Quantification of the longitudinal relaxation time, T₁, and oxygen enhanced (OE-) MRI are two potential imaging biomarkers for lung disease. This thesis explores the physiological relevance of quantitative T₁ measurements and OE-MRI of the lungs and presents a physiological and physical interpretation of these imaging biomarkers based on measurements in healthy volunteers.

This thesis is the perfect starting point for anyone interested in using OE-MRI and T₁-quantification for longitudinal studies of patients or risk groups, and will hopefully make those measurements worthwhile.

Simon Kindvall was awarded the degree of M.Sc. in Medical Physics in 2012 and studied clinical anatomy, cellular biology and human physiology before writing this thesis.
Pulmonary imaging with quantification of T_1-relaxation and oxygen enhanced MRI

Simon Kindvall

DOCTORAL DISSERTATION
by due permission of the Faculty of Medicine, Lund University, Sweden.
To be defended at Agardhsalen, CRC Malmö, 2018-12-14 at 13:00

Faculty opponent
Prof. Yannick Crémillieux, University of Bordeaux
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and is expected to take a progressively greater toll of lives as the population of the world ages. Apart from smoking cessation and decreased air-pollution there are few ways to stop this progressive, impeding and lethal condition. In order to combat lung disease in general and COPD in particular, there is a need for effective imaging biomarkers that can detect early pathologic changes in lung function, as well as detecting regional improvements after treatments and interventions.

Quantification of the longitudinal relaxation time (T1) in the lung has been suggested as an imaging biomarker for several types of lung diseases, moreover, the addition of oxygen gas as a paramagnetic contrast agent (oxygen enhanced, OE-MRI) has been suggested to yield an imaging biomarker for the diffusing capacity of the lung.

The purpose of this thesis has been to evaluate both T1-quantification and OE-MRI as imaging biomarkers for lung function in healthy volunteers and review previous models of these imaging biomarkers for lung disease. A group of 35 healthy volunteers were recruited to perform pulmonary imaging with T1-quantification and OE-MRI as well as pulmonary function tests. Stepwise linear regression of all pulmonary function parameters revealed that T1 varied with lung volume, but was best described as a function of age and sex in the whole subject group. This finding is accompanied with physiological description of T1 as a function of blood T1 and blood volume, where hematocrit and residual volume vary with age and sex.

The diffusing capacity of the lung for carbon monoxide (DL,CO) was also measured in the cohort and compared to the change in longitudinal relaxation rate after breathing oxygen (ΔR1). The previously described correlation between DL,CO and ΔR1 could not be detected in the healthy subject group. Instead, a model including age, sex and BMI proved to yield the best fit to the data. This was interpreted as an influence of pulmonary shunt on ΔR1 which increases with age and abdominal adiposity. Indeed, most pulmonary diseases studied with OE-MRI cause some degree of pulmonary shunt which is reflected in the lower ΔR1.

A sub-group of the original cohort was recruited to perform airspace dimension assessment with nano-particles (AiDA) which is known to detect enlarged airspaces in COPD. The equilibrium signal, M0, which is calculated as a part of the T1-quantification, was used to generate quantitative measures of airspace density which correlated with the airspace radius by AiDA.

Finally, two groups of volunteers (16 +12) were recruited to perform T1 and ΔR1 quantification with both gradient- and spin-echo sequences. In both groups the mean T1 and ΔR1 were different when quantified with gradient-echo compared to spin-echo. However, the gradient-echo measurements in both groups yielded very similar group means.

In conclusion, OE-MRI and T1-quantification potentially provide imaging biomarkers for pulmonary shunt and blood volume, moreover, an imaging biomarker for lung density is available from the quantification protocol. These biomarkers exhibit variations with age, sex and BMI and may vary considerably with different quantification protocols.

Key words: Magnetic resonance imaging, diffusing capacity of the lung, oxygen enhanced MRI, pulmonary imaging, chronic obstructive pulmonary disease, sex-factors, age-factors, spirometry, oxygen, molecular oxygen paramagnetism

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature

Date 2018-11-08
Pulmonary imaging with quantification of T_1-relaxation and oxygen enhanced MRI

Simon Kindvall
Coverphoto front: © Simon Kindvall, HASTE MIP, TR=800ms, TE=49ms, ETL=112, BW=925Hz/pixel, generated in ImageJ

Back cover: © Sven Månsson, MRI of the author’s brain. Available for educational purposes as “MRIconstrast” for iOS.

Copyright pp 1-90 Simon Kindvall

Paper 1 © John Wiley & Sons, Inc, Reprinted with permission

Paper 2 Open Access under Creative Commons (CC BY)-license

Paper 3 Open Access under Creative Commons (CC BY NC)-license

Paper 4 © Simon Kindvall (unpublished work)

Faculty of Medicine

Department of Medical Radiation Physics

ISSN 1652-8220

Lund University, Faculty of Medicine Doctoral Dissertation Series 2018:152

Printed in Sweden by Media-Tryck, Lund University

Lund 2018

[Logo] Media-Tryck is an environmentally certified and ISO 14001 certified provider of printed material. Read more about our environmental work at www.mediatryck.lu.se
In my life I have found two things of priceless worth: learning and loving. Nothing else — not fame, not power, not achievement for its own sake — can possibly have the same lasting value.

Arthur C. Clarke, Rama Revealed
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>9</td>
</tr>
<tr>
<td>List of original papers</td>
<td>11</td>
</tr>
<tr>
<td>Abstract</td>
<td>12</td>
</tr>
<tr>
<td>Populärvetenskaplig sammanfattning</td>
<td>14</td>
</tr>
<tr>
<td>Introduction</td>
<td>17</td>
</tr>
<tr>
<td>1.1 The aims of this thesis:</td>
<td>19</td>
</tr>
<tr>
<td>Lung physiology for physicists</td>
<td>21</td>
</tr>
<tr>
<td>2.1 The lung consist of 30% blood</td>
<td>21</td>
</tr>
<tr>
<td>2.2 Elastic recoil keeps airways open</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Pulmonary shunt dramatically reduces arterial oxygen concentration</td>
<td>23</td>
</tr>
<tr>
<td>2.4 Hypoxic pulmonary vasoconstriction prevents shunt</td>
<td>24</td>
</tr>
<tr>
<td>2.5 PFT and lung volumes</td>
<td>24</td>
</tr>
<tr>
<td>2.6 Diffusing capacity of the lung</td>
<td>25</td>
</tr>
<tr>
<td>2.7 AiDA</td>
<td>26</td>
</tr>
<tr>
<td>Pulmonary Disease</td>
<td>27</td>
</tr>
<tr>
<td>3.1 COPD</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Asthma</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Cystic fibrosis</td>
<td>28</td>
</tr>
<tr>
<td>3.4 Pulmonary arterial hypertension</td>
<td>28</td>
</tr>
<tr>
<td>MRI of the Lung</td>
<td>31</td>
</tr>
<tr>
<td>4.1 The lung has low proton density</td>
<td>31</td>
</tr>
<tr>
<td>4.2 Susceptibility differences in the lung parenchyma</td>
<td>32</td>
</tr>
<tr>
<td>4.3 Lung MRI suffers from respiratory and cardiac motion</td>
<td>33</td>
</tr>
</tbody>
</table>
5 Magnetic relaxation in blood... 35
 5.1 Blood relaxation rates is a weighted average of relaxation in the
 RBC and plasma.. 35
 5.2 Hemoglobin relaxation contain three paramagnetic and diamagnetic
 contributions... 36
 5.3 Deoxyhemoglobin modulate blood susceptibility and T2*.................. 37
 5.4 Blood T1 relaxation is fastest at very low or very high oxygen
 concentration .. 38

6 Plasma proteins... 41

7 Paramagnetic relaxation of molecular oxygen..................................... 43
 7.1 Oxygen electrons have a short correlation time dominated by
 electron T1-relaxation .. 43
 7.2 Oxygen is poorly soluble in water but non-polar proteins and
 cell walls increase solubility.. 45
 7.3 Paramagnetic relaxation effects are mediated and enhanced by protein . 45

8 T1-Quantification.. 47
 8.1 Inversion recovery... 47
 8.2 Look-Locker T1-quantification .. 48
 8.3 The use of selective or global inversion pulses.................................... 50

9 Pulmonary T1 as an imaging biomarker ... 51
 9.1 Pulmonary T1-depends on the echo time... 51
 9.2 Pulmonary T1 is different when measured with spin- or gradient-echo.. 52
 9.3 Pulmonary T1-depends on lung inflation and the age and
 sex of the studied subject ... 53
 9.4 Pulmonary T1 is lower in COPD... 55
 9.5 Pulmonary T1 may reveal perfusion deficits and fibrosis 55
 9.6 Pulmonary T1 and tobacco smoking ... 56
 9.7 Pulmonary T1 may or may not detect early damage caused by
 tobacco smoke.. 57
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Oxygen enhanced MRI</td>
<td>59</td>
</tr>
<tr>
<td>10.1</td>
<td>The three-compartment model of ΔR_1</td>
<td>59</td>
</tr>
<tr>
<td>10.2</td>
<td>Methodological considerations for ΔR_1</td>
<td>60</td>
</tr>
<tr>
<td>10.3</td>
<td>Oxygen enhanced MRI for Emphysema and COPD</td>
<td>61</td>
</tr>
<tr>
<td>10.4</td>
<td>Oxygen enhanced MRI in Cystic fibrosis</td>
<td>62</td>
</tr>
<tr>
<td>10.5</td>
<td>Oxygen enhanced MRI correlates with asthma severity</td>
<td>63</td>
</tr>
<tr>
<td>10.6</td>
<td>Oxygen enhanced MRI and interstitial disease</td>
<td>64</td>
</tr>
<tr>
<td>11</td>
<td>Pulmonary proton density</td>
<td>65</td>
</tr>
<tr>
<td>11.1</td>
<td>MRI can be used to detect hyperintense or hypointense changes in the lung</td>
<td>65</td>
</tr>
<tr>
<td>11.2</td>
<td>Quantitative MRI proton density can potentially be used to detect emphysema</td>
<td>66</td>
</tr>
<tr>
<td>12</td>
<td>Discussion</td>
<td>67</td>
</tr>
<tr>
<td>12.1</td>
<td>Major findings</td>
<td>67</td>
</tr>
<tr>
<td>12.2</td>
<td>Research context</td>
<td>68</td>
</tr>
<tr>
<td>12.3</td>
<td>Limitations</td>
<td>68</td>
</tr>
<tr>
<td>12.4</td>
<td>Methodology</td>
<td>69</td>
</tr>
<tr>
<td>12.5</td>
<td>Future prospects</td>
<td>69</td>
</tr>
<tr>
<td>12.6</td>
<td>Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>13</td>
<td>References</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Acknowledgement</td>
<td>89</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AiDA</td>
<td>Airspace dimension assessment with nanoparticles</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CO-Hb</td>
<td>Carboxy-hemoglobin</td>
</tr>
<tr>
<td>Deoxy-Hb</td>
<td>Deoxygenated hemoglobin</td>
</tr>
<tr>
<td>(D_{L,CO})</td>
<td>Diffusing capacity of the lung for carbon monoxide</td>
</tr>
<tr>
<td>ERV</td>
<td>Expiratory reserve volume</td>
</tr>
<tr>
<td>EVF</td>
<td>Erythrocyte volume fraction</td>
</tr>
<tr>
<td>FEV(_1)</td>
<td>Forced expiratory volume in 1 second</td>
</tr>
<tr>
<td>FLASH</td>
<td>Fast low angle shot (gradient echo)</td>
</tr>
<tr>
<td>FRC</td>
<td>Functional residual capacity</td>
</tr>
<tr>
<td>GINA</td>
<td>Global initiative for asthma</td>
</tr>
<tr>
<td>GOLD</td>
<td>Global Initiative for Chronic Obstructive Lung Disease</td>
</tr>
<tr>
<td>Hb</td>
<td>Hemoglobin</td>
</tr>
<tr>
<td>Hct</td>
<td>Hematocrit</td>
</tr>
<tr>
<td>HASTE</td>
<td>Half-Fourier Acquisition Single-shot Turbo spin Echo</td>
</tr>
<tr>
<td>HPV</td>
<td>Hypoxic Pulmonary Vasoconstriction</td>
</tr>
<tr>
<td>IC</td>
<td>Inspiratory capacity</td>
</tr>
<tr>
<td>IR</td>
<td>Inversion recovery</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>PFT</td>
<td>Pulmonary function test</td>
</tr>
<tr>
<td>Q</td>
<td>Perfusion or blood volume</td>
</tr>
<tr>
<td>(R_1)</td>
<td>Longitudinal relaxation rate ((R_1 = 1/T_1))</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>R$_2$</td>
<td>Transverse relaxation rate ($R_2 = 1/T_2$)</td>
</tr>
<tr>
<td>r$_1$</td>
<td>Longitudinal relaxivity of contrast agent</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RV</td>
<td>Residual volume</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to noise ratio</td>
</tr>
<tr>
<td>T$_1$</td>
<td>Longitudinal relaxation time</td>
</tr>
<tr>
<td>T$_2$</td>
<td>Transverse relaxation time</td>
</tr>
<tr>
<td>TI</td>
<td>Inversion time</td>
</tr>
<tr>
<td>TLC</td>
<td>Total lung capacity</td>
</tr>
<tr>
<td>TSE</td>
<td>Turbo spin echo</td>
</tr>
<tr>
<td>UTE</td>
<td>Ultra-short echo time</td>
</tr>
<tr>
<td>V</td>
<td>Ventilation</td>
</tr>
<tr>
<td>VC</td>
<td>Vital capacity</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
List of original papers

This thesis is based on the following four original papers, referred to as Paper 1-4.

