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Abstract

The paper presents some preliminary results on dynamic
scheduling of model predictive controllers (MPCs). In an
MPC, the control signal is obtained by on-line optimiza-
tion of a cost function, and the MPC task may experience
very large variations in execution time from sample to sam-
ple. Unique to this application, the cost function offers
an explicit, on-line quality-of-service measure for the task.
Based on this insight, a feedback scheduling strategy for
multiple MPCs is proposed, where the scheduler allocates
CPU time to the tasks according to the current values of the
cost functions. Since the MPC algorithm is iterative, the
feedback scheduler may also abort a task prematurely to
avoid excessive input-output latency. A case study is pre-
sented, where the new approach is compared to conven-
tional fixed-priority and earliest-deadline-first scheduling.
General problems related to the real-time implementation
of MPCs are also discussed.

1. Introduction

Flexible scheduling of tasks with unknown or vary-
ing execution time has attracted considerable attention in
the real-time research community during the last decade.
The main motivation has been to reduce some of the pes-
simism that is inevitable when applying traditional real-
time scheduling theory to such tasks. The research has re-
sulted in a number of general approaches, such as schedul-
ing of imprecise computations [10], statistical scheduling,
e.g. [18], and value-based scheduling, e.g. [4].

In this work, we instead take the application as the start-
ing point, focusing on scheduling of model predictive con-
trollers (MPCs). In an MPC, the control signal is deter-
mined by on-line optimization of a cost function in every
sample. The optimization problem is solved iteratively, with
highly varying execution time depending on a number of
factors: the state of the plant, the current and future refer-

ence values, the disturbances acting on the plant, the num-
ber of active constraints on control signals and outputs, etc.

The MPC strategy, see e.g. [6, 13], has won widespread
industrial use in recent years, the main advantages being its
ability to handle constraints and its straightforward appli-
cability to large, multi-variable processes. However, be-
cause of the computational demands of the control algo-
rithm, MPC has traditionally only been applied to plants in
the process industry, with slow dynamics and low require-
ments on fast sampling.

The industrial practice has been to run the MPC algo-
rithm on a dedicated computer, and to decrease the com-
plexity of the problem so that overruns are avoided. The
problem of scheduling the MPC as a real-time task has not
been adequately studied, and scheduling of several MPC
tasks on the same computer has never been considered. To
this end, we here take a first step towards a strategy for dy-
namic scheduling of MPCs.

One way to handle large variations in execution time dy-
namically is to introduce feedback in the real-time system.
A schematic illustration of a general feedback scheduling
system is shown in Figure 1. The idea is to feed back the
actual use of critical resources (in our case, CPU time) to the
scheduler and to continuously adjust the tasks’ demand of
resources according to the current situation. In some cases
it is also possible to use feedforward, i.e., the tasks can in-
form the scheduler that they are about to consume more re-
sources.

For control tasks, there are two main ways to control the
CPU demand: by manipulating the task periods, or by ma-
nipulating the execution times. The first approach has been
explored in several papers. In [3], modulation of sampling
rates in robot control systems is considered. [14] studies
reallocation of control tasks and on-line adjustment of sam-
pling rates in a multi-processor system. In [5], a case study
with hybrid controllers is presented, where the sampling
rates are adjusted to avoid CPU overloads. [1] considers
quality-of-service negotiation in flight control systems, and
treats task periods and deadlines as negotiable parameters.
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Figure 1. A general feedback scheduling sys-
tem. The scheduler adjusts the tasks’ de-
mands based on feedback from the current
use of critical resources. The tasks may also
inform the scheduler that they are about to
consume more resources (feedforward).

For MPCs, it is more natural to control the CPU demand
by manipulating the execution times of the controllers. In
the terminology of [10] MPCs can be viewed as “milestone”
tasks. In each sample, the quality of the control signal is
gradually refined for each iteration in the optimization al-
gorithm, up to a certain bound. This makes it possible to
abort the optimization before it has reached the optimum,
and still obtain an acceptable control signal. Another nice
feature of MPC is that it is not only possible to extract a
real-world quality-of-service measure from the controller,
but the control algorithm is indeed based on the same mea-
sure. This enables a tight and natural connection between
the control and the scheduling.

