity owing to the reduced ratio of 
extracellular to intracellular compartment volume (18). This can be explored in the 
estimation of tumour cell proliferation, which usually correlates with increased tumour 
cellularity, as demonstrated in animal models (19). 



22.2 Blood and microcirculation  

Blood delivers oxygen and nutrients to tissue cells and transports metabolic waste 
products away from them. The haematocrit, i.e. the fraction of the blood that is 
occupied by RBCs, is approximately 45% in normal blood (in large vessels), and it 
strongly influences the flow properties of blood. RBCs are filled with cytoplasm and 
suspended in  blood plasma, both behaving as incompressible Newtonian fluids in large 
arteries (20). However, RBCs, which are surrounded by a thin viscoelastic membrane, 
act in small capillaries as a non-Newtonian suspension, with a viscosity that is 
dependent on RBC deformability, haematocrit and flow rate. In the study reported in 
Paper IV, the RBC deformability was decreased to alter the blood flow dynamics within 
the microvasculature of the rat brain. Owing to their small number and volume, 
platelets do not affect viscosity, and white blood cells influence blood viscosity only if 
their volume fraction is abnormally elevated (21). The membrane of the RBCs shears 
and bends easily, and this allows the RBCs to pass through capillaries of a significantly 
smaller diameter than the dimensions of unstressed RBCs (with a diameter of 
approximately 8 μm) (22). Mechanical interaction between the RBCs and the capillary 
walls causes an axial drift of RBCs toward the capillary centre, a phenomenon referred 
to as axial migration (23), which, in turn, causes variations in flow velocity, ranging 
from zero at the capillary walls to a maximum close to the centre. Therefore, the average 
RBC velocity (vRBC) is higher than the average blood velocity (vblood), which leads to a 
reduction of RBC transit time through the capillary network. Hence, a reduction of 
haematocrit values in capillaries (Hc) compared to the haematocrit values in large vessels 
(HL), known as the Fåhraeus effect (24), is observed, namely, 

 [1] 

The microcirculation or perfusion refers to the delivery of blood to the tissue, and the 
most important cerebral hemodynamic parameters in this context are cerebral blood 
volume (CBV), cerebral blood flow (CBF) and blood mean transit time (MTT).  

CBV is usually defined as the total blood volume within a local tissue element divided 
by the mass of the tissue element, often given in units of ml/100g. CBV is often divided 
into the arteriolar, capillary and venular volumes, reported to be approximately 21%, 
33% and 46% of the total CBV, respectively (25). CBV may also be divided into 
cerebral plasma volume (CPV) and cerebral red blood cell volume (CRCV), that is, 

 [2] 



CBF is defined as the blood volume flow supplying a local tissue element divided by 
the mass of the tissue element, and is measured in units of blood volume per unit mass 
of tissue per unit time, typically in ml/100g/min.  

MTT is defined as the average time for blood to pass through the local capillary network, 
from the arterial to the venous side, and is measured in units of time (often in s).  

According to the central volume theorem (26,27), MTT can be calculated as 

 [3] 

In a positron emission tomography (PET) study by Leenders et al. (28) including 34 
healthy volunteers, CBF values were measured using the oxygen-15 steady-state 
inhalation method, considered to be the gold standard for perfusion measurements. 
Examples of CBF values for different cerebral regions in this study are 22.2 ± 4.9 
ml/100ml/min (mean ± SD) in white matter and 54.5 ± 12.3 ml/100g/min in insular 
grey matter. Examples of CBV estimates from the same study based on 11CO PET, 
were 2.7 ± 0.6 ml/100ml in white matter and 5.2 ± 1.4 ml/100ml in insular grey matter. 
A decrease in CBF with increasing age has been observed in several studies (28-30), but 
the cause of the decline has recently been challenged and attributed primarily to partial 
volume effects (31). Reported values of regional CBF and CBV in rats are highly 
heterogeneous, and considerable variability among different brain regions has also been 
observed (32-35); CBF estimates ranged from 40 ml/100g/min (36) to 260 
ml/100g/min (37), and reported CBV values were between 0.629 ml/100 g (6.29 μl/g) 
(38) and 6 ml/100 g (36). 

In normal brain tissue, CBF and CBV tend to be nonlinearly correlated and the relation 
 has been reported by Grubb et al. (39). Their data were later 

reanalysed by van Zijl et al. (25) using the proposed theoretical relationship 
. MTT can be calculated from CBF and CBV according to Equation 3, 

and is typically of the order of 5 s in humans. 

22.3 Blood-brain barrier and transcapillary permeability 

The blood brain barrier (BBB) acts as a barrier to diffusion processes, preventing the 
influx of most substances from the blood to the brain parenchyma, and it is essential 
for the normal function of the central nervous system. The BBB is present in all brain 
regions, except for the circumventricular organs, as an integral part of the 
neuroendocrine function (40). The BBB consists mainly of tightly jointed endothelial 



cells and partially of the basement membrane surrounding them as well as the 
perivascular end feet of astrocytes.  

In addition to preventing unwanted substances to enter the brain parenchyma, the BBB 
also hinders water from equilibrating completely with brain tissue water during a single 
capillary transit (41). The influx of molecules across the BBB per unit time is usually 
referred to as the permeability coefficient P. However, the total capillary area where 
exchange occurs, i.e. the capillary surface area S, is difficult to estimate, and thus this 
transport is often described in terms of the so-called permeability-surface area product 
(PS). PS has the same unit as flow and is expressed in units of ml/100g/min. The 
estimation of the water transport through the BBB was addressed in Papers III and IV. 



Chapter 3  

BBasic methodology 

3.1 Diffusion sensitisation 

Diffusion-weighted MR imaging (DWI) is a technique for measuring the thermal 
molecular movements of water. Water molecules are constantly in random movement 
driven by internal kinetic (thermal) energy, a phenomenon known as ‘Brownian 
motion’ (42). For an ideal gas, the movement depends on temperature and particle 
mass, and is described by the Maxwell–Boltzmann distribution law, one of the basic 
tenets of statistical mechanics (43). That is, 

 [4] 

Equation 4 shows the Maxwell distribution of the velocities v of N molecules of mass 
m contained in a gas, where T is the absolute temperature and kB is the Boltzmann 
constant. 

In the diffusive regime, the measurement time t is assumed to be considerably longer 
than the momentum relaxation time , where  is the Stokes friction 
coefficient, and the rate of translation or the diffusion constant  (in 
units of mm2s-1) can be calculated. It is predicted by Einstein’s theory (44), which is 
also applied to liquids, that in the case of free diffusion, the mean square displacement 

 of a free Brownian particle in one dimension during time t is given by 

 [5] 



For small values of , Equation 5 is no longer valid, and in this regime, inertia 
dominates the dynamics of the particles and the motion is ballistic. The displacement 
of a particle for all time scales can be described by the so-called Langevin equation (43). 

In brain tissue, the thermal movement (i.e. self-diffusion) of the water is not truly 
random because biological tissue contains structures and complex geometries, which 
may limit the degree of free diffusion, sometimes more in certain directions than in 
others. It is thus possible to visualise different brain-tissue microstructures by studying 
the effects of diffusion on the MR signal and by reconstructing the preferred paths of 
the water movement from the observed effects of diffusion in different cell structures 
and along different directions. The displacement of molecules measured by MRI is 
proportional to the diffusion coefficient, and the resulting parameter is normally 
referred to as the apparent diffusion coefficient (ADC) (45). 

Basic diffusion-weighted MRI pulse sequences are obtained by adding two gradient 
pulses of high amplitude to the pulse sequence (Figure 1), which is often referred to as 
the Stejskal–Tanner approach (46). The first gradient will label the spins by assigning 
them a position-dependent phase angle. The second gradient pulse will re-phase or 
refocus the stationary spins, whereas spins that have moved will obtain a resulting net 
phase angle at the time of the echo (TE). The individual random motions of a large 
population of spins result in an intravoxel phase dispersion and an associated signal 
loss. To a first approximation, assuming Gaussian diffusion, the degree of signal 
attenuation caused by diffusion is exponentially related to the magnitude of the 
molecular translation (i.e. the ADC) and the degree of the diffusion sensitivity of the 
pulse sequence (the so-called b-value) (Equations 6 and 7). 

 

Figure 1:
Schematic illustration of a basic diffusion-sensitive spin-echo pulse sequence. 



The b-value depends on the amplitude of the diffusion gradient , the duration of each 
gradient pulse  and the time between the starting points of the two diffusion-encoding 
gradient pulses . For rectangular diffusion gradients, b is given by 

 [6] 

where  is the gyromagnetic ratio. By acquiring several images with different b-values 
and different gradient directions given by the unit vector , the ADC along each 
direction can be calculated by 

 [7] 

where  is the non-diffusion-weighted image intensity or signal and  is the 
diffusion-weighted signal along direction . The experiment can be conducted in 
different diffusion-encoding directions, and to characterise the directional dependence 
of diffusion, ADC can be expressed in tensor form. By calculating an ADC map for 
each direction, an ADC vector can be constructed (Equation 8). A minimum of six 
directions is necessary to completely describe the 3 × 3 diffusion tensor matrix, and the 
commonly used gradient scheme is 

 

resulting in 

 [8] 

where M is a transformation matrix depending only on the applied diffusion directions. 
The three upper and lower off-diagonal elements in the ADC matrix are identical, i.e. 

