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An Analytic Solution to Fixed-Time Point-to-Point Trajectory Planning

M. Mahdi Ghazaei Ardakani1, Meike Stemmann1, Anders Robertsson1, and Rolf Johansson1

Abstract— We derive an analytic solution to the problem of
fixed-time trajectory generation with a quadratic cost function
under velocity and acceleration constraints. This problem has
a wide range of applications within motion planning. The
advantage of the analytic solution compared to numerical opti-
mization of the discretized problem is the unlimited resolution
of the solution and the efficiency of the calculation, allowing
sensor-based replanning and on-line trajectory generation.

I. INTRODUCTION

A desired characteristic of motion planning in uncertain
environments is the ability to react to sensor inputs [1].
Motion replanning based on sensor information requires
algorithms that can quickly generate a motion trajectory. The
concept of on-line trajectory generation, i.e., updating the
trajectory in each control cycle, is discussed in [2]. There are
many methods for on-line trajectory generation with the ob-
jective of time-optimality based on analytic expressions [3],
[4], [5], [1]. The difference between these methods lies in
their generality with regard to the constraints and the initial
and final states of the desired motion.

Using the existing analytic solutions, time-optimal or
nearly time-optimal trajectories can be computed extremely
fast. While the minimum-time trajectories are of interest for
defining an upper bound for the productivity of a robotic
system, they tend to maximize the wear of the system. In
practice, other factors such as coordination between different
units often determine the required time. Hence, the solution
to fixed-time problems with a cost function motivated by
the application can prove valuable by reducing the wear
of the robotic system. A common approach to fixed-time
problems is fitting a piece-wise polynomial between the
starting point and a final point [6], [7], [8] without con-
sidering an explicit cost function. Optimizing the energy or
power consumption [9] or the effort [10] was suggested in
other approaches. The solutions were obtained by numerical
methods either by discretization or optimizing parameters
over a set of basis functions. A sub-optimal solution to the
fixed-time trajectory planning considering a more generic
cost function was proposed in [11].

In this article, we consider the fixed-time trajectory-
generation problem with a quadratic cost under velocity
and acceleration constraints. The resulting trajectory can
for example be used in pick-and-place tasks to transfer
the current state (position and velocity) of a manipulator
to a new one in a given time. The purpose is to find a
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computationally efficient solution, such that a new trajectory
can be computed quickly if it is called upon by new sensor
measurments. We cast this problem into the framework of
optimal control with state variable inequality constraints
(SVIC). To find the solution, we use the direct adjoining
approach described in [12], [13], which is based on the
maximum principle [14]. This approach leads to a system of
equations that determines a set of parameters for an analytic
solution. The system of equations is solved numerically and
the resulting trajectories are compared with the numerical
solution obtained by discretizing the model and using an
interior-point method [15].

A. Problem Formulation

Since we are concerned with kinematic variables, specif-
ically constraining the velocity and acceleration, a double
integrator is a sufficient model for each degree of freedom
(DoF). This implies that we assume that the acceleration
of each DoF can be independently controlled. The robotic
system has an initial error with respect to a desired final
state (a certain position at rest), which is supposed to become
zero at a given fixed time. The error of the position denoted
by x1 is unconstrained but there are constraints on both
the acceleration u and on the velocity x2. We assume a
quadratic cost function specified by R > 0 and a diagonal
matrix Q := diag(q1,q2)> 0. The problem can be compactly
written as:

minimize
u

∫ t f

0
xT Qx+uT Rudt (1)

subject to ẋ(t) =
(

0 1
0 0

)
x(t)+

(
0
1

)
u(t) (2)

|u(t)| ≤ 1 (3)
|x2(t)| ≤ c (4)

x(0) =
(
x0, v0

)T x(t f ) = 02×1 (5)

II. PRELIMINARIES

Following the presentation of [12], [13], the control prob-
lem with SVIC is specified by an objective functional J to
be maximized subject to constraints on the states and the
control signal:

J(u) =
∫ t f

0
F(x(t),u(t), t)dt +S(x(t f ), t f )

ẋ(t) = f (x(t), t), x(0) = xi

(6)

g(x(t),u(t), t)≥ 0
h(x(t), t)≥ 0

a(x(t f ), t f )≥ 0
b(x(t f ), t f ) = 0,

(7)



where

h :Rn×R→ Rq, g : Rn×Rm×R→ Rs (8)

a :Rn×R→ R`, b : Rn×R→ R`′ . (9)

A. General Definitions and Conditions

Following [13], the order of pure state constraints as well
as junction times are defined here. Moreover, a constraint
qualification condition is presented [13]. Note that when
two symbols appear after each other, depending on the
dimensions, dot product or matrix multiplication is intended.