1. Influence of age and sex on the longitudinal relaxation time, T_1, of the lung in healthy never-smokers

2. The change of longitudinal relaxation rate in oxygen enhanced pulmonary MRI depends on age and BMI but not diffusing capacity of carbon monoxide in healthy never-smokers

3. Airspace Dimension Assessment with nanoparticles reflects lung density as quantified by MRI

4. The change in longitudinal relaxation rate in oxygen enhanced pulmonary MRI: inversion recovery HASTE versus Snapshot FLASH

Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide and is expected to take a progressively greater toll of lives as the population of the world ages. Apart from smoking cessation and decreased air-pollution there are few ways to stop this progressive, impeding and lethal condition. In order to combat lung disease in general and COPD in particular, there is a need for effective imaging biomarkers that can detect early pathologic changes in lung function, as well as detecting regional improvements after treatments and interventions.

Quantification of the longitudinal relaxation time (T_1) in the lung has been suggested as an imaging biomarker for several types of lung diseases, moreover, the addition of oxygen gas as a paramagnetic contrast agent (oxygen enhanced, OE-MRI) has been suggested to yield an imaging biomarker for the diffusing capacity of the lung.

The purpose of this thesis has been to evaluate both T_1-quantification and OE-MRI as imaging biomarkers for lung function in healthy volunteers and review previous models of these imaging biomarkers for lung disease.

A group of 35 healthy volunteers were recruited to perform pulmonary imaging with T_1-quantification and OE-MRI as well as pulmonary function tests. Stepwise linear regression of all pulmonary function parameters revealed that T_1 varied with lung volume, but was best described as a function of age and sex in the whole subject group. This finding is accompanied with physiological description of T_1 as a function of blood T_1 and blood volume, where hematocrit and residual volume varies with age and sex.

The diffusing capacity of the lung for carbon monoxide ($D_{L,CO}$) was also measured in the cohort and compared to the change in longitudinal relaxation rate after breathing oxygen (ΔR_1). The previously described correlation between $D_{L,CO}$ and ΔR_1 could not be detected in the healthy subject group. Instead, a model including age, sex and BMI proved to yield the best fit to the data. This was interpreted as an influence of pulmonary shunt on ΔR_1 which increases with age and abdominal adiposity. Indeed, most pulmonary diseases studied with OE-MRI cause some degree of pulmonary shunt which is reflected in the lower ΔR_1.

A sub-group of the original cohort was recruited to perform airspace dimension assessment with nano-particles (AiDA) which is known to detect enlarged airspaces in COPD. The mean equilibrium signal, M_0, which is calculated as a part of the T_1-
quantification, was used to generate quantitative measures of airspace density which correlated with the airspace radius by AiDA.

Finally, two groups of volunteers (16 +12) were recruited to perform T₁ and ΔR₁ quantification with both gradient- and spin-echo sequences. In both groups the mean T₁ and ΔR₁ were different when quantified with gradient-echo compared to spin-echo. However, the gradient-echo measurements in both groups yielded very similar group means.

In conclusion, OE-MRI and T₁-quantification potentially provide imaging biomarkers for pulmonary shunt and blood volume, moreover, an imaging biomarker for lung density is available from the quantification protocol. These biomarkers exhibit variations with age, sex and BMI and may vary considerably with different quantification protocols.
Bildtagning med magnetresonans (mangetic resonance imaging eller MRI) är en fascinerande teknik som använder magnetfält och radiovågor för att skapa detaljerade bilder av kroppens innanmäte. Tvärt om mot vad många tror så finns det ingen ”magnetröntgen” i MR-kameran, och därmed ingen skadlig joniserande strålning. Detta gör det möjligt att utföra upprepade undersökningar på friska och sjuka försökspersoner utan att undersökningen själv skadar kroppen. Samtidigt skryter MRI med sjukvårdens kanske mest informationsrika bilder.

T1-relaxationstid är en av de tre grundläggande vävnadsparametrarna i MRI, bredvid T2 och protontäthet (PD). Dessa kan jämföras med grundfärgerna rött, grönt och blått, där alla MR-bilder i grunden består av olika T1, T2 och PD. I tidigare mätningar har man sett att T1 varierar mycket mellan friska och sjuka lungor, speciellt har man sett att kronisk obstruktiv lungsjukdom (KOL) förkortar T1, likaså fibros och till viss del rökning. Enligt en tidigare rapport hade en person som rökt länge kortare T1, men är det för att denne rökt länge, eller bara levt länge? I den första delen av denna avhandling kvantifierades därför T1 i en grupp friska frivilliga icke-rökare för att undersöka om det fanns något åldersberoende för T1. Resultatet presenterades på en internationell konferens och fick åhörarna att bokstavligt talat tappa hakan. Vi kunde påvisa en stark köns- och ålderskorrelation, där unga kvinnor har en mycket längre T1 än både män och äldre kvinnor. Tolkningen av resultatet får oss att tro att T1 egentligen är en bildmarkör för blodvolym, då blod har lång T1 och de flesta sjukdomstillstånd – samt hög ålder – leder till lägre blodvolym i lungan.

Syreförstärkt MR är också baserat på T1-kvantifiering, men går ut på att mätningar görs både innan och under det att försökspersonen andas ren syrgas i några minuter. Syre är helt ofarligt att andas i flera timmar, så några minuter är verkligen helt riskfritt. Syre får T1-relaxationstiden i lungan att bli kortare och signalen i bilden att förstärkas – därav syreförstärkt MR. Tidiga mätningar ansydde att syreförstärkt MR kunde mäta

Vidare visade vi att vår metod för att mäta T₁ också kan användas för att mäta protonsätt (en annan av de tre ”grundfärgerna” i MRI). Protonsätt är kort sagt mängden vattenmolekyler i lungan, och minskar såklart vid svår lungsjukdom då vävnaden bryts ner (då all kroppens vävnad består av ca 70% vatten). I gruppen av friska frivilliga var alla mått på protonsätt korrelerade med den uppskattade radien på lungans alveoler (de minsta luftblåsorna i lungan där gasutbyte sker). Detta är väldigt viktig information vid KOL, eftersom ett kardinalsymptom är just nedbrytning av väggarna mellan alveolerna.

Slutsatserna från detta arbete är att en mätning med syreförstärkt MR av lungorna eventuellt kan ge information om blodmängd, syresättning och vävnadstäthet i lungan, genom de tre parametrarna T₁-relaxationstid, syreförstärkning och protonsätt, samt att dessa parametrar kan variera med åtminstone kön och ålder hos en frisk population. Eftersom det inte finns några kända skadliga effekter av undersökningen, är det möjligt att utforma studier på riskgrupper för lungsjukdom, eller på patienter som testar nya behandlingar, med flera uppföljande mätningar. Förhoppningsvis uppmuntrar denna avhandling också fler till att göra tvärvetenskapliga projekt då vi tydligt visat hur både fysiologi och fysik är nödvändigt för att tolka resultaten från samtliga delarbeten.
1 Introduction

Before doing anything that will probably cost you considerable effort and time (such as a four year full time PhD project) you want to ask yourself – Why?

When it comes to pulmonary imaging the question is easily answered by the World Health Organisation (WHO). As of 2016, COPD, lower respiratory infections and airway cancers together take an annual toll of 7.7 million deaths, with only ischemic heart disease being a larger burden at 9.4 million [1]. Chronic obstructive pulmonary disease (COPD) alone is the third largest cause of death (after cardio- and cerebrovascular disease); takes more than three million lives annually; and is predicted to become an even greater burden as the global population ages [2]. Moreover, there is evidence that in the future women will suffer more as they may be undertreated and be more susceptible to exacerbations [3].

In order to lift the global burden of lung disease, we cannot sit back and rely on smoking cessation and decreased air pollution. Instead we must also seek to understand all lung disease and detect it early, before it damages the lung irreversibly.

The functions of the lung can generally be reduced to three processes involving the transfer of oxygen and carbon dioxide [4]:

- Ventilation refers to transfer of gas between the mouth and the alveoli.
- Diffusion of gas is between the alveolar space and the pulmonary capillaries.
- Perfusion is the flow of blood that transfers gas to and from the lungs.

Integrity of lung functions is dependent on all three processes; however, the most common way to diagnose lung disease is spirometry – the simple measurement of lung volumes and expiratory flow (ventilation). For example, the diagnosis and classification of chronic obstructive pulmonary disease (COPD) is based on spirometry alone, apart from the presentation of relevant symptoms and previous inhalation of harmful agents [5].

Although several sophisticated imaging methods are available and widely used in the clinic, no single imaging modality reveals the true “functions” on the lung. X-ray based computerized tomography (CT) is fast, provides excellent morphological information, and can be used with an intravenous contrast agent to reveal disruption in pulmonary perfusion (emboli) [6]. However, CT provides no information about the ventilation or
diffusion of gas in the lung. Nuclear medicine imaging can also be used to study aspects of lung function, and the sequential inhalation and injection of radioactive tracers allows the calculation of a ventilation and perfusion image, which is highly informative, although still lacking the diffusion information. Moreover, although both CT and nuclear medicine imaging (SPECT and flat scintillation imaging) can be safely used in all populations, they should be used with caution and in limited number to reduce the dose of ionizing radiation.

Oxygen enhanced MRI of the lungs is based on the simple fact that inspired oxygen gas acts as a paramagnetic contrast agent and will increase the signal in a T_1 weighted MRI image [7]. Since no MRI signal arises from the air, there will only be a change in signal if the inspired oxygen reaches the pulmonary interstitial water or blood. Ideally, OE-MRI thus provides an opportunity to directly study integrated lung function – including the evasive diffusion component. However, as we will see in this dissertation, nothing is ever that simple.

The proposal to use OE-MRI to study pulmonary function came in 1996 [8] and it was later assumed that the signal change in OE-MRI reflects the diffusing capacity of the lung [9] or that OE-MRI is a way to measure pulmonary oxygen tension (P_{O_2}) [10,11]. This is based on the assumption that oxygen acts as an inert contrast agent with a single value of the MRI relaxivity – meaning that the same change in oxygen tension will always give rise to the same change in relaxation rate [12]. By presenting results from OE-measurements in healthy individuals and reviewing available literature in OE-MRI and adjacent fields, this thesis presents evidence that a physiologic understanding of the OE-effect is necessary to interpret OE-measurements:

- Lung perfusion is highly dependent on oxygen tension and areas with low oxygen tension will be shut by precapillary pulmonary arterioles (hypoxic pulmonary vasoconstriction) [13]. Accordingly, inhalation of oxygen will potentially effect flow and blood volume in the lung [14,15].

- The relaxivity of gadolinium-based contrast agents have been proven to vary with macromolecule content [16,17] and the relaxivity of several different paramagnetic ions vary with the protein solution [18]. The molecular oxygen relaxivity has been shown to be higher in whole blood than in plasma or cerebrospinal fluid [19], supporting the notion that oxygen paramagnetic relaxivity is also dependent on protein concentration.

- The lung blood is partitioned in three basic compartments, non-oxygenated (pulmonary arterial) blood, capillary blood, and oxygenated (pulmonary venous) blood. The OE-effect as discussed hitherto is only relevant in the latter half of these compartments where the hemoglobin is fully saturated and oxygen tension can rise over 100 mmHg. Indeed, non-oxygenated hemoglobin (deoxy-Hb) has a considerable paramagnetic relaxation effect [20] and any
increase in oxygen saturation will lead to a negative OE-effect in the pulmonary arterial compartment.

For all these reasons we need a more holistic (physiological, physical and chemical) view of the pulmonary OE-effect, and remove ourselves from the naïve idea that oxygen gas can be treated as a simple paramagnetic contrast agent.

1.1 The aims of this thesis:

- Establish a normative reference for pulmonary OE and T₁-measurements in a healthy population with respect to age and sex Paper 1 and 2
- Give a plausible explanation for the variations of OE and T₁ in this normal population Paper 1 and 2
- Show that OE-measurements with the Look-Locker sequence provides additional imaging biomarkers relevant for lung disease Paper 3
- Show that differences in MRI methodology will affect both quantitative T₁ and oxygen enhancement. Specifically, spin-echo and gradient echo sequences may yield different mean values Paper 4
- Provide a summary of the state of the art in OE-MRI for anyone interested in implementing it.
The function of the lung is to exchange gases with the environment to provide oxygen necessary for metabolism, expel carbon dioxide and regulate the acidity of the blood. The first thing that should be noted about the lung is that it normally operates at a very submaximal level. For example, when blood flows into the lung to get oxygenated, it is fully saturated after 1/3 of the time spent in the alveolar capillary. Moreover, while a regular effortless breath is usually 500 ml, the vital capacity (maximal size of a breath) is approximately 5 liters for a male and 4 liters for a female [21]. The lung thus has an enormous extra capacity for gas uptake, which is only nearly maximized during elite sporting events [22] and in all cases of normal physiology, oxygen transport in the body is not limited by diffusion or ventilation but by the cardiac pumping ability [4]. The unnerving implication of this is that an otherwise healthy person, who is affected by a progressive lung disease such as COPD, may lose 50% of their pulmonary function before being noticeably impaired by it in everyday non-aerobic activity and seeking medical care.

2.1 The lung consist of 30% blood

Since the function of the lung is to get gases in and out of the blood, the blood itself will be a central constituent of the lung. Indeed, the mean weight of male human lungs have been shown to be 445 g (SD 159g) for the right, 395 g (SD 147 g) for the left lung [23] and probably around 400 g for pulmonary blood [24]. This blood is partitioned roughly equally between the precapillary lung arteries, alveolar capillaries and postcapillary pulmonary veins [24]. This however, may be dramatically changed by hypoxia, or any endo- or exogenous signal molecule, which activates pre- or post-capillary vasoconstriction. Specifically, hypoxia activates small artery vasoconstriction and decrease capillary pressure; whereas histamine or noradrenaline activate venular vasoconstriction and thus increase capillary pressure [13].
2.2 Elastic recoil keeps airways open

An important concept in lung physiology is the elastic recoil of lung tissue (force/distention), which tells us that a positive airway pressure – or a negative transpulmonary pressure – is needed to inflate the lung. Often, the same property is described with the *compliance* of the lung which is basically the inverse of the elastic recoil. A normal lung expands by being pulled out by the rib cage and diaphragm through muscular effort (negative transpulmonary pressure), whereas the expulsion of air depends on the lung tissue’s innate ability to recoil. During natural aging and in COPD the lung loses some of its elastic recoil properties and the expulsion of air becomes limited [25,26]. Moreover, the small airways, from the bronchiolar level, do not contain cartilage rings to keep them open but rely on elastic recoil to be pulled open. Since the elastic recoil depends on lung volume, the elastic recoil will decrease while exhaling until it is insufficient to keep the airways open and the lung will close – trapping the remaining air inside. The lung volume at which this air-trapping and airway closure occurs is defined as the residual volume (RV). According to the previous discussion residual volume will increase with age, i.e. the lung will close at a higher volume [27].