,  and . In some cases, the 
average diffusivity <ADC> is desired, and it can be calculated by averaging the diagonal 
elements of the diffusion tensor as follows: 



 [9] 

Images constructed from <ADC> are often called trace maps. Finally, the directional 
variations in diffusivity can be described in terms of the fractional anisotropy (FA). This 
is a measure of deviation from isotropy, i.e. the degree to which the diffusion ellipsoid 
deviates from a sphere, and it is mathematically defined as 

 [10] 

where 1, 2 and 3 are the principal eigenvalues of the diffusion tensor, calculated by 
solving Equation 11 for . The left-hand side of Equation 11 represents the 
determinant of the tensor, i.e. 

 [11] 

The mean eigenvalue is given by  

 [12] 

The use of diffusion tensors to elucidate information about tissue architecture is 
referred to as diffusion tensor imaging (DTI) (47). Combined with the so-called fibre 
tracking algorithms, DTI enables in vivo visualisation of tissue pathways (48). However, 
DTI can resolve only a single fibre direction within each voxel. For tissue voxels 
containing a distribution of fibre orientations, ADC-based methods have been shown 
to be inconsistent, particularly when higher b-values are used, and diffusion has been 
shown to be non-Gaussian (49). The non-Gaussian behaviour in DWI results in a 
deviation from monoexponential signal decay, and the diffusion kurtosis imaging 
(DKI) model has been proposed for quantifying the degree to which water diffusion 
differs from being Gaussian (50,51). In Paper I, deviations from the monoexponential 
signal decay were assumed to be described by a biexponential signal attenuation, 
corresponding to a two-compartment diffusion system, but in light of more recent 
theories, such observations are, most likely, better described by non-Gaussian diffusion 
models. 



33.2 Arterial spin labelling methodology 

ASL is a completely non-invasive MRI method for measurement of tissue perfusion, in 
which magnetically labelled endogenous blood water is used as a tracer. To accomplish 
this, the following basic strategy can be used (2): The longitudinal magnetisation of 
arterial blood is manipulated by inversion or saturation (i.e., 180° or 90°) 
radiofrequency (RF) pulses upstream to the imaging slice to make the spin 
magnetisation differ from the state of the static tissue, and this is referred to as blood 
labelling. A delay time TI is then allowed for the labelled blood to flow into the imaging 
slice, and during this period, the arterial magnetisation of labelled spins experiences T1 
relaxation. In the imaging slice, the labelled spins exchange completely with the tissue 
water, provided that water acts as a freely diffusible tracer (although it should be noted 
that this is not necessarily a valid assumption (41,52-54)). The magnetisation after 
inflow of labelled spins is measured and compared with a control image acquired in the 
same manner, except for blood and tissue spins being in the same magnetisation state 
in the control situation. In early ASL implementations, the control situation included 
application of an additional inversion RF pulse in a slab distal to the imaging slice to 
compensate for magnetisation transfer (MT) effects; however, an inversion off-
resonance non-selective pulse is currently more common. The difference between the 
two images ideally depends only on the amount of labelled blood that entered the 
imaging slice and exchanged with the tissue water, and the signal difference is directly 
related to CBF. In Figure 2, a schematic representation of a basic ASL experiment is 
shown. 

 

Figure 2:  
Labelling principle in EPISTAR ASL. The image to the left shows the magnetisation immediately after the 
inversion pulse, whereas the image to the right shows the magnetisation immediately before the imaging 
RF pulse in the labelled image (with labelled spins in the image plane). Blue arrows represent inverted spins 
and black arrows represent undisturbed spins. 



Various ASL techniques have been described after the introduction of the original 
continuous ASL (CASL) concept. CASL is based on a train of saturation pulses 
continuously applied to label water in the inflowing blood (55), and inversion RF pulses 
were later introduced to double the signal difference between control and labelling (56). 
The accuracy of CBF quantification was subsequently improved by minimising the MT 
effects by introducing an additional transmit coil (57) as a labelling coil. Pulsed ASL 
(PASL) approaches have also been proposed, where short inversion pulses are applied 
in thick slabs proximal and distal to the imaging region for the label and control 
experiment, respectively (cf. Figure 2), to create equal MT effects and to minimise the 
specific absorption rate (SAR) compared with CASL. The first PASL technique was the 
so-called echo planar imaging and signal targeting by the alternating radiofrequency 
(EPISTAR) method (58), and shortly thereafter the flow-sensitive alternating inversion 
recovery (FAIR) technique was introduced (59), which automatically compensates for 
MT effects (Figure 3). In the slice-selective (ss) experiment, the image is perfusion-
weighted and the corresponding magnetisation will be referred to as Mss below, whereas 
the magnetisation in the non-slice-selective (ns) experiment will be referred to as Mns. 
FAIR was later combined with 3D-GRASE as a gradient and spin echo readout module 
that significantly improved the SNR (60). In the studies described in Papers III and IV, 
the FAIR labelling technique was employed for acquisition of the ASL images, using 
either 3D-GRASE (Paper III) or echo-planar imaging (EPI) (Paper IV) readout. 

 

Figure 3:  
Labelling scheme in FAIR ASL imaging. The left panel shows the magnetisation immediately after the 
inversion pulse, whereas the right panel shows the magnetisation immediately before the imaging RF 
pulse. Blue arrows represent inverted spins and black arrows represent undisturbed spins. In slice-selective 
(ss) inversion, only spins in the readout slice are inverted, whereas in non-selective (ns) inversion, all spins 
are inverted.  



Recently, pseudo-continuous arterial spin labelling (pCASL) has been used as the 
technique of choice for perfusion imaging in clinical applications (61). The pCASL is 
a hybrid of the CASL and PASL techniques. In pCASL, a train of short RF pulses in a 
narrow labelling plane is used for inverting the arterial spins immediately proximal to 
the imaging slices, thus minimising signal loss owing to T1 decay of the bolus (62). 
Comparative studies have demonstrated that pCASL provides quantitative values in 
accordance with those obtained using the PET technique, which is currently the gold 
standard (63-65). Another technique that is gaining popularity is velocity-selective ASL 
(vs-ASL), in which all the upstream blood that is flowing at a velocity above a cut-off 
value, ideally corresponding to the velocity of the arterioles, is labelled regardless of 
location (66). In vs-ASL, the sensitivity to transit delay is reduced and CBF 
quantification is improved (67), but at this point the SNR is a constraining factor, as 
labelled blood can only be saturated rather than inverted, resulting in a 50% reduction 
of the ASL signal (68). Qin and van Zijl (69) recently reported the use of a so-called 
Fourier-transform-based velocity-selective inversion (FT-VSI) pulse train for vs-ASL. 
It considerably improved the labelling efficiency and resulted in an average SNR value 
in GM that was 39% higher than in conventional vs-ASL and only 9% lower than in 
pCASL.  

As mentioned above, the difference between the labelled and the control image is 
directly related to CBF. However, to calculate CBF in absolute terms, a perfusion 
model describing blood-to-tissue water exchange kinetics and magnetisation 
characteristics is required. The most widely used kinetic model was presented by 
Buxton et al. (70). It describes the behaviour of the signal difference in pulsed and 
continuous/pseudo-continuous ASL experiments. 

If the off-resonance and MT effects are the same in both labelled and control images, 
the signal difference depends only on the difference in tissue longitudinal magnetisation 

. This difference is due to (i) arterial inflow of spins in a different magnetisation 
state from that in static tissue, described by the delivery function c(t), (ii) the venous 
outflow of labelled spins, described by the impulse residue function r(t,t’), i.e. the 
fraction of labelled spins that arrived at time t’ and are still in the voxel at time t, and 
(iii) the effects of longitudinal relaxation, described by the magnetisation relaxation 
function m(t,t’), i.e. the fraction of the original longitudinal magnetisation carried by 
arterial water that arrived at time t’ and still remains at time t. The magnetisation at 
time t can then be expressed as a product of the functions above integrated over time 
until the readout, as follows: 

 [13] 



where  is the labelling efficiency,  is the MR signal from the fully relaxed arterial 
blood and the factor 2 corresponds to the use of an inversion RF pulse to label the 
arterial water. 

