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Abstract

In the world of cryptography, stream ciphers are known as primitives used
to ensure privacy over a communication channel. One common way to

build a stream cipher is to use a keystream generator to produce a pseudo-
random sequence of symbols. In such algorithms, the ciphertext is the sum
of the keystream and the plaintext, resembling the one-time pad principal.
Although the idea behind stream ciphers is simple, serious investigation of
these primitives has started only in the late 20 th century. Therefore, crypt-
analysis and design of stream ciphers are important.

In recent years, many designs of stream ciphers have been proposed in
an effort to Þnd a proper candidate to be chosen as a world standard for
data encryption. That potential candidate should be proven good by time
and by the results of cryptanalysis. Different methods of analysis, in fact,
explain how a stream cipher should be constructed. Thus, techniques for
cryptanalysis are also important.

This thesis starts with an overview of cryptography in general, and in-
troduces the reader to modern cryptography. Later, we focus on basic prin-
ciples of design and analysis of stream ciphers. Since statistical methods
are the most important cryptanalysis techniques, they will be described in
detail.

The practice of statistical methods reveals several bottlenecks when im-
plementing various analysis algorithms. For example, a common property
of a cipher to produce n-bit words instead of just bits makes it more natural
to perform a multidimensional analysis of such a design. However, in prac-
tice, one often has to truncate the words simply because the tools needed for
analysis are missing. We propose a set of algorithms and data structures for
multidimensional cryptanalysis when distributions over a large probability
space have to be constructed.

This thesis also includes results of cryptanalysis for various cryptographic
primitives, such as A5/1, Grain, SNOW 2.0, Scream, Dragon, VMPC, RC4,
and RC4A. Most of these results were achieved with the help of intensive
use of the proposed tools for cryptanalysis.
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1

Introduction

ÒScytaleÓ, an ancient device for encryption.

H uman is a social creature! A need for communication has existed among
human beings for thousands of years. Speech has always been an im-

portant peculiarity of human society, one that made us signiÞcantly differ-
ent from other animals. In dinosaur times, when living in a cave one would
need to tell the others where the meat is hidden, while that information had
to be kept secret from another tribe, living in a neighbouring cave. That era
can be regarded as the beginning of secrecy, the root of modern cryptogra-
phy.

The creation of writing made the secrecy of communication even more
important. Indeed, the lifetime of a written message is longer than that of
a spoken one. Around 1900 B.C., ancient Egyptians started to modify sym-
bols to ensure the privacy of a message. Later, in 600-500 B.C., ancient Jews
created a cryptosystem, ÒAtbashÓ, which is now known as asubstitution ci-
pher. The idea is simple: every letter is substituted with another letter from
the same alphabet. One of the best known ancient encryption methods is
the Caesar cipherfrom around 100-44 B.C., where every letter is substituted
by the third next letter of the alphabet. The dictator of the Roman Empire,
Gaius Julius Caesar, used this encryption method to protect his messages
and orders from curious eyes. An interesting fact is that in the famous In-
dian book ÒKama-SutraÓ, cryptography is mentioned as one of 64 arts, a
must for study...
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2 1. Introduction

While some people were hiding their secrets, other curious creatures
were breaking the codes. This ÒgameÓ perhaps started with the Chinese
manuscript ÒArt of WarÓ, written by Sunzi around 500 B.C. Besides the de-
scriptions of tactics and strategies of a war, the book also gives the basic
methods of information analysis. The science of analysis of codes is called
cryptanalysis.

Evaluation of cryptography in the last 2000 years was signiÞcantly faster
than before. In the XV century, Italian mathematician Leo Batista Alberti
made the Þrst mathematical model of cryptography. He also created the
Þrst machine for encryption, and future cryptographic systems were based
on his ideas, before modern computers were invented. In the XVIII century,
Thomas Jefferson, the third president of the USA and a scientist, invented a
device in a cylindrical form for encryption. That mechanical device allowed
application of tens of different encryption methods, and it was used until
the second World War. In the XVIII century, the English spy agency started
to use invisible ink based on milk. The information is revealed when the
paper is heated. This kind of encryption was also used by LeninÐthe father
of the Russian Red Revolution in 1917. While in a prison, he was writing
his messages by milk between texts in books, and then his revolutionary
comrades could read them.

Figure 1.1: Thomas Jefferson, and his cylinders for encryption.

The history of modern cryptography perhaps began in the 1920s, when
a group of German scientists created the device ÒEnigmaÓÐthis was, in fact,
the Þrst specialized computer for encryption. Three years later the mech-
anism of Enigma was discovered by a group of British scientists, secretly
formed on purpose for this investigation. A few years later, Enigma was
adopted for encryption for almost all correspondence of the German army,
navy, air force, Gestapo, and other ofÞcial departments. That device was
widely used during the World War II. The fundamental break of the Enigma
system was made in Warsaw, Poland, in 1932 by Marian Rejewski. This and
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Figure 1.2: The encryption device ÒEnigmaÓ, used in World War II.

other results allowed breaking Enigma and cut the War by one-two years,
and saved millions of lives. This historical example clearly shows the im-
portance of cryptography and cryptanalysis in the XXI century.

1.1 Modern Cryptography in the Digital World

Nowadays, information technology and communication are a deeply inte-
grated part of our life. People use mobile phones, Internet, banking systems,
and other services. More generally, communication can exist wherever a
channelcan be established. A channel can be regarded as an information
provider; it can be a wire, air, light, waves, etc. However, a channel can
be secureor insecure, depending on who can ÒlistenÓ to it. If the actual in-
formation going through the channel can be understood only by intended
recipients, then the channel is secure. Otherwise, if someone else can under-
stand the actual information, the channel is called insecure.

Source
Coding

Source
Decoding

Sender

Receiver

Message
Encryption

Decryption

Channel
Coding

Channel
Decoding

Modulation

Demodulation

Channel

The subject of
cryptography

Figure 1.3: Place of cryptography in a communication system.
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A typical path for information going through the channel is shown in
Figure 1.3 and has four main stages:

1. Source Codingremoves the redundancy from the source such that the in-
formation is compressed. Typical examples of source encoders are com-
pression algorithms such as ZIP, ARJ, RAR. Source coding is also used to
compress media in formats JPEG, AVI, and other applications. Decoding
reverses the compression of the information.

2. After the redundancy is removed, encryptionis performed to ensure the
privacy of the communication. The encryption method, a cipher, takes
the input plaintext and produces an encrypted message calledciphertext.
Usually, the sizes of the plaintext and the ciphertext are the same. En-
cryption and decryption methods are typical subjects in cryptography.

3. In Channel codingsome portion of redundancy is added to the input data
stream for detecting and correcting digital errors that occur during the
transmission. Error correcting codes are used, for example, in media
compact discs, mobile communication, and other applications.

4. Modulation is the process wherein a radio frequency or light waveÕs am-
plitude, frequency, or phase is changed in order to transmit the informa-
tion through the channel.

The role of cryptography is to make an insecure channel secure. The infor-
mation transmitted through the channel is Þrst encrypted, so that it can be
understood only by those who are supposed to know a secret algorithm
or a procedure that reverses the encryption. This procedure is also called
decryption.

Any cryptographic systemusesprimitives to provide a set of services.

1.2 Cryptographic Services

Cryptography can be applied in many ways, providing different services.
Below we describe the most important services that are used in real appli-
cations. They are: data con�dentiality, user authentication, data integrity,and
non-repudiation of origin.

Data Con�dentiality

This service is, perhaps, the oldest and the best known. Every person has
some sensitive information that he would not like to broadcast to everyone.
For example, the number of oneÕs credit card is better kept far away from
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curious eyes. ConÞdentiality is very important in hospitals, where informa-
tion in general is very sensitive. Banks have to keep records of their clients
secure as well, since this information can be used by an intruder.

Data con�dentiality guarantees access to the information only to autho-
rized people.

User Authentication

When logging onto a computer one has to enter the login name and the
password to make the operation system recognize him as a user. Or, when
using an ATM machine to withdraw money, the client is usually asked to
type his 4-digit pin code. In another situation, when two people want to
establish communication, they often Þrst need to prove to each other that
they are indeed who they claim to be. All these situations require a special
mechanism of authentication.

Authentication can be done in many ways. The person can identify him-
self if he hassomething (e.g., ID card, token), knowssomething (e.g., pass-
word, pin code), or is an identiÞer (e.g., Þngerprints, eyes, other biometrics).
The Þrst two methods are widely used in common applications. Despite the
fact that biometrics are very good for authentication, they are still used quite
seldomly, since devices for biometric authentication are expensive and com-
plicated.

Data Integrity

The data integrity service guarantees that the information sent through the
channel is not modiÞed. This service itself is useless unless the recipient
knows who the sender is. Therefore, data integrity is usually combined with
the data origin authentication, which guarantees that the person who claims
his authority is really the sender of the message.

In a digital communication system one should be alerted to an intruder
who listens to the channel and modiÞes the information that is going through
(an active attack). For example, e-mail communication is usually not secure;
one could generate an e-mail to some person A that looks as though it was
sent from another person B.

Cryptography solves these problems as well. For the data integrity ser-
vice hash functionsand/or message authentication, codes as well as digi-
tal signatures can be used. Digital signatures additionally guarantee non-
repudiation of origin, a very important concept in cryptology. It means that
the author of the message cannot later deny his responsibility.
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1.3 Cryptographic Primitives

Cryptographic primitivesare those building blocks that are used to provide
cryptographic services. In Figure 1.4 the taxonomy of cryptographic prim-
itives is shown. Primitives can be divided into three categories: unkeyed
primitives, symmetric key primitives, and public key primitives. In this thesis,
we focus in detail on symmetric key stream ciphers, in particular on stream ci-
phers. They will be deÞned and described in the next section. Below we
brießy describe security primitives.

Security
Primitives

Unkeyed
Primitives

Symmetric-
key Primitives

Public-key
Primitives

Hash Functions

Random Sequences

Symmetric-key Ciphers

Pseudo-Random Sequences

Public-key Ciphers

Signatures

Block
Ciphers

Stream
Ciphers

...

...

...

Figure 1.4: Taxonomy of cryptographic primitives.

Unkeyed Primitives

Unkeyed primitivesare used to support such services as authentication and
data integrity. These primitives are, for example, one-way permutations, hash
functions, and others.

Hash functionsor compression functionshave received a lot of attention
in modern cryptography. It takes a long input sequence of a message, and
produces a short Þxed length string, which is usually referred to as a message
digest, checksumor a digital �ngerprint . The term hashapparently comes from
the physical term to chop and mix. Knuth noted that Hans Peter Luhn from
IBM appears to be the Þrst person to use this term, in January 1953. Indeed,
in most hash algorithms the message is Þrst ÒchoppedÓ into words, and then
ÒmixedÓ with the previous ones.

Hash functions must satisfy certain properties.

€ One-Way (OW) propertymeans that given a hash value it is difÞcult to
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Þnd a corresponding message.

€ Weak Collision Resistance (WCR):it should be hard to Þnd two messages
with the same hash value.

€ Strong Collision Resistance (SCR):given one message, it should be difÞ-
cult to Þnd another message with the same hash value.

One can note that there are relations among these criteria. For example, if a
hash function is not SCR, then it is, consequently, not WCR.

It is hard to overestimate the importance of hash functions for cryptog-
raphy. They provide services such as integrity and digital signing. The most
widely used hash functions are, perhaps, MD5 [KR95] and SHA-1 [Rob94].
Recent results on cryptanalysis of hash functions MD4/5 [YWZW05],
SHA-0 [WYY05b] and SHA-1 [WYY05a] reveal a weakness in the design
of these functions. It has been shown that the strongest known compres-
sion function SHA-1 can be ÒbrokenÓ (a collision can be found), in around
263 operations. These results gave hash functions top priority in discussions
throughout the cryptographic community.

Symmetric Key Cryptography (SKC)

SKCs are used to provide services like data conÞdentiality and non-repu-
diation of origin. This class of primitives contains such primitives as block
ciphers and stream ciphers Ð the main object of this thesis.

Public Key Cryptography (PKC)

PKC uses two keys, apublic keyand a private key, to implement an encryp-
tion algorithm that does not require a trusted third party. Thus, public key
primitives can be used for key exchange protocols, digital signing, and other
purposes.

The breakthrough in the concept of the PKC principles was achieved
by WhitÞeld DifÞe and Martin Hellman from Stanford University. Their
ground-breaking paper ÒNew Directions in CryptographyÓ was published in
November 1976 in IEEE Transactions on Information Theory[DH76]. Their
paper describes the key concepts of the PKC, including how to produce
digital signatures, and gives some sample algorithms for implementation.
This paper changed the world of cryptography research, which had been
somewhat restrained up to that point by real and perceived government
restrictions, and initiated dozens of researchers around the world to work
on practical implementations of public key cryptography algorithms.

Two years later, Adi Shamir, Ron Rivest, and Leonard Adleman, from
the Massachusetts Institute of Technology, published their Þrst public key
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encryption algorithm called RSA [RSA78]. It Þrst appeared in the maga-
zine Scienti�c Americanin the widely read column Mathematical Games. The
article also invited people to include the RSA method in their e-mails to en-
sure privacy. The US National Security Agency (NSA) realized the power of
the algorithm and feared that non-government elements could use it. NSA
sought to stop distribution of the report, but could not provide legal bases
for their demand. In February 1978, the university bravely published the
RSA in the journal Communications of the ACM, and PKC went out to the
world... In 1982, the inventors of RSA formed a company to market their
PKC algorithm. Nowadays, PKC is one of the main parts of cryptography,
widely used and investigated.

1.4 Recent History of Cryptography

For encryption purposes there exist, basically, two types of primitives, block
and streamciphers. Block ciphers are classical primitives that have been
studied for years. Collected design techniques and cryptanalysis of block ci-
phers allowed to develop such a standard for encryption as Rijndael (AES).
This cipher is widely accepted, and it has strong resistance against various
kinds of attacks.

On the other hand, although the idea of stream ciphers appeared long
ago, the open study and investigation of these primitives began only about
20 years ago. It is widely believed that stream ciphers can be smaller and
much faster than block ciphers when implemented. Unfortunately, we still
do not have enough knowledge about the design and cryptanalysis of stream
ciphers.

Additive stream ciphersform a family of cryptographic primitives that has
many properties suitable for use in various applications, including telecom-
munications. In a binary additive stream cipher, the keystream, the plain-
text, and the ciphertext are sequences of binary digits. The keystream is
generated from a keystream generator; it takes a secret key and the initial
value (IV) as a seed, and produces a long pseudo-random sequence. In an
additive stream cipher, the keystream depends neither on the plaintext nor
on the ciphertext. The ciphertext is usually generated by bit-wise addition
(modulo 2) of the keystream and the plaintext. Since the secret key is shared
by the transmitter and the receiver, the receiver can decrypt, and obtain the
message sequence by adding the keystream to the ciphertext. In general,
the stream cipher does not have to be bit-oriented, but can also produce a
number of bits (a word) at a time. This is the current trend in designing
high-speed stream ciphers.

Thus, designing high-speedstream ciphers has been an important crypto-
graphic topic for the last few years, motivated by the widespread belief that
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such stream ciphers can be considerably faster than block ciphers in soft-
ware, and possibly also simpler to implement in hardware. A fast stream
cipher is obtained by designing a pseudo-random generator depending on
a secret seed (key and IV), to produce the output stream as fast as possible.

Quite a few proposals for stream ciphers have been suggested. However,
many of them suffer from a number of small cryptographic weaknesses.
Well known and frequently used stream ciphers like A5/1 [BGW99] used
in GSM, RC4 [Sma03], andE0 [Blu03] used in Bluetooth are all susceptible
to different attacks [BSW00,MJB04,EJ01,Gol97b,Gol99,Gol97a,FL01]. More
recent proposals, like SOBER t16 [HR00a], SOBER t32 [HR00b], and SNOW
1.0 [EJ00], have been shown to be susceptible to so-called distinguishing at-
tacks [CHJ02, EJ02a] that can distinguish the generated pseudo-random se-
quences from truly random sequences. In fact, in a recent European project
called NESSIE [NES99] a call for primitives (including stream ciphers) was
announced in 2000. After two phases of evaluation, none of the stream ci-
phers submitted were found to be completely free from security ßaws. Dur-
ing this project, new techniques for cryptanalysis on stream ciphers were
found, and many new proposals were broken.