The main idea proposed in this paper is to use feed-
back information from the optimization algorithm to de-
termine (a) when to terminate the optimization and out-
put the control signal, and (b) which of several MPCs that
should be scheduled at a given time. No papers that the
authors are aware of consider adjustment of the execution
times of control tasks. Also, none of the papers mentioned
above include feedback from the actual performance of the
feedback control loops. In the present paper, a simula-
tion study is performed, where the new feedback schedul-
ing approach is compared to conventional fixed-priority and
earliest-deadline-first scheduling. The results show that
improvements in control performance can be achieved by
more dynamic scheduling.

The rest of this paper is outlined as follows. A mathemat-
ical description of MPC is given in Section 2, followed by a
discussion of issues related to the real-time implementation
of MPCs in Section 3. The main ideas for feedback schedul-
ing of MPCs are presented in Section 4. Section 5 contains
a case study of an MPC for a quadruple-tank process, illus-
trating the ideas from Section 4. Section 6 provides some
further discussion and Section 7 gives the conclusions.

z

u

r
ẑ

û

tk k+Hu k+Hp

Figure 2. The basic principle of MPC.

2. Model predictive control

This section presents a basic formulation of the model
predictive control problem, taken from [11]. The formula-
tion assumes a linearized, discrete-time model of the con-
trolled plant on the form

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cyx(k)

z(k) = Czx(k)

(1)

where x is the state vector, u is the vector of control sig-
nals, y is the vector of measured outputs, z is the vector of
controlled outputs, and A, B, Cy and Cz are constant ma-
trices. Linear constraints may be specified on the outputs as
well as on the control signals. The constraints model physi-
cal limitations in the plant, such as actuator limitations, rate
limitations, level constraints, etc.

The basic principle of MPC is illustrated in Figure 2.
The goal is to make the controlled outputs z follow the
reference trajectory r as close as possible. In each sam-
ple, the predicted outputs ẑ(k + 1) : : : ẑ(k +Hp) are com-
puted as a function of the current state x(k), the cur-
rent measurements y(k), and the predicted control signals
û(k) : : : û(k +Hu � 1). Hp is the prediction horizon, and
Hu (Hu � Hp) is the control horizon. The horizons are
chosen in relation to the time constant of the plant under
control.

The vector of predicted control signals, UT(k) =�
û(k) : : : û(k +Hu � 1)

�T
, constitute the decision vari-

able in an optimization problem. When the optimization
problem has been solved, only the first control signal is ap-
plied to the process, i.e., u(k) = û(k). In the next sampling
period, new measurements are taken and the whole proce-
dure is repeated again. Note that the control action u(k+1)
computed at time step k+1 will generally be different from
the predicted control action û(k+ 1) computed at time step
k, since more up-to-date information about the process will
be available. The predicted control signals from the previ-
ous sample can, however, be used as a good initial guess in
the current sample.
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The optimization problem to be solved in each sample
consists of minimizing a quadratic cost function on the form

V (k) =

HpX

i=1

kẑ(k + i)� r(k + i)k2Q

+
Hu�1X

i=0

kû(k + i)k2R

(2)

subject to constraints on the control signals and the output
signals. The first term in the cost function penalizes devi-
ations from the reference trajectory, while the second term
penalizes the control effort. The weighting matrices Q and
R constitute tuning parameters which must be adjusted to
give satisfactory control performance.

The MPC formulation above leads to a quadratic opti-
mization problem with linear inequality constraints. After
some manipulation, the problem can be stated as

minimize UT(k)HU(k) � UT(k)G(k)

subject to 
U(k) � !(k)
(3)

where H and 
 are constant matrices, and G(k) and !(k)
are matrices which depend on the current state. The prob-
lem is convex, which means that the optimization algorithm
is guaranteed to converge to the optimum and terminate
within a finite number of steps.

The number of iterations required for the optimization
will be different from sample to sample. Major factors influ-
encing the optimization time are the number of active con-
straints on control signals and outputs, reference changes,
and unmodeled disturbances acting on the plant. The qual-
ity of U(k�1) (the vector of predicted control signals com-
puted in the previous sample) also has a large impact on the
optimization time, since it is used as a starting point for the
optimization in the current sample.