The Buxton model is based on three assumptions:  

1) The labelled arterial water to a particular voxel is assumed to be delivered via uniform 
plug flow, i.e. no labelled spins arrive before the initial transit delay, the so-called bolus 
arrival time BAT. The arriving bolus is uniformly labelled between  and 

, where BL is the bolus length, and the arriving blood is unlabelled for 
; under this assumption, the delivery function c(t) can be described by 

 [14] 

2) The kinetics of water exchange between capillaries and tissue are assumed to be 
described by a single well-mixed compartment containing both blood and tissue. Hence, 

, which implies that the venous concentration of labelled spins 
 is given by the ratio of the total tissue concentration  to the 

equilibrium blood-brain partition coefficient  (defined by Kety (71) as the ratio of the 
tissue to blood tracer concentrations at equilibrium). Reported values of  are 0.82 ml/g 
in white matter and 0.98 ml/g in grey matter (72). With this assumption, the residue 
function is given by 

 [15] 

3) After the labelling pulse, the magnetisation relaxes by the relaxation time of blood 
, but as soon as the labelled spins reach the tissue voxel, the magnetisation is assumed 

to undergo relaxation with the relaxation time of tissue T1, as the transition of labelled 
water from the vascular to the tissue space is assumed to occur immediately after the 
arrival at the tissue voxel. This assumption yields the following relaxation function: 

 [16] 

Application of Equations 14, 15 and 16 to the evaluation of the basic model in 
Equation 13 leads to the following expression for the PASL signal difference: 



 [17] 

where 

 [18] 

 [19] 

 [20] 

The model presented by Buxton et al. (70) can describe the behaviour of the signal 
difference in the ASL experiment but not the separate signal values of the control and 
label experiments. By using the Bloch equation approach (55), additional information 
can be extracted from the original ASL data that can be used to stabilise the parameter 
estimation. The modified Bloch equation, including flow effects, is as follows: 

 [21] 

where Mb, Mv and Mt are the magnetisations of arterial, venous and tissue water per 
unit volume, respectively. M0

t is the fully relaxed value of Mt. Moreover, in this case, a 
well-mixed compartment is assumed, and venous outflow CBF∙Mv can be replaced by 

. By using the initial condition Mt=0 at t=0, which is due to proximal saturation, 
Equation 21 can be solved as follows: 

 [22] 



As seen in the exponent of Equation 22, the tissue magnetisation relaxes by an apparent 
time constant , which is equivalent to the relaxation time in 
Equation [20]. 

In the slice-selective (ss) experiment, where inflowing blood and tissue in the imaging 
plane are in different magnetic states, the arterial water magnetisation at equilibrium 

will be . Inserting this into Equation 21 yields 

 [23] 

Hence, after the slice-selective inversion pulse, the inflowing non-labelled arterial water 
enters the imaging slice during the time TI and exchanges with tissue spins. This 
apparently reduces the recovery time of tissue magnetisation and leads to an apparent 
relaxation time T1

app. 

The arterial water magnetisation in the non-slice-selective (ns) experiment will be 
, which is inserted into Equation 21 and yields 

 [24] 

The solutions of the Bloch equations in Equations 23 and 24 provide the 
magnetisations in the ss and ns experiments, respectively, i.e. 

 

The magnetisation difference  thus corresponds to the 
Buxton approach in Equation 17, which was used to calculate CBF values in Paper IV. 

  



Chapter 4  

NNoise characteristics 

4.1 Signal and noise in MRI 

Low SNR is a well-known issue in MRI, and noise can be a major disadvantage, 
particularly in applications based on signal reduction, such as DWI and DSC-MRI (i.e. 
bolus-tracking T2* and T2-weighted perfusion MRI). Furthermore, ASL techniques 
suffer from inherently low SNR owing to the small amount of labelled blood in the 
voxel, which determines the signal difference, and to the rapid T1 relaxation of the 
endogenous tracer. Noise is problematic in other applications as well, where averaging 
is prohibited by temporal-resolution requirements, for example, in dynamic time-series 
used for functional MRI (fMRI). The issue of noise in MRI data was discussed already 
in the early days of MRI (73), and a quantitative description of the noise distribution 
was presented.  

MR images are reconstructed from signal data measured by a receiver coil detector 
system and sampled in the spatial-frequency or k-space domain. When quadrature 
detection is employed, the acquired k-space data (sometimes referred to as raw data) 
are collected in two channels (often referred to as the real and the imaginary signal 
components), and both these data components are considered to be affected by additive 
Gaussian noise (73,74). The major source of this noise is random thermal noise from 
the patient, whereas additional noise arises from the acquisition hardware. 



 

Figure 4:  
Probability functions P(x) of Gaussian of mean 0 and SD = 1 (green), Rayleigh of SD = 1 (blue) and Rice 
distribution of mean 1 and SD = 1 (blue), and their corresponding cumulative functions D(x).  

A Gaussian distribution (Figure 4:) of a random variable x with mean � and variance 
2 is given by the following equation: 

 on  [25] 

The reconstruction of MR images is normally accomplished using a two-dimensional 
(2D) Fourier transformation of the k-space data. The Fourier transform preserves the 
shape of the noise distribution, which remains Gaussian. The MR images are normally 
converted to magnitude images (M) by calculating the absolute value pixel by pixel 
from the real and the imaginary images, namely, 

 [26] 

where |m(i,j)| is the signal magnitude in pixel (i,j), s(i,j) is the true signal,  is the phase 
angle, and nRe and nIm are the noise contributions to the real (Re) and imaginary (Im) 
parts of the given pixel (i,j), respectively. 

From Equation 26, it is seen that the construction of M involves both the true signal 
and the noise, leading to a modified noise distribution and, of course, loss of all 
information about the phase angle . 

The noise in M is signal dependent and follows a Rician distribution (73-76) (Figure 
4) whose probability function is given by  

on  [27] 



where  is the modified zeroth-order Bessel function of the first kind (77).  
If the true signal , Equation 27 reduces to a Rayleigh distribution (Figure 4) 
given by 

on  [28] 

The probability and cumulative functions of the Rician distribution are intermediate 
between the Rayleigh distribution and the Gaussian distribution. If the true signal 

, then (Rician distribution)→(Rayleigh distribution), whereas if , then (Rician 
distribution)→(Gaussian distribution). If SNR is below approximately 2, the noise 
distribution cannot be accurately approximated by a Gaussian function (74). 

In the absence of any true signal, the mean ( ) and standard deviation ( ) of the signal 
magnitude are given by 

 and  [29] 

where  is the standard deviation of the MR signal in the real and imaginary channels 
(assumed to be equal in both channels) (15). This results in a non-zero minimum mean 
signal in the magnitude image, sometimes referred to as the rectified noise floor (15).  

For multichannel coil systems, the noise distribution in reconstructed images becomes 
more complex and can be described by a non-central Chi distribution (78). Moreover, 
when parallel imaging techniques are employed, the noise amplitude varies spatially 
across the image. Such spatial noise variations are particularly pronounced in the 
sensitivity encoding (SENSE) technique (79), whereas the generalised autocalibrating 
partially parallel acquisitions (GRAPPA) approach (80) exhibits a more uniform spatial 
distribution (81). The SNR observed for each coil element in SENSE (denoted by 

 below) is decreased compared with the SNR of a fully sampled k-space, 
. That is, 

 [30] 

where g is the geometry factor, which reflects the suitability of the employed coil array 
for distinguishing signal contributions from the originally aliased location, and depends 
on the shape, size and placement of the coil elements. R is the reduction factor, 
describing the reduction in the number of Fourier encoding steps. Theoretically, the 
reconstruction would be performed by using R values up to the number of coils, but in 
practice R, is limited by g, which increases with R (79). 



At higher field strengths, image quality is further degraded by non-white physiological 
noise, which arises from fluctuations in metabolic-linked physiological processes and 
from brain and CSF pulsations. The physiological noise is signal dependent and 
increases at the same rate as the signal. At some point, the achievable SNR reaches an 
asymptotic limit, owing to the physiological noise contribution (82). 

44.2 Noise in diffusion MRI 

As mentioned earlier, noise has a negative impact on DWI and DTI, and low SNR 
makes various types of quantitative analyses more problematic. A major issue is the 
systematic increase in mean signal intensity caused by the rectified noise floor at high 
b-values, leading to overestimation of the DW signal amplitude. In DTI, the diffusion 
displacement distribution is usually described by a Gaussian function (83). If DW 
images are acquired at moderate spatial resolution (e.g. a voxel size of 2.5 mm3) and 
moderate diffusion weighting (b < 1000 s mm-2), a voxel containing multiple fibre 
populations (e.g. so-called kissing or crossing fibres) is characterised by a tensor whose 
associated ellipsoid is not prolate and may become spherical or even oblate. In such 
cases, the Gaussian tensor model fails to adequately describe the underlying tissue 
microstructure, and this can be problematic for applications such as fibre tracking (15). 
To describe such complex tissue structures, advanced DWI methods are required, for 
example, q-space imaging (84), high-angular resolution methods (85), diffusion 
kurtosis imaging (DKI) (50,51), mean apparent propagator MRI (MAP-MRI) (86) and, 
more recently, neurite orientation dispersion and density imaging (NODDI) (87). 
Such techniques are often based on the application of high gradient amplitude and/or 
long diffusion time, i.e. high b-values, which leads to substantial attenuation of the 
measured MR signal. Several clinical MRI systems have insufficient gradient strength, 
and this is sometimes compensated for by the use of longer gradient pulse widths (88), 
which, however, prolongs the echo time and causes additional signal decrease owing to 
T2 relaxation. Furthermore, the choice of pulse-sequence type is also relevant for the 
resulting SNR. Gradient-echo (GRE) (although rarely used in DWI) and stimulated-
echo (STEAM) pulse sequences, for example, tend to produce images with lower SNR 
than spin-echo pulse sequences. 