After the NESSIE project was Þnished, we have seen additional pro-
posals of stream ciphers, and some of them have not yet been thoroughly
analysed. To mention a few, there are SNOW 2.0 [EJ02b], MUGI [WFY+ 02],
Scream [HCJ02], Turing [RH03], Rabbit [BVP+ 03], Helix [FWS+ 03], VMPC
[Zol04], and RC4A [PP04]. Most of these ciphers are signiÞcantly faster
than for example AES, and if we could gain conÞdence in their security
they would be very interesting alternatives for encryption. The primitives
SNOW 2.0, Scream, VMPC, and RC4A are analysed in this thesis in Sec-
tions 4.4, 7, and 6.

The situation clearly requires the cryptographic community to devote
more attention to the design and analysis of stream ciphers. For this reason,
the European project eSTREAM (ECRYPT) [ECR05] announced a call for
stream cipher primitives. 35 proposals were submitted to the project by
April 2005, and most of them were presented at the workshop SKEW 2005
[SKE05] in May.

Cryptanalysis techniques discovered during the NESSIE project have
made it possible to strengthen new designs greatly, and attacking new al-
gorithms has become more difÞcult. There are many interesting submis-
sions to eSTREAM, such as Dragon [CHM+ 05], Grain (V.0) [HJM05a], TRIV-
IUM [CP05], Roo [BS05], MOSQUITO [DK05], Phelix [WSLM05], and oth-
ers. After around half a year of analysis, a new workshop (SASC 2006) was
held in February 2006, where all proposals were submitted to more detailed
discussion. In this thesis we analyse two of the candidates, Grain V.0 and
Dragon, in Chapters 8 and 9, respectively.
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All this development shows that work on stream ciphers is intense. We
believe that this will result in a few good stream ciphers for future standard-
ization. The next problem facing the crypto-community is the design and
analysis of hash functions, but this is another story for the near future.

1.5 Thesis Outline

This section contains the outline of the thesis, as well as the material sources
for each chapter. Next, we take a brief look at the contents.

Chapter 1 (Introduction) contains an overview of cryptography in gen-
eral, where the place and role of cryptography in a communication system
is given as well.

Chapter 2 (Symmetric Primitives — Introduction to Stream Ciphers) gives
standard deÞnitions and notations that are frequently used in cryptogra-
phy. We introduce symmetric primitives, block ciphers and, in more detail,
stream ciphers. Basic design principles are discussed, followed by a few
examples.

Chapter 3 (Techniques for Cryptanalysis) provides an overview of different
cryptanalysis methods in cryptography. We focus on linear cryptanalysis
related to stream ciphers, and, more speciÞcally, on correlation and distin-
guishing attacks when different scenarios are possible.

The content of the Þrst three chapters is partly inßuenced by various In-
ternet sources, like Wikipedia [Wik06b]; from general books on cryptogra-
phy [Sma03,Sti95,Sch96], on probability theory and statistics [Dra67,CB90,
Rao73, Gut95], on number and Þnite Þeld theories [LeV77, Fra94], on infor-
mation theory [CT91]; from PhD theses [Jen80, J¬on02, Pas03, Dod03, Ekd03,
Gup04]. The section devoted to distinguishing attacks is partly based on the
paper [JM03].

Chapter 4 (Tools for Cryptanalysis) introduces a class of n bit functions,
so-called pseudo-linear functions, which appear to be very useful for crypt-
analysis evaluation. EfÞcient algorithms and data structures for multidi-
mensional cryptanalysis are proposed; they enabled us to achieve many
other results in cryptanalysis. One such an example is also given at the
end of the chapter. This material is also presented in the paper [MJ05].

Chapter 5 (Cryptanalysis of A5/1) proposes a key-recovering attack on
the stream cipher A5/1, which is used in GSM communication to encrypt
conversations. This is a correlation attack originally published in the pa-
per [MJB04].

Chapter 6 (Cryptanalysis of VMPC and RC4A. Weakness of RC4-like Ciphers)
points out the general weakness in the structure of RC4-like stream ciphers.
RC4 is a stream cipher that is widely used in, for example, Internet com-
munication. This chapter also analyses two recent stream ciphers from this
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family, namely VMPC and RC4A, and proposes two distinguishing attacks
on them. The content of the chapter is derived from the paper [Max05].

Chapter 7 (Cryptanalysis of “Scream”) presents a linear distinguishing at-
tack on the stream cipher Scream, which was developed by a group of re-
searchers at IBM. These results are based on the paper [JM03].

Chapter 8 (Cryptanalysis of the “Grain” Family of Stream Ciphers) details
the analysis of the stream cipher Grain. This cipher is a candidate to the
eSTREAM project, and it is considered to be an interesting choice for the
Þnal portfolio. This analysis motivated the designers to tweak the design.
Therefore, another version, Grain V.1., has appeared. That new version is
immune to the discovered attack and appears to be quite strong against
linear analysis. The results of this chapter are published in [Max06,BGM06].

Chapter 9 (Statistical Analysis of “Dragon”) presents one more analysis of
another candidate to eSTREAM, the stream cipher Dragon. It reveals a sta-
tistical weakness of the keystream produced by this primitive. It proposes
a distinguisher, which, however, has a very small advantage due to the re-
synchronisation policy of the design. However, the internal state of Dragon
is huge, and the identiÞed statistical weakness reveals some structural mis-
takes in the design of the cipher. The results of this chapter are published in
the paper [EM05].

Finally, in Chapter 10 ( Concluding Remarks) we highlight the results and
draw some personal conclusions from the work presented in this thesis.
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2

Symmetric Primitives —
Introduction to Stream Ciphers

“I put my heart and my soul into my work,
and have lost my mind in the process”

Vincent Van Gogh

Symmetric primitives are important units in any cryptographic system:
they are the tools for encryption of a data stream. Symmetric primitives

are usually divided into block ciphersand stream ciphers, and both classes
are important. In this chapter we describe symmetric primitives and their
basics, and also give standard notations and deÞnitions. We mainly focus
on design principles of stream ciphers, although an introduction to block
ciphers is also provided.

Let us start this chapter with basic deÞnitions and notations. In our com-
munication model we have three parties:

€ Alice, the sender, she wants to send some message toBob.

€ Bob, the receiver, he receives messages fromAlice.

€ Eve, an intruder or cryptanalytic, she wants to read messages sent by
Alice to Bob.

13
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REMARK : For notation purpose, if x1, x2, . . . , xn are n variables from some
alphabet A , their sequence (or vector) is denoted in bold as
x = ( x1, . . . , xn ). When the number of components n is im-
portant, we denote it by xn . When X 1, X 2, . . . , X n are variables
from an extended alphabet A b, then this sequence is denoted
as X n . Single symbols of each component X i are addressed as
X i = ( X i [1], . . . , X i [b]). Short vectors with a Þxed length, such as
a key and an IV, are denoted by a capital letter Y , and its compo-
nents are Y = ( y1, y2, . . .). In some chapters this general notation
rule can vary for a number of reasons.

We introduce more mathematical notions as follows.

De�nition 2.1 (Alphabet, Plaintext, Ciphertext, Key):

€ Alphabet, A , is a set of symbols used for encryption. In most cases the
alphabet consists of bbits words A = { 0, 1} b, for some b = 1 , 2, . . ..

€ Messageor Plaintext, m , is the information to be sent through a secure
channel from Alice to Bob. We often consider the plaintext as a se-
quence of n symbols from an alphabet A , i.e.,

m n = m1, m2, . . . , mn , mi � A , i = 1 , . . . , n. (2.1)

Let the set of all possible plaintexts be denoted by M .

€ Ciphertext, c, is the encrypted information sent through an insecure
channel. The ciphertext is the result of an encryptionalgorithm, to be
described later. The ciphertext is usually also a sequence of n letters
from the alphabet A as follows.

cn = c1, c2, . . . , cn , ci � A , i = 1 , . . . , n. (2.2)

It is not always the case that the lengths and alphabets of the plaintext
and the ciphertext are the same, but in most cases they are. Let us also
denote the set of all possible ciphertexts asC.

€ Key, K , is the secret key thatAlice and Bob exchange via a secure chan-
nel (or just secretly) in advance, before the communication is started.
This secret key chooses a map from the set of plaintexts to the set of
ciphertexts out of a set of maximum |K| possible maps, where K is the
set of all possible keysK . We usually consider the key to be a sequence
of l symbols from A and represent it as

K = k1, k2, . . . , kl , ki � A , i = 1 , . . . , l. (2.3)
��
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Symmetric primitives are algorithms that use the same key on both the
sender and the receiver sides. Symmetric ciphersare ones of such algo-
rithms. When given the plaintext, they produce the ciphertext in accordance
to the secret key. On the receiver side, they are used to decrypt the ciphertext
back into the plaintext.

De�nition 2.2 (Encryption, Decryption, Cipher):

€ Encryption, EK e (M ) : M × K � C , is a function or algorithm that
receives the plaintext m and produces the ciphertext c, according to
the secret keyK e.

€ Decryption, D K d (M ) : C × K � M , is an inverse function that receives
the ciphertext c and recovers the plaintext m, according to the secret
key K d.

€ Cipher, is a pair of two functions, Cipher = ( E, D ), such that for any
plaintext m � M , any encryption key K e � K and the corresponding
decryption key K d � K , we have

DK d (EK e (m)) = m. (2.4)
��

In a communication scheme where symmetric primitivesare used (see Fig-
ure 2.1), both the sender and the receiver use the samekeyK ,

K e = K d = K, (2.5)

which is sent via some secure channelin advance before the communication
has begun 1. Therefore, these primitives are called symmetric.

It is not always possible to have a secure channel for key distribution. To
overcome this problem, there exist various key exchange protocols, to set up a
symmetric key. These protocols and methods are slow and likely to be used
only for sending short messages, such as a key, and should not be used for
encryption of large messages, e.g., large Þles, pictures, etc.

2.1 De�nitions of Block and Stream Ciphers

Following Figure 2.2, an encryption schemeis a combination of a symmetric
primitive and a mode of operation. Symmetric primitives are classiÞed as block

1The realization of the secure channel in practice can be various. Many systems that use
cryptography (GSM, banking cards, etc.) have secret key already inserted into devices during
fabrication. Therefore, the key distribution via a secure channelfor these devices is the process
of writing the key on a trusted environment. Some of these systems also have another key,
administrative, that is used for updating the secret key, which is then used for data encryption.
Such separation prevents key-guessing attacks with chosen data.
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Figure 2.1: Communication scheme with a symmetric primitive.

ciphersand stream ciphers. Moreover, with some different modes of operation
block ciphers can work as stream ciphers.

Symmetric 
primitives

Block
ciphers

Stream
ciphers

Modes of
operation+

Encryption Scheme

Figure 2.2: Components of an encryption scheme.

The basic key in deÞning block and stream ciphers is the type of oper-
ations used in the algorithm. We say that a cipher operates with symbols
from alphabet A when all ground operations of the algorithm work with
the symbols as whole. If this is not true, then there exists the smallest inte-
ger c > 1, such that A = �A c, for some smaller set �A , and the cipher can be
represented as an algorithm that operates with symbols from �A .

In the crypto community, the deÞnition of these two classes is not yet
precisely speciÞed, and in the literature, different deÞnitions can be found.
Here we suggest our vision of how these two classes of ciphers can be dis-
tinguished.

De�nition 2.3 (Block Cipher): A block cipheris a memory-less key-depen-
dent permutation algorithm that takes onesymbol from an alphabet Ab, and
outputs another symbol from the same alphabet. The decryption procedure
is the inverse permutation algorithm. ��
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Although the ground operations in a block cipher work over the alpha-
bet A , a block cipher itself is a black box that works over an extension alpha-
bet A b, which is a constitution of bsymbols from A. In Advanced Encryption
Standard (AES)the length of the block is 128 bits, and the minimal key size
is 128 bits. All operations are byte-oriented, and thus the input alphabet for
AES is A b = F16

28 . This means that Alice can choose one out of 2128 per-
mutations (the number of possible keys |K| ), although the total number of
possible permutations is 2128!, since the block size is 128 bits.

It is more difÞcult to deÞne a stream cipher. For example, Wikipedia
gives us the common deÞnition as follows.

De�nition 2.4 (Stream Cipher – Common De�nition): A stream cipheris a
symmetric cipher in which the plaintext digits are encrypted one at a time,
and in which the transformation of successive digits varies during the en-
cryption. ��

This deÞnition is good, but it does not locate a precise borderline between
block and stream ciphers. One can consider a block cipher as a stream ci-
pher, for which a digit is from A b. Then, working in different modes of
operation, a symbol transformation will be different each time, and the def-
inition is satisÞed. Do we then say that a construction of any stream cipher is
a block cipher working in a mode of operation, or is it a wider concept? Are
block and stream ciphers different, or is one a subclass of another? Should
a stream cipher have memory or not?

Let us now give our interpretationfor the deÞnition of a stream cipher.

De�nition 2.5 (Stream Cipher – Alternative De�nition): A stream cipheris
a key-dependent algorithm with internal memorythat receives symbols of a
messagem one-by-one over the alphabet A , and in parallel produces the
ciphertext c over the same alphabet, perhaps, with some delay. ��

For stream ciphers the alphabet A typically consists of 1/ 8/ 16/ 32/ 64bit
numbers. In hardware, binary alphabets are most common, whereas stream
ciphers in software are usually either byte(8 bits), or word (32 bits) oriented.

In our deÞnition, block and stream ciphers are separate classes of prim-
itives. One may ask whether a block cipher, working in a speciÞc mode
of operation, be regarded as a stream cipher? According to our deÞnition
above the answer is ÒnoÓ; it will still remain Òa block cipher working in a
speciÞc mode of operationÓ, since a stream cipher must have an internal
state.

In the rest of this chapter we take a closer look at the design and criteria
of symmetric primitives.
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2.2 Designing a Perfect Cipher

From the time cryptography was formed as a science, one task has always
been to Þnd a perfect, unbreakable, cipher.

2.2.1 Unbreakable Cipher

The principle of unconditional securitycan be stated as follows.

De�nition 2.6 (Perfect Secrecy): A cipher has perfect secrecyif

Pr{ (m, c)} = Pr { m} · Pr{ c} , � m � M , � c � C . (2.6)

��

There is one well known perfectly secure cipher, which is called the Ver-
nam cipheror the one-time pad cipher (OTP). In the fundamental paper of
1949 [Sha49], Shannon showed that this cipher is unconditionally secure.

De�nition 2.7 (One-Time Pad): Let the plaintext m 1, m2, . . . , mn � A con-
tain n symbols from some alphabet A . The secret key k1, k2, . . . , kn � A
must be of length l = n. The ciphertext c1, c2, . . . , cn is then generated as

ci = mi + ki , for all i = 1 , . . . , n, (2.7)

where + is a group operation over A . ��

In the following example we show how this cipher works.

EXAMPLE 2.1 (One-Time Pad (OTP)):Let the alphabet beA = { A, B, C, . . . , Z} .
Let the plaintext and the key be

m = ONETIMEPAD,

K = SECRETKEYS.

Let us introduce a map � : A � { 0, 1, . . . , 25} , which assigns a number from
0 to 25 to each of the letters, e.g.,� (A) = 0 , � (B) = 1 , . . . . The Ô+Õoperation
over A can be interpreted as

a + b = � Š 1(� (a) + � (b) mod 26), � a, b � A . (2.8)

Then, the ciphertext will be produced as follows.

m = ONETIMEPAD

K = SECRETKEYS
�Š�

(14 13 4 19 8 12 4 15 0 3 )

(18 4 2 17 4 19 10 4 24 18 )
+ �

c = GRGKMFOTYV � Š 1

�Š ( 6 17 6 10 12 5 14 19 24 21 ).
��
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The Vernam cipher has perfect secrecy only if the following requirements
are satisÞed.