3. Real-time implementation of MPCs

The mathematical description of MPC above says little
about the real-time implementation, i.e., how the controller
should be implemented as a periodic task, how sampling
and actuation should be performed, what should be done in
the event of a task overrun, etc. This is of course a general
problem for all control algorithms. The problems do get
more pronounced with MPC, however, because of the long
and highly varying execution times.

3.1. Periodic sampling

The discrete-time process description (1) assumes that
the measurement signals y are sampled with a constant sam-
pling interval. This may not hold if the sampling operation

is performed within the task body—a higher-priority task or
a long-running previous task instance may delay the start of
the task and hence also the sampling operation. Sampling
jitter will degrade the control performance and may in ex-
treme cases even lead to instability, see e.g. [19].

Three main approaches are possible. The first approach
is to accept the sampling jitter and view it as an additional
disturbance that will (hopefully) be regulated by the control
system. The second approach is to take the sampling jitter
into account in the process description and the control al-
gorithm and try to actively compensate for it. This would
lead to a time-varying process and controller structure. The
approach would require huge amounts of computations in
each sample to set up to optimization problem (3), since all
the involved matrices would be time-varying. The third ap-
proach is to achieve periodic sampling by performing the
sampling operation within a timer interrupt handler or by
using a dedicated, high-priority sampling task. The draw-
back with this approach is the increase in implementation
complexity and, in the case of a dedicated sampling task, an
increased number of context switches.

3.2. Computational delay and actuation

Computational delay (i.e., the delay from sampling to
actuation) is a major problem in MPC. The process de-
scription (1) allows for a constant computational delay to
be specified. This implies that the actuation should be per-
formed at a fixed offset from the sampling in each period.
Again, this may not hold, depending on the implementa-
tion. Since computational delay degrades the performance
of a control loop, a common choice is to output the control
signal as soon as possible, i.e., immediately after the com-
putation has finished, see e.g. [2]. Due to preemption from
higher-priority tasks and the highly varying execution time
of the optimization algorithm itself, this can lead to signifi-
cant output jitter.

Similar to the case of sampling jitter above, three main
approaches are possible. The first approach is to accept the
output jitter. This has the advantages of a simple implemen-
tation and shorter delays on average. The second approach
is to account for the varying delay in the MPC formulation.
Again, this makes for a very difficult and time-consuming
optimization problem. The third approach is to eliminate
the jitter by performing the actuation operation in an inter-
rupt handler or in a dedicated, high-priority actuation task.
The actuation operation may in fact be performed together
with the sampling operation at the beginning of the next pe-
riod, thereby enforcing a one-sample delay in the controller.
The drawback with this approach is that unnecessarily long
delays are introduced in the control loop.
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3.3. Overruns

The execution time of the MPC algorithm is bounded,
since the quadratic programming problem is convex.
Hence, in theory, it would be possible to design the real-
time system such that all deadlines are met (under the com-
mon assumption deadline = period). Basing the design on
the worst-case execution time may not be feasible, however.
The choice of sampling period is dictated by the plant dy-
namics and the desired closed-loop performance, see e.g.
[2], and too slow sampling leads to degraded control per-
formance. Also, since the average execution time of the op-
timization algorithm is significantly shorter than the worst-
case execution time, it may simply be a waste of computing
resources to require all deadlines to be met.

Knowing that task overruns are possible, proper care
must be taken in the implementation. One way to deal with
overruns is to abort the optimization at the deadline and out-
put the (non-optimal) control signal that has been computed
so far. This approach has the advantage of not delaying the
next task instance (and, depending on the implementation
of the sampling, also the next sampling instance). Another
interesting possibility is to let the optimization continue for
yet some time in the next sampling interval, hence steal-
ing time from the next task instance. The intuition behind
this approach is that it may pay off in the future to do a re-
ally good job now. Spending extra time on a difficult opti-
mization problem in the current sample will mean that good
starting values for the optimization will be available in the
next couple of samples. It is important to keep the over-
run bounded, however, not to endanger the stability of the
control system. See e.g. [16], where the effects of a “one-
shot” (isolated) overrun are analyzed. More issues related
to stability are discussed below.