The demand for higher SNR has been highlighted in several studies. Clark & Le Bihan 
(89) argued that higher SNR was required for reliable biexponential fitting of data on 
a pixel-by-pixel basis to separate the slow and fast diffusion components, and Anderson 
noted that noise has a substantial impact on MR fibre tracking results (90). When 
higher spatial resolution is required to resolve fine anatomic structures, noise also 



becomes a limitation (15). In Paper I, a wavelet denoising algorithm was proposed that 
can potentially alleviate these issues.  

44.3 Noise in ASL 

As previously mentioned, ASL measurements generally suffer from low SNR, owing to 
the small amount of labelled spins affecting the tissue signal in the labelling experiment, 
as well as to the comparatively short relaxation time of the arterial water magnetisation. 
Under ideal circumstances, CASL techniques provide higher SNR than PASL; however, 
despite the higher measured signal in CASL experiments, the SNR per unit time, which 
is a more relevant quantity than absolute SNR, is practically identical for both 
techniques (91). SNR is typically further decreased in techniques aimed at absolute 
CBF quantification, such as QUIPSS (92) and Q2TIPS (93), owing to the saturation 
of a certain fraction of the labelled water, which is performed to control the width of 
the labelled bolus. The SNR of data acquired in pCASL is usually higher than in PASL, 
but the inversion efficiency may be affected by off-resonance spins, and the technique 
is susceptible to B0 inhomogeneity and eddy currents (67). As shown in Figure 5, the 
noise distribution resulting from subtracting two noisy images, label (L) and control 
(C) (both exhibiting Rician noise distributions), is symmetric and can be well 
approximated by a Gaussian distribution for all SNR levels (94). 

 

Figure 5:  
Probability density functions for a variate x of two Rician distributions with SNR = 1.3 (green) and 1.2 (red), 
and the corresponding histogram of the difference between them (yellow). The distribution of the 
difference is compared with the fitted probability density function of a Gaussian distribution (blue).  



To improve SNR in ASL, multiple averaging is usually performed, corresponding to a 
series of temporally interleaved L and C images. To extract the averaged difference 
signal , the C and L images are usually subtracted according to the following 
equation, which is the standard method for creating difference maps: 

 [31] 

where N is the number of averages. The so-called ‘surround subtraction’ is sometimes 
used, where the difference between each image and the average of its two closest 
neighbours is calculated (95) as follows: 

 [32] 

Another approach is sinc-interpolated control and label images (96) (Equation 33), 
accomplished by doubling the temporal resolution of the label images using sinc 
interpolation (where every new label image at the intermediate point is created by 
averaging the two closest label images) and, finally, resampling at the intermediate 
points in time. This can be a better option if ASL is used in, for example, perfusion 
fMRI studies to minimise BOLD contamination effects. 

 [33] 

The standard deviation  in , calculated by the standard method in Equation 
31, is given by 

 [34] 

where  is the standard deviation of the Rician distribution, assumed to be equal in all 
L and C images. The SD in the difference maps acquired according to Equation 32 is 
given by 



 [35] 
The noise distribution in the averaged difference image  is still symmetric and can, 
as stated above, be approximated by a Gaussian distribution.  

Although ASL data suffer from intrinsically low SNR, denoising algorithms have not 
been frequently applied. However, in Paper I, a denoising filtering method was 
proposed, which was subsequently applied to ASL data, as reported in Paper II, where 
an investigation of the performance of the denoising algorithm and a comparison with 
Gaussian smoothing were performed. 

 





Chapter 5  

DDenoising methods 

5.1 Filtering methodologies 

In all denoising methods, the aim is to decrease the noise contributions to the measured 
signal without compromising important the ‘true’ signal. Gaussian filtering is a 
commonly used filtering method that effectively reduces noise but also tends to spatially 
blur the image data. Another spatial filter is the Wiener filter, which introduces adaptive 
signal smoothing, depending on the local distribution of pixel values within each kernel. 
To minimise blurring and to preserve image contrast, several different approaches have 
been presented. For example, the anisotropic diffusion (AD) filter has been shown to 
improve the reliability of CBF measurements using DSC-MRI (97). Furthermore, a 
variety of edge-preserving, wavelet-based denoising methods have been proposed 
following the very first applications of wavelet-based filtering methods to MR images 
(98,99). Assuming a Gaussian noise distribution in the spatial domain, Donoho et al. 
(100) suggested a soft-threshold filter and Chipman et al. (101) proposed a Bayesian 
approach to shrinkage of the wavelet coefficients. Nowak et al. (102) presented a 
wavelet-domain filtering algorithm that provided effective removal of Rician noise at 
low SNR from squared magnitude images. Wavelet-domain filtering has also been used 
to improve fMRI analysis (103) and DSC-MRI data (104). 

5.1.1 Gaussian smoothing 

Gaussian smoothing is a spatial filter that blurs the pixel values under a filter mask 
consisting of a Gaussian function. Mathematically, this operation constitutes a 
convolution of the image with the Gaussian function. 

 



55.1.2 Independent component analysis 

Independent component analysis (ICA) is an unmixing technique designed to extract 
the separate signal components from measurements consisting of a mixture of 
statistically independent observations (105). Filtering by ICA can be carried out by 
distinguishing the random noise component and extracting it from the total signal. 

5.1.3 Wavelet-domain filtering 

The description below is an overview of the wavelet-domain filtering procedures 
introduced in Papers I and II. In general terms, the image signal is given by  

 [36] 

where s is the noise-free signal and n is Gaussian noise of variance 2. After the discrete 
wavelet transform of noisy data, the corresponding wavelet coefficients can be obtained 
as follows: 

 [37] 

where ,  and , and  denotes a wavelet transform. 

The noise distribution in wavelet space remains unchanged because an orthogonal 
wavelet will transform white noise into white noise, and the noise is uniformly spread 
over all wavelet coefficients. 

To obtain  of the (i, j)-pixel (i.e., the filtered signal in the wavelet space), each noisy 
wavelet coefficient is thresholded by multiplication of the wavelet coefficients y(i,j) by 
the hard-threshold filter hh(i,j), that is, 

 [38] 

The hard threshold filter Hh sets any  below  to zero and keeps the remaining 
data unchanged, i.e. the filter is given by the following expression: 

 [39] 



where  is a user-defined empiric threshold factor and  is the standard deviation of the 
noise. 

Larger values of  typically result in greater noise reduction; however, they lead to image 
smoothing and artefacts. Hence, optimisation of this threshold factor is required. The 
standard deviation  can be obtained from the finest-scale wavelet coefficients. Filtered 
signals can then be obtained as follows: 

 [40] 

An overview of this part of the filtering procedure is given by the block diagram in 
Figure 6. 

 

Figure 6: 
Block diagram of the initial wavelet-domain filtering. The wavelet transform W1 was used to transform a 
signal into the wavelet space, and the hard-threshold filter Hh was applied to signal y1. The inverse wavelet 
transform  was used to reconstruct the filtered signal  to the signal  in the complex image space. 

To further improve the estimated data , a Wiener-like filter HW can be employed to 
shrink each wavelet coefficient  by a factor ) given by  

 [41] 

The Wiener-like filter requires knowledge of the signal and its noise properties. The 
variance 2 can be estimated from the finest-scale wavelet coefficients according to the 
description above. However,  is the noise-free signal in the pixel (i,j), i.e. the 
unknown signal to be retrieved. At this point, the closest approximation is to use the 
hard-threshold filtered data. Equation 41 is then modified as follows:  

 [42] 

From this equation, it is seen that the filter has the highest effect at small  
compared with , and its effect decreases monotonically when  and 2σ



. Consequently, the Wiener-like filter does not primarily affect the large 
scaling or wavelet coefficients, but it does influence the small ones. 

Furthermore, the hard-threshold filtered data should be transformed from the image 
space to the wavelet space with a different wavelet family before the second filtering 
because different wavelet transforms decompose the noise from the signal differently. 

 [43] 

With the estimated data , the Wiener-like filter can be constructed and applied to 
the hard-threshold filtered data (see the block diagram in Figure 7). 

 

Figure 7:  
Block diagram of wavelet-domain filtering. The wavelet transform W1 was used to transform the signal x 
into the wavelet space, and the hard-threshold filter Hh is applied to signal y1 to produce the pilot signal . 
This estimate can then be used to construct the Wiener-like filter Hw in the W2 domain, which is applied to 
the pilot signal . 

To achieve additional reduction of the standard deviation and the mean signal of the 
background, the estimated value  is used to construct a new Wiener-like filter that is 
applied to the original noisy signal x according to Figure 8. This approach is an 
extension of the so-called WienerChop technique (106). 
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Figure 8:  
Block diagram of the complete wavelet-domain filtering procedure. The top row is the same as in Figure 7. 
The addition here is that the estimated signal is used to construct another Wiener-like filter applied to the 
original noisy signal x in the W3 domain. 