1) Order of Pure State Constraints:

h0(x,u, t) = h = h(x, t)

h1(x,u, t) = ḣ = hx(x, t) f (x,u, t)+ht(x, t)
...

hp(x,u, t) = h(p) = hp−1
x (x, t) f (x,u, t)+hp−1

t (x, t) (10)

The state constraint is of order p iff

hi
u(x,u, t) = 0, for 0≤ i≤ p−1, hp

u(x,u, t) 6= 0, (11)

2) Junction Times: With respect to the ith constraint, an
interval [τ1,τ2] is called a boundary interval if hi(x(t), t) = 0
for all t ∈ [τ1,τ2]. A subinterval (τ1,τ2) ⊂ [0, t f ] is called
an interior interval of a trajectory x(·) if hi(x(t), t) > 0
for all t ∈ (τ1,τ2). If an interior interval ends at τ1 and a
boundary interval starts at τ1, the instant τ1 is called an
entry time. Correspondingly, τ2 is called an exit time if
there is a boundary interval ending at t = τ2 and an interior
interval starting at τ2. A contact time is the instant that the
trajectory just touches the boundary, i.e., h(x(τ),τ) = 0 and
the trajectory is in the interior just before and after τ . Entry,
exit, and contact times are called junction times.

3) Constraint Qualification: The constraint qualifica-
tion for terminal constraints requires

rank
[

∂a/∂x diag(a)
∂b/∂x 0

]
= `+ `′. (12)

Additionally, for mixed constraints, i.e., the constraints in-
volving both states and input signals, we require

rank[∂g/∂u diag(g)] = s. (13)

B. Direct Adjoining approach

In this approach the mixed constraints as well as the pure
constraints are directly adjoined to the Hamiltonian H to
form the Lagrangian L. The Hamiltonian and the so called
D-form Lagrangian are defined as [13]

H(x,u,λ0,λ , t) = λ0F(x,u, t)+λ f (x,u, t) (14)
L(x,u,λ0,λ ,µ,ν , t) = H +µg(x,u, t)+νh(x,u, t). (15)

The costate is a mapping λ (·) : [0, t f ]→ Rn and multiplier
functions µ(·) and ν(·) are mappings from

[
0, t f

]
into Rs

and Rq, respectively. The control region is defined as:

Ω(x, t) = {u ∈ Rm |g(x,u, t)≥ 0} (16)

Theorem 1 (Informal Theorem 4.1 from [13]): Let
{x∗(·),u∗(·)} be an optimal pair for problem (6)–(9) over
[0, t f ] such that
• u∗(·) is right-continuous with left-hand limits,

• the constraint qualification holds for every tripple
{t,x∗(t),u} , t ∈ [0, t f ],u ∈Ω(x∗(t), t);

• Assume x∗(t) has only finitely many junction times.
Then there exists
• a constant λ0 ≥ 0,
• a piecewise absolutely continuous costate trajectory λ (·)

mapping
[
0, t f

]
into Rn,

• a piecewise continuous multiplier functions µ(·) and
ν(·) mapping

[
0, t f

]
into Rs and Rq, respectively,

• a vector η(τi)∈Rq for each point τi of discontinuity of
λ (·),

• α ∈ R` and β ∈ R`′ , γ ∈ Rq, not all zero,
such that the following conditions hold almost everywhere:
Hamiltonian maximization

u∗(t) = argmax
u∈Ω(x∗(t),t)

H(x∗(t),u,λ0,λ (t), t) (17)

and conditions on the optimal Hamiltonian and Lagrangian,
costates and multipliers