![Figure 1](image.png)

Figure 1 Sketch of a hematoxylin eosin-stained lung slice from [28]. The bronchiole with its muscular wall (A) is very prominent, along with a venule (B) and lymph node. There are also alveolar ducts (C) and a terminal bronchiole (D). The white is all airspace and the thin walls are the alveolar walls with capillaries. It is easy to appreciate that if the lung tissue is compressed, the airways will also compress, limiting airflow. It is also easy to appreciate that a substantial fraction of the lung weight is blood.
Three alveoli are supplied by three capillaries. Although two gas exchange units work perfectly the final oxygen tension is severely reduced due to venous admixture. In healthy lungs, the vessels supplying the poorly ventilated area will shut due to Hypoxic Pulmonary Vasoconstriction.

2.3 Pulmonary shunt dramatically reduces arterial oxygen concentration

For the lung to function optimally the ventilation and perfusion, commonly notated as \(V \) and \(Q \), must be matched – this means that any given region of the lung is both perfused with blood and ventilated during breathing. If a region of the lung is perfused but not ventilated – because of airway collapse, mucus plugs, or airway constriction – any blood passing through will remain non-oxygenated and lower the efferent oxygen concentration of the whole system (Figure 2). This venous admixture or shunting will result in a dramatically lower arterial oxygen concentration in an otherwise healthy lung, especially in the senile lung [29]. Importantly, in obese individuals abdominal fat forces the lung to operate very close to the RV [30,31]. Since RV is the definition of airway closure, obese individuals will have increased venous admixture and lower arterial oxygenation [32,33].
2.4 Hypoxic pulmonary vasoconstriction prevents shunt

The lung actively counteracts V/Q inequality and shunt by hypoxic pulmonary vasoconstriction (HPV). Hypoxia in the airspace mediate a slow (minutes) constriction of upstream small pulmonary arteries, which is rapidly (seconds) reversed when oxygen concentration rise [13]. Chronic HPV also cause hypertrophy of small arteriole muscle [34]. It is important to note that HPV increase the total resistance of the pulmonary circulation and consequently increase the pulmonary arterial pressure [35]. It is also noteworthy that HPV can be overridden by inflammation, which will cause a vasodilation even in non-oxygenated areas of the lung [36].

2.5 PFT and lung volumes

The most common measures of lung function is the combined measurement of FEV\textsubscript{1} (forced expiratory volume in one second) and FVC (the forced vital capacity). To measure FEV\textsubscript{1} and FVC a subject is told to inhale as much air as they possibly can and then exhale as forcefully and quickly as possible into an air-flow meter, until no more air can be further expelled. Since airway resistance depends on the elastic recoil of lung tissue as well as mucus and muscular tension in the airways, this simple test may reveal inflammatory, allergic and degenerative changes. In healthy subjects the FVC is the same as the vital capacity (VC), but in some lung disease the FVC will be smaller than the VC due to dynamic airway compression [37–39]. Using these volumes it is possible to differentiate between restrictive disease, in which the VC is restricted, and obstructive disease as anything limiting the quotient FEV\textsubscript{1}/VC.

Other important lung volumes can be seen in figure 3. It should be noted that IC, VC and tidal volume can be measured with simple equipment, whereas RV, FRC and TLC requires some gas dilution technique or a body plethysmograph [4].
Figure 3 Tidal volume (TV) is the size of a regular calm breath; functional residual capacity (FRC) is the volume of air left after an effortless exhalation; inspiratory capacity (IC) is the maximum volume you can inhale after an effortless exhalation; residual volume (RV) is the volume of air trapped in the lung after maximal exhalation; vital capacity (VC) is the maximum amount of air that can be expelled after a maximal inhalation; and total lung capacity (TLC) is both IC+FRC or VC+RV.

2.6 Diffusing capacity of the lung

Diffusing capacity of the lung is a measure of the lungs ability to extract gas from the alveoli and depends on the diffusion of gas molecules across the alveolar membrane. Although the diffusion of oxygen is more interesting, it is more common and practical to measure the diffusing capacity of the lung for carbon monoxide (DL,CO). The test for DL,CO involves the breathing of a small amount (0.3 %) of CO which, due to the very low driving pressure difference between alveolar air and blood, will equilibrate very slowly with the blood. However, as soon as the CO-molecule reaches the lung blood, it is rapidly and irreversibly absorbed by hemoglobin. These parameters – the low driving pressure and the rapid capture by Hb – make the transport of CO into the blood completely limited by diffusion and the available capillary blood volume. The diffusing capacity can be regarded as a flow across a membrane resistance and expressed as $D_{L,CO}^{-1} = D_{m}^{-1} + (\theta Q_c)^{-1}$ where D_{m} is the membrane diffusing capacity and Q_c is the capillary blood volume – thus $D_{L,CO}$ depends on membrane area and thickness as well as the available pulmonary blood volume [40]. Another way to express the diffusing capacity is the k_{CO} which is the $D_{L,CO}$ adjusted for alveolar volume: $D_{L,CO} = k_{CO}V_A$ which can be useful since people with large lungs will have large $D_{L,CO}$ [41].
Figure 4 Gas transfer as a function of pulmonary capillary time for normal oxygen, abnormal oxygen and CO-transfer. Capillary oxygen is usually in equilibrium with alveolar oxygen after 0.25 s. At very high cardiac output – such as during Olympic sprinting – blood spends only 0.25 seconds in the capillary and gas transfer may be diffusion limited. Carbon monoxide diffuses way more slowly and CO-transfer is always diffusion limited [4].

2.7 AiDA

Airspace dimension assessment with nanoparticles (AiDA) is a recently developed technique to assess the free diffusion paths in the distal airways [42,43]. It was used in paper 3 of this thesis and thus requires some closer explanation. In very general terms, the subject inhales an aerosol of nanoparticles, holds the breath and exhales after 5-10 seconds. Due to the minuscule size of the nanoparticles they will move primarily by free diffusion in the distal airways. Consequently, the chance of adsorbing to the alveolar wall will depend on the time spent in the distal airway and the size of the alveoli. In a subject with the diffusion distance will be long and the particles will have a low chance of randomly hitting an alveolar wall and being adsorbed; conversely, in a subject with healthy lungs with a very fine microstructure the nanoparticles will have a large chance of adsorbing.

In the practical setting a subject will perform several inhalations with different breath-hold times. By controlling the inhaled and exhaled air volumes, as well as the nanoparticle concentration in the inhaled and exhaled air samples, the amount of nanoparticles deposited is easily calculated. The deposition will then increase with increasing breath-hold time and the slope of the deposition per unit time will be directly related to the mean airspace radius. The technique reveals differences in the deposition patterns between healthy volunteers and COPD-patients [44,45].

In Paper 3, this technique was compared to pulmonary proton density measurements in healthy volunteers. As expected, we observed a correlation between the distal airspace radius as assessed with AiDA and all measures of proton density with MRI.
3 Pulmonary Disease

3.1 COPD

The definition of COPD varies, but always include an airflow limitation associated with destruction of alveolar tissue (emphysema) [5,46]. The Global initiative for management of COPD (GOLD) include obstructive bronchiolitis [5] in the definition of COPD, whereas the “classic definition” include chronic bronchitis [46]. In short, COPD is a destruction of pulmonary tissue alongside a chronic inflammatory response.

Although some genetic factors predispose to COPD, such as the rare alpha-1 antitrypsin deficiency [47], the single most predictive factor is tobacco smoking. Although it is common knowledge that everyone who smokes does not develop COPD, there is likely a dose-response relationship where all smokers would develop COPD if they could smoke indefinitely [48].

The breakdown of tissue that is observed in COPD is likely mediated by inflammatory leukocytes, mainly macrophages and neutrophils [49], which perpetuate a vicious cycle of oxidative stress [50] and excessive protease activity [51] together with inhaled irritants.

The protease activity will eventually lead to tissue destruction and elimination of alveolar walls known as emphysema, which is histologically visible as an enlargement of airspaces distal to the terminal bronchioloes. The practical implication is that the tissue will lose elastic recoil and gas exchange surface – it is important to note that the pulmonary capillaries are part of the alveolar wall, thus emphysema is a destruction of the pulmonary capillaries as well.

The classic radiographic manifestation of COPD is low attenuation due to parenchymal destruction, low capillary blood volume and hyperinflation of the lungs. The reduction in D_L,CO in COPD is primarily not an effect of increased membrane diffusion distance, but a loss of capillary blood volume.
3.2 Asthma

Asthma is another common disease that affects 10% of the Swedish population [52]. It is characterized by airway hyperreactivity, hypertrophy of airway muscle and mucus glands, mucus plugging and the ensuing V/Q-inequality [46]. A very interesting feature of asthma is that it often presents with an elevated \(D_{L,CO} \) [53,54]. This may be attributed to central bronchoconstriction, where the large negative transpulmonary pressure, needed to maximally inflate the lungs, result in an inflow of blood [55]. In contrast to COPD, asthma is commonly associated with symptom reversibility after bronchodilation (airway muscles relax), but it is a very heterogeneous disease [56].

From a MRI point of view, asthma may produce visible mucus plugs, bronchial hypertrophy and V/Q inequality.

3.3 Cystic fibrosis

Cystic fibrosis is one of the most common autosomal diseases in Sweden with an incidence of 1:5500 among new-born. Although the disease effects the whole body, the mortality due to airway dysfunction is over 90% [13]. The disease may be caused by a multitude of mutations on the cystic fibrosis transmembrane regulator (CFTR) protein, which is responsible for pumping chloride out of the cell. In the airways, this chloride transport is essential to make the mucus into a smoothly flowing liquid that can transport pathogens out of the lungs. In the CF patient, bacteria can easily colonize the thick, sticky mucus resulting in chronic infections. The constant bacterial presence attract neutrophils and macrophages into the distal airway, where inflammatory changes lead to collagen deposition and elastin degradation (fibrosis) [57].

Cystic fibrosis will result in mucus filled lungs, airway remodeling, fibrotic tissue, V/Q defects and increased membrane diffusion distance, which may be revealed in pulmonary imaging.

3.4 Pulmonary arterial hypertension

The pulmonary circulation is normally a low resistance system and in most healthy subjects the mean pulmonary arterial pressure (mPAP) is as low as 10-12 mmHg. Pulmonary arterial hypertension (PAH) is defined as having a mPAP of >20 or 25 mmHg (>25 mmHg in Sweden) which is near twice the normal pressure. The lung requires a very low pressure in order to maintain the very thin diffusion barriers of the
gas exchange capillaries and in many pulmonary diseases the capillary resistance is increased:

- Emphysema results in a smaller capillary bed and the resistance is inversely proportional to the number of capillaries that can be perfused.
- In the case of asthma, CF or other ventilation defects, the hypoxic vasoconstriction will increase resistance to direct blood flow away from unventilated areas.
- Chronic inflammation may induce neutrophil infiltration of vessel walls, which will be thickened.

All these changes and more will increase the resistance of the pulmonary circulation with a concomitant increase in mPAP. For example, in several studies of COPD the incidence of PAH was between 20 – 91 % [35,58]. The importance of the condition is easy to appreciate since a high mPAP will demand thicker vascular walls that successively increase the mPAP until right heart failure is inevitable. Indeed, in a cohort of COPD patients the mPAP increased by 0.4 mmHg annually [59].

Small vessel diameter is dependent of the perfusion pressure and a doubling of the capillary pressure will result in a 30% increase in capillary volume [13]. Moreover, an increase in the right descending pulmonary artery to >16mm and an increase in the diameter of the left descending pulmonary artery of >18mm has been shown a 98% sensitivity for detecting PAH [58]. If PAH leads to a distention of the entire pulmonary arterial vasculature, the precapillary blood volume will increase, and the non-oxygenated compartment will potentially dominate over the oxygenated lung blood compartment.
4 MRI of the Lung

Theoretically, the lung is arguably1 the worst possible organ to analyze with MRI: Per definition, a significant portion of the lung is air, which will not generate a MRI signal. In MRI, signal is already scarce, so a trade-off is made with imaging time, signal-to-noise ratio (SNR) and resolution. Accordingly, the same imaging protocol that successfully can be used in neuro-imaging will likely be useless in the lung.

The lung suffers not only from low proton density per se, but also susceptibility differences brought about by the airspaces. This reduces T2* which has been estimated to sub-milliseconds in mouse lungs [60] and 1.5 ms in the human lung [61].

Finally, although breath-holding can reduce motion artifacts it is not possible to arrest the heart for imaging purposes. Thus, images will contain a significant portion of cardiac motion artifacts, which, depending on the signal encoding scheme, may ruin parts or the entirety of the image.

4.1 The lung has low proton density

Low proton density invariably leads to a smaller and unfavorable signal to noise ratio (SNR) which consequently requires more imaging time or larger image voxels (low resolution). This thesis focuses on the Snapshot-FLASH which already operates at low resolution (128x64 pixels, interpolated) and thick slices (1.5 cm), to allow a very short echo time 0.7 ms. To further ameliorate the low proton density of the lung, this thesis work was preceded by some optimizations. In order to get the most signal out of a population of spins the echo time and flip angle must be optimized to the T1. The optimal flip angle is known as the Ernst angle:

$$\alpha_E = \cos^{-1}\left(\frac{T_R}{T_T}\right)$$

1 Cortical bone may yield an even lower MRI signal due to the very rigid lattice, but is – in contrast to the lungs – very easy to keep still. Moreover, any damage to the bone will induce infiltration of blood and water, making bone injury ideal for MRI.
For TR=3.0 ms and T₁=1200 ms the Ernst angle is 4°. However, the FLASH sequence used a Gaussian excitation pulse which results in a Gaussian slice profile. This means that the nominal flip angle (4°) is only achieved in the very center of the slice. To counter this, a higher flip angle is used [62]. In-house optimization concluded that flip angles between 6-8° were optimal with respect to the coefficient of variation (CV) in repeated T1-measurements. Although a higher flip angle may lead to more SNR, the lower steady state magnetization causes severe inflow effects from the cardiac pumping [63], which was deemed to increase the CV.