55.1.4 Extensions of the wavelet denoising concept 

Various other wavelet-like transforms have been proposed for denoising. One example 
is the curvelete transform (107), which is associated with a transform that tends to 
decompose the edges in the signal considerably more efficiently than wavelets, and 
thereby it better retains edge information after filtering. Another example is the 
contourlet transform (108), which provides not only multi-resolution expansion of 
images but also directional, which would be useful for denoising of multi-dimensional 
data. A more detailed analysis of these transforms is, however, beyond the scope of this 
thesis.  

5.2 Filtering for noise reduction in diffusion MRI 

In several cases, the best approach to improve SNR in MRI is to acquire multiple 
datasets and apply averaging. In DWI, signal averaging is not always practical owing to 
time constraints, and it is important to notice that averaging in the image domain does 
not solve the problem of rectified noise floor because signal intensities are always biased 
for SNRs lower than approximately 2 (74). To minimise the effects caused by the noise 
floor, relatively large voxel sizes have been used in various in vivo studies, impairing the 
image spatial resolution. In other cases, high b-values have been omitted to ensure that 
noise-floor-related artefacts are not manifested, but this may result in loss of important 
diffusion information. 

Other methods for increasing SNR include using surface coils (to get closer to the 
object) and stronger diffusion gradients (enabling shorter TE and correspondingly 



increased SNR) (15). In addition, the noise and the noise floor can be further reduced 
by post-processing, without improved hardware or prolongation of the scan time.  

To minimise blurring and to preserve image contrast in DWI images, several different 
approaches have been presented, for example, filtering applied to diffusion tensor MRI 
by using anisotropic smoothing along structure boundaries (109), separating and 
removing the noise by ICA (110), or using nonlinear smoothing techniques for 
reducing both random and systematic errors (111).  

Wavelet filtering after 2D Fourier transform of k-space data and before construction of 
the magnitude images has previously been presented (112), and in the study reported 
in Paper I, an improved wavelet-domain Wiener-like filter (106) was applied to data in 
the complex image domain.  

The output from wavelet-domain filtering of a simulated signal, degraded by Rician 
noise, is shown in Figure 9, where the mean signal as a function of b-values in a high 
diffusivity ( ) area as well as in the background are 
depicted. The noise floor (represented by the signal in the background) was reduced by 
a factor 6–7, and the useful number of b-values was at least doubled in this particular 
case. 

 

Figure 9:  
Mean values of simulated diffusion-weighted signal intensities in a fast ADC region (

) as well as the mean signal in the background as a function of b-value. 

The estimation of simulated bi-exponential signal decay (Equation 44) was significantly 
improved after filtering, in line with the requirements stated by Clark & Le Bihan (89). 



 [44] 

The parameters in the simulated bi-exponential data were A = 680, B = 1000 – A = 
320, ADCA = 1.25⋅10-9 m2/s, ADCB = 0.18⋅10-9 m2/s, and the SNR at b = 0 was 15 
(113). Recently, the kurtosis model (50,51) and other approaches related to non-
Gaussian diffusion have been increasingly used to account for the deviation from a 
mono-exponential signal decay at high b-values, and these models have also been shown 
to be sensitive to noise, particularly the kurtosis fractional anisotropy parameter (KFA) 
(114). However, noise floor effects are not evident for parameters associated with the 
NODDI model, possibly because noise effects are accounted for as a part of the 
implementation of the NODDI model (115). 

For experimental data, the DW signal quality in images of a homogeneous phantom 
was markedly improved after filtering, as seen in Figure 10. 

 

Figure 10:  
Original and wavelet-filtered images of a n-decane phantom (diffusion coefficient approximately 1.3⋅10-3 
mm2s-1 at 20°C) at different SNR levels (b-values, from left to right ranging from 0 to 1617 s/mm2). For 
each image pair, the original image is in the top row and the corresponding denoised image is in the 
bottom row. 

Furthermore, filtering also resulted in improved in vivo FA data. FA based on b-values 
in the range from 0 to 930 s/mm2 decreased, primarily in low-anisotropy regions, when 
denoising was applied: FA recorded from regions of interest (ROIs) in low-anisotropy 
regions (peripheral grey matter/cerebrospinal fluid) was reduced from 0.27 to 0.18, 
whereas white-matter FA values were reduced only from 0.75 to 0.71, i.e. 
approximately 31% and 6%, respectively (Figure 11). 



 

Figure 11:  
FA maps from a healthy volunteer, calculated using b-values in the range 0-930 s/mm2. Left: Original data. 
Right: Denoised data. Background noise was removed by masking. 

As noted above, the noise in k-space data and in the corresponding complex image 
domain is assumed to follow a zero-mean Gaussian distribution with equal variances in 
the real and imaginary parts. This is a prerequisite for the proposed filtering method 
(reported in Papers I and II).  

Hence, the proposed filter should also be applicable to coil systems with multiple 
channels, but only if data from each coil are handled separately. The filtering method 
was not evaluated for data acquired by parallel imaging techniques (e.g. SENSE (79) 
or GRAPPA (80)) that were shown to exhibit more complicated noise distributions. 
The subsampling of k-space data in parallel imaging affects the distribution of the noise 
in reconstructed data (116), but for each coil element, the noise distribution should 
still be zero-mean in k-space and in the corresponding complex image domain. Hence, 
the filtering method should still be applicable to data taken from a separate coil.  

55.3 Filtering for noise reduction in ASL 

Achieving an adequate SNR level in ASL at a suitable spatial resolution normally 
requires averaging of a large number of ASL images (typically of the order of 40–100 
images) (93,117-119). However, this can be problematic in clinical MRI owing to the 
long acquisition time and increasing sensitivity to motion artefacts (120). Lower noise 
or increased SNR would obviously reduce the required number of averages, and several 
approaches have been proposed to achieve this, mainly to increase the intrinsic signal: 
(i) Higher magnetic field strength increases the SNR and prolongs the T1 relaxation 
time, which may directly improve ASL quality owing to the slower decay of the labelled 
arterial blood water (121). (ii) Increasing the receiver coil efficiency can boost the SNR 
in ASL. (iii) Ferré et al. reported that a 32-channel array head coil performs 
considerably better in terms of SNR than a 12-channel coil (122). (iv) Improved SNR 



can be achieved by exploring alternative ASL techniques: For example, Ye et al. (123) 
and Günther et al. (60) suggested 3D sequences for data acquisition (employed in the 
study described in Paper III), Wong et al. used a so-called Turbo ASL sequence to 
obtain higher temporal resolution and higher SNR per unit time (124), and Jahanian 
et al. proposed a method utilising B0 field map information to compensate for the loss 
in tagging efficiency in pseudo-continuous ASL, thus effectively recovering SNR (125). 

However, the use of noise-reduction algorithms in ASL has been sparse, and such 
techniques have mainly been restricted to the minimisation of fluctuations in signal 
intensity due to physiological noise and have been mostly applied to ASL-fMRI studies 
(126-129). In Paper II, an implementation of two denoising techniques was reported, 
evaluated using simulations and applied to human ASL data acquired by a clinical MR 
scanner. Conventional Gaussian smoothing was compared with a wavelet-domain 
filtering method, focusing on the effects of denoising on accuracy, precision and 
structural degradation at different noise levels (4 ≤ SNR ≤ 12). It was shown that 
wavelet-domain filtering was superior to Gaussian smoothing in the vicinity of borders 
between grey and white matter and close to edges of the object, particularly at moderate 
to high SNRs. Gaussian smoothing causes a well-known loss of object detail, which is 
a considerable disadvantage in ASL applications owing to the relatively low resolution, 
being of the same order of magnitude as the size of the human sulcus. In this context, 
it is important to point out that both denoising techniques introduced a bias in areas 
close to the edges and borders, but the bias introduced by wavelet-domain filtering 
remained within the standard deviation of the non-filtered signal.  

Figure 12 shows the ASL-weighted signal maps before (non-filtered) and after 
(Wavelet-filtered) image denoising by wavelet-domain filtering and after Gaussian 
smoothing. It can be observed that Gaussian smoothing, unlike wavelet-domain 
filtering, introduced a high degree of spatial smoothing, where some details completely 
disappeared. 

 

Figure 12:  
From left to right: Reference image computed from 300 difference images, non-filtered image computed 
from five experimental difference images (SNR = 4), wavelet-domain filtered image and Gaussian 
smoothed image (FWHM = 5.6 mm). 



In 2010, Wells et al. (130) performed a similar investigation, including additional 
spatial denoising techniques, such as Wiener filtering applied in the spatial domain 
instead of the wavelet domain, a so-called AD filter (131), a Gaussian smoothing filter, 
simpler wavelet filters including soft and hard thresholding schemes (100), as well as 
ICA (105). The influence of denoising techniques on both random and systematic 
errors was investigated with regard to CBF and arterial transit time estimates. In 
agreement with the findings of the study reported in Paper II, they concluded that 
different denoising techniques introduce different degrees of spatial smoothing, and 
that the optimal filter is highly dependent on the SNR and the contrast of the images. 
However, this research group also found that the ICA method reduced random noise 
with minimal structural degradation and was superior to wavelet-domain filtering; 
however, it should be noted that they used a simpler wavelet approach than that used 
in Paper II. 