€ The secret key is chosen completely at random.

€ The lengths of the secret key and the plaintext are the same.

€ One key is used only once.

The Òone-time padÓ cipher is still used, for example, in the Russian navy.
They have secret books with numbers, which are delivered to every ship in
advance. When they want to encrypt something, they choose a page from
the book, and use the numbers to pad the plaintext. The number of the
page is broadcasted openly, and that page is never used again. If one of
these books is lost or stolen, new books are printed and distributed. The
weakest point here is the mechanism of distribution and storage of these
books.

2.2.2 Alternative Principles for Designs

The one-time pad cipher is welcome and good. However, if the message is
long, the required key is really large. It raises problems for the key exchange
protocol, since the effort to establish a secure communication channel will
require much more than the communication itself. Therefore, there must be
another way of designing primitives. The solution is found in the principle
of conditional security, which can be deÞned as follows.

De�nition 2.8 (Conditional Security): A system is called conditionally se-
cureif it can be broken in principle, but this requires more computing power
than a realistic adversary would have. In this case its security is measured
via complexity theory. ��

Adopting this deÞnition to cryptographic ciphers, we say that a cipher
is called conditionally secureif the plaintext can be recovered from the ci-
phertext, but with the time and effort being no less than is required for an
exhaustive key search attack, when every possible key from K is tested.

This principle means that the key can still be short, but long enough to
make the exhaustive key search attackimpossible for an intruder; i.e., to per-
form this attack will require an impossible combination of time and hard-
ware resources.

2.2.3 Confusion and Diffusion

In his 1949 paper, Shannon identiÞed two types of operations that a secure
cipher should make use of:



20 2. Symmetric Primitives Ñ Introduction to Stream Ciphers

€ ConfusionÒrefers to making the relationship between the key and the
ciphertext as complex and involved as possibleÓ, Ð according to Shan-
nonÕs original deÞnition. Thesubstitution types of operations are ex-
cellent examples of the term ÒconfusionÓ, such as S-boxes.

€ Diffusion means the level of dependency between the input and output
bits of a cipher. If a cipher has a good diffusion property, then ßipping
one bit of the input changes every bit of the output with a probability
close to 1/2. Permutationor transpositionoperations are techniques for
diffusion.

Classical building blocks are substitution-permutation networks (SPN)that
are used in block ciphers (for example, in Feistel ciphers). To support prin-
ciples of confusion and diffusion, a block cipher (or an SPN) consists of
multiple rounds of similar operations, such as bit-shuf�ing , also known as
P-boxes; linear mixing, usually using the exclusive oroperation; and nonlinear
functions, often known as S-boxes. The more rounds applied, the more secure
is the cipher.

2.3 Overview of Block Ciphers

The Þrst civilian block cipher was, perhaps, the cipher Lucifer, developed
by IBM in the 1970s and mainly based on the work done by Horst Feistel.
This cipher, with a few changes, was accepted by the US National Bureau
of Standards (NBS) as theData Encryption Standard (DES), and publicly re-
leased in 1976. DES has a block size of 64 bits and a key size of 56 bits. Even
from the beginning DES was criticized widely for its short size of the key.
In 1998, Electronic Frontier Foundationdeveloped a chip for breaking DES
through a brute force attack. In parallel, a triple version of DES ( triple-DES)
was adopted to ensure privacy in communication applications. It has a 112
bit secret key and provides 80 bits of security level, and is still considered as
secure.

On January 2, 1997,US National Institute of Standards and Technology (NIST)
announced a competition for a new block cipher, an Advanced Encryption
Standard (AES). Two Belgian researchers, Vincent Rijmen and Joan Daemen,
presented their cipher Rijndaelin 1998, and after several rounds of evalua-
tion it was chosen in 2001 as a new encryption standard Ñ AES. AES has a
block size 128 bits, and key sizes 128, 192, or 256 bits.

In Figure 2.3, a typical structure of encryption with a block cipher in the
Electronic Code Book (ECB)mode is shown.

The encryption algorithm of a block cipher takes a message of size b
bits, and produces a ciphertext of the same size. Thus, a block cipher is a
bijective mapping on the space of 2b possible inputs. The key chooses the
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Block
cipher

key

... ...

... ...

plaintext

ciphertext

mi Š 1 mi mi +1

ci Š 1 ci ci +1

Figure 2.3: Model of a block cipher in the ECB mode.

permutation from 2l possible permutations, although the total number of
possible permutations is 2b!. The decryption algorithm works in a similar
way.

(a) (b) (c)

Figure 2.4: Problems when encrypted with a block cipher: (a) orig-
inal picture; (b) encrypted using ECB; (c) encrypted using CBC.

The problem with the encryption scheme in Figure 2.4 is that when one
key is used to encrypt the same blocks, the ciphertext blocks are the same.
Picture 2.4 borrowed from Wikipedia [Wik06a] shows this effect clearly.

Therefore, when the message is larger than a block size, different modes
of operation are used as listed below. Now, mi , ci � A b are blocks of b
symbols of the plaintext and the ciphertext, respectively.

€ Electronic Code Book (ECB).This is the plain use of a block cipher, and
is shown in Figure 2.3.

Encryption: ci = EK (mi ),
Decryption: mi = DK (ci ).
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€ Cipher-Block Chaining (CBC).A symbol from the plaintext is, before en-
cryption, bit-wise XORed with the previous symbol of the ciphertext.

Encryption: ci = EK (mi � ci Š 1), c0 = IV,
Decryption: mi = DK (ci ) � ci Š 1, c0 = IV.

€ Cipher Feedback (CFB).A block cipher in the CFB mode can be regarded
as aself-synchronizing stream cipher(see Section 2.4.1.2). Flipping one
bit in the ciphertext ßips the same bit in the plaintext, thus revealing
the principle of OTP.

Encryption: ci = mi � EK (ci Š 1), c0 = IV,
Decryption: mi = ci � EK (ci Š 1), c0 = IV.

€ Output Feedback (OFB).A block cipher in the OFB mode can be re-
garded as asynchronous stream cipher(see Section 2.4.1.1).

Encryption: ci = mi � oi , oi = EK (oi ), o0 = IV.

€ Counter Mode (CTR).As CFB and OFB modes, the counter mode turns
a block cipher into a stream cipher. The encryption process is

Encryption: ci = mi � EK (nonce||counteri ),
where || denotes concatenation. The counter is known and the nonce
value is used as a constant during encryption with one key. It should
be guaranteed that the same nonce does not appear twice.

Let us give two classical examples of block ciphers. The Þrst uses the
principle of substitution, and the second uses the principle of permutation.
The fundamental differences between these two ciphers were, perhaps, Þrst
discovered and mentioned by Giovanni Battista Porta[Kah67] in 1563, and
these differences are important because they reveal basic principles in the
design of modern primitives. Both examples will be used in the chapter on
cryptanalysis when standard cryptanalytic tools will be deÞned.

De�nition 2.9 (Substitution Cipher): Let the alphabet be A, and the key
spaceK consist of all possible permutations on |A| symbols, i.e., |K| = |A| !.
Then for any key K � K , the encryption and decryption functions are de-
Þned as

Encryption: ci = K (mi ),
Decryption: mi = K Š 1(ci ).

��

EXAMPLE 2.2 (Substitution Cipher): Let the alphabet A = { 0, 1, . . . , 25} cor-
respond to English letters, and the key K be the following permutation.

x a b c d e f g h i j k l m
K (x) C I V A T Y M P S F L E X

x n o p q r s t u v w x y z
K (x) O H Z G B U W Q N K J R D
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In this table, small letters denote plaintext symbols, and capital letters are
ciphertext symbols. Assume that we want to encrypt the following message
(spaces are omitted)

m = thiscipherisnotverystrong .

This will be encrypted as

c = WPSUVSZPTBSUOHWNTBRUWBHOM.

��

De�nition 2.10 (Permutation Cipher): Let us have an alphabetA and some
Þxed integer r 	 1. Let the key spaceK consist of all possible permutations
of r values, i.e., |K| = r !. Encryption of the plaintext is considered block-
wise, where each block (m1, m2, . . . , mr ) consists of r consecutive symbols
of the plaintext. For a chosen key K � K , the encryption of one such block
is thus done as

Encryption: (c1 , c2 , . . . , cr ) = ( mK (1) , mK (2) , . . . , mK (r ) ),
Decryption: (m1, m2, . . . , mr ) = ( cK Š 1 (1) , cK Š 1 (2) , . . . , cK Š 1 ( r ) ).

��

EXAMPLE 2.3 (Permutation Cipher): Let us again have the alphabet A =
{ 0, 1, . . . , 25} , in correspondance to English letters. Let the secret keyK � K
be a permutation on a block of r = 6 symbols, i.e., B = A 6 can be regarded
as an extended alphabet for encryption. The permutation K is

x 1 2 3 4 5 6
K (x) 5 4 1 6 2 3

Assume that we want to encrypt the following plaintext,

m = thepermutationcipherisnotchallenging .

First, we split it into blocks of size r .

m = theper |mutati |onciph |erisno |tchall |enging .

Then we apply the permutation K , and merge the ciphertext symbols to-
gether.

c = EERHTPTTIUMACPHNOIINORESHLLCTAGNGNEI.

��
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2.4 Stream Ciphers in a Nutshell

Stream ciphersare important primitives for ensuring privacy in communica-
tion. For one example, they are widely used in telecommunication applica-
tions. It is believed that stream ciphers can be secure, efÞcient, and small
in implementation, and better than block ciphers in these aspects. How-
ever, the security of stream ciphers has not been studied in sufÞcient detail.
The current effort of many cryptographers is to make design and analysis
of stream ciphers more understandable.

2.4.1 General Structure of Stream Ciphers

By DeÞnition 2.5 the structure of a stream cipher can be viewed as a �nite
state machine (FSM)with internal state (IS)and update function (UF)for the in-
ternal state. From a cryptographic point of view, the strength of almost any
stream cipher is based on the results produced by Shannon on the security
of the one-time pad cipher (recall Section 2.2.1).

Commonly, a stream cipher receives a key K and an IV, and generates a
long keystreamz, also known as a pseudo-random sequence. The deÞnition of
the keystreamcan be stated as follows.

De�nition 2.11 (Keystream): The Þnite state machine of almost any stream
cipher working over some alphabet A produces a long sequencez of sym-
bols z1, z2, . . . , zn from the same alphabet A , i.e.,

zn = z1, z2, . . . , zn , zi � A , i = 1 , 2, . . . , n. (2.9)

This sequence is called thekeystream, and is combined with the plaintext to
produce the ciphertext, thus revealing the principal of OTP. ��

The combining function of the plaintext and the keystream is usually
just a simple exclusive or (XOR,� ) operation.

If the keystream would be completely random, such a stream cipher is
ÒunbreakableÓ. However, that can only happen if we use OTP. Stream ci-
phers instead try to generate a keystream z that looks as random as possible,
seeded with the secret key K .

Most of stream ciphers can be classiÞed assynchronousand self-synchro-
nizing. However, the classiÞcation of stream ciphers is not limited to these
two classes (for example, Helix [FWS+ 03] belongs to another type). More
details can be found in, e.g., [MvOV96].

2.4.1.1 Synchronous Stream Ciphers

A typical structure of a synchronous stream cipher is shown in Figure 2.5.
Formally, such a structure can be deÞned as follows.
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plaintext

key

keystream
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mt ct
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Figure 2.5: General structure of a synchronous stream cipher.

De�nition 2.12 (Synchronous Stream Cipher): A synchronous stream
cipher (SSC)is a Þnite state machine, the update function that receives the
secret key K , but independent of the plaintext and the ciphertext. A SSC
consists of

€ Internal state, � t , denotes the value of the internal state at time t.

€ Initialisation function, Init( ·), is applied to set up the initial value of the
IS � 0.

€ Update function, f (·), is the function updating the IS in the FSM, per-
haps, depending on the key K , i.e.,

� t +1 = f (� t , K ), at time t = 0 , 1, . . . . (2.10)

€ Keystream function, g(·), decides the output symbol as a function of the
internal state, perhaps, depending on the key K , i.e.,

zt = g(� t , K ), at time t = 0 , 1, . . . . (2.11)

€ Output function, h(·), is the function combining the keystream and the
plaintext, resulting in the ciphertext, i.e.,

ct = h(mt , zt ), at time t = 0 , 1, . . . . (2.12)

The part that produces the keystream is called a keystream generator (KSG).
��
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Note that on the decryption side the keystream is generated in the same
way as for the encryption, and it is only required that the output function h
is invertible.

Synchronous stream ciphers have a problem with synchronisation in
communication. If one symbol is lost or inserted during the transmission,
then all the consecutive message symbols will be decrypted wrong. This
problem can be solved by using framesof the ciphertext, with a synchroni-
sation process between the frames, usually involving a special tag sequence.
The size of one frame is Þxed and the plaintext is encrypted portionally,
one frame after another, as shown in Figure 2.6. One frame usually consists
of a frame number and encrypted block of data. Before the encryption of
one frame of information a stream cipher is reinitialised with the secret key
and an initial value, which can be derived from the frame countervia some
publicly known function.

Frame number 1 Encrypted data ...
1  2  3  ... n

Frame number 2 Encrypted data ...

Frame number m Encrypted data ...
...

Figure 2.6: The use of frames for resynchronisation.

De�nition 2.13 (Frame, Frame Counter, Initial Value, Nonce):

€ A frameis a block of a ciphertext of a Þxed length. A synchronisation
procedure is included between the frames with the purpose to prevent
loss of information in the communication channel.

€ An Initial value (IV) is the same asnonceor frame counter. This is a
publicly known parameter for the initialisation procedure of a cipher,
directly calculated from the frame counter, or set up publicly by agree-
ment of the communication parties. An IV value should be used only
once for a Þxed key.

To establish a secure communication channel Alice and Bob may have
to share a secret key via some key exchange protocol. This exchange pro-
cedure might take a long time. Therefore, the initialisation process should
additionally accept the initial value as a parameter. In this way we can gen-
erate many keystreams from the same key.
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A typical example of a synchronous stream cipher is A5/1 [BGW99]
used in GSM communication in the European part of the world. The size of
each frame is 228 bits, and the IV is derived directly from the frame counter.
Description of A5/1 and its cryptanalysis are given in Chapter 5.

2.4.1.2 Self-Synchronizing Stream Ciphers

The synchronisation problem involved with synchronous stream ciphers
can also be solved with the use of self-synchronization stream ciphers (SSSC).

De�nition 2.14 (Self-Synchronizing Stream Ciphers): A self-synchronizing
stream cipher is one in which the keystream is generated as a function of the
key and a Þxed number of previous ciphertext digits. ��

The main property of an SSSC is that the internal state is fully determined
from d consecutive symbols of the ciphertext. Thus, mistakes like loss or in-
sertion of a symbol will only have an inßuence on the following d symbols,
and then continue to encrypt the message correctly. The general structure
of an SSSC is shown in Figure 2.7.

Internal stateInit

g

h

keystream

plaintext ciphertext
output

function

keystream
function   key

K

Internal state Init

g
keystream

plaintextciphertext
input

function

keystream
function  key

K

Encryption Decryption

hŠ 1
mtmt ctct

ztzt

� t� t

Figure 2.7: General structure of a self-synchronizing stream cipher.

2.4.2 Pseudo-Random Number Generators

The design of a good synchronous stream cipher usually means design-
ing a good pseudo-random number generator (PRNG), which is then used as
a keystream generator. One common model of a synchronous stream cipher
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with a PRNG is shown in Figure 2.8. The similarity of this structure to the
one shown in Figure 2.5 is as follows. The structural part of a stream ci-
pher works independently (from the key, the plaintext, the ciphertext and
the keystream) after the initialisation process, and generates the keystream
without the use of the secret key, and is called a pseudo-random number gen-
erator. Thus, a PRNG is equivalent to a keystream generator.