Recent developments in MRI hardware and reconstruction algorithms have made ultra-short echo times (UTE) clinically available. This type of acquisition technique can potentially be implemented in any gradient echo sequence and is discussed further in chapter 11.

4.2 Susceptibility differences in the lung parenchyma

Magnetic susceptibility is an intrinsic property of all materials and indicate how it interacts with an applied magnetic field: a paramagnetic material will produce a stronger internal magnetization in response to an applied field, whereas a diamagnetic material will produce a weaker internal magnetization than the applied magnetic field. Generally, biological tissue is weakly diamagnetic and air (due to the paramagnetic oxygen) is weakly paramagnetic. Thus, in the lung there will be a field gradient between the airspaces (with a higher magnetic field) and blood vessels (with a lower field) where the magnetic flux density is not well defined. In these regions of susceptibility differences, there will be a fast dephasing of spins – the T₂* is short. The mouse pulmonary T₂* was 0.46 ms in wild type and 0.23 ms in an emphysema (tight-skin) model. The T₂* of healthy human lungs have been estimated to 1.47 ms at expiration and 1.45 ms at inspiration [61,64].

Conventional MRI sequences in the lung should be optimized for minimal echo time, which often requires thick slice profiles or volumetric imaging. Indeed, the use of slab selective pulses plays a double purpose since the total SNR is vastly increased and very short TE becomes possible. Fast spin-echo imaging is another way around the short T₂*, however, due to the simultaneous flow/diffusion of blood, the signal becomes dependent on the inter echo spacing [65].
4.3 Lung MRI suffers from respiratory and cardiac motion

Respiratory motion is somewhat trivial in imaging since even basic chest x-ray requires the subject to hold their breath. On the other hand, an MRI examination may take in excess of 40 minutes to complete and intermittent breath holding will be strenuous and tedious. The protocol used in this dissertation contained automatic breath hold instructions (a recorded voice that is played by the scanner software before each scan) because this minimized motion noise altogether.

Gating is another option that can be employed in several clinical protocols, and allows the subject to breathe freely. Prospective gating refers to using some kind of navigator – a waistband that records the breathing motion of the patient, or a navigator echo that records the position of the diaphragm. By using the available information, the scanner software determines when the imaging sequence should commence.

Retrospective gating can be performed by continuously collecting MRI data and retrospectively sorting the signal into different respiratory phases. Although this sounds like a good idea, it comes at the cost of additional image noise, which can be devastating in the low-SNR lung parenchyma (Figure 5).

Figure 5 Comparison between prospective gating (A) and breath hold (B) in a UTE scan with spiral read-out. The motion generated noise is spread over the whole image, ruining the low signal lung parenchyma in (A). In (B) only cardiac motion and a minor diaphragm shift is visible.
Cardiac motion is the final hurdle and has been controlled by the use of very fast gradient echo sequences in this thesis. A single FLASH-image takes 200 ms to acquire and 16 images are used to reconstruct a T_1-map (see section 8.2), consequently, cardiac motion artifacts are inherently filtered by the reconstruction – as discussed in section 4.1. An interesting alternative is to use a modified Look-Locker inversion recovery (MOLLI) which is in fact developed for T_1-quantification in the heart, by triggering at specific time points in the cardiac cycle [66]. This sequence is based on a balanced steady-state free-precession acquisition and did not generate enough signal to be useful in the lung parenchyma in our in house tests, but may be modified to fit lung imaging in the future.
5 Magnetic relaxation in blood

Whole blood consist of 33-49% (volume) red blood cells and contain 7-10 mmol/liter hemoglobin (or 20-22 mmol/l inside the RBC) [67]. Water diffuses relatively freely across the RBC membrane to interact with the intercellular hemoglobin. Thus, T_1- and T_2-relaxation in blood is dominated by the hemoglobin concentration which varies with age, sex and smoking status [68,69]. In the deoxygenated state, as in systemic venous blood, hemoglobin iron is paramagnetic and very effective at inducing relaxation. In the oxygenated state, the Hb-iron is diamagnetic and relaxation is less effective. However, during pure oxygen breathing free molecular oxygen acts to enhance relaxation as outlined in chapter 7. Blood T_1-relaxation can be understood by the processes outlined in this chapter:

- Blood relaxation can be described as water exchange between erythrocytes and plasma [70]
- Blood relaxation depends on both diamagnetic and paramagnetic effects of hemoglobin [70]
- Susceptibility effects should be considered when interpreting blood/pulmonary T_1-quantification [20,71]
- The T_1 of blood is longest at physiological arterial oxygenation levels (100 mmHg) [19]

5.1 Blood relaxation rates is a weighted average of relaxation in the RBC and plasma

Water exchange is integral to the understanding of MRI relaxation and is the principal mechanism different spin populations are interacting. For example, water exchange between the hydration sphere of a contrast agent and the bulk water result in a large bulk relaxation effect, even though a very small number of water molecules are affected by the relaxation agent. Although cell membranes are generally impermeable to water, RBC contain sufficient aquaporins (AQP1) to facilitate almost free diffusion [72].
Li et al. 2015 presents an exchange model to describe relaxation in blood as a function of plasma protein, Hb, oxygenation and field strength [70]. The major spin populations in whole blood are erythrocyte versus plasma water, where water molecules will spend an average of 10 ms in the erythrocyte (although this value very recently was re-estimated to 19 ms [73]). This means that the exchange rate \(k_{ex} = 50-100 \text{ s}^{-1} \) between the RBC and plasma pools is faster than the difference in relaxation rate between the pools:

\[
k_{ex} \gg |R_{1,RBC} - R_{1,\text{plasma}}|
\]

Under the above assumption of fast exchange, the effective relaxation rate will be the weighted average relaxation rate of the two water populations: plasma-water and RBC-water. If the fraction of water inside the RBC is called \(f_{\text{RBC}} \), it is possible to calculate the following effective relaxation rate, \(R_1 \):

\[
R_1 = f_{\text{RBC}}R_{1,\text{RBC}} + (1 - f_{\text{ery}})R_{1,\text{plasma}}
\]

Thus, we can generally treat blood as having a single relaxation rate, linear in the concentration of hemoglobin. A typical example of this, is that females generally have lower hemoglobin and thus longer \(T_1 \) values, a finding confirmed in left ventricle blood in vivo [74]. This difference between men and women diminish with age, since women gain more hemoglobin after menopause and men loose hemoglobin due to decreasing testosterone levels with age [67], as can be seen in Figure 6.

5.2 Hemoglobin relaxation contain three paramagnetic and diamagnetic contributions

At 3 Tesla the diamagnetic relaxivity of hemoglobin \(r_{\text{dia,Hb}} \) is 62.9 \((\text{mol/kg s})^{-1} \) and the paramagnetic relaxivity of deoxyhemoglobin 65.6 \((\text{mol/kg s})^{-1} \) [70]. This means that deoxy-Hb will be twice as effective at inducing \(T_1 \) relaxation compared with fully oxygenated hemoglobin.

Although a substantial part of the blood paramagnetic relaxivity comes from deoxy-Hb, there is also a paramagnetic contribution from methemoglobin. While the molar relaxivity of methemoglobin is 20 times that of hemoglobin \(r_{\text{para,metHb}} = 1260 (\text{mol/kg s})^{-1} \) [70], the concentration is in the 0.5% range in healthy individuals [75], resulting in a 10% increase in relaxation rate compared to the diamagnetic hemoglobin contribution alone. Methemoglobinemia (elevated levels of met-Hb in the blood) will potentially have a substantial effect on blood-\(T_1 \) (and thereby pulmonary-\(T_1 \)); and
although this is a rare condition, methemoglobinemia may be induced by some medications [76].

In conclusion, the diamagnetic and paramagnetic contribution of Hb and deoxy-Hb are equal in magnitude and the paramagnetic met-Hb contribution is smaller but significant. The magnitudes of each contribution varies with field strength, but the proportions remain roughly the same at clinical field strengths [70].

![Figure 6](image-url)
Figure 6 Left heart blood T_1 as a function of age and sex, adopted from Piechnik 2013 [74]. In the fertile age, men and women will have significantly longer blood T_1 due to differences in hemoglobin. With age, these differences disappear.

5.3 Deoxyhemoglobin modulate blood susceptibility and T_2^*

Blockley and Spees et al. both consider relaxation in blood as a function of paramagnetic deoxyhemoglobin which effects both relaxation times and the susceptibility of blood [20,71]. This means that as the oxygen content varies within physiological range, the susceptibility difference between RBC and plasma will vary and at 95% oxygen saturation the plasma and erythrocyte susceptibility will be matched; T_2^* will be the longest; and the signal increase [20]. Theoretically, the addition of a paramagnetic contrast agent to blood can induce a susceptibility matching
between deoxy-erythrocytes and plasma, which would yield a counter intuitive T_2^* dependent signal increase [71].

This does not happen during OE-MRI where susceptibility effects from oxygen have been shown to be $\Delta \chi = -0.02 \text{ ppm}$ in fully oxygenated plasma, such that any important susceptibility effects will be mediated by deoxyhemoglobin. However, we know that the inhalation of 100% oxygen does decrease T_2^* in the lung [61], probably due to induced susceptibility differences between oxygen filled airspace and diamagnetic blood.

5.4 Blood T_1 relaxation is fastest at very low or very high oxygen concentration

Silvennoinen et al. is the only record, to the knowledge of the author, of blood relaxation rates in both hypoxic and hyperoxic conditions, which makes it very relevant for this discussion Figure 7 [19]. Healthy venous blood has a pO2 of 40 mmHg and can go up to 60 mmHg during 100% oxygen breathing, this corresponds in a difference in oxygen saturation from 75% to 90% which means that we will have a lower relaxation rate in venous blood during an OE-experiment, contributing to a negative OE-effect measured with T_1 end-points. This can be seen in the inferior vena cava of healthy individuals [77], or in the zero enhancement regions of PAH-patients [78].

However, according to the previous paragraphs, venous blood may exhibit some signal increase due to longer T_2^* if we use a signal enhancement end-point. This is one of the reasons that T_1-quantification was chosen as the primary OE-endpoint in this thesis.
Figure 7 Plot of the relaxation rate of blood as a function of oxygen saturation, with data from Silvennoinen 2003 [19].

T_1 is longest at physiological oxygenation (100 mmHg oxygen) and relaxation will be more effective at both high and low oxygen concentration: in hyperoxia due to paramagnetic oxygen – in hypoxia due to paramagnetic deoxy-Hb.
6 Plasma proteins

Blood-\(T_1\) has been shown to vary with age and sex, in a manner that cannot be explained by EVF alone [67,74]. Plasma proteins of special interest from a MRI perspective are diamagnetic albumin, Immunoglobulin G (IgG) and fibrinogen, as well as paramagnetic transferrin and ceruloplasmin which are presented with typical concentrations in table 1.

Table 1 The 13 most prominent plasma proteins according to concentration and references.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Conc. [g/dl]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>4.5</td>
<td>Weaving [79]</td>
</tr>
<tr>
<td>Immunoglobulin G</td>
<td>1.1</td>
<td>Gonzales-Quintela [80]</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>0.3</td>
<td>Tarallo [81]</td>
</tr>
<tr>
<td>Transferrin</td>
<td>0.25</td>
<td>Denko [82]</td>
</tr>
<tr>
<td>Alpha1-antitrypsin</td>
<td>0.25</td>
<td>Denko [82]</td>
</tr>
<tr>
<td>IgA</td>
<td>0.25</td>
<td>Gonzales-Quintela [80]</td>
</tr>
<tr>
<td>C3+C4</td>
<td>0.15</td>
<td>Ritchie [83]</td>
</tr>
<tr>
<td>IgM</td>
<td>0.15</td>
<td>Gonzales-Quintela [80]</td>
</tr>
<tr>
<td>LDL Cholesterol</td>
<td>0.15</td>
<td>Wahl [84]</td>
</tr>
<tr>
<td>Haptoglobin</td>
<td>0.1</td>
<td>Shahabi [85]</td>
</tr>
<tr>
<td>α1-acid glycoprotein</td>
<td>0.1</td>
<td>Denko [82]</td>
</tr>
<tr>
<td>HDL Cholesterol</td>
<td>0.05</td>
<td>Wahl 1981</td>
</tr>
<tr>
<td>Ceruloplasmin</td>
<td>0.04</td>
<td>Denko [82]</td>
</tr>
</tbody>
</table>
Albumin is the major diamagnetic protein in plasma (approx. 4.5 g/dl), varies considerably with age and sex, with the difference in sexes being largest between 20-40 years of age [79,82]. Concentrations of IgG (1.1 g/dl) and fibrinogen (0.3 g/dl) are both increasing from 20 to 60 years of age and are marginally higher in females [80,81]. The relaxivities of these proteins are similar and approximately 0.035 (g/dl)$^{-1}$ s$^{-1}$ [86] and their total contribution to plasma relaxation is approx. $R_{1,proteins} = 0.2$ s$^{-1}$.

Transferrin (analogous to total iron binding capacity, TIBC) is the major paramagnetic plasma protein (approx. 0.25 g/dl) and can bind up to two Fe(III) ions per molecule. Concentration is age and sex dependent [82]; and iron saturation is sex dependent [87]. Yilmaz et al. 2004 determined the relaxivity of transferrin iron (TIBC x saturation) to 2.4 s$^{-1}$mM$^{-1}$ [86] and the contribution of transferrin to plasma relaxation rate is approx. $R_{1,tf} = 0.05$ s$^{-1}$.