L∗u [t] = H∗u [t]+µg∗u[t] = 0 (18)

λ̇ (t) =−L∗x [t] (19)
µ(t)≥ 0, µ(t)g∗ [t] = 0 (20)
ν(t)≥ 0, ν(t)h∗ [t] = 0 (21)

and dH∗ [t]/dt = dL∗ [t]/dt = L∗t [t] := ∂L∗[t]/∂ t; (22)

At the terminal time t f , the transversality conditions hold:

λ (t−f ) = λ0S∗x
[
t f
]
+αa∗x

[
t f
]
+βb∗x

[
t f
]
+ γh∗x

[
t f
]

(23)

α ≥ 0, γ ≥ 0, αa∗
[
t f
]
= γh∗

[
t f
]
= 0; (24)

For any time τ in the boundary interval and for any contact
time τ , the costate trajectory may have a discontinuity given
by the following conditions

λ (τ−) = λ (τ+)+η(τ)h∗x [τ] (25)

H∗
[
τ−
]
= H∗

[
τ+
]
−η(τ)h∗t [τ] (26)

η(τ)≥ 0, η(τ)h∗ [τ] = 0. (27)
Remark 2.1: If the control signal appears linearly, formal

proofs for the necessity of the conditions are available [16].

III. ANALYTIC SOLUTION

In this section, we apply the direct adjoining approach to
our problem. First, the variables and parameters are identified
with the general problem (6)–(9). Then, we evaluate one
by one the different conditions imposed on the solution by
Theorem 1. From the Hamiltonian maximization, we find out
that the solution is divided into several regions. The regions
are determined by active constraints. In each region, the con-
ditions are evaluated and expressions for the control signal,
states, costates, and multipliers are derived. Furthermore, the
conditions at the boundaries and the continuity of the control
signal and states are considered.

Depending on the problem, various scenarios may arise
in which no constraint, one of the constraints or all become
active. For the sake of brevity of this article, we just present
the scenario where both the constraints on the control signal
and the state become active. The solution to other scenarios
can be derived similarly.



A. Parameters, Hamiltonian and Lagrangian

By comparing (1)–(5) with (6)–(7), we identify

F (x(t),u(t), t) =−(xT Qx+uT Ru) (28)
S(t f ) = 0 (29)

f1 (x(t),u(t), t) = x2(t) (30)
f2 (x(t),u(t), t) = u(t). (31)

In addition, from (14) and (15)

H =−λ0
(
q1x2

1(t)+q2x2
2(t)+ ru2(t)

)
(32)

+λ1(t)x2(t)+λ2(t)u(t)

L = H +µ1(t)(1−u(t))+µ2(t)(1+u(t)) (33)
+ν1(t)(c− x2(t))+ν2(t)(c+ x2(t)).

B. Constraints

Identifying the constraints with (7) results in

h(x(t)) =
(

c− x2(t)
c+ x2(t)

)
(34)

g(u(t)) =
(

1−u(t)
1+u(t)

)
(35)

b(x(t)) =
(

x1(t)
x2(t)

)
. (36)

The order of the constraints is found to be p = 1 by the
following calculation

h0 =

(
c− x2
c+ x2

)
⇒ h0

u = 0 (37)

h1 =

(
−ẋ2(t)
ẋ2(t)

)
=

(
−u(t)
u(t)

)
⇒ h1

u =

(
−1
1

)
. (38)

The constraint qualification conditions (12)–(13) hold, since

rank
(

0 1
1 0

)
= 2 = `′ (39)

rank
(
−1 1−u 0
1 0 1+u

)
= 2 = s ∀u (40)

C. Hamiltonian Maximization

Without constraints, the Hamiltonian is maximized for

û(t) =
1
2

1
r

λ2(t)
λ0

. (41)

Considering the constraints, the optimal solution is

u∗(t) =


−1 if λ2(t)/λ0 <−2r
1
2r

λ2(t)
λ0

if −2r ≤ λ2(t)/λ0 ≤ 2r

1 if λ2(t)/λ0 > 2r

(42)

Given the scenario that both the constraints on the control
signal and the state become active, we conclude the follow-
ing time-dependent optimal solution u∗ (see Fig. 1 for an
illustration)

u∗(t) =



−1 for t < τ1
1
2r

λ2(t)
λ0

for τ1 ≤ t ≤ τ2

0 for τ2 < t < τ3
1
2r

λ2(t)
λ0

for τ3 ≤ t ≤ τ4

1 for τ4 < t

(43)

where τi, i ∈ {1..4} are junction times.

