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Finite scale homogenization of chiral media
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Abstract

Isotropic chiral media can be modeled in many ways. We use an unbiased homogenization technique
to compute effective material parameters for a composite material with microstructure consisting of spi-
rals, and then compare the results with three models: Tellegen, Post, and Drude-Born-Fedorov. Only the
DBF model can fit the data, but requires a modification, so thatthe influence of the curl of the fields is
different for the electric and the magnetic field, respectively.

1 Introduction

Chiral materials are challenging from a modelling point of view. The typical realization is the classical one by Lindman
[1, 2], who took a lot of metal coils, all wound the same way, and embedded them in an isolating material. The
result was a material which had different propagation properties for left and right hand circularly polarized waves,
respectively. The same effect can be observed for visible light in sugar solutions, attributed to the chirality of the sugar
molecule.

From a modelling point of view, the challenge lies in the factthat the chiral effect has to do with wave propaga-
tion, but most homogenization methods are only defined in thelimit where the inclusions are infinitely small compared
to the wavelength, meaning the fields can be considered quasi-static near the inclusions and the chiral effects cannot be
observed. In recent years, new homogenization formalisms have been proposed that can take a finite scale difference
into account, with sufficient mathematical rigor [3, 4]. In this paper, we study the outcome of this homogenization
technique when applied to a microstructure similar to Lindman’s original experiment. It is demonstrated that among
the available model’s in the literature, a modification of the Drude-Born-Fedorov model fits the computed data very
closely.

2 Dispersion relations

Our model problem is periodic, and we present in this sectionsome notation and general results for periodic media.
The first step in describing periodic media is to define a unit cell U and a lattice basisa1, a2, anda3, such that the
periodic material can be constructed by translating the unit cell by lattice vectorsxn = n1a1 + n2a2 + n3a3, where
n1, n2, andn3 are integers. Once this is done, a reciprocal unit cellU ′ and basis vectorsb1, b2, b3 for the reciprocal
lattice can be defined, such thatai · bj = 2πδij . The reciprocal unit cellU ′ is often called the first Brillouin zone.
Using the Floquet-Bloch representation an arbitrary square integrable fieldE(x) can be written [3, 5, 6],

E(x) =
1

|U ′|

∫

U ′

eik·xẼ(x,k) dk (1)

The fieldẼ(x,k) is called the Bloch amplitude, and isU -periodic inx whereas the fieldeik·xẼ(x,k) is U ′-periodic
in k. A typical effect when using this representation is the transformation of the nabla operator,∇ → ∇ + ik,
when acting on the Bloch amplitude. It is shown in [3], that the following eigenvalue problem provides the relevant
information of the problem when the material consists of only real permittivityǫ(x) and real permeabilityµ(x), which
are assumedU -periodic:

(
0 −(∇ + ik) × I

(∇ + ik) × I 0

) (
Ẽn

H̃n

)
= iωn

(
ǫ(x) 0

0 µ(x)

) (
Ẽn

H̃n

)
(2)



Tellegen Post Drude-Born-Fedorov
D = ǫTE + ζH ǫPE + iξB ǫ(E + β∇× E)
B = µTH − ζE µP(H − iξE) µ(H + β∇× H)

Table 1: Three different possible descriptions of isotropic chiral media, see [7, pp. 15–16] and [8].

wherex ∈ U andk ∈ U ′. When the unit cell contains a PEC regionΩ (such as the coils in Lindman’s experiment),
the problem is modified so that only space vectors outside thePEC region,x ∈ U \Ω, are considered. We also require
the boundary condition that electric fields tangential to the surface ofΩ are zero,i.e., n̂ × Ẽ = 0 wheren̂ is the
normal to∂Ω. The same conclusions can then be made for the PEC case as whenthe entire unit cell is filled with finite
material parametersǫ(x) andµ(x).

It is shown in [3] that the eigenvalue problem (2) is well posed, and the solutions can be used as a basis in
a properly defined function space for Maxwell’s equations. The eigenvaluesωn are real, and form a nondecreasing
sequence

0 ≤ ω2

1 ≤ ω2

2 ≤ · · · (3)

Sincek ∈ U ′ is a free parameter, the eigenvalue problem (2) definesωn as a function ofk, which is the dispersion
relationωn = Wn(k).

3 Calculation of effective material parameters

In [3, 4], it is shown that a periodic heterogeneous materialcan be replaced by a homogeneous, effective material
when the wavelength is large enough. More precisely, the condition can be written as

2π
a

λ0

<
π − 1

‖ǫ(·)/ǫ0 − 1‖ + 1
(4)

for non-magnetic media, whereλ0 is the vacuum wavelength,ǫ0 is the permittivity of vacuum, anda is the length of
the unit cell. Note that this does not require the unit cell tobe infinitely small compared to the vacuum wavelength.
For a fixedk ∈ U ′, the effective material parameters can be expressed in terms of the mean values of the eigenvectors
corresponding to the four eigenvalues with smallest absolute value. The relation defining the parameters is

(
〈D̃〉

〈B̃〉

)
=

(
ǫeff ξeff

ζeff µeff

) (
〈Ẽ〉

〈H̃〉

)
(5)

where〈D̃〉 denotes the mean value of the Bloch amplitude of the electricflux density over the unit cellU . The explicit
formula for the effective material parameters in terms of the first four modes is

