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Abstract

Isotropic chiral media can be modeled in many ways. We usenbiased homogenization technique
to compute effective material parameters for a compositemahwith microstructure consisting of spi-
rals, and then compare the results with three models: Eaildgost, and Drude-Born-Fedorov. Only the
DBF model can fit the data, but requires a modification, sotti@influence of the curl of the fields is
different for the electric and the magnetic field, respexdyiv

1 Introduction

Chiral materials are challenging from a modelling pointigfwv The typical realization is the classical one by Lindman
[1, 2], who took a lot of metal coils, all wound the same wayl @ambedded them in an isolating material. The
result was a material which had different propagation pribge for left and right hand circularly polarized waves,
respectively. The same effect can be observed for visighe Ih sugar solutions, attributed to the chirality of thgau
molecule.

From a modelling point of view, the challenge lies in the et the chiral effect has to do with wave propaga-
tion, but most homogenization methods are only defined ifinfiewhere the inclusions are infinitely small compared
to the wavelength, meaning the fields can be considered-gqte&i near the inclusions and the chiral effects cannot be
observed. In recent years, new homogenization formalisaae heen proposed that can take a finite scale difference
into account, with sufficient mathematical rigor [3, 4]. hig paper, we study the outcome of this homogenization
technique when applied to a microstructure similar to Liadra original experiment. It is demonstrated that among
the available model’s in the literature, a modification af brude-Born-Fedorov model fits the computed data very
closely.

2 Dispersion relations

Our model problem is periodic, and we present in this sec@mne notation and general results for periodic media.
The first step in describing periodic media is to define a uvelitl¢ and a lattice basia,, as, andas, such that the
periodic material can be constructed by translating theagli by lattice vectorse,, = n1a; + nsas + nzas, where

n1, ng, andng are integers. Once this is done, a reciprocal unit@ékhnd basis vectors,, by, bs for the reciprocal
lattice can be defined, such that- b; = 27d;;. The reciprocal unit cell’ is often called the first Brillouin zone.
Using the Floquet-Bloch representation an arbitrary sgjirgegrable field®(x) can be written [3, 5, 6],

E(x) * Bz, k) dk 1)

U Ju

The field E(x, k) is called the Bloch amplitude, andi&periodic inx whereas the fieldik"”f?(w, k) is U’-periodic

in k. A typical effect when using this representation is the ¢farmation of the nabla operatoV, — V + ik,
when acting on the Bloch amplitude. It is shown in [3], that tbllowing eigenvalue problem provides the relevant
information of the problem when the material consists ofoall permittivitye(x) and real permeabilitye (), which
are assumedtl -periodic:
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Table 1: Three different possible descriptions of isotcaghiiral media, see [7, pp. 15-16] and [8].

wherex € U andk € U’. When the unit cell contains a PEC regi@ir(such as the coils in Lindman’s experiment),
the problem is modified so that only space vectors outsideH@ regionx € U \ (2, are considered. We also require
the boundary condition that electric fields tangential te sarface of) are zeroj.e, n x E = 0 wheren is the
normal todf2. The same conclusions can then be made for the PEC case ashateattire unit cell is filled with finite
material parameters(x) andp(x).

It is shown in [3] that the eigenvalue problem (2) is well pthsand the solutions can be used as a basis in
a properly defined function space for Maxwell's equationke Eigenvalues,, are real, and form a nondecreasing
sequence
0<wi<wy<-- 3)

Sincek € U’ is a free parameter, the eigenvalue problem (2) defineas a function of, which is the dispersion
relationw,, = W, (k).

3 Calculation of effective material parameters

In [3, 4], it is shown that a periodic heterogeneous matexda be replaced by a homogeneous, effective material
when the wavelength is large enough. More precisely, thdition can be written as
Tm—1

a
S0 < Te0 e =11 +1 “

for non-magnetic media, whepg is the vacuum wavelengthy is the permittivity of vacuum, and is the length of
the unit cell. Note that this does not require the unit celb¢oinfinitely small compared to the vacuum wavelength.
For a fixedk € U’, the effective material parameters can be expressed irs tgiithe mean values of the eigenvectors
corresponding to the four eigenvalues with smallest albsoalue. The relation defining the parameters is

(<§>) _ (eeff £eﬁ'> (<E>> (5)
<B> Ceff Hefr <H>

where<1~)> denotes the mean value of the Bloch amplitude of the eldttsicdensity over the unit cell'. The explicit
formula for the effective material parameters in terms effirst four modes is

(<6.En>><<e-ﬁ;n>*>
4 Ir TT \*
(Eeff Eeff) _ Z (p- Hy) (p-Hy) (6)
Cer Hort)  “=(e-E,)" - (En)+ (u-Hy,) - (Hy)

where the nominator should be understood as a dyadic protloetparameters,; and(,.; model the possible direct
coupling between electric and magnetic fields in the cartsté relation. The point of the method which is sketched
here, is that by solving equation (2) and computing the rigiitd side of (6), we can compute the effective material
matrices without assuming any particular model for theatiffe material. Thus, we can use this unbiased method to
study which theoretical model is best suited for a particoiecrostructure.