In summary, image denoising improves the accuracy of ASL estimates, with some 
decrease in precision in areas close to borders and edges; however, the use of edge-
preserving filtering techniques, such as wavelet-domain or ICA, can improve accuracy 
in these areas. If the wavelet-domain filter is overly aggressively thresholded, some 
structural degradation in the images may appear. It should also be noted that the 
method reported in Paper II was used to improve SNR in the studies described in 
Papers III and IV and should also be directly applicable to other ASL applications, such 
as model-free ASL using QUASAR (132) or two-compartment models (133), which 
are normally of limited use owing to their noise sensitivity. 

55.4 Possible limitations and sources of error 

The major drawback of the proposed approach in the denoising of diffusion images is 
that it requires the raw image data (k-space data) as well as knowledge of the 
reconstruction algorithm used to generate the images, i.e. the transform from k-space 
to the image domain. Furthermore, the proposed filtering method reduces only the 
contributions of random noise. The physiological noise issue, which is, in practice, 
always present in MR images, will usually not be rectified by filtering. 



Chapter 6  

NNon-compartment ASL Data modelling 

6.1 Background 

In Section 3.2, a simple single-compartment model was described (70), enabling 
absolute quantification of CBF, an important indicator of tissue viability and function, 
and also returning the arterial transit time (ATT), which may be an additional 
important parameter, potentially reflecting hemodynamic impairment in 
cerebrovascular disease (134). However, the labelled arterial blood water distributes 
over several different compartments before image acquisition, and the estimation of 
parameters describing the delivery to different compartments may lead to better 
characterisation of neurological and neurovascular diseases. 

The single-compartment model assumes that labelled water exchanges instantaneously 
across the blood-brain-barrier. However, by a variety of techniques, it has been shown 
that water is not a freely diffusible tracer in the brain (41,52-54). To incorporate this 
condition into the quantification, a multi-compartment analysis is usually required. 
The brain tissue can be separated into two main compartments: (a) the intravascular 
compartment (IC), which is subdivided into arterioles, capillaries and venules, and (b) 
the extravascular compartment (EC), which is subdivided into the intracellular and 
extracellular tissue spaces (Figure 13) (135,136). 



 

Figure 13:  
Schematic three-compartment perfusion model for brain tissue. IC is the intravascular compartment with 
arterioles, capillaries and venules as sub-compartments, making up the total CBV. EC is the extravascular 
compartment with the extracellular and intracellular spaces as sub-compartments. The exchange rates 
between IC and EC are denoted by k, and the exchange rates between the sub-compartments within the 
EC are denoted by n.  

To distinguish water residing in different compartments, several approaches have been 
presented. For example, Silva et al. (53) combined ASL with intravoxel incoherent 
motion (IVIM) measurements to obtain the exchange of labelled blood water with 
tissue water. It was assumed that labelled water resides either in the EC (where it moves 
by an ordinary diffusion process, characterised by the diffusion coefficient D) or in the 
IC (where motion is characterised by a pseudo-diffusion coefficient D* related to the 
sum of the diffusion and the flow of blood in a randomly oriented microvasculature). 
The blood flow in the IC leads to D* becoming significantly larger than D in the EC, 
and the DW signal is thus attenuated significantly faster in the IC than in the EC. ASL 
images were acquired at different b-values and, according to the IVIM model, it was 
possible to separate the fraction of labelled water that remained in the IC from the 
fraction that exchanged with the EC by fitting ASL data to the bi-exponential 
expression as follows: 

 [45] 



where A is the fraction of the slow component, which would be equal to the extraction 
fraction of water if the ASL signal contribution of the slow component were to be 
composed of extravascular spins only. 

Further studies have shown that the transverse relaxation time T2 differs among 
different compartments, with T2 in the IC being shorter than in the EC (137-139). 
This allowed the estimation of the ASL signal distribution between the two 
compartments IC and EC, but also in the two sub-compartments within the EC by 
estimating the T2 values of the intra- and extracellular tissues from the control images 
by applying vascular crusher gradients and fitting to a biexponential model using 
different tagging pulse durations (140). This approach was later extended to include 
the transfer time  of labelled water across vascular walls or the BBB by using 
multi-TE and multi-TI ASL measurements (141). The 2D model was then fitted to 
the measured ASL signal by using five degrees of freedom in the fitting algorithm, i.e. 
CBF, BAT, ,  and , whereas BL, ,  and  were kept fixed. 
This is obviously a highly complex model with few assumptions, and it is highly 
unstable owing to the complexity and the uncertainty associated with multiparameter 
fitting, despite the use of least-squares optimisation routines from MINUIT (142), 
which is considered to be robust. 

Over the years, several different approaches have been proposed for the differentiation 
of the ASL signal components from different compartments, for example, tracer-kinetic 
two-compartment exchange models (133,136), diffusion-weighted ASL measurements 
(134,143,144), and the use of MT effects to shorten the effective T1 of the EC and 
make it more distinct from the T1 in the IC (145). 

66.2 Modelling for retrieval of additional hemodynamic 
parameters 

As pointed out in Section 6.1, the idea to measure additional hemodynamic or 
microcirculatory parameters with ASL is not new. However, several previous reports 
have stated that the implementation of the models was limited by low SNR, long 
acquisition time (owing to additional data collection), and/or uncertainties caused by 
the fitting procedure. A model with short acquisition time, allowing the extraction of 
additional physiological parameters using data from an ordinary time-resolved ASL 
experiment, would obviously be more appropriate for clinical applications. 
Furthermore, stable estimates are desirable, potentially achieved by using simpler 
modelling assumptions, robust fitting algorithms and increased SNR. In the study 
reported in Paper III, the non-compartment model and animal ASL methodology by 
Kelly et al. (146) was modified and adapted to human volunteers in a clinical MRI 



environment. Additionally, SNR was improved by the wavelet-domain filtering 
approach presented in Papers I and II. As further detailed below, hemodynamic 
parameters, i.e. the ATT and the capillary transfer time (CTT), were measured in two 
ROIs, namely, the occipital lobe (OC) and the insular cortex (ICx), and were compared 
with literature values of the corresponding parameters measured by other techniques. 
The impact of the stochastic thermal noise on the model estimates was also investigated, 
and an appropriate SNR level was established. In Paper IV, the use of a measured AIF, 
i.e. an AIF of arbitrary shape, was introduced as a further development of the non-
compartment model, and this was hypothesised to improve the definition of the 
labelled bolus and thus the accuracy of the CTT and ATT estimates. 

The basic assumption of the non-compartment model (146) is that labelled water is 
driven by a potential difference in large vessels, which causes the bulk flow, and when 
arriving at the microvascular space it distributes owing to the random nature of pseudo-
diffusion in capillaries, and finally, it exchanges between the capillary bed and the 
extravascular water through the BBB. Hence, the transport mechanism of labelled spins 
from the labelling point to the imaging plane can be described by the general Langevin 
equation as follows: 

 [46] 

where V is any volume into which labelled spins can flow, F is the bulk flow rate in the 
volume V describing an advective transport of a substance not including diffusion of 
labelled spins, and  is the term describing the diffusion transport of labelled spins by 
a simple Gaussian distribution with zero mean. The first term F on the right-hand side 
describes the transport in large vessels, and the second term  describes the transport 
of the substance in the microvasculature and must incorporate the potential difference 
existing there, i.e. free diffusion in a potential driven by perfusion, or what is usually 
called pseudo-diffusion, namely, 

 [47] 

Equation 47 describes the second moment of a Gaussian distribution resulting from 
the spread of a  function due to perfusion P. Equation 46 can be expressed in units of 
concentration c(t) because the number of tracer molecules is conserved. Thus, all 
labelled spins are in the volume V (except those relaxing according to T1), and this 
yields the following stochastic differential equation:  



 [48] 

Equation 48 was rewritten to the Fokker-Planck equation and then solved for the 
conditions of the bolus-tracking experiment. In the original paper by Kelly et al. (147), 
the model was applied to a CASL experiment, where the input function is a constant 
during time t. In Paper III, the input function was adapted to PASL to fit our 

experimental settings, i.e. , which implies 

 [49] 

where TTT is the total transit time, which in statistical terms is the average time for 
blood plasma to traverse the entire system from the labelling plane to the imaging plane. 
TTT is the sum of the CTT and the ATT. ATT is the time for labelled blood to flow 
from the labelling region to the microvascular compartment of the imaging slice, and 
CTT is the time for intravascular water to distribute through the capillary bed by 
pseudo-diffusion and into the brain tissue by exchange through the BBB. In Paper IV, 
the use of an experimentally measured input function was proposed, resulting in 

 [50] 

where s is a scaling factor that corrects proportional errors in the registration of AIF 
concentration, such as partial volume effects, M0 differences and different T2 in blood 
and tissue. As seen above, the motion of water in the microvascular space is described 
by the second moment of a Gaussian distribution affected by a potential. The second 
moment describes the width of the Gaussian distribution, which could also be affected 
by transit through the BBB and may potentially reflect its integrity. It may be of interest 
in this context to compare the CTT with previously reported estimates by techniques 
with similar scope (136,141,143), as reported in more detail in Paper III. For example, 
the parameter CTT may be connected with other physiological parameters by  

 [51] 



In what follows,  is a phenomenological exchange term with a corresponding 
characteristic time constant denoted by , which depends, in addition to 
diffusion, on the effective exchange rate  of water from the IC to the EC (148) and 
is defined as 

 and  [52] 

In addition, the parameter  also depends on physiological factors, such as the 
permeability-surface area product PS for water and the CBV (136), namely,  

 [53] 

However, instead of using the total CBV, it is recommended to use the partial capillary 
volume fraction , i.e. the fraction of the total blood volume in which exchange occurs 
(approximately one-third of the volume of the microvasculature, i.e. in human brain, 

) (133,149). 