Pseudo-Random
Number Generator

    

plaintext ciphertext

keystream

key K

initial value
IV

m1, m2, . . . c1, c2, . . .

z1, z2, . . .

Figure 2.8: Pseudo-random number generator as the keystream
function.

De�nition 2.15 (Truly Random Number Generator): A truly random num-
ber generator (TRNG)is an oraclethat produces independent numbers (or
samples) from some alphabet A in an unpredictable and non-repeatableway.

��

There are many good physical devices that generate random numbers
with properties close to a TRNG. These include such phenomena asradioac-
tive decay2, thermal noise3, and others. However, although these generators
are good for simulations in statistics, they do not satisfy the following im-
portant and required property for a random number generator to be used
in cryptography: the random sequence must be possible to repeat.This state-
ment basically means that the process must be deterministic in some way,
i.e., repeatable.

De�nition 2.16 (Pseudo-Random Number Generator (PRNG)): A pseudo-
random generator (PRNG)is a deterministic algorithm that attempts to pro-
duce samples from some alphabet A that looksindependent and uniformly
distributed. It tries to behave as close to a TRNG as possible. A PRNG has a
seedas its initialisation parameter, and always produces the same sequence
of numbers for the same seed. ��

2Radioactive decayis the process wherein atomic nuclides emit subatomic particles. This is a
randomprocess, i.e., it is impossible to predict the decay of an atom.

3Thermal noise, also known as Johnson-Nyquist noise, is the noise that appears due to equi-
librium ßuctuations of the electric current inside of an electrical conductor, since the thermal
motion of electrons is random.
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However, the practice of design and analysis shows that it is not so easy
to make such a good PRNG. A good PRNG should meet a set of statistical
requirements:

1. Period length. Since PRNG is a Þnite state machine, it means that sooner
or later it will reach a state where it has already been before (not neces-
sarily the state that we have started from). The deterministic procedures
of generating the next value of the internal state will assure that PRNG
will produce a sequence that has a periodof some length. One important
requirement is that this period should be large enough.

2. Statistical Properties.Output symbols should be uniformly distributed,
i.e., for binary symbols the probability of 0 and 1 should be 1/ 2 for both.
Moreover, the joint distribution of two or more bits in a window of the
keystream should be the uniform distribution. Finally, any linear com-
bination of output bits should be from the uniform distribution as well.
There are a variety of statistical tests addressing these issues, such asthe
frequency test, the serial test, the poker test, the gap test, Diehard tests, Maurer’s
universal statistical test, the autocorrelation test, and others.

EXAMPLE 2.4 (A Simple PRNG): Let us look at a very simple PRNG of the
form

Ni +1 = ( A · Ni + B ) mod C, (2.13)

where Ni is the output symbol and the internal state of the generator, and
A, B and C are parameters. Let

A = 2 , B = 3 , C = 19.

Then we have the following periodical sequence of numbers, which is sup-
posed to Òlook randomÓ:

[0, 3, 9, 2, 7, 17, 18, 1, 5, 13, 10, 4, 11, 6, 15, 14, 12, 8]� .

It is easy to see that the period of such a generator is 19, but what about
its statistical property? We have:

Ni +2 = ( A · Ni + B ) · A + B = A2 · Ni + (1 + A)B mod C,

...

Ni + t = At · Ni + (1 + A + A2 + . . . + At Š 1)B mod C. (2.14)

Any output symbol Ni + t of the stream can be expressed via the preced-
ing number Ni (as well as subsequent ones). If we leti = 0 and set N0 = 0 ,
then we have the formula
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Nt =
At Š 1
A Š 1

· B mod C. (2.15)

For example, N5 = 25 Š 1
2Š 1 · 3 = 93 
 17 mod 19Ð the value is easy to pre-

dict when the formula above is found. Obviously, this PRNG is too simple
to be used in cryptography. ��

Perhaps the best random generator that is cryptographically strong is the
Blum-Blum-Shub (BBS)PRNG, proposed by Lenore Blum, Manuel Blum, and
Michael Shubin 1986. The calculations are done in a number Þeld, and its
security strength is based on the computational dif�culty of integer factorization
problem. To attack BBS one needs to factorize the modulusM , which is itself
a product of two large primes M = pq. Distinguishig the output bits from
random will be at least as difÞcult as factoring M . Thus, the quality of BBS
PRNG can easily be increased by choosing a largerM .

However, although this generator is good, it is slow, and, again, cannot
be used in symmetric cryptography.

Underlying the above sections, a PRNG plays a role as a keystream gen-
erator in synchronous stream ciphers, where the pair of a key and an IV of
the cipher is used as a seed for the PRNG.

2.5 Stream Cipher Building Blocks

The following subsections comprise the introduction to various building
blocks for keystream generators in brief.

2.5.1 Boolean Functions

Boolean functions have always been important pieces in cipher design. A
proper choice of a Boolean function may signiÞcantly increase the resistance
to different kinds of attacks. This fact inspired many scientists to study
this subject in detail. When designing cryptographically signiÞcant Boolean
functions, many requirements have to be fulÞlled, such as balancedness, non-
linearity, algebraic degree, correlation immunity, algebraic immunity, and others.
Some of them may contradict each other, e.g.,bent functions, which have the
highest possible nonlinearity, can not be balanced. Getting the best possi-
ble trade-off among these parameters has always been a challenging task
(see [Gup04,P. 04,SM00a,SM00b] and references in these papers).

REMARK : In this section the notation will be slightly different from the pre-
vious ones. A function f will be on n variables x1, x2, . . . , xn with
resiliencym, degreed and nonlinearity � .
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De�nition 2.17 (Boolean Function (BF)): A Boolean function (BF)f is a map-
ping Fn

2 � F2, where n is the number of input variables x1, x2, . . . , xn � F2,
and F2 = { 0, 1} . ��

There exist four Boolean functions for onevariable, and 16 different func-
tions for two variables. Truth tables of the most important functions on one
and two variables are shown in Table 2.1.

BF on two variables BF on one variable
Inputs OR, � , | AND , � , ·, & XOR, � , + Input NOT, x, !
0 0 0 0 0 0 1
0 1 1 0 1 1 0
1 0 1 0 1
1 1 1 1 0

Priority low medium low high

Table 2.1: The most used Boolean functions on two variables, and
their truth tables.

Perhaps the most important representations of a Boolean function for
cryptography are as follows.

De�nition 2.18 (Truth Table (TT), Algebraic Normal Form (ANF)):

€ A Boolean function f (x1, . . . , xn ) can be deÞned through its truth table
(TT), i.e., a binary string of length 2n ,

TT( f ) = [ f (0, 0, . . . , 0), f (1, 0, . . . , 0), f (0, 1, . . . , 0), . . . , f (1, 1, . . . , 1)].
(2.16)

€ A Boolean function has a unique representation as a polynomial over
F2, called the algebraic normal form (ANF),

f (x1, . . . , xn ) = a0 �
�

1� i � n

ai xi �
�

1� i<j � n

aij xi xj � . . . � a12...n x1x2 . . . xn ,

(2.17)

where the coefÞcientsa0, aij , . . ., a12...n � { 0, 1} .
��

EXAMPLE 2.5 (A Boolean function):Let us consider a Boolean function on
n = 5 variables,

f (x1, x2, x3, x4) = x1&x2&x4 � x1&x2&x4 � x1&x2&x4. (2.18)
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The function is given in a so-called Disjunctive Normal Form (DNF). After a
few simpliÞcations of the function, we derive its unique ANF:

f (x1, x2, x3, x4) = x1x2 + x1x2x3 + x1x4 + x2x4. (2.19)

Its truth table is

TT( f ) = [0001000001110110]. (2.20)

��

There is a class of BFs that are calledlinear and af�ne functions, depend-
ing on the form of their ANF.

De�nition 2.19 (Degree, Linear BF, Af�ne BF):

€ The algebraic degree, d = deg(f ), is the number of variables in the high-
est order term with non-zero coefÞcient.

€ A Boolean function is called af�ne if there exists no term of degree > 1
in the ANF. The set of all afÞne functions is denoted by A(n).

€ An afÞne function with constant term equal to zero is a linear function.
The set of all linear functions is denoted as L (n). The general form of a
linear function f L is

f L = � 1 · x1 + � 2 · x2 + . . . + � n · xn , � i � F2, i = 1 , 2, . . . , n. (2.21)
��

Some properties of a Boolean function, such asbalancednessand corre-
lation immunity, can be described through Hamming weightand Hamming
distance, and we give the deÞnitions below.

De�nition 2.20 (Hamming Weight, Hamming Distance):

€ The Hamming weightof a binary sequence S, denoted wH (S), is the
number of ones in S.

€ The Hamming distancebetween two binary sequences S1 and S2 of the
same length, denoteddH (S1, S2), is the number of positions where they
differ. The relation dH (S1, S2) = wH (S1 � S2) is valid.

��

A Boolean function f is called balancedif the truth table contains an equal
number of ones and zeros, i.e.,wH (f ) = 2 n Š 1. Many other properties of a
Boolean function can be expressed via theWalsh transform.
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De�nition 2.21 (Walsh Transform, Walsh Spectrum): Let x = ( x 1, . . . , xn )
and � = ( � 1, . . . , � n ), x, � � { 0, 1} n and let x · � = x1� 1 � . . . � xn � n . Let
f (x) be a Boolean function on n variables. Then the Walsh transformof f (x)
is a real valued function over { 0, 1} n , deÞned as

Wf (� ) =
�

x �{ 0,1} n

(Š1)f (x ) � x ·� , (2.22)

where the integer valued vector Wf is called the Walsh spectrum. ��

Here � · x is the linear function in inner product notation. Thus, if we
think of � as a linear function in sense of (2.21), then the valueWf (� ) cor-
responds to the number of inputs x to the functions f and � where they are
equal, minus the number of points where they differ. Thus,

dH (f, � ) =
2n Š Wf (� )

2
. (2.23)

For example, if the function f is balancedthen wH (f ) = dH (f, 0) must be
2n Š 1, which implies Wf (0) = 0 .

Boolean functions met wide applications in cryptography. They play
a central role in designing S-boxes, combining functions, generating functions
of nonlinear feedback shift registers, and other functional blocks. For each of
the applications, a Boolean function should satisfy a set of speciÞc proper-
ties, which could be in a trade-off relation. The list of typical properties of
Boolean functions and their deÞnitions is as follows.

De�nition 2.22 (Properties of a Boolean Function):

€ Balancedness, as mentioned above, implies

wH (TT( f )) = 2 n Š 1 
 Wf (0) = 0 . (2.24)

€ The nonlinearity, nl (f ), of an n variable function f is the minimum dis-
tance to the set of all n variable afÞne functions, i.e.,

nl (f ) = min
g� A (n )

(dH (f, g )) 
 nl (f ) = 2 n Š 1 Š
1
2

max
� � Fn

2

|Wf (� )|.

(2.25)

This criterion was introduced by Meier and Staffelbach [MS90]. BFs
used in ciphers must often have high nonlinearity to prevent linear
attacks [DXS91,Mat94].
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€ An n variable BF is called mth order correlation immune (CI)if for any
m-tuple of i.i.d. random variables X i 1 , X i 2 , . . . , X i m we have

I (X i 1 , X i 2 , . . . , X i m ; Y ) = 0 , 1 � i 1 < . . . < i m � n, (2.26)

where Y = ( X 1, X 2, . . . , X m ), and I (X ; Y) denotes the mutual infor-
mation [CT91]. If f is additionally balanced, then it is called m-resilient.
Thus, a function is m-resilient (respectively mth order correlation im-
mune) iff its Walsh transform satisÞes

Wf (� ) = 0 , for � � : 0 � wH (� ) � m (respectively, 1 � wH (� ) � m).
(2.27)

€ The strict avalanche criterion (SAC)[For88,Llo92] is important in design-
ing both S-boxes and combining functions 4. A simple SAC means that
if one bit of the input is changed, the output should change with prob-
ability 1/2. A function f satisÞes to thetth order SAC if, when t bits
of the input are kept constant, the output bits change with probability
1/2 when one of the remaining input bits is ßipped.

€ The term of algebraic immunity degree (AI)was recently introduced
[MPC04] to estimate the complexity of an algebraic attack. For the at-
tack to be successful, there must exist anannihilator functionh (a non
zero function s.t. f · h = 0 ), with a small degree. The minimum degree
of an annihilator is called algebraic immunity degree. The best results for
Þnding the value of AI and construction of BF with AI of a high-degree
are, perhaps, in [DGM06].

��

Following the notation in [P. 04, SM00a, SM00b] we use (n, m, d, � ) to
denote an n-variable, m-resilient function with degree d and nonlinearity
� . By [n, m, d, � ] we denote an unbalanced n-variable, mth order correlation
immune function with degree d and nonlinearity � .

2.5.2 Finite Fields

Many topics in stream ciphers are based on Þnite Þelds.

De�nition 2.23 (Field): A �eld is a triple < F, ·, + > where < F, + > is an
abelian additive group with the identity 0, < F \ { 0} , · > is an abelian multi-
plicative group with the identity 1, and < F, ·, + > satisÞes the distributive
law. ��

4A cipher can be viewed as an S-box. For differential cryptanalysis, the attacker will select
pairs of inputs, x1 and x2 such that they satisfy to a particular difference � x = x1 � x2,
knowing that a particular difference of outputs � y = y1 � y2 occurs with high probability.
This leads to a differential attack on the cipher. Using S-boxes satisfying SAC(k) with higher
value of k decreases the propagation ration, and, hence, can resist differential cryptanalysis.
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For a Þeld with multiplicative identity 1, a �eld characteristicis the small-
est positive integer p such that 1 + 1 + . . . + 1� �� �

p times


 0. A Þeld < F, ·, + > is

usually denoted by Fpd , where p is the Þeld characteristic, and pd is the
number of elements in the Þeld.

Consider the case whenFp = Zp = { 0, 1, . . . , pŠ 1} . It can be shown that
Fp is a Þeld only if p is prime. Let us consider some polynomial over the
Þeld Fp of a Þxed degreed in the form

f (x) =
d�

i =0

bi · xi , bi � Fp bd �= 0 . (2.28)

All polynomials from Fp[x] taken modulo the polynomial f (x) also form
a ring, where every element � (x) is a polynomial of degree < d . This ring is
denoted asFp[x]/f (x), where f (x) is called the generating polynomial. All el-
ements of the Þeld are possibleresidueswhen taking an abstract polynomial
from Fp[x] modulo f (x).

A polynomial f (x) over Fp of degree d generates the Þnite Þeld consist-
ing of all polynomials of degree < d over Fp only if f (x) is irreducible, i.e.,
it cannot be factorised over Fp. This Þeld id denoted as Fpd . For example,
f (x) = x4 + x + 1 over F2 is irreducible, whereas f (x) = x4 + 1 over F2 is
reducible since x4 + 1 
 (x2 + 1) 2, i.e., it can be factorised. To show that
f (x) is the generating polynomial, sometimes we write f (� ) = 0 , for some
� � Fpd .

REMARK : We distinguish between the notations F16, F4
2, and F24 as follows.

F16 is a set of integers from 0 to 15; F4
2 is a set of 4-dimensional

binary vectors; F24 is a Þnite Þeld, whose generating polynomial
is of degree 4, and the ground Þeld is F2.