3.4. Stability concerns

MPC was used in industry several years before formal
stability results were available [6]. Stability was not a criti-
cal issue, since MPC was typically used for high-level con-
trol of plants with slow and stable dynamics. In recent
years, several ways to guarantee stability for linear MPC
have been proposed, see e.g. [12]. For example, one can
include a terminal constraint in the optimization problem,
i.e. to require that

ẑ(k +Hp) = r(k +Hp) (4)

Most stability results assume that the optimization is al-
lowed to complete in each sample. This can be problem-
atic in a real-time implementation where the computing re-
sources are scarce. An interesting result regarding subopti-
mal MPC is given in [17], where it is shown that feasibility

of the solution rather than optimality is a sufficient condi-
tion for stability, provided that a suitable stability constraint
(such as (4) above) is added in the MPC formulation. This
means that it is permissible to abort the optimization as long
as a feasible solution has been found.

None of the existing stability results for MPC handles
a time-varying computational delay, however. Stability re-
sults for ordinary computer-controlled systems with ran-
dom delays, see e.g. [9, 15], are unfortunately not directly
applicable to MPC (where the feedback is implicit in the
receding-horizon strategy). This is an area where further
research is needed.

4. Feedback scheduling of MPCs

In this section, we consider feedback scheduling of first
one and then several MPCs. The feedback information used
for scheduling decisions (c.f. Figure 1) consists of the val-
ues of the cost functions (2) for the different controllers.
This information is used to determine

1. for each controller, when to terminate the optimization
and output the control signal, and

2. which of several ready controllers that should be
scheduled for execution.

The CPU demand is adjusted by manipulation of the ex-
ecution time of the controllers. This is the natural approach
for MPCs, being “milestone” tasks. On-line changes of
the sampling intervals are unrealistic, due to the associated
computational overhead. The standard MPC formulation
in Section 2 assumes constant sampling intervals, and on-
line changes of the sampling periods would require, among
other things, time-consuming re-computation of the matri-
cesH and
 in the optimization problem (3) in each sample.

Throughout, we will assume that the sampling opera-
tions of each controller are performed in a timer interrupt
handler or in a dedicated, high-priority task. This way, there
will not be any sampling jitter, even in the case of task over-
runs. Furthermore, we will assume that the control signals
are actuated as soon as the task has finished (or has been
aborted).

4.1. Scheduling of a single MPC

Even scheduling of a single MPC task is nontrivial. The
fundamental question is, when does it pay off to optimize
further? Figure 3 shows how the cost function (2) decreases
for each iteration during a typical optimization run. While
the objective function decreases with each new iteration, it
is also expected that the true cost will eventually start to
increase because of the latency. This is illustrated schemat-
ically by the dashed curve.
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Figure 3. The solid curve shows how the ob-
jective function (2) decreases for each itera-
tion during a typical optimization run. The
dashed curve illustrates the expected loss
due to delay.

Ideally, the increase in cost due to latency for a given
MPC task should be computed analytically. A natural stop
criterion for the optimization would then be when the total
cost starts to increase instead of decrease. However, cal-
culating the delay-induced cost turns out to be a very diffi-
cult problem, because of the complex and non-linear nature
of the MPC. Until further theoretical results are obtained
in this area, we suggest a simpler stop criterion based on
the specification of a maximum allowed delay for the con-
troller. The pseudo-code for the controller would then look
like this:

t = currentTime();
do forever {

read sample;
do {

perform one optimization iteration;
delay = currentTime() - t;

} while (!optimum && delay < MAXDELAY);
actuate plant;
t = t + T;
waitUntil(t);

}

Note that the code above allows for occasional overruns.
If the maximum delay is larger than the period, the next
task instance may be delayed until the current instance has
finished. This can actually be beneficial from a control per-
formance point of view, which will be shown in the case
study in Section 5.

4.2. Scheduling of several MPCs

The naive approach when scheduling several MPC tasks
would be to implement each task according to the pseudo-
code above, and then to schedule them as ordinary periodic
tasks using fixed-priority or earliest-deadline-first schedul-
ing. The main problem with this approach however, is that
the (possibly dynamic) priorities of the tasks do not reflect
their computational demand nor their relative importance at
each point in time.