(
ǫeff ξeff

ζeff µeff

)
=

4∑

n=1

(
〈ǫ · Ẽn〉

〈µ · H̃n〉

)(
〈ǫ · Ẽn〉

∗

〈µ · H̃n〉
∗

)

〈ǫ · Ẽn〉
∗

· 〈Ẽn〉 + 〈µ · H̃n〉
∗

· 〈H̃n〉
(6)

where the nominator should be understood as a dyadic product. The parametersξeff andζeff model the possible direct
coupling between electric and magnetic fields in the constitutive relation. The point of the method which is sketched
here, is that by solving equation (2) and computing the righthand side of (6), we can compute the effective material
matrices without assuming any particular model for the effective material. Thus, we can use this unbiased method to
study which theoretical model is best suited for a particular microstructure.

4 Different constitutive relations for chiral media

Throughout the years, at least three major models have been used for isotropic chiral materials, see Table 1. It can be
shown that it is possible to transform the different models into each other. If sources are present, they may need to
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Figure 1: Spiral geometry and the effectiveǫ/ǫ0, µ/µ0, β1, andβ2 parameters, as well as the relative errorsδǫ

andδµ. On the horizontal axis are different values of the normalized wave vectorka within the reciprocal unit cell
U ′ = [−π/a, π/a]3. The peaks forβ1 andβ2 close toka = (π, 0, 0) have been truncated, the peak values are both
β1 = β2 = 0.7a. The spirals were simulated using a permittivity of 100, making them numerically reasonably close
to metal.

be transformed too. Using the results from the previous section, we now investigate if any of these models is close
to what is computed by the unbiased method in (6). To start with, one can use symmetry arguments to prove that the
magneto-electric coupling termsξeff andζeff computed from (6) must be identically zero, if the microscopic material
parametersǫ(x) andµ(x) are real and symmetric. This leaves the Drude-Born-Fedorovmodel as the only candidate.

Applying the Floquet-Bloch transformation to the electricpart of the Drude-Born-Fedorov model implies (re-
member that in the effective model the material parameters are constants)

D̃ = ǫ(Ẽ + β(∇ + ik) × Ẽ) =⇒ 〈D̃〉 = ǫ(I + βik×) 〈Ẽ〉 (7)

where the equality for the mean values follow since the mean value of any derivative of a periodic field is zero,
〈∇ × Ẽ〉 = 0. As a numerical test, spiral inclusions have been implemented in the program described in [9] as
depicted in Figure 1. If we extend the Drude-Born-Fedorov model by allowing differentβ-factors for electric and
magnetic field, respectively,

〈D̃〉 = ǫ(I + β1ik×) 〈Ẽ〉 (8)

〈B̃〉 = µ(I + β2ik×) 〈H̃〉 (9)

we see that this model can actually be used to represent any isotropic matrix, provided we only study components
orthogonal to the propagation direction,i.e., the components dealing with propagating waves. It is shownin [3] that
the matrix computed from (6) is precisely such a matrix, and isotropy is provided by arranging the spirals in all



coordinate directions as shown in Figure 1. The error in the parameter fit is computed asδǫ = ‖ǫ′
eff

− ǫeff‖ / ‖ǫeff‖,
whereǫ′

eff
is the effective permittivity as computed from the parametric model (8), andǫeff is computed from (6). The

relative errorsδǫ andδµ in Figure 1 can be explained by the structure not being completely isotropic, since the spirals
are slightly asymmetrical. When looking only at the chiral contribution,i.e., the error in the imaginary part ofǫeff and
µeff , the error level drops to less than3 · 10−5 for both quantities and allk. It is seen that we obtain

β1 → β0 6= 0 and β2 → 0 when |k| → 0 (10)

The factorβ0 is in the order of0.04a, and depends on in which direction the origin is approached.This does not
contradict the isotropy of the effective material, since this can only be required to be isotropic exactly at the origin
k = 0, since anyk 6= 0 implies there is a preferred direction (the propagation direction), and hence there is no reason
for the material to be isotropic. The factorβ0 is multiplied with ik×, which makes the chiral contribution go to zero
as |k| → 0. This means that when the applied wavelength is very long compared to the unit cell (ka is small), the
material is described by〈D̃〉 = ǫeff(〈Ẽ〉 + β0ik × 〈Ẽ〉) and〈B̃〉 = µ0 〈H̃〉, which is Born’s original model [10].
Note that for wave vectors close toka = (π, 0, 0) (and by symmetry also(0, π, 0) and(0, 0, π)), theβ1 andβ2 factors
are both large and equal, which is close to Fedorovs model.

5 Conclusions

We have applied an unbiased finite scale homogenization method to the problem of finding effective material param-
eters for an isotropic chiral microstructure. The result isthat this kind of structure can be modelled with a modified
Drude-Born-Fedorov model, with different couplings to thecurl of the electric and magnetic field, respectively. For
small frequencies, only the electric field contribute to thechiral effects in the consitutive relations, whereas the cou-
plings are equal for higher frequencies. The couplings depend on the size and direction of the wave vector.
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