EXAMPLE 2.6 (Finite Fields and Representations):Let the generating polyno-
mial be f (x) = x4 + 2 x3 + 2 x2 + x + 1 over F3, which is irreducible. Then,
any element � (x) of F34 is of the form

� (x) = a3x3 + a2x2 + a1x1 + a0x0, a0, a1, a2, a4 � F3 = { 0, 1, 2} , (2.29)

i.e., the total number of elements (polynomials) in this Þeld is 34 = 81. For
simplicity, people just write � , instead of � (x), when it is clear that we are
working in the Þeld. Any element � of the Þeld F34 can be represented as a
vector of coefÞcients, such as

� = ( a3a2a1a0), ai � F3. (2.30)



36 2. Symmetric Primitives Ñ Introduction to Stream Ciphers

Thus, if � = 2 x4 + x + 1 , and � = x4 + x3 + 2 , then their sum in the vector
form will be calculated in a component-wise fashion modulo 3, and would
look like

� + � = (2011) + (1102) = (0110) = x2 + x. (2.31)

Multiplication is a bit more complicated:

� · � = (2011) · (1102) mod (12212) = (2210122) mod (12212)

= 2 · (12212) + (101022) mod (12212)

= 1 · (12212) + (20112) mod (12212)

= 2 · (12212) + (1200) mod (12212) = x3 + 2 x2. (2.32)

��

More complicated extension �eldscan also be constructed. Thus, the gen-
erating polynomial f (x) can itself be over some other extension �eld. For
example, the polynomial g(y) =

� e
j =0 cj yj over the Þeld Fpd , with the gen-

erating polynomial f (x) deÞned in (2.28), could be the generating polyno-
mial for an extension Þeld F(pd )e , in caseg(y) is irreducible. The number of
elements in such a Þeld will then be (pd)e.

The ground Þeld, the parameter p in our formulas, must be a prime num-
ber(otherwise, not all elements have an inverse), and it is called the charac-
teristic of the �eld. In communication theory, Þnite Þelds with characteristic
2 are the most important ones, since the model of a communication channel
is binary.

Since the multiplicative group of any Þnite Þeld is cyclic [Dic58], it must
have a generator. If the element � = x generates the multiplicative set of the
Þeld, then the generating polynomial of this Þeld is called primitive polyno-
mial.

EXAMPLE 2.7 (Binary Finite Field and Its Generator):Let the ground Þeld be
the binary Þeld F2, and the generating polynomial be

f (x) = x3 + x2 + 1 over F2. (2.33)

It will contain 8 elements. Let us take � = x � F23 . Then, the elements of the
Þeld can be generated by� , as shown in Table 2.2. Here,� = x appears to be
the generatorof the Þnite Þeld, and f (x) is thus a primitive polynomial. ��

As we can see, every non-zero element of the Þeld can be represented as
a power of � . We can then deÞne thediscrete logarithmto base� as follows.

t = log � (� ), such that � t = � � Fpd . (2.34)
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For � = x
i � i vector polynomial
1 � 1 (010) x
2 � 2 (100) x2

3 � 3 (101) x2 + 1
4 � 4 (111) x2 + x + 1
5 � 5 (011) x + 1
6 � 6 (110) x2 + x
7 � 7 (001) 1
8 � 8 (010) x

Table 2.2: Elements of the Þeld F23 with f (x) = x3 + x2 + 1 .

2.5.3 Linear Feedback Shift Registers

A typical block in a design of a stream cipher is a linear feedback shift register
(LFSR), the general structure of which is shown in Figure 2.9. Important
LFSR-based stream ciphers include A5/1 [BGW99], E0 [Blu03], SNOW 2.0
[EJ02b], and others.

...

...

c0c1cl cl Š 1 cl Š 2

s0s1sl Š 1 sl Š 2

r 0r 1r l Š 1 r l Š 2

Figure 2.9: General structure of a linear feedback shift register.

An LFSR is a Þnite state machine that operates over some Þnite ÞeldFq

with some characteristic p, where q = pe for some e 	 1. An LFSR consists
of l memory cellsr 0, r 1, . . . , r l Š 1 each containing one value from Fq. At any
time instance t the content of the register is called the stateof the LFSR at
time t, and denoted as St = ( st + l Š 1, st + l Š 2, . . . , st ). The state at time zero,
S0, is called the initial stateof the LFSR.

The state St +1 is derived from St as follows. When the control unit of
the FSM is clocked, then the value of the cell r 0 goes to theoutput, while the
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remaining cells are shifted as r i = r i +1 , i = 0 , 1, . . . , l Š 2, and the last cell
r l Š 1 is loaded with a new value st + l , calculated as

st + l = cl ·
l Š 1�

i =0

ci · st + i over Fq. (2.35)

This relation is called a linear recurrence relation, where the constants
c0, c1, . . . , cl � Fq are called feedback coef�cients, the connection at cl is called
the feedback position, and the connections at c0, . . . , cl Š 1 are called tap posi-
tions. These constants constitute thegenerating polynomial of the LFSR

g(x) = cl x0 Š cl Š 1x1 Š cl Š 2x2 Š . . . Š c0xl over Fq[x]. (2.36)

The state transition St +1 from St can be represented in matrix form over
the Þeld Fq as follows,

�

	
	
	
	
	



s0

s1
...

sl Š 2

sl Š 1

�

�
�
�
�
�



t +1� �� �
St +1

= cl ·

�

	
	
	
	
	



0 cŠ 1
l 0 . . . 0

0 0 cŠ 1
l . . . 0

...
0 0 0 . . . cŠ 1

l
c0 c1 c2 . . . cl Š 1

�

�
�
�
�
�



� �� �
M

·

�

	
	
	
	
	



s0

s1
...

sl Š 2

sl Š 1

�

�
�
�
�
�



t� �� �
St

. (2.37)

Thus, any stateSt can be expressed through the bits of the initial state S0

via the transition matrix M as

St = M t · S0, (2.38)

where the power t of the matrix M can be evaluated in logarithmical time
O(log t).

The total number of possible states is ql , and since the LFSR is a FSM,
it has a period for every possible initial state S0. For example, if S0 =
(0 0 . . . 0), then, obviously, the period will be 1.

If the generating polynomial g(x) is irreducible, then the internal state St

can be regarded as an element of an extension ÞeldFql with the generating
polynomial g(x). If, additionally, g(x) is primitive, then the transitions of
the states are

St = � t · S0, � t, (2.39)

where � = x is the generator of the extension Þeld Fql , and S0, St are ele-
ments of the Þeld given in the vector form (see Example 2.6). The following
theorem is directly derived from LegendreÕs theorem, sinceord(� ) = 2 l Š 1,
and the size of the multiplicative group is 2l Š 1 as well.
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0 1 0

0 10

0 11

0 01

1 01

1 00

1 10

1 11

0 00

Figure 2.10: LFSR with g(x) = x3 + x2 + 1 over F2, and its state
transitions.

Theorem 2.1: If the generating polynomial g(x) over Fq for the LFSR is
primitive and has degree l , then for every non-zero initial state S0 the period
of the LFSR isT = ql Š 1. ��

Thus, an LFSR with a primitive generating polynomial is called a maxi-
mum length LFSR.

REMARK : From now on, we will consider only LFSRs with primitive gen-
erating polynomials g(x), as such LFSRs are of great interest in
cryptography.

For a maximum lengthLFSR over F2, tap positions for the generating
polynomial should be relatively prime. An example of an LFSR is given
below.

EXAMPLE 2.8 (Linear Feedback Shift Register):Consider the primitive poly-
nomial g(x) = x3 + x2 + 1 over F2 from Example 2.7. The corresponding
LFSR and two cycles are shown in Figure 2.10.

��

If the length l of the LFSR is known, it is enough to have only l symbols
at known positions from the output stream s0, s1, . . ., to recover the initial
state S0 of the LFSR. However, if we are given a sequence of n symbols
sn = ( s0, s1, . . . , sn Š 1), a different problem is to Þnd the shortest LFSRthat
generates this sequence. An efÞcient algorithm to Þnd the shortest LFSR for
a given sequence is the Berlekamp-Massey algorithm [Mas69].

De�nition 2.24 (Linear Complexity (LC)): For a sequence of n symbols
sn = ( s0, s1, . . . , sn Š 1), the length of the shortest LFSR that generates the
sequence is called thelinear complexity (LC)of the sequencesn . ��
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LFSR 1

LFSR 2

LFSR m

h
...

zt

Figure 2.11: Keystream as a function on the outputs of several LF-
SRs, combined with the function h(·), or a combination keystream gen-
erator.

The linear complexity of any sequence produced by an LFSR is at most
the length of the LFSR, i.e., l . If the sequence issn = (0 , 0, 0, . . .), its linear
complexity is zero. On the other hand,

the linear complexity of a truly random number generator is+ � .

One task of a keystream generator is to produce the keystream with a linear
complexity that is very large. LFSRs have the following properties that are
attractive in cryptography.

� The period is large, and grows exponentially along with the size of the
LFSR.

� LFSR sequences have good statistical properties. If we consider a part
of the sequencest , . . . , st + n , its distribution is very close to the uniform
distribution.

� LFSR sequences are easy to construct and implement both in software
and hardware.

� It has a low linear complexity.

To increase the linear complexity of a sequence produced by an LFSR,
several techniques can be applied. Let us further consider only LFSRs over
F2.

In the Þrst basic technique, several LFSRs are working in parallel, and
the keystream is the output of the combining Boolean functionh(·), the inputs
to which are the outputs of the LFSRs. Note that the lengths of the LFSRs
can be different. This scheme is depicted in Figure 2.11.

The linear complexity of this scheme is a well-known result, and the
details of the proof can be found in [MvOV96].
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Theorem 2.2: Assume we have a combiner as shown in Figure 2.11. If the
function h is written in ANF, then the linear complexity of the keystream
sequencez is

LC (z) = h(l1, l2, . . . , lm ), (2.40)

where l i s are the lengths of the LFSRs, and the functionh is evaluated with-
out taking the modulo operation (i.e., performed in Z). ��

LFSR

h

...

zt

Figure 2.12: Keystream as a function on the state of an LFSR, or a
nonlinear �lter keystream generator.

Another method is to take some bits from the LFSR register, and produce
the keystream as a function on these bits. This scheme is calleda nonlinear
�lter generator, and shown in Figure 2.12. In [Key76], Key proved an upper
bound for the linear complexity of the keystream for this generator.

Theorem 2.3: Assume that we have a nonlinear �lter generatoras shown in
Figure 2.12. The linear complexity of the keystream z is then bounded as

LC (z) �
d�

i =1

�
l
i

�
, (2.41)

where l is the length of the LFSR, and d = deg(h). ��

There exist many other clocking/combining methods for LFSRs, such
as Geffe’s generator[Gef73]; Jennings’s generator[Jen80, Jen82];the Stop-and-
Go generator, proposed by Beth-Piper [BP84]; the Double-sided Stop-and-Go
generator[ZYR89]; self-decimated generators, one proposed by Rainer Ruep-
pel [Rue87], and another proposed by Bill Chambers and Dieter Gollmann
[CG88a]; the multi-speed scalar product generator, proposed by L. Massey and
R. Rueppel [MR84]; Gollmann’s cascade[CG88b]; Shrinking generators, pro-
posed by D. Coppersmith et al. [CKM93]; Self-Shrinking generators, proposed
by W. Meier et al. [MS94]; and others...
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2.5.4 Nonlinear Feedback Shift Registers

A competitive building block named nonlinear feedback shift register (NLFSR)
has begun to appear in recent designs of stream ciphers, such as Dragon
[CHM + 05], TRIVIUM [CP05], Grain [HJM05a], and others. The general struc-
ture of a NLFSR is presented in Figure 2.13.

...

Nonlinear generating function g()

s0s1sl Š 1 sl Š 2

r 0r 1r l Š 1 r l Š 2

Figure 2.13: General structure of a nonlinear feedback shift register.

An NLFSR is similar to an LFSR, but the function g(·), used to generate a
new value for the memory cell r l , is not linear. The following pros and cons
of an NLFSR can be given:

� Easy to implement, especially in hardware.

� The output sequence is very hard to predict, simply because there is not
much known about the construction and analysis of NLFSRs.

� The linear complexity is high, and algebraic attacks are (usually) not ap-
plicable. Many variables are included, through recursion, into algebraic
expressions, that quickly grow in complexity and degree.

� Hard to make the output sequence be balanced, and nobody can guar-
antee good statistical properties.

� The maximum period of the sequence can be less than expected in av-
erage.

� The sequence could look ÒrandomÓ for some time, and then fall into
some static state, in case when updating function is not reversible.

In a hypothetical design of a stream cipher, one could take some random
NLFSR with a huge internal state. Nobody could guarantee any properties
of the design, but the output will have a large period with high probability.
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1 1 0
110

011

101
010
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000

Figure 2.14: Example of an NLFSR and its state transitions.

For example,TRIVIUM [CP05] is such a design. Its internal state is 288 bits,
and the authors hope the period is at least 2128, which is quite likely true.

Another possible solution for preventing an NLFSR from falling into a
spurious state is presented in the design of Grain [HJM05a], where the next
state of the NLFSR depends on the output from a separate LFSR; thus, the
NLFSR is acting as a Þlter.

EXAMPLE 2.9 (Nonlinear Feedback Shift Register):Let us consider an NLFSR
with 3 cells over F2 as shown in Figure 2.14. The recurrence relation is

st +3 = st · st +1 . (2.42)

We can see that if, for example, the initial state is S0 = (1 1 0) , then the
output sequence will be z = (0 1 1 0 1 0 0 0 . . .).

��

Some additional research on FSRs can be found in, e.g., [CG86, Gol82].
We conclude that we need to learn more about NLFSRs, and derive tech-
niques for their construction and analysis.

2.5.5 S-boxes and P-boxes

As we already saw in previous sections, combining functions play a central
role in the security of a cipher. Criteria for combining functions will be
discussed in the chapter on cryptanalysis techniques. In this section we
present two more building blocks used in both block and stream ciphers,
socalled S-boxesand P-boxes.

2.5.5.1 S-boxes

De�nition 2.25 (S-box): An S-box is a mapping Fn
2 � Fm

2 , not necessarily
invertible. Let X � Fn

2 be the input to the S-box, and Y � Fm
2 be its output.
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The m bit output Y = ( y1, y2, . . . , ym ) can be represented as a vector ofm
Boolean functions on n variables such as

Y = S[X ] �

�
�����

�����

y1 = f 1(x1, x2, . . . , xn ),
y2 = f 2(x1, x2, . . . , xn ),
...

ym = f m (x1, x2, . . . , xn ).

(2.43)

��

Thus, S-boxes carry out theconfusionconcept (see Section 2.2.3), Òshuf-
ßingÓ the bits of a single internal n bit word. The larger n, the better the
confusion can be. During the encryption or decryption process, an S-box
can be�xed or dynamic, depending on whether it can be regarded as a con-
stant function, or if it changes along with the process. Moreover, an S-box
can beknownor secret. A known S-box is just a Þxed map, whereas a secret
S-box is a key dependent map.

Depending on where an S-box will be applied, it should satisfy different
criteria. Common criteria are balancedness, high nonlinearity, and correlation
immunity, deÞned as follows [Nyb92,Pas03,SZZ94].

De�nition 2.26 (Properties of an S-Box): Let an S-Box be given by its Boo-
lean functions (f 1, f 2, . . . , f m ).

€ An S-box is balancedif any non-zero linear combination of the functions
is balanced.

€ The algebraic degreeis the minimum algebraic degree out of all non-zero
combinations of the functions, i.e.,

deg(S) = min
(r 1 ,...,r m ) � Fn

2 \{ 0}
deg

�
m�

i =1

r i f i

�

. (2.44)

€ The nonlinearity is the minimum nonlinearity out of all non-zero com-
binations of the functions, i.e.,

nl (S) = min
(r 1 ,...,r m ) � Fn

2 \{ 0}
nl

�
m�

i =1

r i f i

�

. (2.45)

��

Clearly, a good S-box should have high algebraic degree and nonlin-
earity as well as being balanced, otherwise various attacks can be applied.
Generally, designing S-boxes is a difÞcult and challenging problem, and for
more information we refer to [Pas03,Gup04].
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2.5.5.2 P-boxes

P-boxes arepermutation boxesor permutation rules, applied on symbolsor
words(could be just bits). A P-box is used to support the diffusion concept
(see Section 2.2.3), and it is used in many ciphers, for example, in DES.

De�nition 2.27 (P-Box): A P-Box is a permutation on n ordered words. ��

The number of permutations on n words is n!.

EXAMPLE 2.10 (P-Box): Let V � A 6 be a vector of six symbols from A =
{ A, B, . . . , Z } ,

V = ( C, R, Y, P, T, O).