D. The Conditions

We evaluate conditions (18)–(21) here:
L∗u[t] = H∗u [t]+µg∗u[t] = 0
⇒−2ru(t)+λ2(t)−µ1(t)+µ2(t) = 0 (44)

λ̇ (t) =−L∗x [t]

⇒
{

λ̇1(t) = 2λ0q1x1(t)
λ̇2(t) = 2λ0q2x2(t)−λ1(t)+ν1(t)−ν2(t)

(45)

µ(t) =
(
µ1(t) µ2(t)

)T ≥ 0, µ(t)g∗[t] = 0
⇒(µ1(t)+µ2(t))− (µ1(t)−µ2(t))u∗(t) = 0 (46)

ν(t) =
(
ν1(t) ν2(t)

)T ≥ 0, ν̇(t)≤ 0, ν(t)h∗(t) = 0
⇒(ν1(t)+ν2(t))c− (ν1(t)−ν2(t))x2(t) = 0 (47)

Additionally, (22) results in
dH∗[t]

dt
=

dL∗

dt
= L∗t [t]⇒

−2q1x1(t)x2(t)−2q2x2(t)u(t)−2ru(t)u̇(t)

+λ1(t)u(t)+ λ̇1(t)x2(t)+λ2(t)u̇(t)+ λ̇2(t)u(t) = 0
(48)

u̇(t)(µ1(t)−µ2(t))+(µ̇1(t)− µ̇2(t))u(t)

− (µ̇1(t)+ µ̇2(t))+(ν1(t)−ν2(t))u(t)

+(ν̇1(t)− ν̇2(t))x2(t)− c(ν̇1(t)+ ν̇2(t)) = 0
(49)

E. Transversality conditions

Equations (23)–(24) are evaluated here:
λ (t−f ) = βb∗x [t f ]+ γh∗x [t f ](

λ1[1−]
λ2[1−]

)
= I2×2

(
β1
β2

)
+

(
0 −1
0 1

)T (γ1
γ2

)
(50)

γ ≥ 0,γh[t f ] = 0⇒ (γ1 + γ2)c− (γ1− γ2)x2(t f ) = 0 (51)
Since x2(t f ) = 0, we conclude γ1 = γ2 = 0.

F. Regions

In view of (43), the solution is divided into different
regions. We consider each case separately and using the
knowledge of u∗(t) in each specific region and (44)–(49),
expressions for the states, the costates and the multiplier
functions are calculated. Hereafter, we set λ0 = 1.

1) Case 1, u∗(t) =−1, t < τ1: Assuming that x0 > 0

x1(t) =−
1
2

t2 + v0t + x0

x2(t) =−t + v0

(52)

From (44) follows
2r+λ2(t)−µ1(t)+µ2(t) = 0. (53)

From (46) follows
µ1(t) = 0, µ2(t)≥ 0 free. (54)

From (47) follows

ν1(t) =
t− c
t + c

ν2(t). (55)

From (49) follows
2µ̇1 +(t + c)ν̇1− (t− c)ν̇2 +(ν1−ν2) = 0. (56)

From (45) follows{
λ̇1(t) =−q1t2 +2q1x0

λ̇2(t) =−2q2t−λ1(t)+ν1(t)−ν2(t),
(57)



and combined with (48), we conclude

ν1(t) = ν2(t). (58)

From (55) and (58) it follows that

ν1(t) = ν2(t) = 0.