Ceruloplasmin (approx. 0.04 g/dl) contains 6 copper atoms per molecule, of which 40% are in the paramagnetic Cu(II)-state [88]. Due to its role in the iron metabolism, ceruloplasmin concentration is both age and sex dependent [82]. There is no work presented on the relaxivity of ceruloplasmin at modern MRI field strength, but the relaxivity of Cu(II) in protein solutions is 1.68-2.18 s$^{-1}$mM$^{-1}$ [18]: The theoretical contribution of ceruloplasmin to plasma relaxation would be in the order of $R_{1,cr} = 0.01$ s$^{-1}$.

With these five proteins most of the variation in plasma T$_1$ with age and sex can be accounted for. Contribution from the rest of the plasma proteins, including ferritin (approx. 10 μg/dl), are regarded as physiological noise. Among the inorganic plasma constituents, none can compete with iron regarding paramagnetic contribution. However, potassium, phosphorous and protein bound calcium exhibit substantial variation with age and sex [89–91], and may contribute with relaxation pathways which remains to be investigated.
7 Paramagnetic relaxation of molecular oxygen

The MR relaxation rate in biological fluids has been claimed to be a linear function of oxygen tension [11,92–94]. This assumption is based on Henry’s law, which states that the molar amount of gas in a solution is linear in the gas partial pressure at the water-gas interface, and a single measurement of oxygen relaxivity in distilled water [12]. This simplified model of oxygen T_1-relaxation has three major faults:

- All paramagnetic contrast agents undergo field dispersion, meaning that the relaxivity must decrease with increasing field strength. The field dispersion of oxygen occurs between 0.5-7 T and has a maximum negative slope around 1 T.
- Oxygen solubility is a function of electrolyte, protein and cell content – the amount of dissolved gas at a given oxygen pressure will thus vary with the composition of the fluid.
- Paramagnetic relaxivity depends on other solutes, so the same amount of dissolved gas will produce different relaxation enhancements depending on the composition of the fluid.

7.1 Oxygen electrons have a short correlation time dominated by electron T_1-relaxation

The molecular form of oxygen that we breathe, O$_2$, or dioxygen, has two unpaired electrons in the p orbital. In the general case two spins would pair up and cancel, but in the oxygen molecule it is energetically favorable to fill the shell with single spins, yielding a net magnetic moment corresponding to the electron spin. The electron has a large gyromagnetic ratio and can interact with proton spins through dipole-dipole interaction [95,96]. The relaxation effectiveness in turn depend on the electron spin correlation time, which tells us how long, on average, an electron keeps the same polarization from the viewpoint of the proton. The electron correlation time τ_C is a combination of three terms: the electron’s own longitudinal relaxation time ($T_{1,e}$); the
rotational correlation time of the electron-proton spin interaction τ_R (is the electron or proton part of a fast or slow tumbling macromolecule?); and the chemical exchange rate τ_{CE} (is the proton competing with other protons for the paramagnetic center):

$$
\tau_c^{-1} = T_{1e}^{-1} + \tau_R^{-1} + \tau_{CE}^{-1}
$$

To determine the main contribution to the electron correlation time, the dispersion profile was recorded in several solvents of different viscosity [97]. The correlation time was calculated by fitting the Solomon equation for a two-spin system to the dispersion data of the oxygen solutions [98]:

$$
R_1 \propto \frac{v_e^2 v_p^2}{\tau_c^{6}} \tau_c \left[\frac{1}{1 + (\omega_p - \omega_e)^2 \tau_c^2} + \frac{3}{1 + (\omega_p)^2 \tau_c^2} + \frac{6}{1 + (\omega_p + \omega_e)^2 \tau_c^2} \right]
$$

Interestingly, the viscosity of the solvent had minor effect on the dispersion indicating that the correlation time is governed by intramolecular T_1-relaxation in the oxygen molecule. Moreover, the electron T_1 was estimated to 5-10 picoseconds according to the most recent data [97].

Figure 8 Data from Graf et al. 1980 [99] is fitted with a dispersion curve assuming an electron correlation time of 60 ps. Experiments conducted 20 years later indicate that the correlation time is 5-10 ps (Teng et al. 2001 [97]). Nevertheless, the relaxivity of oxygen does decrease by a substantial amount between 0.2 and 5 Tesla.
The traditional MRI contrast agent Gd$^{3+}$ has an electron T_1 of 1-10 ns, which is 1000 times longer than the oxygen molecule $T_{1,e}$, and makes Gd$^{3+}$ a very efficient relaxation agent. The electron T_1 is dependent on intramolecular spin-orbit couplings, vibrational phonons (Raman and Orbach processes), and distortions from intermolecular collisions [100].

In conclusion, the field dispersion of paramagnetic oxygen dictates that the relaxivity is field strength dependent, as per Figure 8, and the relaxivity seems to be insensitive to the solute viscosity.

7.2 Oxygen is poorly soluble in water but non-polar proteins and cell walls increase solubility

From the previous discussion it would seem that oxygen is a powerful relaxation agent in water – if the effective relaxation time becomes $T_{1,e} = 5$ ps instead of the water proton relaxation time $T_1 = 5$ s$^{-1}$ this is a factor of 10^{12}! However, oxygen is a non-polar molecule making it poorly soluble in water and the hydrogen bond disruption between water molecules makes it even less soluble at physiological temperatures. Although most salts will further decrease the solubility of oxygen in water, the addition of non-polar protein residues and domains, as well as the hydrophobic parts of membranes, increase the solubility [101].

This is the exact opposite of Henry’s law – the same partial pressure of oxygen will lead to more oxygen being dissolved in a cell suspension, than in distilled water.

7.3 Paramagnetic relaxation effects are mediated and enhanced by protein

Most paramagnetic contrast agents interact favorably with macromolecules and exhibit a higher relaxivity in higher macromolecule concentrations [16,17,102,103]. Moreover, the magnitude of this effect varies between different plasma proteins [18]. The same is true for molecular oxygen, which will associate with low affinity to protein residues and produce relaxation enhancements between 0.1 to 60 s$^{-1}$ at these sites [104]. The water proton relaxation enhancement at the residue is transferred to the bulk water by chemical exchange or by water exchange as usual.

Blood plasma contain salts and proteins but no cells (per definition), making oxygen less soluble in plasma than in water [101], however, the protein content still make the oxygen relaxivity higher in plasma ($3.38 \cdot 10^{-4}$ s$^{-1}$ mmHg$^{-1}$ [105]) than in distilled water.
(2.49·10⁻⁴ s⁻¹ mmHg⁻¹ [12]). Erythrocyte enriched blood (hct=0.6) have also been shown to have a higher relaxivity for oxygen (4.38·10⁻⁴ s⁻¹ mmHg⁻¹ [105]) than regular whole blood (4.1 s⁻¹ mmHg⁻¹ [19]). This can be generalized by considering the erythrocyte water and plasma water as proton pools in fast exchange [70] and using a higher value for the oxygen relaxivity in the erythrocyte interior. This model, which was developed but never presented as part of this thesis, is depicted in Figure 9 and estimates the intra-erythrocyte relaxivity to 5.99·10⁻⁴ mmHg⁻¹ s⁻¹ using data from two sources [19,105].

![Figure 9](image_url)

Figure 9 Using different values for the oxygen relaxivity in blood and erythrocytes, we can combine the hyperoxia-measurements of Hueckel [105] and Silvennoinen [19]. A single fast exchange blood model [70] is used to fit all data points using one oxygen relaxivity value for blood plasma: 3.38·10⁻⁴ mmHg⁻¹ s⁻¹ and a high value for the erythrocyte interior 5.99·10⁻⁴ mmHg⁻¹ s⁻¹.
8 T₁-Quantification

From the previous discussion we know that dissolved oxygen in blood will effect both T₁ and T₂* making changes in signal intensity difficult to predict. Although we know now that oxygen relaxivity is a function of field strength, solubility, protein content and cell content, the vastly simplified equation for the OE-effect is nonetheless true:

\[R_{1,blood} = R_{1,0} + r_{1,oxygen}P_{O2}. \]

This means that any attempt to quantify the OE-effect must start with a quantification of individual relaxation rates.

8.1 Inversion recovery

The most straightforward way to measure T₁, and what can be considered as the gold standard in imaging, is the 2D spin echo inversion recovery experiment. After an initial 180 degree RF pulse, to invert the z-magnetization, free T₁-recovery is allowed during the inversion time (TI). At the inversion time, a regular spin echo or turbo spin echo sequence is used to sample the magnitude of the resultant z-magnetization (Figure 10 A). Repeated measurements with different TI result in a magnetization recovery curve as indicated in Figure 10 B. If the repetition time (TR) is kept constant, T₁ can be calculated from a simple 3 parameter fit on the following form [106]:

\[S(TI) = a - b \cdot \exp \left(\frac{-TI}{T1} \right) \]

For a perfect inversion pulse the parameter \(b \) should equal to 2\(a \), since the magnetization is inverted at time zero. Making this assumption may make the fitting algorithm faster, but less precise.
A special case of the IR-SE is the IR-HASTE, (IR- Half-Fourier Acquisition Single-shot Turbo spin-Echo) in which a spin-echo train is used to sample half the Fourier space in one shot (generating a full image due to the redundancy of Fourier space). The sequence can be used slice selectively and interleaved for very fast imaging and is standard software on all clinical scanners, making it attractive for T₁-measurements. However, it is known that slice selectivity of the inversion pulse will make the sequence more sensitive to blood flow in the lung, since inflowing blood will give rise to a more positive signal than free T₁-recovery [108].

8.2 Look-Locker T₁-quantification

One of the most widely used methods for T₁-quantification, and the method employed in this thesis, is the Look-Locker method [109], based on fast gradient echoes and adopted for imaging purposes by Brix et al [110]. Compared to the IR-SE variations that need several inversion times for a single T₁ calculation, the Look-Locker sequence samples all images during one inversion and can thus create a single-slice T₁-map in 3-5 seconds [111].

Figure 10 A: Schematic drawing of the IR-SE sequence, with 180 and 90 degree pulses. B: The signal intensity (S) as a function of inversion time (TI) in the inversion recovery experiment, fitted with a curve on the form $S(TI) = a - b \cdot \exp(-TI/T1)$. Figure © Siversson [107] with permission.
Figure 11 Schematic drawing of the Look-Locker sequence. A series of low flip angle gradient echoes are used to continuously sample the magnetization recovery. RF is the radio frequency 180 degree or low angle shots; Mz is the recovering Z-magnetization, and Mxy is the transverse magnetization which is the recordable signal. In reality more than 1000 low angle RF pulses are applied to acquire a single T1-map during 3 seconds, but in the figure there are only 15. Figure © Siversson [107] with permission.

After the initial global inversion pulse, a series of gradient echoes are continuously collected during the z-magnetization recovery, with such low flip angle \(\alpha \) that the recovery is only slightly disturbed, until a gradient echo steady state is reached. The low angle flip pulses will make the recovery apparently faster, which is denoted by the apparent T1, or T1*. Likewise, the final magnetization will be the steady state magnetization \(M_0^* \) instead of the fully recovered equilibrium magnetization \(M_0 \). The value of T1 can be calculated analytically as follows [112]:

\[
\frac{1}{T_1} = \frac{1}{T_1^*} + \frac{\ln(\cos(\alpha))}{TR}
\]

However, unless specifically measured, the effective flip angle in the tissue is unknown. This was the focus of the dissertation of Siversson 2011 [107] and the practical consequence is that T1 is best calculated from a three parameter fit to the Look-Locker signal.

\[
S(t) = a - b \cdot \exp\left(-\frac{t}{T_1^*}\right)
\]

Under the assumptions that TR<<T1; that full magnetization recovery is allowed between inversions; and that the inversion pulse is perfect, the above parameters is used to calculate T1 as [112]:

\[
T_1 = T_1^* \left(\frac{b}{a} - 1\right) = T_1^* \frac{M_0}{M_0^*}
\]
Fortunately, the two first assumptions are easily satisfied in clinical lung imaging, but a few percent lower T_1 can be expected due to inversion pulse imperfections. Moreover, if a time efficient protocol is preferred as in Paper 1 and 2, a steady delay time can be used between inversions and the T_1 can be easily and accurately calculated using an iterative algorithm [62].

8.3 The use of selective or global inversion pulses

An important consideration is the choice of global or slice selective inversion pulses in pulmonary T_1-quantification. The quantification procedure is based on an inversion, a waiting time and a recording of the signal, as outlined in the previous section. If there is extensive blood flow into the imaging slice, the originally inverted spins will leave the slice and be replaced by fully recovered spins. This will lead to an artificially fast T_1-relaxation. In the case of pulmonary MRI, the estimated T_1 will be approximately 200-300 ms lower [113,114].

The implementation of the Look Locker quantification used in this thesis routinely offers both slice selective and global inversion pulses. However, since spin-echo techniques are often used in an interleaved manner (multi slice), global inversion pulses may be disabled on the scanner and some modification of the protocol is required. Early T_1-measurements in the lung reveal surprisingly low T_1, which may be attributable to the use of selective inversion pulses [8,115].

Even after using a global inversion pulse it is important to note that the pulmonary transit time – the time it takes blood to pass from the right to left ventricle – occurs on the same time scale as the longest inversion times used in T_1-quantification. If the study subject is fully at rest, with a cardiac index of $<5 \text{ l m}^{-2} \text{ min}^{-1}$, the transit time is around 6 seconds and non-inverted blood is not expected to reach the lung parenchyma within the inversion experiment. However, if the cardiac output is only slightly elevated due to stress, the pulmonary transit time will decrease to 2-3 seconds very quickly [116] and all T_1-measurements must be considered to be influenced by flow at long inversion times.

Some attempts have been made to quantify flow with the T_1-shortening associated with slice selective inversion pulses. This is a form of arterial spin labeling (ASL) and is sometimes referred to as FAIR (flow sensitive alternating inversion recovery) [114]. The most recent report established a 7-11 % decrease in pulmonary perfusion during hyperoxia in mice [117].
9 Pulmonary T\(_1\) as an imaging biomarker

In the search of small but clinically relevant changes (such as response to a new drug) parametric MRI is preferred over classic T\(_1\)- or T\(_2\)-weighted MRI. This is because MR images will always inherit properties of all relaxation times, proton density, flow effects, scanner parameters and minuscule day-to-day variations in magnetic field homogeneity. Parametric imaging tries to isolate at least the most obvious parameters which we know have clinical relevance – e.g. a “signal enhancement” in a T\(_1\)-weighted image does not tell if the signal increase is due to a higher flow, more blood or lower T\(_1\).