Let the permutation � be written as follows

� = (3 , 2, 6, 5, 4, 1).

This means that the position 1 goes to the position 3, position 2 goes to the
position 2, and so on. The application of the permutations � to the vector v
one and two times gives us two new vectors

� (V ) = ( O, R, C, T, P, Y), � 2(V ) = ( Y, R, O, P, T, C).

��

If we track the position of the Þrst letter, then sooner or later it will come
back to position 1. The path where the Þrst letter went is called an orbit.
All other letters on this path will go the same way, around the orbit. In our
example, the Þrst letter ÕCÕ will go to 1 � 3 � 6 � 1 � . . ., i.e., its orbit
contains the positions (1, 3, 6). The next letter, not included in the Þrst orbit,
is ÔRÕ Ð it will go as2 � 2 � 2 . . ., hence its orbit is just (2). Continuing
in this was, any permutation can be written as a product of orbits. In our
example we have

� = (1 , 3, 6)(2)(4, 5).

The length of an orbit, 	 , is the number of positions in the orbit. Thus, in
our example we have 	 1 = 3 , 	 2 = 1 , 	 3 = 2 .

Theorem 2.4 (Period of a permutation): Let a permutation � consist of k
orbits � 1, . . . , � k each of length 	 1, . . . , 	 k , respectively. The period of the
permutation � is

Period(� ) = gcd( 	 1, 	 2, . . . , 	 k ). (2.46)

��
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Some designs of stream ciphers, such as RC4 [Sma03], VMPC [Zol04],
are based on a dynamic permutation, i.e., one that is changed dynamically
in the process of keystream generation.

In this chapter we summarized techniques for the construction of block
and stream ciphers, and brießy introduced building blocks like Boolean
functions and Þnite Þelds. We continue with cryptanalysis techniques in
the next chapter.



3

Techniques for Cryptanalysis

“Math is like love —
a simple idea but it can get complicated”

Robert Drabek

Long time ago, when people started to encrypt their secrets, on the other
side of barricades curious creatures started to analyse ciphertexts in at-

tempts to reveal the hidden information. Since that time, cryptology and
cryptanalysis always walk along together, helping people to understand
cryptography better, and design excellent algorithms for privacy.

In the ancient time during the golden age of the Islamic civilization,
many foreign manuscripts were brought to Baghdad and placed at the great
Arab libraries. Some of the manuscripts were encrypted, which motivated
work to break the ciphers and reveal the information within.

47
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Perhaps, the Þrst signiÞcant cryptanalysis that gave birth to the science
of code breakingis the attack on the substitution cipher from the 9th century,
carefully described by the scientist Abu Yusuf Ya ’qub ibn Is-haq ibn as-Sabbah
ibn ’omran ibn Ismail al-Kindiin his manuscript ÒOn Deciphering Cryptographic
MessagesÓ (see Figure 3.1), rediscovered in 1987 in theSulaimaniyyah Ot-
toman Archivein Istanbul; this manuscript describes the oldest cryptanalysis
method Ðfrequency analysis.

Figure 3.1: The Þrst page from al-KindiÕs manuscript ÒOn Decipher-
ing Cryptographic MessagesÓ.

In the Arabic language the most frequent letters are ÔaÕ and ÕlÕ, and in
English they are ÔeÕ, ÔtÕ, and ÔaÕ. If the message is encrypted with the substi-
tution cipher, then the encrypted letters will have the same statistic as their
original letters.

Throughout history, people was sure that hiding the algorithm of a cryp-
tosystem would ensure the privacy. However, history tells us that this is not
a good basis for security. Many algorithms were revealed even when they
were hidden, such as the historical Enigma, and the more modern example
of A5/1. There is an important principle for a cryptanalysis called Kerchoff’s
Principle.

The security of the encryption scheme must depend only on the secrecy of
the key, and not on the secrecy of the algorithm.
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This principle is the Þrst starting point for cryptanalysis. Analysis of a
cryptosystem begins with the assumption that the encryption algorithm is
known.

3.1 Introduction

3.1.1 Attack Scenarios

An adversary, Eve, can potentially have one of, but is not limited to, the
following four scenarios of an attack.

€ Ciphertext only attack.In this scenario Eve has only the ciphertext and
tries to analyse it to receive some information from it. It could be a
proof or a disproof for some hypothesis stated, or even the secret key
recovering. This attack is the most common to think about when one
is talking about code breaking.

€ Known plaintext attack. Eve knows both the ciphertext and the cor-
responding plaintext. This is the most common scenario in modern
cryptanalysis.

€ Chosen plaintext attack.In this case Eve chooses the messages to be
sent, and then gets the corresponding ciphertext.

€ Chosen ciphertext attack.In this scenario Eve has temporary access to
the decryption device, and chooses herself ciphertext to be decrypted
receiving the corresponding plaintext.

3.1.2 Success Criteria

The results of cryptanalysis could be one of the following.

€ Total break, ( or a key-recoveringattack), when the secret key is recov-
ered, and then the rest of the message is known as well. This is the
most desirable result, but could sometimes be difÞcult to achieve.

€ Partial break, which helps to reduce the search space for the secret key.

€ Information deduction, which allows Eve to get some partial informa-
tion about the plaintext.

€ A distinguishing algorithm, means that we can show that the corre-
sponding cipher has a signiÞcant bias, when comparing with a perfect
cipher. When applied to stream ciphers, the keystream is analysed. In
this case we say a distinguisher can recognize whether the keystream
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comes from the cipher or is a random sequence. For example, Alice
wants to send to Bob one of two pictures X or Y. The keystream can be
achieved from the plaintext (X or Y) and the known ciphertext. Thus,
Eve can take the picture X and test, whether the guess is correct or not,
applying a distinguisher for that cipher to the keystream. Other attack
scenarios can be applied. Section 3.4 gives a more detailed overview
and analysis of these attacks.

3.1.3 Complexity Issues

When we are talking about cryptanalysis of a cipher, we often compare at-
tacks. This comparison is basically depends on the complexity of an attack.
Here three categories can be examined.

€ Time complexity, CT , is the number of simple operations that have to
be performed to complete the attack, in average. We say that an attack
is successful if CT is less than the complexity of a brute-force attack.

€ Memory complexity, CM , is the amount of operation and storage mem-
ory required to fullÞl the attack.

€ Data complexity, CD , is the amount of data (keystream, ciphertext) that
is required for the attack.

We assume standard inequalities of these complexities

CT � CD ,

CT � CM . (3.1)

Sometimes, we distinguish between two phases of an attack: the pre-
computationand the evaluationphases. For the precomputation phase, time
complexity larger or close to the complexity of the brute-force attack can be
allowed.

In academic sense, a cipher is said to be ÒbrokenÓ if it does not satisfy the
advertised security level. The security levelis often chosen to be the complex-
ity of a brute-force attack, i.e., time complexity around 2l , where l = log 2 |K|
is the size of the secret key in bits.

To show the complexity size, the O-notation is frequently used.

De�nition 3.1 ( O-notation [CLRS01]): For a given function g(n), we de-
note by O(g(n)) the set of functions { f (n)} such that:

O(g(n)) = { f (n) : � c1, c2, n0 > 0 � 0 � c1g(n) � f (n) � c2g(n), � n 	 n0} .
(3.2)

��

If for all n 	 n0 the function f (n) is equal to g(n) within a constant factor,
then we say that g(n) is an asymptotically tight boundfor f (n).
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3.2 Generic Attacks

Independently of how good an encryption algorithm is, there always exists
a set of attacks, known asgeneric attacks. These attacks can be applied toany
cipher, which is represented as a black box.

3.2.1 Brute-Force Attack

This is perhaps the simplest to launch. Assume the size of the secret key K
is l bits. Then the total key space is 2l different keys.

De�nition 3.2 (Brute-force Attack): In a brute-force attack(or an exhaustive
search) the intruder tries all possible keys from the key space, which is of
size 2l . The average time complexity is

CT = 2 l Š 1, (3.3)

operations, where one operation is the veriÞcation test function for one key.
��

This attack is important since its complexity is often the threshold in
academic sense for success in cryptanalysis of a cipher.

3.2.2 Time-Memory Trade-Offs

Most time-memory trade-off attacks (TMTO)are based on the so-calledbirthday
paradox.

3.2.2.1 Birthday Paradox

EXAMPLE 3.1 (Birthday Paradox): Let us have 23 people in a room. The
chance that two of them have birthday the same day is around 57%! ��

We have started this section with an example, which fake our intuition
and requests a proof. However, pure calculations will show that it is true.

Theorem 3.1 (Birthday Paradox): Let us have n random i.i.d. variables
X 1, X 2, . . . , X n drawn from a discrete uniform distribution with range [1, d].
Let p(n, d) be the probability that at least two random variables have the
same value. Then

p(n, d) =

�
1 Š

� n Š 1
k=1 (1 Š k

d ), 1 < n � d,

1, n > d.

p(n, d) � 1 Š eŠ (n (n Š 1)) / 2d. (3.4)

��
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For the example above, we can calculate the value ofp(23, 365), which is
around 0.57.

A direct application of this paradox is the problem of Þnding collisions
for hash functions. If an algorithm produces hash tags of size n bits, then the
number of tags we need to observe before we can Þnd a collision is around
1.2

�
2n , although the total number of possible tags is 2n .

3.2.2.2 Basic Time-Memory Trade-Off

Let St � S be the state of a stream cipher at time t, and let the total number
of different possible states be |S| = 2 s. Each time one bit of the keystream is
produced, as shown in the model of a binary stream cipher in Figure 3.2.

...S0 S1 S2

z0 z1 z2

Figure 3.2: A model of a binary stream cipher.

A basic exhaustive attack on the internal state requires at least s (because
of the size of the internal state) consecutive bits to be able to recognize the
internal state uniquely. However, this attack would take time O(2s).

Assume that we have generated 2r independent internal states and for
each state we record the Þrsts bits of the keystream. Let us call this list as L r .
Assume a given keystream from an unknown state S0 of length 2m + s Š 1,
so that we can collect 2m overlapping s bit sequences from that keystream.
Call this list L m . Now we look at the two lists, one is precomputed of size 2r

with known internal states, and the other one is of size 2m generated from
an unknown internal state. The lists contain s bit sequences. If we can Þnd
an s bit sequence that appears in both lists, then the internal state of the
given keystream at the corresponding time will be the same as in the list
L r . It can give us the possibility to recover the state St of the cipher at some
time t. By backward reversing, the initial state S0 can be achieved.

From the birthday paradox, for such a match to be likely we need that
m + r � s. This attack has the time complexity O(rs2m ) Ð we need to test2m

length r sequences, and one logarithmical search in the list L r takes time r ;
and memory complexities O(s2r ) Ð for storing the list L r of s bit sequences.
Thus, if we take m = r � s/ 2, the time and memory attack will approxi-
mately be O(2s/ 2), which could be much faster than the exhaustive search.

Other examples of TMTO attacks with different scenarios can be found
in, e.g., [Bab95,BS00,BSW00,Mih96,Saa02,Gol97a].
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3.2.3 Relationship Between the Size of the Key, the IV, And the Internal
State

Because of the basic TMTO attack presented in the previous section, it has
always been assumed that to prevent tradeoff attacks the internal state size
must be at least twice as large than the key size l . Then, the basic TMTO
attack would have complexity at least O(2l ), which is comparable to the
exhaustive search.

Recently, Jin Hong and Palash Sarkar published a paper [HS05] where
they discuss the meaning of IV in stream ciphers, and propose a new model
for a stream cipher. Let the key be of l bits and let the IV be of v bits. The
attacker observes2d frames, uses precomputation time 2p, and mounts an
online attack with time 2t and memory 2m to recover the secret keyK of one
frame. Then, the new TMTO attack would satisfy the following constraints.

�
��

��

p + d = l + v,

t 	 2d,
t + m = l + v.

(3.5)

Suppose we generate keystream sequences for2m random pairs Key/IV
and store them in a list. Then we observe 2d keystreams that we are trying
to break. From the birthday paradox it follows that one of these keystreams
will be broken when m = d = ( l + v)/ 2. It basically means that the size of
an IV v should be around l bits, otherwise the attack will be faster than the
brute-force. However, the claims from J. Hong and P. Sarkar are discussible,
as their model is different from the standard one.

3.3 Hypothesis Testing

Hypothesis testing is an important tool in linear cryptanalysis. Many sce-
narios in cryptanalysis are based on methods of hypothesis testing. In this
section we introduce general view on this topic, introduce the notation and
give standard deÞnitions. We also present different methods for hypothesis
testing, followed by some simple examples.

3.3.1 Basic De�nitions

If P is a distribution over some Þnite domain X and x is an element of X ,
then by P(x) we denote probability mass of x according to P. For any subset
S � X we deÞne P(S) as P(S) =

�
x �S P(x). When two distributions P0

and P1 are given one can consider a distance between them, measured in
two different ways.



54 3. Techniques for Cryptanalysis

De�nition 3.3 (Statistical and Variational Distances): Let P 0 and P1 be two
distributions over the domain X . We deÞne two distances between them.

(i) The statistical distancebetween P0 and P1, denoted by |P0 Š P1|, is de-
Þned as

|P0 Š P1| =
1
2

�

x �X

|P0(x) Š P1(x)|. (3.6)

(ii) The divergenceor variational distancebetween P0 and P1, denoted by
� (P0||P1), is deÞned as

� (P0||P1) =
�

x �X

P0(x) log
P0(x)
P1(x)

. (3.7)

��

We note that the statistical distance is always between 0 and 1. However,
the distance to the uniform distribution is always between 0 and 0.5.

Lemma 3.2: For two distributions P0 and P1, there exist a setS � X such
that

|P0 Š P1| = P0(S) Š P1(S). (3.8)

This set can be deÞned asS = { x � X : P0(x) 	 P1(x)} . ��

The important relation between divergence and statistical distance be-
tween two distributions is given by the following lemma.

Lemma 3.3 (Lemma 12.6.1 from [CT91]):

� (P0||P1) 	
2

ln 2
|P0 Š P1|2. (3.9)

��

Let X 1, X 2, . . . , X n be n i.i.d. random variables from X with distribution
P, and x1, x2, . . . , xn be a realization. The vector X n = ( X 1, X 2, . . . , X n ) is
an n-dimensional random vector, and x n = ( x1, x2, . . . , xn ) is the sample, where
n is called the size of the sample.

De�nition 3.4 (Type, Px ): The type Px (or empirical probability distribution)
for the sequencexn is the relative proportion of occurrences for each symbol
in X , i.e.,

Px (a) =
number of times a occurs in xn

n
, � a � X . (3.10)

��
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3.3.2 Hypothesis Testing in General

In a hypothesis testing problem one has the null hypothesis

H0 : 
 R 0 
 0, (3.11)

where

€ 
 is a generic parameterof interest of a random variable x n , e.g., the
meanµ, variance � 2 in the one sample case; differencesµ1 Š µ2, ratio
� 2

1 /� 2
2 in the two sample case.

€ 
 0 is a conjectured valueof the parameter 
 in the null-hypothesis. In
the two sample case for the mean it is usually zero, as we are trying to
detect any statistically signi�cantdifference between the two groups, at
some predetermined signiÞcance level p� . For the ratio of variances it
is usually one, to test for equivariance.

€ R0 is the relation between 
 and 
 0, such as= , � , 	 .

Once a suitable random samplex n is selected, the observed data can be
used to compute a point estimate�
 , that approximatesthe parameter 
 above.
The fundamental question is ÒAt some pre-determined con�dence level (error
probability) p� , does the sample estimator�
 provides suf�cient experimental evi-
dence to reject the null hypothesis that the parameter
 is in the relationR 0 to the
�xed value
 0?Ó If not, then we support an alternative hypothesisH 1

H1 : 
 R 1 
 0. (3.12)

The complete set of possible values of the samplexn is of size |X |n . One
can deÞne thedecision rule� as a function that decides which hypothesis is
most likely to be true.