From (57) follows{
λ1(t) =− 1

3 q1t3 +q1x0t +K1

λ2(t) = 1
12 q1t4− ( 1

2 q1x0 +q2)t2− tK1 +K2,
(59)

where K1 and K2 are appropriate constants of integration.
2) Case 2, u∗(t) = 0, τ2 < t < τ3:

x1(t) =−ct +K3

x2(t) =−c (60)

From (44) follows

λ2(t)−µ1(t)+µ2(t) = 0. (61)

From (46) follows

µ1(t) = µ2(t) = 0. (62)

From (47) follows

ν1(t) = 0, ν2(t)≥ 0 free. (63)

From (45) follows
λ̇1(t) =−2q1ct +2q1K3

λ̇2(t) =−λ1(t)−2q2c−ν2(t).
(64)

From (61) and (62) we conclude λ2(t) = 0. Considering
this, (64) simplifies to

ν2(t) =−λ1(t)−2q2c (65)

λ1(t) =−q1ct2 +2q1K3t +K4. (66)

3) Case 3, u∗(t) = 1, t > τ4: By integrating the control
signal, we obtain

x1(t) =
1
2

t2 +K5t +K6

x2(t) = t +K5.
(67)

From (44) follows

−2r+λ2(t)−µ1(t)+µ2(t) = 0. (68)

From (46) follows

µ1(t)≥ 0 free, µ2(t) = 0. (69)

From (47) follows

(c− t)ν1(t)+(c+ t)ν2(t)− (ν1(t)−ν2(t))K5 = 0. (70)

From (49) follows

ν1(t)−ν2(t)+(ν̇1(t)− ν̇2(t))(t− c+K5) = 0. (71)

From (45) follows{
λ̇1(t) = 2q1(

1
2 t2 +K5t +K6)

λ̇2(t) = 2q2(t +K5)−λ1(t)+ν1(t)−ν2(t),
(72)

and combined with (48), we conclude

ν1(t) = ν2(t). (73)

From (70) and (73) it follows that ν1(t) = ν2(t) = 0. From
(72) follows

λ1(t) = 1
3 q1t3 +q1K5t2 +2q1K6t +K7

λ2(t) =− 1
12 q1t4− 1

3 q1K5t3 +(q2−q1K6)t2

+(2q2K5−K7)t +K8

(74)

4) Case 4, u∗(t) = 1
2r λ2(t), τ1 < t < τ2 or τ3 < t < τ4:

From (44) follows

u(t) =
λ2(t)−µ1(t)+µ2(t)

2r
⇒ µ1(t) = µ2(t). (75)

From (46) follows

µ1(t)+µ2(t) = 0. (76)

Therefore, µ1(t) = µ2(t) = 0.
From (48) follows(

−2q2x2(t)+λ1(t)+ λ̇2(t)
)

λ2(t) = 0. (77)

In this region, λ2(t) cannot be identically equal to zero. Thus,

−2q2x2(t)+λ1(t)+ λ̇2(t) = 0. (78)

Comparing with (45) and using (47), we conclude that
ν1(t) = ν2(t) = 0. Using (78), the system equations (2), and
u∗(t) = 1

2r λ2(t), we conclude

λ (4)
2 (t) =

1
r
(q2λ̈2(t)−q1λ2(t)). (79)

From this follows

λ2(t) =C1e−σ1t +C2eσ1t +C3e−σ2t +C4eσ2t , (80)

where

σ1 =

√√√√q2 +
√

q2
2−4rq1

2r
, σ2 =

√√√√q2−
√

q2
2−4rq1

2r
,

and Ci are appropriate constants of integration.
Let us define

A(C, t) :=
C1

σ2
1

e−σ1t +
C2

σ2
1

eσ1t +
C3

σ2
2

e−σ2t +
C4

σ2
2

eσ2t

A′(C, t) =−C1

σ1
e−σ1t +

C2

σ1
eσ1t − C3

σ2
e−σ2t +

C4

σ2
eσ2t

A′′(C, t) =C1e−σ1t +C2eσ1t +C3e−σ2t +C4eσ2t

B(C, t) :=
σ2

2
σ1

(
C1e−σ1t −C2eσ1t)+ σ2

1
σ2

(
C3e−σ2t −C4eσ2t) .