9.1 Pulmonary T\(_1\)-depends on the echo time

Triphan et al. 2014 quantified T\(_1\) relaxation in excised, bloodless porcine lung and found it to be 661 and 616 ms in two samples [118]; we also know that the T\(_1\) of human blood is typically 1500-1600 ms [74]. Triphan et al. 2015 later established that T\(_1\) of healthy human lung is an echo time dependent weighted average of the parenchymal T\(_1\) and the T\(_1\) of blood [119]. For T\(_1\)-experiments with conventional echo times (>1 ms) the measured T\(_1\) is 1200-1400 ms, and for read-outs with UTE (TE=70 \(\mu\)s) the T\(_1\) is between 950-1150 ms (Figure 12). In Paper 1, measurements were performed at tidal inspiration, yielding a slightly lower T\(_1\) than predicted by Triphan [119]– the mean T\(_1\) for males was 1150 ms at an echo time of 0.7 ms.
Figure 12 Pulmonary T_1 in 12 subjects measured with a segmented Look-Locker sequence with different echo times. Data from Triphan et al. 2015 [119]. The echo time used in Paper 1-4 was 0.7 ms.

9.2 Pulmonary T_1 is different when measured with spin- or gradient-echo

Although a recent meta-analysis concluded that there is no systematic difference in T_1 estimated with a spin echo or gradient echo [93], this question is raised in paper 4 of this thesis. Indeed, in the meta-analysis there is no difference in means between spin-echo and GRE type sequences at $p=0.95$. However, two early FSE measurements report T_1 values of 900 ms in healthy volunteers, which is typical of slice-selective measurements known to result in very low T_1. By discarding those and adding the measurements presented in Paper 4, there is definitely reason to consider a systematic difference between FSE and Look-Locker based T_1-quantifications in the lung. In fact, a bootstrap power calculation give this data set a 50% chance to detect a significant difference. The meta-analysis data is presented in Figure 13, with a 95% confidence interval for difference in mean T_1 between the methods of [-2.9, 170] ms, and implies a higher T_1-value in FSE measurements. The direct comparison in paper 4 reveal a significant difference in mean T_1 between FSE and LL measurement with a 95% CI of [29, 161] ms at $p=0.0075$.
Figure 13 Meta-analysis of pulmonary T_1 values from Dietrich et al. 2017 [93], with two additional group means from Paper 4 and two FSE data points excluded as outliers (green square), give us reason to believe that there may be a systematic difference between Look-Locker and FSE quantification of T_1.

A potential explanation for the higher T_1 in FSE-based imaging (and the higher ΔR_1 as will be seen in the next chapter) is the capillary blood volume, which will experience the greatest susceptibility gradient in the lung. If the capillary blood does not contribute to the GRE signal due to the very steep susceptibility gradient, but contributes to the FSE signal, the FSE will measure a higher T_1. Moreover, there is reason to believe that capillary blood has a higher T_- than other blood pools, because of the Fahreus effect, which predicts that capillary blood will contain a smaller fraction of RBC [120].

9.3 Pulmonary T_1-depends on lung inflation and the age and sex of the studied subject

It was previously established that the T_1 of a blood-less porcine lung is approximately 650 ms [118], it is thus reasonable that any decrease in pulmonary blood volume in a normal lung will lead to a lower T_1. During inspiration, the pulmonary blood volume is reduced and T_1 is consequently lower at inspiration than expiration [121]. In fact, vascular resistance is at a minimum at tidal breathing and highest at TLC [4] and capillary width decrease with transpulmonary pressure (inflation pressure) [13]; thus lung blood volume is lower during hyperinflation (inflation beyond tidal breathing)
The difference between full inspiration and expiration is 134 ± 113 ms, where the inspired state has a lower T_1 \[121\].

In Paper 1, the dynamics of pulmonary blood, lung volumes and the age-dependent shifts in blood EVF was used to explain changes in lung T_1 with age and sex in a 1.5 T clinical scanner \[123\]. The take home message is that healthy lung T_1 is approx. 1250 ms in young females and 1150 in males and females over 50 years of age. This paper is still the largest published record of T_1 measurements in healthy human lung; in a meta-analysis on pulmonary T_1-measurement from 2017, the material from Paper 1 constitute 16 % of the total number of measurements \[93\].

![Figure 14 Pulmonary T_1 as a function of age for males and females from Paper 1. Young females have a significantly longer T_1 than all other subjects. Compare this graph to Figure 6: left heart blood as a function of age and sex.](image)

In the material, consisting of 30 subjects evenly distributed between age and sex, there was a striking difference in pulmonary T_1 between young females and all other subjects ($p<0.001$). This is attributed to differences in blood EVF and blood T_1 \[67,74\]. Moreover, both men and women will increase their RV and subsequently breathe at a higher volume with increasing age \[27\]; leading to a displacement of lung blood \[124\]; which creates two concurrent effects (lower lung blood, higher inflation \[121\]) to lower T_1 at a high age.
9.4 Pulmonary T$_1$ is lower in COPD

In the excellent thesis by Dr Daniel Alamidi it was shown that T$_1$ is shortened in COPD patients compared to healthy controls; that T$_1$ was shorter in severe compared to moderate COPD; and that T$_1$ was significantly correlated with both FEV/VC and k$_{CO}$ (r>0.7, p<0.0001, n=36) [125]. The reduction of T$_1$ in COPD can be interpreted in terms of tissue destruction; distention and compression of the capillary sheet; and subsequent decline in blood volume. In particular, D$_{L,CO}$ is a function of capillary blood volume [40], which we know decrease in COPD and will directly affect T$_1$ according to the previous discussion about blood volume. The correlation between FEV/VC and T$_1$ can also be explained in terms of tissue destruction; where emphysema will induce premature compression of airways and thus respiration at a higher lung volume, which is associated with lower T$_1$. A later study confirmed the findings that COPD patients have lower T$_1$ than healthy controls and that asthmatics have T$_1$ between that of COPD and healthy lungs [126].

9.5 Pulmonary T$_1$ may reveal perfusion deficits and fibrosis

In an interesting study T$_1$-quantification, OE-MRI and contrast enhanced perfusion (Gd-DTPA) were all performed in 20 COPD patients, with regional abnormalities used as an end-point. Across all regions, T$_1$-abnormality correlated with perfusion defects (r=0.8), as well as GOLD stage (r=0.45) [127], supporting that notion that T$_1$ measurements can reveal lung perfusion deficits.

Similar results were found in a 2004 study of cystic fibrosis patients – pulmonary T$_1$ shortening correlated to low perfusion areas, although the study was qualitative and limited to five CF patients [128].

A pilot study conducted early in this thesis work analyzed T$_1$ maps from 5 women who received radiation treatment for breast cancer 10 years earlier (presented as a poster at IWPFI, Edinburgh 2015 [129]). The dependent lung regions received >30 Gy radiation dose and had visible fibrosis on CT images, which is known to be associated with reduced T$_1$ [130]. Compared to the controls, the group who received radiation treatment to the right breast had a lower quotient between the right side T$_1$ and the left side T$_1$ (p<0.05) whereas the two patients that received radiation treatment to the left side did not have a significantly different quotient. An analysis of pulmonary function tests in breast radiotherapy patients reveal a significant reduction in D$_{L,CO}$ and TLC persisting after 10 years [131]. Moreover, pulmonary perfusion defects can be linearly
predicted by the irradiated lung volume [132]. All of this indicates that T_1 is sensitive to late lung radiation damage and may reflect fibrosis and perfusion deficits.

Figure 15 T_1 values in the left and right apical lung, 10 years after breast radiation treatment, compared to controls. The group that received treatment to the right breast had a significantly lower quotient T_1(right)/T_1(left) compared to controls (p<0.05). Presented at IWPFI, Edinburgh 2015 [129]

Although lower FEV$_1$ was related to decreased T_1 in COPD patients [125], it should be noted that this is because of the underlying disease – tissue destruction and loss of pulmonary blood. In 76 lung transplant patients with varying rejection symptoms (bronchiolitis obliterans), characterized by a reduction of FEV$_1$, no reduction of T_1 could be statistically detected (p=0.66) [133]. This indicates that obstructive airway disease does not necessarily affect pulmonary T_1, unless the underlying disease also results in tissue destruction or fibrosis, as in COPD and CF respectively.

9.6 Pulmonary T_1 and tobacco smoking

An interesting topic is whether tobacco smoking has an effect on T_1, if there is no underlying disease. In a group of 12 healthy smokers and 23 age matched non-smokers, there was a non-significant correlation between T_1 and pack-years when adjusted for age (p=0.08) and a significant correlation between T_1 and pack-years (p=0.02) after adjusting for age and height [134]. It is known that smoking has small effects on blood hematocrit and hemoglobin levels – in a Scandinavian reference population of 1800 people, smoking was associated with a 3.5 % increase in Hb and EVF in females but not men [68]. However, in a larger study of 6800 participants, no sex dependency was
reported and smoking more than 6 cigarettes per day was associated with both higher hematocrit and hemoglobin [69]. Still, a 3.5 % change in hematocrit or Hb would result in a change of similar magnitude in T_1 (approx. 40 ms) [20,70] which should not be detectable in a sample of 20 individuals. Moreover, pulmonary blood volume was not different between smokers and non-smokers when measured with PET [122]. Indeed, although $D_{L,CO}$ is reduced in smokers, the effective pulmonary capillary blood volume is only acutely reduced by inhaled CO [135,136]. Since the intrinsic T_1 of carboxyhemoglobin (CO-Hb) is the same as oxy-Hb [137] the reduction in $D_{L,CO}$ seen in smokers should not be relatable to T_1-endpoints in healthy smokers, as long as there is no underlying tissue destruction.

9.7 Pulmonary T_1 may or may not detect early damage caused by tobacco smoke

Inflammation is often used as a model for early smoking induced pulmonary damage and is visible as an increase in T_1 due to increased perfusion, edema and tissue cell infiltration. However, COPD contain a significant vasoconstrictive effect in the lung which induce – according to the previous paragraphs – a decrease in T_1. Thus, it is possible that the inflammatory and vasoconstrictive effects on T_1 oppose each other to yield a multi-phasic (or a net zero!) T_1 response to tobacco smoke induced lung damage:

Both T_1 and T_2 varies strongly with the water content of inflamed tissue, yielding a higher T_1 in the early inflammatory phase of a bleomycin challenge in mouse lungs [138–140]. Moreover, inflammation caused by endotoxin, protease and tobacco smoke induce V/Q mismatch in mice [141] and this perfusion mismatch is potentially brought about by an inhibition of hypoxic vasoconstriction in inflamed tissue [36,142] – yielding an additional perfusion induced increase of T_1.

However, the primary pathway for developing COPD may not be inflammation at all – but rather ischemia [143] – indeed, tobacco smoking is known to cause vasoconstriction and PAH [35,144]. The vasoconstriction is likely augmented by signal molecules such as leukotrienes [145,146] in response to irritants in the lung [4]. Pulmonary vasoconstriction may also be mediated by low oxygen saturation in the carotid bodies after smoking [13]. All of which decrease pulmonary blood and T_1.

The final caveat is nicotine itself, a powerful global vasoconstrictor acting through systemic and local catecholamine release [147] which promotes a low T_1 response to smoking. Moreover, nicotine interferes with vagus nerve anti-inflammatory pathways in lymphocytes through the nicotinic acetylcholine receptor (nAChR) [148–150], which may inhibit the inflammatory (T_1 up) aspect in early lung damage and tip the scales in favor of a T_1-reduction due to tobacco smoking.
In conclusion, smoking induces both vasoconstriction (T_1 down) and inflammation (T_1 up) in the lung; there may be fast, transient and late effects; which are in turn mediated by oxygen tension, nicotine and a plethora of signal molecules. Needless to say, more studies are needed to elucidate the magnitudes and interactions of the inflammatory and vasoconstrictor responses on T_1 and the respective time courses.
10 Oxygen enhanced MRI

The oxygen enhancement effect was first studied in vivo and quantified as a relaxation enhancement of heart blood in 1984 [151] and the first proof of concept for OE-MRI of the lungs was provided in 1996 by Edelman et al. [8]. In 2002, Ohno et al. presented data that the mean relative enhancement ratio (MRER) in OE-MRI was correlated with $D_{L,CO}$ spurring the popularity of OE-MRI as a potential imaging method of regional lung function [9].

However, in Paper 2 of this thesis work, in which $D_{L,CO}$ was compared to ΔR_1 in 30 healthy volunteers, no correlation could be found [77]. Instead the parameters that best explained the variation in the sample was BMI and age, with sex confounding, which can be understood in terms of pulmonary shunt [77]. The take home message is that in healthy individuals, the transfer of oxygen is not diffusion limited, as described in the physiology section, and OE-MRI will not correlate with $D_{L,CO}$. However, in disease it is still plausible that the OE-effect correlates with both T_1 and $D_{L,CO}$ because all are dependent on pulmonary blood volume.