The parameter PS was derived as follows (150): 

 [54] 

where E is the extraction fraction, defined as the fractional transcapillary extraction 
during one single passage through the capillary system, and may be expressed as 

 [55] 

where Ca and Cv are the concentrations at the arterial inlet and the venous outlet of the 
capillary, respectively (150). 

The CTT should not be confused with Ktrans measured by the DCE-MRI technique, 
which reflects the transfer of gadolinium contrast agent from blood plasma through the 
BBB into the tissue. Hence, Ktrans is the transfer constant of the contrast agent in units 
of ml/min/100g (151). CTT is in units s and is the average transit time of the ASL 
labelled water molecules experiencing any type of diffusion, where transport through 
the BBB is only one of the parts that contribute to the transit time of the labelled water 
molecules.  



66.3 ASL assessment of haemodynamics in a clinical 
setting 

Paper III focuses on the measurement of the transfer time of blood water through the 
capillaries and the BBB, as an alternative or complementary way to characterise the 
haemodynamics of the system, i.e. beyond, for example, CBV, CBF, MTT and Ktrans. 
In several cerebral diseases, the BBB is affected and permeability is increased. Hence, 
the primary objective of the study described in Paper III was to adopt a preclinically 
implemented quantitative ASL method (147) to a clinical environment with the aim of 
using it as biomarker for early diagnosis of such diseases. Unlike the original 
implementation of the model, the investigation reported in Paper III employed pulsed 
ASL to decrease SAR levels. Furthermore, 3D-GRASE readout was used instead of EPI 
to expedite the acquisition and to further decrease SAR and increase SNR. Data 
evaluation was carried out using the proposed model (Equation 49) in 14 healthy adults 
and the resulting mean values (with corresponding SDs) of ATT, TTT and CTT for 
both occipital cortex (OC) and insular cortex (ICx). A test–retest analysis was included 
to verify the repeatability of the method. The values of CTT and ATT differed 
significantly among the ROIs (p < 0.0001). Longer ATT values were observed in OC, 
whereas CTT was longer in ICx.  

As neither the normal inter-individual variability of parameters nor the potential 
pathophysiological effects in patients were accessible from previous studies, it was 
difficult to estimate the required accuracy. Therefore, simulations were performed 
before the analysis of experimental data to predict the effects of noise on the model 
parameters and estimate SNR-related measurement accuracy. It was found that the 
higher SNR levels (approximately 85) associated with larger ROIs (above 300 pixels) 
provided more accurate values of CTT (CI[95%] of ±8.8%), whereas less accurate CTT 
values (CI[95%] of ±12.1 %) can be expected from the lower SNR levels 
(approximately 60) of smaller ROIs (below 140 pixels). However, it was concluded that 
the model can be adapted to a clinical setting, and the CTT measurements can be added 
to the arsenal of potentially valuable hemodynamic parameters. 

6.4 ASL assessment of haemodynamics in a preclinical 
setting 

The key objective of the investigation described in Paper IV was to provoke the 
hemodynamic status of the tissue and test whether the corresponding alterations in 
measured parameters could be distinguished by the ASL approach. As a means of 



hemodynamic challenge, a previously described method for artificially modifying RBC 
deformability (152) was selected owing to its specific effect of occluding the 
microvasculature. Blood viscosity in the microcirculation is affected by the mechanical 
characteristics or the deformability of RBCs, and rigid RBCs will increase blood 
viscosity, which will in turn cause resistance to the flow in small capillaries, resulting in 
a decrease in CBF (153-155). The effects on mean CTT have not previously been 
documented, but our initial hypothesis was that mean CTT was likely to be prolonged. 
The MRI experiments were performed using a 9.4T horizontal bore animal scanner. A 
FAIR ASL sequence was used, similar to the labelling scheme used in the clinical setting 
(Paper III), and readout was accomplished by a three-shot segmented spin-echo EPI 
approach. Data were acquired in a time series ranging from 300 ms to 3000 ms, with 
a temporal resolution of 300 ms. The experiments were designed to observe 
haemodynamic changes in each animal before injection (one baseline measurement) 
and over time after injections (five post-injection measurements). The injections 
consisted of healthy/normal RBCs in the control group and rigid RBCs (i.e. with 
reduced deformability) in the study group. The fundamental findings reported in Paper 
IV were that a general decline in CBF (relative to the normalised baseline CBF) was 
observed after injection of RBCs with reduced deformability (entire brain), and that 
the changes in relative CBF in the study group were significantly different from the 
corresponding changes in the control group. The relative CBF after RBC injection was 
generally lower in the study group, and the most pronounced differences between 
groups after injection were seen in the putamen and in the white matter (15–20 
percentage points difference between groups). The potential clinical implication of this 
is that CBF measurements using ASL may provide valuable information about, for 
example, treatment efficiency in cardiovascular disease, such as diabetes mellitus 
(angiopathy, retinopathy, nephropathy) (156), myocardial infraction, hypertension, as 
well as cerebrovascular accidents (157). In Paper IV, a local measurement of the AIF 
was also proposed as a further development of the ASL approach, partly to avoid AIF 
dispersion effects in the large arteries, but more importantly because the labelling profile 
is rarely perfect, particularly on a preclinical scanner with shorter RF and gradient coils.  

As explained above, CTT depends only on dispersion, diffusion or filtration of the 
labelled spins, and the idea of using RBCs with decreased deformability was to increase 
the spatial heterogeneity of capillary flow without affecting the flow in the large arteries. 
As mentioned above, blood behaves as an incompressible Newtonian fluid in large 
arteries, and the decreased deformability of RBCs should not affect the flow in these 
vessels. Hence, the use of RBCs with decreased deformability should serve as a 
validation that CTT reflects properties of and processes in the capillary system. When 
the AIF scaling factor s (cf. Equation 50) was included as a free parameter to be 
estimated, the model could not provide reliable CTT results. This may be due to 
overfitting that occurs when a model with an excessively large number of free 
parameters is fitted to data. However, when the scaling factor s was fixed to the mean 



value over all pre- and post-injection time points obtained from the original fitting 
procedure, CTT results became more reasonable when the fit was repeated with fewer 
free parameters. The injection of deformed RBCs induced a 25% relative increase in 
CTT for the entire slice when s was fixed. 

66.5 Sources of error in estimates based on the non-
compartment modelling procedure 

The non-compartment models described in Papers III and IV are noise sensitive, as 
illustrated in Table 1, Table 2 and Figure 15 below. Simulated concentration curves 
are shown for different SNR levels ranging from 5 to ∞, and all simulation procedures 
were repeated 1000 times at each noise level. The fitting algorithm failed to return 
correct parameters for noisy data, particularly at SNR = 5 and SNR = 10, but both 
precision and trueness were reduced even at SNR = 40, which corresponds to the SNR 
in a ROI of approximately the size of the putamen. Hence, SNR = 40 in a ROI is still 
not entirely sufficient to obtain an accurate estimation, owing to the sensitivity of the 
model to noise. The noise in the measured data induces a bias (a systematic error) in 
the estimates, and this bias is considerable if the noise level is high. The bias is difficult 
to predict because it depends on the true values. In the example below, the bias is 
exemplified for two different combinations of CTT and ATT. 
Table 1:  
Mean, standard deviation (SD) and coefficient of variation (CV=SD/Mean) of the CTT estimate after fitting 
of simulated data at different SNR levels for true values of CTT = 600 ms and ATT = 100 ms. 