Thus, we can write

u(t) =
1
2r

A′′(C, t). (81)

From the system equations (2)

ẋ2(t) =u(t) ⇒ x2(t) =
1
2r

A′(C, t)+κ1 (82)

ẋ1(t) =x2(t) ⇒ x1(t) =
1
2r

A(C, t)+κ1t +κ2. (83)

Considering (78), it follows

λ1(t) =−B(C, t)+2q2κ1. (84)

Moreover, substituting (83) and (84) into (45), and using the
assumption q1,r 6= 0 result in

κ1t +κ2 = 0. (85)

The equations derived in this part apply to two regions. For
the first interval, τ1 < t < τ2, we will use constants Ci, i ∈
{1..4} and for the second interval, τ3 < t < τ4, constants Di.
Note that since it is assumed that the junction times τi are
distinct, (85) must hold in more than one point. Accordingly,

κ1 = κ2 = 0. (86)



G. Initial and Final Conditions:

The initial condition on x is already used in (52). Without
loss of generality, we normalize the final time to 1. Thus,
the final conditions for x are

x1(1) = 0, x2(1) = 0. (87)

Therefore, from (67), when u∗ = 1 follows

K5 =−1, K6 =
1
2
. (88)

H. Continuity of u∗:

The Hamiltonian (32) is regular, i.e. the maximization of
H w.r.t. u is unique. Therefore, u∗ is continuous everywhere
including the points on the boundary according to Proposi-
tion 4.3 in [13]. We evaluate the control signal at junction
times from below and above and equate the expressions:

u∗(τ+1 ) =−1, u∗(τ−2 ) = 0, u∗(τ+3 ) = 0, u∗(τ−4 ) = 1⇒
A′′(C,τ1)+2r = 0 (89)
A′′(C,τ2) = 0 (90)
A′′(D,τ3) = 0 (91)
A′′(D,τ4)−2r = 0 (92)

I. Continuity of x∗:

By integrating u∗, we arrive at the states. Hence, x∗ is
continuous too. The values of the states at junction times
from below and above are equated:

x∗1(τ
−
i ) = x∗1(τ

+
i ), x∗2(τ

−
i ) = x∗2(τ

+
i ), i ∈ {1..4}⇒

A(C,τ1)+ r
(
τ2

1 − v0τ1−2x0
)
= 0 (93)

A′(C,τ1)+2r(τ1− v0) = 0 (94)
A(C,τ2)+2r (cτ2−K3) = 0 (95)
A′(C,τ2)+2rc = 0 (96)
A(D,τ3)+2r (cτ3−K3) = 0 (97)
A′(D,τ3)+2rc = 0 (98)

A(D,τ4)− r (τ4−1)2 = 0 (99)
A′(D,τ4)−2r (τ4−1) = 0 (100)

J. Continuity of λ :

The continuity of the adjoint function λ at junction times
is guaranteed since our problem fulfills the conditions of
Proposition 4.2 in [13]. To show this, from the dimensions
of the constraint functions h(·) and g(·), we have s = q = 2.
The control signal u∗ is continuous and

rank
(

∂g∗[τ]/∂u diag(g∗[τ]) 0
∂h1∗[τ]/∂u 0 diag(h∗[τ])

)

= rank


−1 1−u(τ) 0 0 0
1 0 1+u(τ) 0 0
−1 0 0 c− x2(τ) 0
1 0 0 0 c+ x2(τ)


= 4 = s+q. (101)

Now, we evaluate the costates at junction times from below
and above and equate the expressions:

λ1(τ−i ) = λ1(τ+i ), λ2(τ−i ) = λ2(τ+i ), i ∈ {1..4}⇒
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Fig. 1. Comparison of the result of the interior-point method with 100
discretization points and the analytic solution to (1)–(5) with the parameters
given in (108)–(109). The smooth curves in the upper plot as well as the
blue and green pieces in the lower plot belong to the analytic solution.