10.1 The three-compartment model of ΔR_1

To describe the OE-effect as ΔR_1, the lung may be divided into four basic compartments: pulmonary arterial (non-oxygenated); pulmonary venous blood (oxygenated); pulmonary capillary blood (fully oxygenated after 1/3 at rest); and pulmonary tissue (Paper 2). In theory, the arterial oxygen partial pressure may rise from 90 mmHg to 600 mmHg in healthy individuals, including the effects of pulmonary shunt [29]. According to Silvennoinen [19] this will result in an arterial blood ΔR_1 of approximately 0.20 s$^{-1}$, which is considerably higher than observed (Paper 2). Moreover, measurements in bloodless porcine lungs indicate that the ΔR_1 in the lung tissue is on the order of 0.2 s$^{-1}$ [118]. The only factor that can explain why ΔR_1 values in the range of 0.2 s$^{-1}$ are not routinely observed is the presence of pulmonary arterial (non-oxygenated) blood. During oxygen breathing the pulmonary arterial oxygen content increase from 41 mmHg to 57 mmHg [152], resulting in a negative ΔR_1 of -0.5 s$^{-1}$ [19]. The capillary blood is generally fully oxygenated after 1/3 of the capillary time, but may be considered to be either venous or arterial, but not both. This results
in a model where the expected ΔR_1 depends on the partitioning of blood as well as the tissue contribution, which we know from section 9.1 is echo-time dependent. A bold assumption of equal contributions from the post-capillary blood, pre-capillary blood, and tissue results in an expected change in relaxation rate of:

$$\Delta R_1 = \frac{\Delta R_{1,postc.} + \Delta R_{1,prec.} + \Delta R_{1,tissue}}{3} = \frac{0.2s^{-1} - 0.05s^{-1} + 0.2s^{-1}}{3} = 0.117s^{-1}$$

This is very much in line with the observed values in healthy volunteers (paper 2), the mean (standard deviation) sample value of a recent meta-analysis was 0.096 s$^{-1}$ (0.025 s$^{-1}$) [93]. With these compartments in mind, a very effective way to change ΔR_1 is to change the blood volume, which is exactly what may happen in a diseased and chronic hypoxic lung exposed to 100% oxygen gas. The release of hypoxic pulmonary vasoconstriction may increase blood volume, which will increase T_1; resulting in a negative ΔR_1 when the subject breathes 100% oxygen. The other major way to modulate ΔR_1 is by pulmonary shunt (Figure 2), which increases the fraction of non-oxygenated blood and lowers the oxygen content of the pulmonary venous system.

10.2 Methodological considerations for ΔR_1

In a recent meta-analysis, OE-measurements from 13 studies were pooled [93]. It is unfortunate that Paper 2 was published the same year and was not included. The authors of the meta-study conclude that there is no systematic difference between spin-echo and gradient-echo sequences with respect to the oxygen enhancement effect, but this has not been established in a single cohort. In paper 4 of this thesis we compared two IR-HASTE protocols with the classic Snapshot-FLASH and found that the mean T_1 and ΔR_1 are indeed different.

An important practical optimization is the choice of gas delivery. Although it was suggested that a loose fit, cheap face mask provides satisfactory oxygen enhancement compared to a tight fitting more expensive system [153], this was later refuted by another study, which claimed that the tight fitting mask system provided 50% higher oxygen enhancement at constant high oxygen flow [154]. Our own in-house tests confirm that a tight fitting mask is superior when studying oxygen enhancement, especially if the relaxation enhancement is quantified (Figure 16). In a clinical setting, a cheap loose-fit mask could potentially be used to generate images of e.g. pulmonary emboli and other perfusion defects in a non-quantitative manner.
Figure 16 A: Example OE-MRI experiment in a healthy subject with a typical change in relaxation rate ΔR_1 of 0.12 s$^{-1}$, using a tight fitting face mask (Hans Rudolph V2-mask). B: the same subject with a conventional oxygen mask (Intersurgical). To get reliable results, a tight fitting mask must be used and oxygen equilibrium must be reached.

10.3 Oxygen enhanced MRI for Emphysema and COPD

The classic study by Ohno was made on a group of emphysema patients ($n=10$) and healthy controls ($n=7$) [9], where the oxygen signal enhancement was found to be lower in the emphysema group than the healthy controls. The same group of healthy volunteers were also compared to lung cancer patients with ($n=8$) and without emphysema ($n=10$) and signal enhancement was, as before, found to be lower patients with emphysema [155].

In another study, relaxation enhancement and oxygen wash-in time was measured in $n=51$ smokers with COPD, 10 smokers without COPD and 10 non-smokers, who also performed CT and PFT. All aspects of lung function: FEV$_1$, D$_{LCO}$ and healthy lung tissue as seen on CT, correlated with both relaxation enhancement and wash-in time, as well as pack-years of cigarette use [156]. In the study, the wash-in time was more predictive of COPD severity classification than the relaxation enhancement.

A pharmacological trial used OE-MRI relaxation enhancement and wash-in/wash-out times as end-points when testing acute effects of a beta-2 agonist in 40 COPD patients (formoterol), as well as long term effects of a beta-2 agonist/corticosteroid treatment (formoterol/budesonide) [92]. The acute effects of beta-2 agonist inhalation was an
increase in FEV\textsubscript{1} and an increase in the wash-out time, however, only the increase in FEV\textsubscript{1} was statistically significant compared to placebo. The beta-2 agonist should relax airway smooth muscle within three minutes and the positive effects on heart rate and blood pressure should be on the order of 2 \% (for 9 μg) and barely measureable within 3 hours [157]. The 8-week follow up revealed statistical significant increase in FEV\textsubscript{1}, decrease in ΔR\textsubscript{1}, and shortening of the wash-out time. The results must be interpreted with the non-oxygenated blood pool in mind, since the treatment may affect both shunting fraction and pulmonary vascular resistance.

10.4 Oxygen enhanced MRI in Cystic fibrosis

Cystic fibrosis is characterized by mucus plugging, distal airway inflammation and fibrosis, so it should be no surprise that the oxygen enhancement is severely reduced in afflicted lungs. In a group of 5 patients, the relaxation enhancement ΔR\textsubscript{1} in the CF lung was between 0 – 54 \% of that of the normal lung [128].

In a more recent study, 21 CF patients and 5 volunteers were investigated with CT and OE-MRI with regional analysis based on 3 ROI per lung [10]. All regions of the lungs, except the basal third, exhibited a lower ΔR\textsubscript{1} in the CF patients compared to the healthy controls. Moreover, all regions of the lung – taken separately – had a longer wash-in time in the CF patients, whereas the whole lung wash-in time was not statistically different between healthy and CF subjects. The total wash-out time was longer in the CF lungs, but the variance was too large in the CF lungs to find statistical differences in all ROI. It is important to note that the heterogeneity in all end-points was larger in the CF patients.

In order to interpret such a study, with heterogeneous gas uptake and low enhancement regions, several physiological effects must be considered. For example, chronic hypoxic vasoconstriction in low ventilation areas may be alleviated by pulmonary arterial hyperoxia, which increases flow instantaneously. Upon return to normoxia, the hypoxic vasoconstriction is reactivated but at a slower rate (3-4 minutes) [13]. This interpretation is concurrent with the findings of the study, with the only caveat that pulmonary hypoxic vasoconstriction may be dependent on the alveolar oxygen tension and not be influenced by pulmonary arterial blood [34].

Finally, 6 CF patients and 5 asthmatics were compared to 7 healthy volunteers, using oxygen signal enhancement with a UTE-read out [158]. Considering the severe etiology of cystic fibrosis compared to asthma, it is not surprising that CF patients had lower signal enhancement than the asthma group. Moreover, the signal enhancement in the aorta was highest in the healthy volunteers and successively lower in asthma and CF.
10.5 Oxygen enhanced MRI correlates with asthma severity

Asthma is normally characterized by a considerable pulmonary shunt as outlined in the previous chapter. This means that a substantial fraction of the blood will pass the lung without being oxygenated, which may manifest as:

- The maximal oxygen concentration in efferent blood will be lower: $\Delta R_1 \downarrow$
- The fraction of non-oxygenated blood will increase, where there is a negative oxygen enhancement effect: $\Delta R_1 \downarrow$
- Since blood passes the lung without being oxygenated, more passes will be required to reach maximal oxygen concentration: Wash-in time \uparrow

In a study of 34 asthmatics, OE-MRI signal enhancement correlated with CT severity classification and with asthmatic stage classification [159]. In a smaller but more detailed study (4 mild, 6 severe) signal enhancement was found to be almost 50% lower in severe than mild asthma and heterogeneity worse in the severe condition [94], very coherent with the compromised ventilation/perfusion ratios in asthmatics [46]. The relaxation enhancement was also 30% lower in the aorta in the severe asthmatics, telling of a considerable shunt.

In a very elegant study ΔR_1 was quantified in asthmatics and control subjects exposed to several allergen challenges [160]. Despite being limited in size (9 asthmatics and 4 controls) the study found a significant transient reduction in oxygen enhancement after allergen challenge; in a dose dependent manner; where the decrease in ΔR_1 was proportional to the eosinophil infiltration ($r= 0.67$, $P = .0001$).

Pulmonary T_1 and ΔR_1 was quantified in 69 patients with transplanted lungs, with or without bronchitis obliterans syndrome (BOS) [133]. The typical manifestation is an immune mediated inflammation of the submucosa which ends in the obliteration of the airway by scar tissue formation [13]. The oxygen enhancement, quantified by ΔR_1, became lower with increasing symptom severity in the three groups stratified by FEV$_1$ >90%; 90% >FEV$_1$ >80%; and FEV$_1$ < 66%. This can be understood in the same terms as asthma, where airway obstruction leads to lower oxygen enhancement through pulmonary shunt.

It is important to remember that asthmatics often present with an elevated $D_{L,CO}$ [53–55] but evidently have very reduced ΔR_1. Thus, oxygen enhancement does not reflect pulmonary diffusion capacity, as was established in Paper 2.
10.6 Oxygen enhanced MRI and interstitial disease

Thin section CT and relaxation enhancement was used to distinguish patients with and without interstitial lung disease in a population with connective tissue disease (36 CTD of which 23 ILD) [161]. Both methods had comparable sensitivity but OE-MRI had very low specificity compared to CT (67 vs 100%), even though OE-MRI endpoints correlated marginally better with $D_{L,CO}$ ($r=0.79$ vs $r=0.76$) and serum ILD markers (KL-6; $r=0.64$ vs $r=0.61$) than disease severity assessed with thin-section CT. Interstitial lung disease is exactly the type of disease where oxygen transfer is diffusion limited, because the diffusion membrane thickness is increased, and OE-MRI may assess regional disease severity.
11 Pulmonary proton density

Structural pulmonary MRI has traditionally been hampered by the low proton density and air-tissue interfaces of the lung parenchyma, resulting in a very short T_2^*. However, with the advances in fast switching RF-transmitters and receivers; asymmetric echoes; non-Cartesian acquisition schemes; and faster iterative reconstruction algorithms, ultra-short echo time (UTE) imaging provides many interesting opportunities for pulmonary MRI.

11.1 MRI can be used to detect hyperintense or hypointense changes in the lung

In a mouse model of fibrosis the traditional FLASH and TSE as well as the novel UTE-sequence was able to detect both inflammation and fibrosis induces by bleomycin, although UTE-MRI was the modality that correlated best with CT [162]. Moreover, both FLASH and UTE can be effectively used to detect pulmonary nodules in humans, however, UTE has a 80% detection rate at >6 mm nodules, whereas FLASH has a 80% detection rate at 10 mm nodules [163].

Overall, MRI and especially UTE, has a large potential to study a variety of pathological changes. In a group of 85 patients with a plethora of clinical manifestations, the kappa statistic for inter-measurement agreement was between 0.67 and 0.99, indicating an often near perfect agreement between standard dose CT, low-dose CT and UTE-MRI [164]. Another study was limited to 30 cystic fibrosis patients and also found an inter-measurement kappa value of >0.8 for pathologic changes between UTE-MRI and CT [165] – this was true for all findings except emphysema, for which kappa = 0.44.

The introduction of UTE has spurred the interest in MRI also for hypointense changes such as emphysema. In a rat emphysema model, UTE signal correlated well with CT attenuation values (R=0.88) [166]. A similar result was found in a group of COPD subjects and healthy controls, where the correlation between CT attenuation and UTE signal was $r=0.82-0.99$ [167]. However, it must be stressed that this UTE-scan was made with 1.5 cm slice thickness and that the acquisition time was 13 seconds of breath-hold per slice.
11.2 Quantitative MRI proton density can potentially be used to detect emphysema

Although the use of CT-similar contrast may be clinically useful – especially for pediatric applications or repeated measures – the huge variety in MRI settings makes intra patient comparison difficult. For this reason quantitative signal mapping can be used. By generating proton density maps; minimizing the influence of T_1 and T_{2*} relaxation; and normalizing the signal intensity to a known tissue, the signal will reflect the tissue density.

In a group of 24 COPD patients and 12 volunteers, an IR-HASTE protocol was used to generate proton density maps (under the assumption that PD=equilibrium signal). By calculating established quantitative CT end-points (density mask [168]) from the PD-images, quantitative proton density MRI was thus enabled [169]. This type of quantitative density MRI protocol had been previously used with a HASTE sequence. As part of Paper 3, this method was adapted to the Snapshot-FLASH and tested against the AiDA-airspace radius. As expected, all measures of quantitative proton density correlated with the estimated airspace radius, where a low density was associated with a large airspace radius.

![Figure 17](image)

Figure 17 LEFT: PD weighted UTE-image of healthy lungs. The short echo time allows signal to be generated in distal airway blood vessels and with sufficient resolution, almost CT-identical images can be formed. RIGHT: snapshot FLASH PD-map of the same subject. The resolution is not comparable to the UTE-image, but there is signal from the whole lung. This image can be used for quantitative mapping, but not as a clinical image.
12 Discussion

12.1 Major findings

The major findings in this thesis are the following:

- Pulmonary T\textsubscript{1} is age and sex dependent where young females have a significantly higher T\textsubscript{1}. This can likely be explained in terms of pulmonary blood and residual volume.

- The oxygen enhancement effect as quantified by ΔR\textsubscript{1} is not correlated with D\textsubscript{L,CO} in a healthy population. This does not contradict the previous reported correlation between oxygen signal enhancement and D\textsubscript{L,CO}. It is, on the contrary, very likely that ΔR\textsubscript{1} correlates with most measures of pulmonary function in advanced pulmonary disease.

- The oxygen enhancement effect as quantified by ΔR\textsubscript{1} is dependent on age and BMI in a healthy population. This is likely an effect of pulmonary shunting, where excess adipose tissue restricts the lung volume and produces non-ventilated areas. High age is also known to reduce the lung compliance and thus increase the shunt fraction.

- Most quantitative OE-MRI protocols can be combined with a pulmonary proton density measurement without any additional scanning time. The M\textsubscript{0}–maps produced by the Snapshot-FLASH sequence does correlate with distal airspace radius measured with AIDA – this is valuable complementary information that has previously been overlooked.