A better approach is therefore to let the current values of
the MPC cost functions act as dynamic task priorities. A
scaling of the cost functions may be necessary to achieve a
fair comparison. The pseudo-code of the feedback sched-
uler looks like this:

do forever {
for (each active MPC task i) {

if (delay_i > MAXDELAY_i) {
abort optimization;
actuate plant;

}
}
determine MPC task i with highest cost;
let task i perform one iteration;
if (optimum_i) {

actuate plant;
}

}

To guarantee at least nominal stability of the controllers
(ignoring the latencies, see Section 3.4), a controller which
does not have a feasible solution yet is associated with an
infinite cost (this is typically achieved within the first iter-
ation). When an MPC task has just received new samples,
it is also associated with an infinite cost. This ensures that
the cost function will become properly updated as soon as
possible to reflect current situation in the controlled process.

5. Case study

In this section, a case study of an MPC for a quadruple-
tank process will be presented to illustrate the main ideas
from Section 4. The real-time properties of the controller
are examined, and scheduling of first one and then two con-
trollers under different strategies is investigated by simula-
tion.

5.1. The controlled process

The process used in the case study is the quadruple-tank
laboratory process, see Figure 4. This process was first pre-
sented in [8] and is a good example of a multi-variable pro-
cess. The goal is to control the level of the two lower tanks,

Proceedings of the Eighth IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS’02) 
0-7695-1739-0/02 $17.00 © 2002 IEEE 
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Tank 1 Tank 2
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Figure 4. The quadruple-tank laboratory pro-
cess. From [8].

y1 and y2, using the two pumps, u1 and u2. The flow from
pump 1 is divided such that a fraction 
1 enters tank 1 and
1� 
1 enters tank 4. Likewise, the flow from pump 2 is di-
vided such that a fraction 
2 enters tank 2 and 1� 
2 enters
tank 3. The cross-coupling in the process makes it hard to
achieve good performance using standard PID loops.

The process is linearized around a stationary point and
is sampled with an interval of one second. This gives a
standard discrete-time state-space model of the process to
be used as the internal model by the MPC. In the following,
y1, y2, u1, and u2 will denote deviations from the stationary
point.

5.2. Real-time properties

A 100 seconds simulation scenario, see Figure 6, is stud-
ied, where at time t = 30 s, a step reference change is com-
manded in y1. Also, a step load disturbance enters in y2 at
the same time. The disturbance is not modeled by the inter-
nal model, and will therefore make the optimization prob-
lem harder. The reference value for y2 is zero throughout
the simulation.

The result of an ideal simulation of the simulation sce-
nario is given by the solid curves in Figure 6. The control
performance is optimal and is obtained by letting the opti-
mization algorithm run to termination in each sample and
setting the computational delay to zero in the simulation.

A Java implementation of the controller was used to
measure the execution time in the described scenario. The
result is shown in Figure 5. A considerable difference in
execution time can be noticed between different operat-
ing conditions. During steady-state operation, the required
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Figure 5. Execution time measurement for the
MPC algorithm in the specific simulation sce-
nario given by Figure 6.

computational time is negligible, whereas during a step re-
sponse it may be considerable longer than the period of the
control task (one second). It is also seen in Figure 6 that
the input signal u1 operates at its constraint (4 V). The ac-
tive constraint makes the optimization problem harder and
contributes to the increase in execution time.

The varying execution times is due to the large difference
in the number of iterations required by the optimization al-
gorithm. In the following simulations it is assumed that the
execution time only depends on the number of iterations,
and the execution time for each iteration is set to 40 ms.

5.3. Simulation environment

The MATLAB/Simulink-based simulator TRUETIME [7]
is used to simulate controller task execution in a real-time
kernel in parallel with the continuous-time dynamics of the
quadruple-tank process. The detailed co-simulation makes
it possible to study the effect of different scheduling policies
and execution scenarios on the control performance.

5.4. A single quadruple-tank controller

To get an idea of how the input-output latency affects the
control performance, we first study the case of a single MPC
executing without interference from other tasks. In all im-
plementations considered below, the sampling is performed
by a separate high-priority task.

In a first simulation, the optimization algorithm is al-
lowed to run to termination in each instance. The result-
ing control performance is shown by the dashed curves in
Figure 6, and as a consequence of the delays caused by the
varying execution times the performance degrades.