� (xn ) =

�
H0, if xn � Ac

H1, otherwise,
(3.13)

where the set Ac is called the acceptance region.
Related to the region of acceptanceAc one can distinguish error proba-

bilities of two types:
TRUTH

H0 is True H0 is False

DECISION
Retain H0

RejectH0

Correct Retention Type II Error

Type I Error Correct Rejection
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If we compare a type I error probability to a false positive alarm(Òan alarm
without a ÞreÓ), a type II error is a false negative alarm(Òa Þre without an
alarmÓ). The probabilities are as follows

Pr{ type I error } = p�,

Pr{ type II error } = p� . (3.14)

The probability of not making a type I error is called con�dence level(p� ).
The probability of not making a type II error is called power level(p� ). Thus,

Pr{ avoiding a type I error } = 1 Š p� ,

Pr{ avoiding a type II error } = 1 Š p� . (3.15)

Conventional levels for con�denceare 0.90, 0.95, and 0.99. Conventional
levels for powerare 0.80, 0.90, and 0.95.

To test H1 against H0 one has to Þx the level of testing, i.e., the error
probability threshold p� . We convert the test statistics to ap-valueby placing
the test statistic �
 on its appropriate probability distribution and determine
the area under the curve beyond. Therefore, the decision rule � is then sim-
pliÞed to

� (xn ) =

�
H0, if p > p� ,

H1, if p � p� .
(3.16)

Thus, a hypothesis testing is a combination of four steps:

1. DeÞne the null H0 and alternative H 1 hypothesis.

2. Decide on the signiÞcance levelp� (only in Þxed-level testing).

3. Calculate a test statistic and compare to the probability distribution for
the sake of deriving a probability statement.

4. Make the decision of acceptance between two hypotheses.

In Appendix A a set of classical techniques for hypothesis testing, the
most useful in cryptanalysis, is given. They are as follows.

(i) One sample point inference (in A.1): z-statistics,t-statistics.

(ii) One sample tests with multiple parameters (in A.2): chi-square test,
Kolmogorov-Smirnoff test.

(iii) Convergence in distribution (in A.3): information-theoretical approach,
through the relation to� 2 test for� -�at distributions.
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3.4 Distinguishing Attacks

One of the possible tools to analyse a stream cipher is the linear statistical
distinguisherapproach introduced by J. Goli«c at AsiacryptÕ94 [Gol94], and
later also used at, e.g., [Gol00, Gol99, Gol04]. His work contains the basic
notion, the basic mathematical results, a method for Þnding distinguishers
called Linear Sequential Circuit Approximation (LSCA), as well as their ap-
plications to many known types of stream ciphers at that time. The LSCA
method also was previously proposed in [Gol93].

This approach has inspired people to perform attacks on ciphers like
SOBER [EJ02a], SNOW [WBC03], and can be regarded as a generalisation of
linear cryptanalysis [Mat94].

The purpose of a distinguishing attack is to provide evidence that the
generated keystream sequence is not completely random. Informally, we
build a distinguisher for a generator X, which can be described as a black
box that takes a sequence of symbols as input and produce one out of two
answers, either ÒThe sequence was generated by generatorXÓ or ÒThe sequence
is completely randomÓ. If the distinguisher can give us correct answers much
more often than pure guessing, the attack is successful.

In order to show the usefulness of a distinguishing attack, consider a sit-
uation with unknown plaintext for which we would like to give an answer
to the following question: Ò Does the ciphertext correspond to a given plaintext or
not?Ó To answer the question, we would xor the ciphertext to the plaintext
we want to test against, obtaining a sequence that could be the correct key-
stream sequence (if we guessed the plaintext correctly). We then feed this
sequence as input to the distinguisher. If the distinguisher gives a positive
answer, our guessed plaintext was probably the correct one. Otherwise, if
the distinguisher tells us that the input sequence was purely random, we
probably made a wrong guess about the plaintext. These arguments require
some independence assumptions that we do not consider in detail.

Finally note, a distinguishing attack is not as strong as a key-recovery at-
tack, but can provide some undesired information leakage to the adversary.
Note that a key-recovery attack is also a distinguishing attack, so if we want
to make things simple we can simply state that a good stream cipher should
be resistant to distinguishing attacks. The strength of this required resis-
tance, i.e., the required computational complexity, memory, and length of
the keystream sequence for a successful distinguisher, is an issue of debate.
For example, an n bit block cipher used in any of the most common modes
of operation can be distinguished from random using around 2n/ 2 output
blocks. Note that our model assumes a Þxed secret key for all produced
keystream. However, if keystream from many different keys are available,
there might exist a stronger attack of a different kind.
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3.4.1 General Idea and Scenario

The structure shown in Figure 2.8 is also called an additive stream ciphers. The
keystream generator X accepts a short secret keyK and generates a long
keystream z = z1, z2, . . . called as keystream. Encryption and decryption
on both transmitter and receiver sides are done similarly. The ciphertext
c = c1, c2, . . . is obtained as the xor of the keystream z and the plaintext
m = m1, m2, . . ., i.e.,c = m � z.

In most attack scenarios on stream ciphers we assume that a plaintext
and the corresponding ciphertext of an appropriate length n are given, i.e.,
we deal with a known plaintext attack. One could sometimes consider stronger
assumptions, like chosen plaintext attacks, but on an additive stream cipher
(like Scream) this is equivalent to a known plaintext attack. Observe that the
bit-wise xor of plaintext and ciphertext gives the adversary the keystream
sequence, so when we consider attacks on additive stream ciphers, we gen-
erally just assume the keystream sequence to be known. In Figure 3.3 the
typical scenario for a linear distinguishing attack is shown.

Known: Generator X is used
Given: The ciphertext c, and a possiblemessagem �

Question: Is the original message wasm = m� or something else?
Solution: Apply the distinguisher DX to the sequencez� = c � m � :

if DX (z� ) = • CIPHERŽ then m = m �, otherwise m �= m �.

Figure 3.3: A linear distinguishing attack scenario.

To construct a distinguisher, one basic idea is to introduce linear approx-
imations of all nonlinear operations in a speciÞc ÒpathÓ of the cipher. The
path should be such that it connects some known values, which in this case
must be keystream symbols. If the linear approximation is true, this leads to
a linear relationship L among the known keystream symbols z. That linear
relation is usually time-invariant, and can be expressed as

L t (z) =
|I |�

i =1

zt + I ( i ) � t, (3.17)

where I is some Þxed array of integer numbers. On the other hand, if the
linear approximation is not true, we can often think of the error introduced
by the linear approximation that behaves as a truly random noise. In sum-
mary, some linear combination of keystream symbols corresponding to the
linear relationship discussed above can be viewed as a sample from a very
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noisy (but not uniform) distribution PC, also called as thenoise distribution.
By collecting many such samples, we can eventually distinguish the distrib-
ution they are drawn from, from the random distributionPR , which is usually
the uniform distribution PU . This results in a successful distinguishing at-
tack, in the sense that it shows that the samples are not from a truly random
generator. A typical structure of a distinguisher is shown in Figure 3.4.

Known: Generator X is used, and the set of integers I is known.
The noisePC and randomPR distributions are also known.

Given: The keystream z� , which is possiblyfrom X
Question: Is z� from X?
Solution: 1. Construct the type Px (see Def. 3.4) from the following

sequence ofsamples: (L 1(z� ), L 2(z� ), L 3(z� ), . . .).
2. Use statistical methods to decide:

· if Px � PC then output � • CIPHERŽ: z� is from X,
· if Px � PR then output � • RANDOMŽ: z� is not from X.

Figure 3.4: The typical structure of a distinguisher.

3.4.2 Assumptions

Because the model of a distinguishing attack is idealised and perfect, it can-
not include all particulars and dependencies that we meet in real life. There-
fore, a set of standard assumptions are usually accepted, and they are de-
scribed as follows.

1. We assume that after each approximation of a nonlinear part of a cipher
we introduce a new independent noise random variable. However, if two
parts of the cipher are approximated then in the real life these two new
noise variables will be dependent, since they both come from the same
source (the cipher). Usually, these kinds of dependencies are rather small,
and often can be discarded from the model of the attack. Thus, in the
model we usually treat new random variables as independent.

2. Samples are collected from the keystream sequence, and they form a type
(an empirical distribution). We assume that all samples are independent.
However, this is not true in the real life. We think that we sample from
a local distribution PN , but the samples are, indeed, dependent. If, for
example, at time t we approximate some parts A0, A1, and A2, and in
time t + 1 approximated parts are A1, A2, and A3 Ð obviously, the two
consecutive samples can be dependent.
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However, this assumption is usual in linear cryptanalysis as well. Be-
tween two consecutive samples their dependency is determined by the
inherent operations of the cipher, which is supposed to scramble the in-
formation 1.

3. If the distinguisher consists of a set of subdistinguisher, we treat these
subdistinguishers (introduces later in Section 3.4.7) as independent as
well.

3.4.3 Distinguishing via Hypothesis Testing

A linear distinguishing attack is usually based on a classical hypothesis test-
ing. Thus, one is given a type Px constructed from n independent samples
xi � X , i = 1 , . . . , n.

We introduce the notation Px � P, meaning that the considered samples
are drawn according to P. The samples are drawn either according to PC or
according to PR and one has to decide which is the case, i.e., there exist two
hypothesis: �

HC : Px � PC,
HR : Px � PR .

(3.18)

One deÞnes adecision rule

� : X n � { HC, HR } , (3.19)

which constructs a type Px from the n samples, and deÞnes what should be
the guessed hypothesis for any possible Px . Associated to this decision rule
the error probabilities are:

p� = Pr { � (Px ) = HR |Px � PC} ,

p� = Pr { � (Px ) = HC|Px � PR } . (3.20)

When the a priori probabilities Pr{ Px � PC} and Pr{ Px � PR } are
known, the total error probabilityis then calculated as

Pe = Pr { Px � PC} · p� + Pr { Px � PR } · p� . (3.21)

A common characteristic of a distinguisher is the value of the bias, which
is the distance

� = |PC Š PR |. (3.22)

For a Þxed number of samples n, the error probability decreases as the bias
increases.

1In the case when two consecutive samples are very much dependent one can skip a few
samples before accepting one, making the dependency as small as necessary.
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REMARK : When we deal with distinguishers, people often say that a type Px

is constructed from n samplesx1, x2, . . . , xn , whereas in hypothesis
testing it is a samplexn of sizen.

3.4.4 Distinguisher and Advantage

De�nition 3.5 (Distinguisher): A distinguisherD is a probabilistic function
D : X n � { HC, HR } , which for a given stream of n samples from X decides
between the following two hypotheses:

€ HC is when the sequence is actually produced from the given cipher.

€ HR is when the given sequence is completely random.
��

Basically, a distinguisher is an algorithm which exploits hypothesis test-
ing, and has probabilities of errors p� and p� . Note that for any stream
cipher there always exists a random distinguisher.

De�nition 3.6 (Random Distinguisher): The random distinguishergives the
answers HR and HC with probabilities 1/ 2, independently of the given se-
quence of samples. I.e., its error probabilities are p� = p� = 1 / 2. ��

This simple distinguisher gives the correct answer with probability 1/ 2.
Of course, such a distinguisher is useless. For a distinguisher which pro-
vides another probability, we can measure the advantageof the distinguisher.

De�nition 3.7 (Distinguisher Advantage): The success of a distinguisher
D to distinguish a cipher from a random generator is determined by two
probabilities:

€ The probability p0 of answering • CIPHERŽ when the given stream is
from the cipher (a correct answer).

€ The probability p1 of answering • CIPHERŽ when the given stream is
from a random generator (an incorrect answer).

The overall ability of a distinguisher D to distinguish two functions is mea-
sured by the advantage, denoted AdvD , which is expressed as

AdvD = |p0 Š p1|. (3.23)

In terms of p� and p� , the advantage can also be expressed as

AdvD = |1 Š p� Š p� |. (3.24)

��

The advantage is always between 0 and 1. For the random distinguisher
its advantage is 0.
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3.4.5 The Case When Both Noise and Random Distributions are Known

In this section we consider the case when two distributions PC (noise dis-
tribution) and PR (random distribution) over some probability space X are
known, and the samplesxi from the given sequence x = ( x1, x2, . . . , xn ) are
produced from one of these two distributions. The type Px is constructed
from the samples x. The optimal test between the two distributions is given
by the Neyman-Pearson likelihood test[CT91].

De�nition 3.8 (Neyman-Pearson Optimal Hypothesis Testing): To test
Px � PR against Px � PC we need to check the likelihood ratio

I = � (Px ||PC) Š � (Px ||PR )

=
�

x �X

Px (x) log2
PC(x)
PR (x)

. (3.25)

Then the decision rule is

� (Px ) =

�
HC, if I > 0

HR , if I � 0
(3.26)

��

In this case the probability of error Pe for the decision rule � given n
samples is asymptotically bounded by

Pe = p� · Pr{ HC} + p� · Pr{ HR } � 2Š n ·C (PC ,PR ) , (3.27)

where C(PC, PR ) is the Chernoff information between the two distributions.
The Chernoff information is deÞned as

C(PC, PR ) = Š min
0� � � 1

log2(
�

x �X

P �
C (x)P1Š �

R (x)) . (3.28)

For the Þxed probability of error Pe and known � the approximate value of
n can be evaluated.

The value of � is sometimes difÞcult to obtain. Therefore, in most cases
we just take � = 0 .5 and get an upper bound on the probability of error,
which is sufÞcient for most situations.

In real cryptanalysis work people often operate with the distance be-
tween PC and PR , i.e., � = |PC Š PR |. The number of samples n required to
distinguish with sufÞciently high probability of success is roughly

n = O(1/� 2), (3.29)
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which is frequently used to estimate the complexity of a distinguishing at-
tack.

Assume the random distribution PR is actually the uniform disribution
PR = PU , and the noise variable N � PC is the sum of k independent
variables N = N1 + N2 + . . .+ Nk , with � i = |PR Š PN i |, � i = 1 , . . . , k. Then
we have the following relation.

� = |PC Š PR | �
k�

i =1

� i . (3.30)

3.4.6 Special Case – Binary Distributions

Consider the binary case with some events e and e. Then we have PR (e) =
p, and PC(e) = p(1 + � ), for some valid values of p and � . Then the required
number of samples for a successful distinguisher is given by the following
lemma.

Lemma 3.4 (From [MS01]): Let an event e happen in PR with probability
p and in PC with probability p(1 + � ). Then for small p and � ,

n = O(1/p� 2) (3.31)

samples sufÞce to distinguish PR from PC with a constant probability of
success. ��

Assume we have k noise variables. Then the bias of their sum is given
by the following lemma from M. Matsui.

Lemma 3.5 (Piling-Up Lemma [Mat94]): Let us have k independent binary
random variables X 1, X 2, . . . , X k , for which Pr{ X i = 0 } = 1

2 (1 + � i ), � i =
1, . . . , k. Then we have

Pr{
k�

i =1

X i = 0 } =
1
2

�


 1 +
k�

j =1

� j

�


 . (3.32)

��

3.4.7 X-Distinguisher for Unknown Noise Distribution

In some primitives a typical situation is when the cipher has key-dependent
nonlinear blocks in its algorithm. In this case, the distribution of the noise
PC, when approximating these nonlinear blocks, is unknown. Therefore, the
collected type can be either the random distribution PR , or the unknown
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distribution PC. The distributions PR and PC will be at some unknown dis-
tance � = |PR Š PC|.

Approximation of nonlinear parts of the cipher can be done in many
ways. For each approximation, the distribution of the noise variable is (in
most cases) different. The distance� also varies, but its typical value can be
estimated by simulations.

Let us introduce a distinguisher withUnknown noise distribution, U-distin-
guisher, deÞned as follows.

De�nition 3.9 (U-Distinguisher): Assume that two distributions PR and
PC have distance � = |PC Š PR |, and one collect n samples for the type Px

either from PR or PC. The decision rule � for the U-distinguisher is deÞned
as follows

� (Px ) =

�
HC : • Px � PCŽ, if |Px Š PR | 	 � thr ,

HR : • Px � PR Ž, if |Px Š PR | < � thr ,
(3.33)

for some threshold � thr , such that 0 < � thr < � . ��

Note that for such a distinguisher it is not necessary to know the distri-
bution PC, but only the distribution PR , the distance � = |PR Š PC|, and the
decision threshold � thr , which is usually taken as � thr = �/ 2.