4 Different constitutive relations for chiral media

Throughout the years, at least three major models have tssehfar isotropic chiral materials, see Table 1. It can be
shown that it is possible to transform the different modete ieach other. If sources are present, they may need to
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Figure 1: Spiral geometry and the effectivgey, 1/10, S1, and B2 parameters, as well as the relative errérs
andJ,. On the horizontal axis are different values of the norneglizvave vectoka within the reciprocal unit cell

U' = [~7/a,n/a]®. The peaks fop; and 3, close toka = (,0,0) have been truncated, the peak values are both
01 = B2 = 0.7a. The spirals were simulated using a permittivity of 100, mgkhem numerically reasonably close
to metal.

be transformed too. Using the results from the previous@gcive now investigate if any of these models is close
to what is computed by the unbiased method in (6). To stah,wite can use symmetry arguments to prove that the
magneto-electric coupling terngs; and¢,4 computed from (6) must be identically zero, if the microdcapaterial
parameters(x) andu(x) are real and symmetric. This leaves the Drude-Born-Fedmiadel as the only candidate.

Applying the Floquet-Bloch transformation to the elecfart of the Drude-Born-Fedorov model implies (re-
member that in the effective model the material parameters@nstants)

D=cE+p3(V+ik)x E) = (D) =¢I+fikx)(E) @)

where the equality for the mean values follow since the mesunevof any derivative of a periodic field is zero,
(V x E)y = 0. As a numerical test, spiral inclusions have been impleatnt the program described in [9] as
depicted in Figure 1. If we extend the Drude-Born-Fedorowdeidoy allowing differents-factors for electric and
magnetic field, respectively,

(D) = ¢(I + Bikx) (E) (8)

(B) = (1 + Poikx) (H) (9)

we see that this model can actually be used to represent atmgp& matrix, provided we only study components
orthogonal to the propagation directiare., the components dealing with propagating waves. It is showW8] that
the matrix computed from (6) is precisely such a matrix, asatropy is provided by arranging the spirals in all



coordinate directions as shown in Figure 1. The error in drameter fit is computed a@s = ||/ g — €cr|| / || €cst]],
wheree.; is the effective permittivity as computed from the paraioetrodel (8), anc.q is computed from (6). The
relative errorsy. andd,, in Figure 1 can be explained by the structure not being comlglésotropic, since the spirals
are slightly asymmetrical. When looking only at the chirahibution,i.e., the error in the imaginary part efs and
o, the error level drops to less than 105 for both quantities and ak. It is seen that we obtain

Bi—Bo#0 and B, —0 when |k|— 0 (10)

The factorg, is in the order 0f0.04a, and depends on in which direction the origin is approachdus does not
contradict the isotropy of the effective material, sincis #tan only be required to be isotropic exactly at the origin
k = 0, since anyk = 0 implies there is a preferred direction (the propagatioeation), and hence there is no reason
for the material to be isotropic. The fact@g is multiplied withik x, which makes the chiral contribution go to zero
as|k| — 0. This means that when the applied wavelength is very longpewed to the unit cellKa is small), the
material is described byD) = e.x((E) + foik x (E)) and(B) = uo (H), which is Born’s original model [10].
Note that for wave vectors closeka = (, 0,0) (and by symmetry alsf, =, 0) and(0, 0, 7)), the 3; and 3, factors
are both large and equal, which is close to Fedorovs model.

5 Conclusions

We have applied an unbiased finite scale homogenizationadeththe problem of finding effective material param-
eters for an isotropic chiral microstructure. The resuthes this kind of structure can be modelled with a modified
Drude-Born-Fedorov model, with different couplings to thel of the electric and magnetic field, respectively. For
small frequencies, only the electric field contribute to ¢théal effects in the consitutive relations, whereas the-co
plings are equal for higher frequencies. The couplings depa the size and direction of the wave vector.
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