Next, the implementation from Section 4.1 is used, with
the delay limit set to two periods. The resulting control per-
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Figure 6. Comparison of control performance in the single MPC case for different implementations.
Best performance (dash-dotted) is obtained by exploiting the dynamic trade-off between optimization
and delay. Enforcing hard deadlines by aborting prolonged computations at the deadline gives bad
performance (dotted). The dashed curves show a standard implementation with no abortion.
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scheduler, using feedback from the cost functions, improves the control performance considerably.
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Figure 8. Close-up of the schedule under
fixed-priority scheduling. The low-priority
controller task (MPC 1) is preempted dur-
ing significant amounts of time with resulting
poor control performance.

formance is quite close to the optimal, as shown by the dash-
dotted curves in Figure 6. The value for the delay limit was
found by extensive simulations.

An obvious alternative would have been to enforce hard
deadlines by always terminating the optimization at the end
of the period. In this example, this turns out to render re-
ally bad control performance, which is shown by the dotted
curves in Figure 6. Obviously, the optimization is some-
times terminated too early in this case. Optimizing further
may not only improve the quality in this sample, but also
in subsequent samples (because the last solution is used as
initial guess for the optimization in next sample). Hence, al-
ways aborting at the deadline may mean that we get a long
sequence of poor control signals.

The simulations indicate that dynamic scheduling, where
the MPC task is sometimes allowed to miss a deadline, may
give better results than terminating the optimization at the
deadline or allowing the optimization to run to completion.

5.5. Two quadruple-tank controllers

We next turn to scheduling of two MPCs for two
identical quadruple-tank processes on the same CPU. The
simulation scenario for the first controller is the same as
before, whereas the reference change and step load distur-
bance occur ten seconds later for the second controller. The
solid curves in Figure 7 show the result of an ideal sim-
ulation, with full optimization, no interference and no delay.

Fixed-priority scheduling

We first consider the situation where the tasks are scheduled
in a priority-preemptive real-time kernel using distinct pri-

30 35 40 45 50 55 60
Time [s]

                       Computer schedule EDF                          
(high=running, medium=preempted, low=sleeping) 

MPC 2 

MPC 1 

Figure 9. Close-up of the schedule under
earliest-deadline-first scheduling. Between
40 and 55 seconds both controllers consume
much computing resources and the system
becomes heavily overloaded. Just before
60 seconds both tasks are running frequently
to ”catch up” to previously missed deadlines.

orities, with MPC 2 given the highest priority. In addition
to the delays caused by the long execution times, MPC 1
will now also experience delay due to preemption from the
high-priority controller task. In the time interval 40-55 s,
when both processes are in their transient phases, MPC 1 is
preempted during significant amounts of time as seen in the
computer schedule in Figure 8. The result is poor control
performance, especially the response in y2 for the first tank.
This is shown by the dashed curves in Figure 7.

Earliest-deadline-first scheduling

Next, consider scheduling of the two MPCs using earliest-
deadline-first scheduling. The results are given by the
dotted curves in Figure 7, and it is seen that the perfor-
mance is somewhat improved compared to fixed-priority
scheduling. However, the response in y2 for the first
tank could still be better. It is a well-known fact that
earliest-deadline-first performs bad during overload, where
the scheduled system often will experience a domino
effect in missed deadlines. The degraded performance
will in turn influence the execution times, since the actual
process output will deviate from the predicted output. This
increase in execution time will further worsen the situation.
Figure 9 shows a close-up of the computer schedule in
the interesting time interval. Just before 60 seconds the
execution times decrease significantly. Both tasks are then
running frequently to try to ”catch up” to their missed
deadlines.
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Figure 10. Close-up of the schedule under
feedback scheduling. The feedback sched-
uler (top) distributes the computing on a per-
iteration basis based on the values of the cost
functions.

Feedback scheduling

The previous simulations indicate that fixed-priority
scheduling and earliest-deadline-first scheduling may be in-
appropriate for scheduling of MPC tasks. The main reason
for this is that the relative importance of each task is dy-
namic and depends on reference changes, disturbances, etc.
It is therefore impossible to do relevant off-line priority as-
signment and dynamic scheduling based on deadlines alone
may not be enough.