B(C,τ1)−
1
3

q1τ3
1 +q1x0τ1 +K1 = 0 (102)

1
12

q1τ4
1 +(q1x0 +q2)τ2

1 − τ1K1−K2−2r = 0 (103)

B(C,τ2)−q1cτ2
2 +2q1K3τ2 +K4 = 0 (104)

B(D,τ3)−q1cτ2
3 +2q1K3τ3 +K4 = 0 (105)

B(D,τ4)+
1
3

q1τ3
4 −q1τ2

4 +q1τ4 +K7 = 0 (106)

1
12

q1τ4
4 +

1
3

q1τ3
4 +(

1
2

q1−q2)τ2
4 +(2q2 +K7)τ4 (107)

−K8 +2r = 0

IV. RESULTS

The conditions of the theorem lead to 24 unknowns
(Ki, i ∈ {1..8}, κi, i ∈ {1..2} for two regions, Ci,Di, i ∈
{1..4}, and τi, i ∈ {1..4}) and 24 equations, (86) and (88)–
(107). By solving these equations, the junction times and the
integration constants are determined and hence the solution
to the optimal control problem. There are six trivial equations
corresponding to (86) and (88). The rest are nonlinear in τi
but linear in the other parameters. Note that we have only
presented the result of the scenario where 0≤ τ1 < τ2 < τ3 <
τ4≤ 1. If there is no solution to the equations, other scenarios
where no or only some of the state/input constraints become
active, must be considered. The problem is infeasible if there
is no solution to any of these scenarios.

A. Example

We report the results for the following example:

R = r = 0.1, Q =

(
1 0
0 10

)
(108)

c = 0.22, x0 = 0.17, v0 = 0, t f = 1. (109)
The numerical solution obtained by the interior method and
the analytic solution are compared in Fig. 1. We ran 10
experiments starting from a random initial guess for the
solution of the nonlinear equations. The fsolve function in
Matlab was able to find a solution on average in 0.0825 s on
an Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz with 32GB
RAM running Fedora 20. The same problem was solved
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Fig. 2. An illustrative example for the effect of various cost functions
(q1,q2,r). The other parameters for the problem are according to (109).

using CVX package [17] in Matlab, with the sampling time
of h = 1 ms. The interior point method approach took on
average 14.232 s (including the overheads 53.753 s). The
cost obtained by the analytical approach was 385.352h which
was confirmed by the numerical result. The effect on the
control signal by varying Q and R is shown in Fig. 2.

V. DISCUSSIONS

Since the Hamiltonian H in (32) is concave, we conclude
that the solution to our example found by the direct approach
is optimal according to the Mangasarian-type sufficient con-
dition [18], [13]. Note that, although we use a numerical
approach to find the constants, this approach is independent
of the number of discretization points. In other words, there
is an analytic expression for the solution that is parametrized
by the unknowns.

The minimum-time solutions proposed in [4], [5], [1]
result in “bang-bang” solutions. By including constraints
on jerk or higher order derivatives of the position, it is
possible to make the transitions smoother. However, no
explicit cost on the states and control signal is taken into
account. Moreover, the variation in the final time for the
minimum-time problems demands a special solution for the
synchronization between different degrees of freedom [1].
Compared to the piece-wise polynomial approaches [6], [7],
[8], our solution takes into account a quadratic cost function
as well as the constraints on velocity and acceleration.

In many industrial manipulators, individual joint velocities
and positions are used as reference inputs for each DOF. The
required torque values can also be calculated if the inverse
dynamics is available. Thus, our approach is applicable for a
large class of robots. However, the assumption of decoupled
DOF does not hold in general when there are obstacles. In
such cases, via-points can be included or a multiple DOF
problem with the obstacles represented as state constraints
needs to be solved. Finding an analytic solution in the latter
approach is challenging.

VI. CONCLUSIONS

An analytic solution to the fixed-time optimal point-to-
point trajectory planning problem with velocity and accelera-
tion constraints is derived. The benefit of the analytic solution
is that its computation time is independent of its resolution,
while a numerical approach based on discretization might fail
for a high sampling rate. Since the solution can be computed
efficiently, there is an opportunity for an on-line trajectory
generation. Compared to time-optimal solutions, the fixed-
time problem allows for an application-specific cost function.
Additionally, the synchronization between several degrees of
freedom is for free since all movements must follow the same
given fixed-time.
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