- Different measurement protocols will produce different results, both with respect to native T\textsubscript{1} and the OE-effect. Of particular importance is the difference between gradient echo and spin echo based quantifications and the use of selective or global inversion pulses.

The above findings can mostly be appreciated as an imperative to include a physiological model based on pulmonary perfusion in all OE-MRI research. Previous research has been too reliant on pathological models of diffusion [92], which are not generalizable to all patient groups and definitely not healthy volunteers. Moreover, one of the primary components of the OE-effect is pulmonary shunt fraction, which varies
with age, sex and BMI. The field of MRI is a truly cross disciplinary, where the determinants of the MRI signal are distributed between purely physical (flip angle and protocol) and purely biological (macromolecule and blood flow) parameters. Any attempt to describe the MRI signal must thus be equally physical and biological in nature.

Oxygen enhanced MRI does not only provide a means of measuring $D_{L,CO}$ in severe disease – if used with caution it has the potential to identify regions with pulmonary shunt, precapillary hypertension and interstitial disease. Asthma and cystic fibrosis are some of the diseases where severity correlate well with OE-endpoints. Finally, OE-MRI may easily be accompanied by a proton density quantification to detect emphysema.

12.2 Research context

According to this thesis, oxygen enhanced MRI is not ready to be used for diagnostic purposes, but has substantial potential for tracking and phenotyping disease. The largest studies have included less than 100 patients with of a single disease type and the ROC-analysis of OE-MRI have not produced an AUC larger than 0.8 [133,169]. Even if the results were impressive, the variability of end-points and methodology makes any generalization difficult.

A completely different application of OE-MRI is for tumor hypoxia tracking, which has not been covered in this thesis. Tumor oxygen consumption, outside the lung, can be studied by the same principles as in pulmonary OE-MRI [170]. This technique greatly increases the clinical usefulness of OE-MRI since the same modality can be used to track tumor growth and pulmonary function.

12.3 Limitations

Most MRI studies suffer from a low number of subjects and measurements. The time and cost of MRI examinations are at least twice that of corresponding CT-examination and the clinical availability of scanners is very restricted. This thesis contains the, up to this date, largest cohort of healthy volunteers with T_1 and OE-measurements, but it is still only 31 subjects.

Another important limitation of this thesis is the lack of patients and pathology. There are many ideas in this thesis that may be tested on a suitable group of patients or animal models. This, however, is promising for the future of OE-MRI.
This thesis has an emphasis on pulmonary blood for OE-MRI interpretation – therefore it is regrettable that no proper blood work was done on the original cohort that was later used in papers 1-3. It is recommended that any future study of OE-MRI should include measurements of hemoglobin and/or hematocrit, at least.

Another limitation is the choice to perform our measurements during tidal inspiration. Previous T1-measurements have established a significant difference between respiratory phases [121], thus, the most informative protocol, with respect to disease phenotyping, would include measurements at both inspiration and expiration [130]. An interesting option is the Fourier decomposition technique that has been used to study respiratory motion on a pixel-by-pixel level during free breathing [171,172].

12.4 Methodology

All papers published in this thesis contain multiple comparisons. It is my firm belief that p-values should not be “adjusted” in this type of methodological works. For example, the fact that the T1-values correlate with all lung volumes for males should not be surprising – since all lung volumes do correlate with each other and we do know that T1 should vary with lung volume. It is way more dangerous to report only significant correlations and to refrain from publishing results because they did not fit the original model or the specified significance levels. In paper 2 for example, the data were turned inside out because the reported correlation between DLCO and ΔR_1 could not be seen. This instead led to an alternative physiological explanation for the OE-effect, along with a physiological model that gave a much better fit to the data.

12.5 Future prospects

The availability of UTE-protocols and the addition of the Snapshot-FLASH to the commercial package of clinical scanners have changed the arena for OE-MRI and pulmonary MRI in general. The CT-imitating potential of UTE sequences makes pulmonary MRI clinically useful and oxygen enhanced MRI with breath-holding can easily be performed by any center, without post-processing.

Cardiac output would also be interesting study together with OE-parameters. Given that Look-Locker derived protocols are used to study myocardial T1 [74], a cardiopulmonary OE-protocol is feasible, although time-consuming. Extending 3D-cardiac MRI to the whole thorax and implementing a UTE read-out, would invite to a holistic cardiopulmonary scan with OE-potential and simultaneous quantification of
pulmonary tissue density and myocardial T₁. Studying the cardiopulmonary system as one unit may be very valuable for COPD/PAH phenotype [58].

The PAH patient, may be an illustrative model for the negative ΔR₁ effect, predicted by the compartment model of ΔR₁ in section 10.1. A patient with PAH will exhibit vessel distention in the pulmonary arterial side [59], which should yield a negative ΔR₁ in an OE-experiment. Moreover, breathing oxygen gas may alleviate pulmonary hypoxic vasoconstriction, leading to an increase in pulmonary blood volume and a further increase in T₁ (negative ΔR₁). Cardiac MRI has already been used to study PAH in a systemic sclerosis population compared to controls, with very meagre results [173]. It is possible that OE-MRI will provide a very sensitive screening tool for PAH, by directly imaging the pulmonary arterial blood compartment.

As outlined in section 9.7, the etiology of COPD may be both inflammatory and ischemic [143]. Potentially, nicotine is a key player with anti-inflammatory and vasoconstrictive effects [174,175]. The OE and T1 biomarkers presented in this thesis may be a tool to elucidate the vasoconstrctor and inflammatory effects of tobacco smoke, and nicotine alone, in vivo, in both healthy smokers and animal models.

The effects of oxygen inhalation on T₂* and susceptibility differences between the pulmonary arterial, venous and capillary blood pools is only briefly mentioned in section 5.3. Any method that can selectively image each of these components will be immensely valuable for disease phenotyping. A possible starting point is single point spectroscopy under oxygen breathing with susceptibility modelling [65].

This thesis contains the first coherent report of the OE-effect from the bench to the bedside (or from atom to asthma). A significant effort was made to connect the work on molecular imaging using oxygen NMR [97,104], with the macroscopic relaxation effects, but this could not be done in a quantitative manner. The first step is to quantify the relaxivity of oxygen in different protein solutions, to yield a concentration dependent relaxivity of oxygen in hemoglobin and albumin. Another interesting task is to quantify the relaxivity of oxygen in different cell concentrations – indeed, the relaxivity is known to vary with hematocrit, which may prove to be an effect of the amount of cells and not the amount of hemoglobin, since oxygen is non-polar and preferentially occupies cell walls [101].

Paper 4 provides the first evidence that spin-echo and gradient-echo quantifications of ΔR₁ do not yield the same results. This is certainly an invitation to anyone to replicate or challenge these results. The hypothesis put forward in this thesis emphasizes the peri-alveolar water, including surfactant and alveolar capillaries, which potentially have the highest oxygen concentrations and the highest susceptibility gradients. A carefully designed experiment may investigate whether this peri-alveolar water pool contributes with a large ΔR₁ in spin-echoes, but not in gradient echoes due to excessiveT₂* dephasing.
12.6 Conclusions

- In this thesis you will find a careful description of the variation in T_1 and ΔR_1 in a cohort of healthy volunteers (Paper 1 & 2). A recent meta-analysis confirms that the values presented here are coherent with other studies [93].

- The body of this thesis contains a thorough physiological and physical interpretation of pulmonary T_1 and ΔR_1 that incorporates other studies on pathology (Chapters 2 through 10)

- In paper 3, there is evidence that the common Snapshot FLASH sequence for T_1-quantification provides additional biomarkers for lung density, as the equilibrium signal M_0. Considering the usefulness of this biomarker alone (Chapter 11), OE-MRI with T_1- and PD-mapping will be a very useful imaging tool.

- Paper 4 provide evidence that gradient echoes and spin echoes may produce different results with respect to T_1 and ΔR_1. This is supported in section 9.2 with data from a meta-analysis.

- As a whole, this thesis can be used by anyone wishing to start an OE-MRI pipeline or study. Hopefully, there will be plenty of information and suggestions for further investigations. The references contain a mix of MRI physics, basic pulmonary physiology and state-of-the-art clinical applications of pulmonary OE-MRI, which provides a sound foundation of any aspiring OE-MRI researcher.

These conclusions warrant a more careful interpretation of pulmonary T_1 and oxygen induced ΔR_1, where pulmonary blood and shunting should be included. Neither T_1 or ΔR_1 should be seen as intrinsic parameters, but are dependent on both very physiochemical processes, such as oxygen-protein relaxation interactions; macroscopic biology, such as blood flow; and MRI sequence design.

A more optimistic implication of this thesis is that oxygen induced ΔR_1 and T_1 are imaging biomarkers, sensitive enough to detect differences brought about by natural ageing, weight gain and sex differences in pulmonary physiology. This should make OE-MRI and pulmonary T_1-quantification ideal for detecting disease. Indeed, most pathological changes will have an effect on both T_1 and ΔR_1 in the lung – the only question is how (spin- or gradient-echo), when (respiratory phase) and where (pulmonary arterial, capillary or venous compartment) you choose to measure.

15. Glick G, Schreiner BF, Murphy GW, Yu PN. Effects of Inhalation of 100 Per Cent Oxygen on the Pulmonary Blood Volume in Patients with Organic Heart Disease. Circulation. 1963;27: 541–553. doi:10.1161/01.CIR.27.4.541

38. Wang W, Ma D, Li T, Ying Y, Xiao W. People with older age and lower FEV1%pred tend to have a smaller FVC than VC in pre-bronchodilator spirometry. Respir Physiol Neurobiol. 2014;194: 1–5. doi:10.1016/j.resp.2014.01.003

46. West JB. Pulmonary Pathophysiology: The Essentials [Internet]. 2011. Available: https://books.google.se/books/about/Pulmonary_Pathophysiology.html?id=slJg1I9NCuIC&pgis=1

78

70. Li W, Grgac K, Huang A, Yadav N, Qin Q, van Zijl PCMM. Quantitative theory for the longitudinal relaxation time of blood water. Magn Reson Med. 2015;00: n/a-n/a. doi:10.1002/mrm.25875

Siversson C. Three-dimensional T1 quantification techniques for assessment of cartilage quality using dGEMRIC [Internet]. Lund University. 2011. doi:978-91-86871-24-6

Acknowledgement

Under perioder har jag forskat, grävt i litteratur, scannat försökspersoner och skrivit utkast på artiklar, bara för att hitta ett räknefel i min kod efter månaders arbete. När något sådant hänt har jag sökt sinnesro i körsången. Mitt hår hade för länge sedan grånat om det inte vore för Ostrochorus och Svanholm Singers.

Redan 2011 gjorde jag praktik och examensarbete på Medicinsk strålningsfysik i Malmö. Förutom att Christian lärde mig olympisk tyngdlyftning under denna period, lyfte den varma och öppna stämningen i Malmö en tyngd från mina axlar. Professor Sören Mattson – lika känd för sitt vetenskapliga skarpsinne som sitt rättvisepatos – har säkerligen präglat atmosfären här. Denna levande legend kan inte bara beräkna stråldos från betasönderfall bara av handryggshårens polarisation; han kan också berätta historier, och han vet vikten av att ge alla människor en chans.

En sådan chans gavs till mig av Jonas Svensson, som var min handledare och senare bihandledare. Förtroendet att vikariera för dig var starten på min MR-karriär och du har troget stöttat mig hela vägen.

Per Wollmer är min andra bihandledare och har varit en outtröttlig källa till visdom på min väg att bli lungforskare. Det går inte att överskatta hur viktig din input har varit för att den här avhandlingen tagit så spännande vändningar som den gjort.

Sven Månsson har aldrig haft en officiell handledarroll men är minst lika närvarande. Det är till dig jag gått med de riktigt svåra MR-frågorna och även om du inte haft svar så har du lyssnat med intresse och tålmod.

Carl Siversson förtjänar ett speciellt tack, för att jag slittit ut minst två ex av din avhandling om T1-mätningar och även fått låna dina figurer.

Simon Triphan and Frederik Testud, you are my IDEA wizards in this project and not a single measurement would have been done without your help. I know you've spent many nights debugging and recompiling pulse sequences for me.

Special thanks to prof. Robert Bryant of Virginia University, who answered all my questions about oxygen paramagnetism; och Mikael Gottschalk som också visade stor omsorg att svara på frågor och ge feedback i ämnet. Specialtack till Anders Grubb och Björn Dahlbäck som svarat på många frågor om plasmaproteiner

Mina andra medförfattare: Sandra Diaz, Laura Aaltonen, Sophia Zackrisson, Jonas Jakobsson och Jakob Lönndahl. Tack för gott samarbete, goda samtal och förhoppning om fler lyckade projekt! Jag tror nanopartiklarna kan bli riktigt stora!

Daniel Alamidi – min föregångare och förebild, tack! Och Anetta Bolejko – du är alltid entusiastisk, hjälpsam och gör Röntgen Malmö till en bättre forskningsmiljö!

Viveca – du är en klippa som styr och tar hand om hela avdelningen.

Slutligen tack till mina vänner (som utgör resterande 50% av försökspersonerna i denna avhandling). Ni har ofta gjort mitt liv till en stor fest, men lika många gånger stöttat mig under tuffa perioder och sorg.

Och tack Maria (som också är omslagsmodell!) för husrum, tålmod och oändlig kärlek under hösten. Nu är det min tur att ge tillbaka – jag ser fram emot det!
Quantification of the longitudinal relaxation time, T₁, and oxygen enhanced (OE-) MRI are two potential imaging biomarkers for lung disease. This thesis explores the physiological relevance of quantitative T₁ measurements and OE-MRI of the lungs and presents a physiological and physical interpretation of these imaging biomarkers based on measurements in healthy volunteers.

This thesis is the perfect starting point for anyone interested in using OE-MRI and T₁-quantification for longitudinal studies of patients or risk groups, and will hopefully make those measurements worthwhile.

Simon Kindvall was awarded the degree of M.Sc. in Medical Physics in 2012 and studied clinical anatomy, cellular biology and human physiology before writing this thesis.