Instead the feedback scheduler from Section 4.2 is intro-
duced. Both controllers are designed with the same control
and prediction horizons, sampling intervals and weighting
matrices, making it straightforward to compare the values
of the respective cost functions. The feedback scheduler
and the MPC tasks communicate and synchronize their ex-
ecution using events.

Simulation results using the proposed scheme are given
by the dash-dotted curves in Figure 7. It can be seen that the
control performance has improved, especially for MPC 1.
A close-up of the distribution of computing resources in the
sample between 44 and 45 seconds is shown in Figure 10.
Here it is seen how the execution is divided between the
MPC tasks on a per-iteration basis. In the simulation, one
scheduling decision is assumed to take 1 ms.

6. Discussion

The simulation results indicate that dynamic scheduling
based on feedback from cost functions may be a successful
way to deal with limited computational time in the imple-
mentation of MPCs. However, to be able to apply the sug-
gested scheme in a more general setting several issues have
to be addressed.

One issue, commented on in Section 4.2, is how to make
fair comparisons of different cost functions. When schedul-
ing several MPC tasks, the strategy suggested in this paper
was to give priority to the controller with the highest current
value of its cost function. However, comparing cost func-
tions directly may not be appropriate when the controllers
have different sampling intervals, prediction horizons, mag-
nitude of disturbances, etc. In those cases, it would be
necessary to scale the cost functions to obtain a fair com-
parison. The scheduling could also use feedback from the
derivatives of the cost functions, as well as the relative dead-
lines of the different controllers.

Another important issue is the choice of algorithm for
the solution of the convex optimization problem. There ex-
ist two major families of methods for solving quadratic op-
timization problems with linear inequality constraints, see
e.g. [11]. The traditionally most used is the Active Set
method, which was used in the examples in this paper. In
this algorithm an active set, the set of active inequality con-
straints, is introduced. As the algorithm proceeds, con-
straints are added and removed from the active set until the
optimal solution is found. A drawback with this method,
as seen in Figure 3, is that the cost function may decrease
very irregularly as the number of active constraints changes.
This makes it difficult to know how close the optimum is
and whether it will pay off to optimize further.

In recent years Interior Point methods have won
widespread use as an alternative to active set methods. Inte-
rior point methods may be more suitable in a dynamic set-
ting, since the cost decreases more smoothly by each itera-
tion. It is then easier to estimate how much it will pay off
to optimize further—the scheduler could look at the time
derivatives of the cost functions to decide which MPC that
should run.

For most optimization problems it is possible to formu-
late another, often simpler problem, called the dual prob-
lem. One property relating the original problem and its dual,
is that their respective objective functions obtain the same
value at the optimum. A particularly attractive feature of
certain interior point methods [20] is that the algorithm of-
fers an estimation of the difference between the values of
the respective objective functions at each iteration. This is
a useful feature, since it gives an indication of how close to
the optimal point the solution at hand is, and may be used
to decide whether to terminate the algorithm or not. This
could be a better indication to the scheduler of what MPC
task that needs attention than just looking at the current cost.

As described above, premature termination of an opti-
mization run in one MPC may be justified in order to im-
prove the overall control performance. Given that the al-
gorithm at hand has found a feasible solution (considered
as a requirement), any of the algorithms may be terminated
before the optimum is found. The quality of the solution is
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then determined by how close to the optimum the solution
is. Potentially, this means that an interior-point method is
preferable, since it offers an estimation of how far off from
the optimal value a solution at a given iteration is.

7. Conclusions

The paper has discussed feedback scheduling of model
predictive controllers (MPCs). The MPC strategy is based
on on-line optimization of a cost function, and exhibit large
variations in execution time from sample to sample. Since
the optimization algorithm is iterative it may be aborted in
advance, still producing an acceptable control signal. This
is used to trade-off prolonged computations versus input-
output latency. The proposed scheduler also uses feed-
back from the cost functions that are used explicitly in
the controller algorithms to dynamically schedule a set of
MPC tasks. A case study is presented, where the suggested
scheme is shown to perform better than conventional fixed-
priority and earliest-deadline-first scheduling.
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