SNR Mean [ms] SD [ms] CV 

∞ 600 0.00 0.00 

100 593 143 0.24 

40 559 216 0.37 

10 500 331 0.66 

5 473 387 0.82 

 

Table 2:  
Mean, standard deviation and coefficient of variation (CV=SD/Mean) of the CTT estimate after fitting of 
simulated data at different SNR levels for true values of CTT = 800 ms, ATT = 600 ms 

SNR Mean [ms] SD [ms] CV 

∞ 800 0.00 0.00 

100 844 248 0.29 

40 996 580 0.58 

10 1.10⋅103 868 0.77 

5 1.08⋅103 941 0.87 

 



 
SNR = ∞ SNR = 40 

 
SNR = 10 SNR = 5  

Figure 14:  
Simulated dynamic arterial spin labelling (ASL) signal time courses (true values were CTT = 800 ms and ATT 
= 600 ms) for different SNRs. SNR (< ∞) was defined as the ratio of the maximal ASL signal in the dynamic 
time series to the noise standard deviation. The error bars reflect the noise standard deviations.  All 
simulation procedures were repeated 1000 times. Model fits, using Equation 50, are shown as solid lines. 
The CTT and ATT estimates were 800 ms and 600 ms, respectively, for infinite SNR; 996 ms and 570 ms 
for SNR = 40; 1097 ms and 399 ms for SNR = 10, and 1078 ms and 398 ms for SNR = 5.  

In the proposed derivations of the hemodynamic models, possible effects of arterial 
bolus dispersion have not been considered, as discussed in Paper III. The tracer bolus 
in the blood experiences friction against the vessel wall during its downstream travel 
through the vasculature, and this leads to a non-uniform velocity profile and, most 
likely, to dispersion. The cardiac pulsation is another factor in the blood flow variation 
in large arteries that also contributes to dispersion. The dispersion can be modelled as 
a convolution of AIF(t) with the vascular transport function VTF(t) (158), where the 
dispersed  is given as 

 [56] 
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Two widely used VTFs are the Gaussian and gamma functions. The area under the 
curve for the VTF must be unity, as dispersion neither destroys nor creates label. The 
effects of dispersion in ASL have been modelled and examined, and it has been 
concluded that dispersion has a considerable effect on the ASL signal and thus causes 
systematic errors in the estimated CBF (118).  

The CTT estimate reflects the diffusion component in the model, and dispersion, as 
can be seen in Equation 56, mimics the effects of diffusional motion and may interfere 
with the effects on the signal of pseudo-diffusion in capillaries and the filtration through 
BBB, thereby introducing a bias in the CTT estimates. However, in Paper IV a 
measured AIF (estimated closer to the tissue of interest) was proposed that could reduce 
such effects.   

Furthermore, the model used in Papers III and IV is designed to provide estimates of 
the mean ATT and the mean CTT. ATT corresponds to the translational movement 
of the bolus, whereas CTT corresponds to the diffusion component (which is the sum 
of pseudo-diffusion in the capillary network and filtration through the BBB). However, 
when the signal is registered as a mean value from a ROI where different voxels within 
the ROI show different ATT, there is a risk that the model will capture the effects of 
this ATT distribution as a diffusion component, and in such a case, this would be 
reflected in the CTT estimate. This source of error is illustrated in Figures 15–16 below. 



 

Figure 15:  
Simulated, noise-free, dynamic arterial spin labelling (ASL) signal time courses, using Equation 50. The true 
CTT value was 800 ms and ATT ranged from from 0 ms to 2000 ms in steps of 20 ms. First, the mean 
value for each point in time was calculated. Thereafter, the model fit to the time curve consisting of the 
mean values (asterisks) was carried out, and the result of this fit is shown as a blue solid line. The estimated 
CTT and ATT values from the fit to the mean values were CTT = 2728 ms and ATT = 0 ms. 
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Figure 16:  
Simulated (SNR = 40) dynamic arterial spin labelling (ASL) signal time courses using Equation 50. The true 
CTT value was 800 ms and ATT ranged from from 0 ms to 2000 ms in steps of 20 ms. First, the mean 
value for each point in time was calculated. Thereafter, the model fit to the time curve consisting of the 
mean values (asterisks) was carried out, and the result of this fit is shown as a blue solid line. The estimated 
CTT and ATT values from the fit to the mean values were CTT = 2731 ms and ATT = 0 ms. The results are 
based on 1000 repeated simulation with randomly added noise. 

In the example in Figure 15, 200 concentration curves were simulated with the same 
CTT of 800 ms but different ATT, ranging from 0 to 2000 ms in steps of 20 ms. Noise 
was not added, but the algorithm seemed to interpret a distribution of ATT as an 
addition to the inherent CTT. The solid line represents the mean signal of all curves 
(which corresponds to the measured mean signal in a ROI). Fitting of the model 
(Equation 50) to the mean signal data resulted in an ATT estimate of 0 ms and a CTT 
estimate of 2728 ms. The example shown in Figure 16 represents the same situation, 
but at SNR = 40, and the conclusion was highly similar to the noise-free case. 

Another limitation of the model is that the effects of venous outflow may violate the 
assumption that concentration is a conserved quantity, but this effect is likely to be 
small in the context of ASL owing to the small fraction of unextracted water (54) in 
combination with the longitudinal relaxation of the spins in the capillaries. 
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Chapter 7  

CConclusions and future work 

The scientific work presented in this doctoral thesis focused on MRI signal denoising 
and its effects on relevant diffusion and perfusion parameters and on the development 
of a non-compartment modelling approach for characterising the transport of vascular 
water.  

In Paper I, it was concluded that the designed wavelet-domain filter is an attractive 
model-free approach for reducing noise effects (rectified noise floor as well as SD) in 
magnitude MR images for diffusion applications. The results from simulations as well 
as experiments illustrated the increased visual and quantitative usefulness of high-b-
value DW images after denoising. Systematic noise-related errors in anisotropy indices 
appeared to be reduced by the proposed denoising scheme.  

The study reported in Paper II, including both simulated and experimental data, 
showed that wavelet-domain filtering can be used to maintain perfusion quantification 
accuracy in ASL with a reduced number of averages, as well as to increase the visual 
image quality. Both wavelet-domain filtering and Gaussian smoothing corrupted to 
some extent the signal in areas close to borders. For the wavelet-domain filter, this effect 
decreased with higher SNR, whereas for Gaussian smoothing it remained the same 
independently of SNR. If time allows, the high quality of ASL-based CBF maps is 
always best accomplished by extending the number of averages, provided that the 
subject does not undergo any movement during the image acquisition. Denoising by 
post-processing is, however, an attractive way to maintain CBF precision and accuracy 
with a reduced number of averages, with potential usefulness also in dynamic 
applications such as ASL-fMRI and model-free ASL techniques. 

The 4D imaging approach in modern MRI applications (i.e. three spatial and one 
temporal or b-value-dimension) is becoming increasingly common. Hence, it would be 
reasonable for future studies to focus on adapting similar filters as those presented in 
Paper I and Paper II to 4D data, where the filtering algorithm considers all volumes at 
the same time. Handling such 4D datasets is computationally demanding, and thus 
implementing the filtering algorithms on the graphics processing unit (GPU) would be 



an attractive alternative. The increasing number of medical images accumulating in 
large medical image databases also opens opportunities to use machine learning (ML) 
for denoising (159). Advances in ML-based denoising algorithms will most likely be 
driven by the development of new ML techniques for diagnosis, detection and 
prediction of diseases. 

Paper III focuses on the measurement of the transfer time of the blood water through 
capillaries into the extravascular space, referred to as CTT, as well as the water transport 
in large arteries from the labelling site to the arterioles, where the blood flow is laminar, 
referred to as ATT. The parameters were obtained by an adaption of a previously 
proposed preclinical model that was applied to a small-bore MRI scanner using a CASL 
technique (112), to a human MRI environment using a more clinically appropriate 
PASL technique. The study indicated that the noise induces a bias in the resulting 
estimates, and that high SNR (> 100) is required for highly accurate results. 

The primary aim of Paper IV was to alter the hemodynamics in experimental animals 
by controlled manipulation of the flow in the microvasculature, and to test whether 
ASL measurements are sufficiently robust and sensitive to capture the corresponding 
alterations in CBF and CTT. The hemodynamic challenge was accomplished by 
injection of RBCs with decreased deformability into the microvasculature, resulting in 
a slower RBC flow (160,161), which was hypothesised to influence the CTT. With 
regard to CBF, the study indicated that the ASL measurements could detect CBF 
changes caused by injection of RBCs with mildly reduced deformability relative to a 
control group in which normal RBCs were injected. If the scaling factor s (cf. Equation 
50) was fixed to a reasonable value, the CTT in the study group generally increased 
after injection, with a difference relative to the control group that corresponded to 
approximately 15–40 percentage points. The study seems to confirm that there is a 
correlation between mildly reduced RBC deformability and decreased CBF, and 
promising ASL results with regard to the potential of observing changes in capillary 
water transfer times were also obtained. 

The CTT measured by the technique presented in Papers III and IV is, however, still 
in need of a systematic investigation. It would be of value to ensure that the model can 
in fact provide a reasonable and robust measure of the transfer of water molecules in 
the microvasculature, reflecting only the pseudo-diffusion and the filtration across the 
BBB. Therefore, it is necessary to continue to improve SNR so that the method can be 
thoroughly investigated. As an alternative to the damaged RBCs, another validation 
approach would be to disrupt the BBB, for example, by mannitol injection (162) or by 
using ultrasound (163), which should influence the transfer time across the BBB.  
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