Unfortunately, the value of � is unknown for us, but its distribution can
be estimated by simulations. Therefore, an eXtended distinguisheris intro-
duced.

De�nition 3.10 (X-Distinguisher): This extended distinguisheris a construc-
tion from an appropriate number m of subdistinguishersSDi , i = 1 , 2, . . . , m.

Each subdistinguisher SDi uses a randomly chosen linear approximation
of the nonlinear parts of the cipher and the key K is the same for all sub-
distinguishers. Let P(i )

C , i = 1 , 2, . . . , m denote the corresponding unknown

noise distributions, and let � i = |PR Š P(i )
C |, i = 1 , 2, . . . , m, which are also

unknown. From the keystream z, each SDi constructs its own type Px
( i ) ,

according to its corresponding linear combination of z. We denote the dis-
tances between the types and the random distribution as 	 i = |Px

( i ) Š PR |.
For some appropriately chosen thresholdvalue � thr eachSDi is a U-distin-

guisher with the decision rule

SDi (Z ) =

�
HC : • OUTSIDEŽ, if 	 i = |Px

( i ) Š PR | 	 � thr ,

HR : • INSIDEŽ, otherwise.
(3.34)

We use the notation

� max = max { � 1, � 2, . . . , � m } . (3.35)
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PR

P(1)
C

P (2)
C

P (3)
CP (4)

C � min

� max

� thr

Figure 3.5: The noise distribution PC is unknown, but on some dis-
tance � = |PR Š PC| from the known random distribution PR .

The value of � thr should be chosen such that for the m subdistinguishers we
have

Pr{ � thr � �� max } close to 1, (3.36)

for some Þxed � � (0, 1) (as we mentioned before, the usual value for � is
1/ 2). The overall X-distinguisher is then deÞned as follows,

� (z) =

�
• CIPHERŽ, if SDi (Z ) = • OUTSIDEŽ for A T LEAST ONE i = 1 , 2, . . . , m

• RANDOMŽ, if SDi (Z ) = • INSIDEŽ for A LL i = 1 , 2, . . . , m.
(3.37)

��

Figure 3.5 illustrates the case when an X-distinguisher can be applied.
If the given stream is completely random, then all typesP(1)

C , P (2)
C , . . . , P (m )

C
should be insidethe sphere with radius � thr , otherwise, at least one should
be outside of the sphere. We need to try m different linear approximations
to ensure that at least for one the distance |PR Š P(i )

C | will be as large as
possible. If the stream is from the cipher, then somei th type will be outsidethe
sphere with radius � thr .
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Below we give calculations for the error probabilities of such a distin-
guisher. For the U-distinguisher, its probability of errors are denoted by

p�
U� (� thr ) = Pr { HR |Px � PC} ,

p�
U� (� thr ) = Pr { HC|Px � PR } , (3.38)

where the unknowndistance is � = |PR Š PC|, and the decision threshold is
� thr .

Theorem 3.6: For the X-distinguisher, the probability of error of the Þrst
kind is the case when none of the m constructed subdistinguishers break
the threshold � thr . This probability equals to

p� = Pr { � (z) = HR |Px � PC} =
m�

i =1

p� i
U,� (� thr )

< min
i

{ p� i
U� (� thr )} = p� max

U� (� thr ). (3.39)

The probability of error of the second kind is

p� = Pr { � (z) = HC|Px � PR } = 1 Š
m�

i =1

�
1 Š p� i

U� (� thr )
�

.
(3.40)

��

For the X-distinguisher there are three parameters one has to choose ap-
propriately, m (the number of subdistinguishers), n (the number of sam-
ples), and � thr (the decision threshold for subdistinguishers). The principles
of choosing these parameters are as follows. The probability Pr{ � · � max 	
� thr } should be very close to 1, and this probability can usually be esti-
mated by simulation. For this purpose we choose a random key K , and
make a loop; each step of the loop randomly chooses an approximation
functions R for nonlinear blocks of the cipher, and calculate the distance
� = |PC(K, R ) Š PR |. Note that the noise distribution depends on the key
K and an approximation function R. The set of distances created by the
loop allows us to estimate the probability Pr{ � · � max 	 � thr } and derive an
appropriate value of � thr (when � � (0, 1) is Þxed).

The remaining part is the analysis of the class of U-distinguishers, in or-
der to receive the relation between error probabilities p� and p� , number of
samplesn, the maximum achievable distance � max , and the decision thresh-
old � thr .
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3.4.8 Analysis of the U-Distinguisher

The number of required samples of such a distinguisher depends on the
distance � . The success and error probabilities depend on the number of
samples n. To derive the relation between these parameters we need to
derive expressions for error probabilities p� and p� . The probability of error
p� depends only on PR and � thr . However, to Þnd the bound for p� the
value � is important. We use the following Chernoff bound to derive the
later expressions.

Theorem 3.7: (Chernoff Bound) Supposex1, . . . , xn are independent ran-
dom variables such that for all i , Pr{ xi = 1 } = p and Pr{ xi = 0 } = 1 Š p.
Let x = 1

n

� n
i =1 xi . Then, for any � > 0,

Pr{ x 	 p + � } � exp(Š2n� 2),

Pr{ x � p Š � } � exp(Š2n� 2). (3.41)

��

Corollary 3.8: Let a random variable x � X be distributed as P0. Let
S � X , and Pr{ x � S} = p. Assume that we construct a type Px from n
independent samples xi , i = 1 , . . . , n distributed as PR . Then, for any � > 0,
we have

Pr{ at least (p + � )n samples are not in S} � exp(Š2n� 2),

Pr{ at most (p Š � )n samples are in S} � exp(Š2n� 2). (3.42)

Proof: Consider the sequence yi , where yi = 1 if the sample xi is in S,
otherwise yi = 0 , i.e.,Pr{ yi = 1 } = p. Obviously,

y = { number of samples in S} /n, (3.43)

therefore, Theorem 3.7 is directly applied. ��

Let us for simplicity denote the error probabilities of a U-distinguisher
by p� = p�

U� and p� = p�
U� , to the end of this section.

Theorem 3.9: Let the random distribution PR be a � -ßat distribution (see
Def.A.1), for some negligible � 	 0, and the number of samples n is large
(n � 35|X |). Then, for the U-distinguisher, the error probabilities are as-
symptotically bounded as follows,

p� < exp(Š2n(� Š � thr )2). (3.44)
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p� � 1 Š Q� 2
|X |Š 1

(4n� 2
thr ). (3.45)

Here Q� 2
|X |Š 1

(x) is the cumulative density function for � 2.
Proof: The proof for the case p� is straight forward from Appendix A.3.2
and the resulting equation (A.36). Therefore, we only need to prove the case
when the hypothesis HC is true.

Recall DeÞnition 3.9, the type Px is drawn from PC but we measure the
distance to PR , and then compare it with the threshold value � thr .

Recall also DeÞnition 3.3, for any two distributions PC and PR there exist
a setS � X such that � = |PC Š PR | = PC(S) Š PR (S), where PC(S) = p + �
and PR (S) = p, for some 0 � p < 1. Then, for the U-distinguisher, the
success probability is lower bounded as

Pr{ � (Px ) = HC|Px � PC} 	 Pr{ at least (p + � thr )n samples of Px are in S} .
(3.46)

This argument is easy to check. Let(p+ � thr )n samples be inS, then we have

|Px Š PR |S =
�

x � S

|Px (x) Š PR (x)| 	

�
�
�
�
�

�

x � S

Px (x) Š PR (x)

�
�
�
�
�

= |Px (S) Š PR (S)| =
1
n

(p + � thr )n Š p = � thr , (3.47)

similarly |Px Š PR |X /S 	 � thr , which means that the Þnal distance |Px Š PR |
is at least � thr , and, according to the decision rule (3.33), the correct null
hypothesis HC will be accepted. Of course this is not the only case when HC

is accepted, therefore, inequality (3.46) holds.
BecausePC(S) = p + � , then from Corollary 3.8 we have

Pr{ at most ((p + � ) Š (� Š � thr ))n samples of Px are in S}

� exp(Š2n(� Š � thr )2), (3.48)

i.e., by taking the compliments of the probabilities,

Pr{ at least (p + � thr )n samples of Px are in S}

	 1 Š exp(Š2n(� Š � thr )2). (3.49)

Thus,

1 Š p� = Pr { � (Px ) = HC|Px � PC}

	 1 Š exp(Š2n(� Š � thr )2). (3.50)

I.e.,
p� < exp(Š2n(� Š � thr )2). (3.51)

��
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Figure 3.6: U-distinguisher and hypothesis testing.

The idea for the proof in Theorem 3.9 above is illustrated in Figure 3.6.
Two distributions PC and PR , and the set S � X is such that PC(x) 	 PR (x)
for all x � S. The distance |Px Š PR | is compared with the threshold value
� thr , and then the decision is made. The theorem above gives us an upper
bound for the error probability. This type of distinguishers is useful when
one of two distributions is unknown.

Note that the bounds for the error probabilities p� and p� are in a trade-
off relation. When p� grows the probability p� decreases, and vice versa.

However, the variation of p� is more sensitive to the choice of parame-
ters. Therefore, when the desired error probability p� is Þxed, we would
like to choose parameters according to the following system of inequalities,

�
n 	 |X |

2� 2
thr

, � to be surep� is negligible

p� < exp(Š2n(� Š � thr )2).
(3.52)

Corollary 3.10: Let PR = PU and let � = |PR Š PC| � 1 be very small.
If the desired error probability p� is Þxed, then the optimal value for the
parameter 0 < � < 1 is the solution of the equation

� 2 ln p� + (1 Š � )2|X | = 0 , (3.53)

which is

� =
|X | Š

�
Š|X | ln p�

|X | + ln p�
. (3.54)

The values n and � thr are then derived as

� thr = � · �

n = |X |/ (2� 2
thr ). (3.55)

��
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EXAMPLE 3.2 (U-Distinguisher): Let |X | = 256, and desired probability of
error is p� = 2 Š 10. The solution of (3.52) is � � 0.835.

If, additionally, we assume that � = 2 Š 50, then the threshold will be
� thr � 0.835· 2Š 50 and the number of samples required is n � 2107.52.

To be precise, the error probability p� is calculated as

p� = 1 Š Q� 2
255

(22+107 .52Š 100.52
� �� �

512

) � 2Š 100. (3.56)

��

3.4.9 On Distinguishers and Resynchronisation

Assume we have a distinguisher D on some cipher. Assume that we are
given n samples, when the distance betweenPR and PC is � . Following (3.27),
the error probability Pe will be of size around O(2Š c·n� 2

), up to a constant c
in the expression.

...

D

D

D

An Advanced Distinguisher

z11, z12, . . . , z1n

z21, z22, . . . , z2n

zm 1, zm 2, . . . , zmn

H0/H 1

H0/H 1

H0/H 1

H0/H 1

�

Figure 3.7: An advanced distinguisher as a set of subdistinguishers.

Assume that the probability of error Pe is very close to 1, but the num-
ber of samples n cannot be increased due to, for example, a resynchronisa-
tion process. However, still, such a distinguisher would have an advantage
larger than 0. So we can apply D to m frames, each of sizen symbols, in-
stead. Each subdistinguisher gives the correct answer with the probability
1/ 2 + (1 / 2 Š Pe), where 0 � Pe � 1/ 2. Thus, testing a sufÞcient number of
frames m and collecting answers from subdistinguishers, we can make the
error probability as small as we wish. In Figure 3.7 the structure of such a
distinguisher is shown.
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The advanced distinguisher receives the correct answers with the bias
� � = 1 / 2 Š Pe. To be short, the number of samples in this case and the
number of frames m should be around 1/� �2. Thus, we have:

m � 1/� �2 =
4

(1 Š 2Š c·n� 2 )2
. (3.57)

Recall the series expansion of an exponent

2x = ex ln 2 = 1 + x ln 2 +
(x ln 2)2

2!
+

(x ln 2)3

3!� �� �
is always > 0 for � x :|x |� 1

. . . (3.58)

As we assume that the error probability is large, then it means that 2Š c·n� 2

is very close to 1, i.e.,Šc · n� 2 is almost 0. Therefore, in the expansion of the
exponent, we can accept the Þrst two terms, and omit the rest as follows.

m �
4

(2Š c·n� 2 Š 1)2
<

4
(1 Š c · n� 2 ln 2 Š 1)2

� 4/ ((c ln 2)2 · n2� 4) � O
�

1
n2� 4

�
. (3.59)

Assume that each subdistinguisher have time complexity

CT (D) = n · r, (3.60)

where r 	 1 is the time for possible ÒguessesÓ of some bits, or, perhaps, mul-
tiple runs through the keystream during the individual subdistinguisher
evaluation. Then, when the accessed number of samples before the resyn-
chronisation is Þxed to n, the total time and data complexities of the ad-
vanced distinguisher will be as follows.

CT � O(m · nr ) = O
� r

n� 4

�
,

CD � O(m · n) = O
�

1
n� 4

�
.

(3.61)

EXAMPLE 3.3 (Advanced Distinguisher):Assume that the bias is � = 2 Š 50. If
we would have inÞnite number of samples, then after n � 2100 samples the
cipher will be distinguished.

Let the cipher is resynchronised after each n = 2 80 output symbols.
Then, the probability of success for our distinguisher would be around 2Š 20,
which is not very good. Let us take m � (n2� 4)Š 1 = 2 40 of such frames, then
our distinguisher will be successful, but require m · n = 2 80+40 = 2 120 sam-
ples. ��
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3.5 Correlation Attacks

Correlation attacks is a huge class of attacks from linear cryptanalysis, the
result of which is usually a recovered secret key K . We start this section
with possible formulas for estimation of just one bit, and then move to more
complex structures.

3.5.1 Bit Estimation

Assume we have an unknown binary constant generatorX � { 0, 1} , and a
binary random variable N with the distribution Pr{ N = 0 } = p > 1/ 2 and
Pr{ N = 1 } = 1 Š p. We observen samples of X + N . This scheme can be
regarded as a sequence of constantsX passing through the binary symmetric
channel (BSC), and then the observed sequence isz1, z2, . . . , zn , as shown in
Figure 3.8. I.e., we observe the correct value ofX with probability p, and
wrong with probability 1 Š p.

p

1-p z1, z2, . . . , znX

BSC

Figure 3.8: Binary symmetric channel.

From the sequencezn we would like to estimate the value of X . The
likelihood decision rule is as follows. If the number of ones is more than the
number of zeros, then we conclude that X = 1 , otherwise X = 0 .

Methods to calculate success and error probabilities for such a decision
rule are given in Appendix A.4.1.

3.5.2 Correlation Attacks on LFSRs with Combiners

This classical attack in modern cryptanalysis was introduced by T. Siegen-
thaler in 1984 [Sie84,Sie85]. Consider the scheme in Figure 3.9.

In this scheme m LFSRs are combined with the Boolean function h, the
output of which is the keystream z. This function has to be at least bal-
anced, to have the keystream bits as close to the uniform distribution as
possible. If we would apply an exhaustive search attack, then it would take
O(2l 1 + l 2 + ... + l m ) number of operations, which is quite much.
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t s�

t

z1, z2, . . .

Figure 3.9: Principle of the SiegenthalerÕs attack.

Siegenthaler suggested to divide the tasks. Let us guess the initial state
of the LFSR-1, then, adding the corresponding output stream s�

t to the key-
stream we will actually observe the following samples

xt = h(s(1)
t , s(2)

t , . . . , s(m )
t ) � s�

t . (3.62)

We can have two situations in principle:

(a) The guess is not correct. In this case the samplesxt will look random,
because thens�

t and s(1)
t are not correlated.

(b) The guess is correct. Then, actually, we have s�
t = s(1)

t .

€ If h(·) is not a correlation immune function, then xt is biased.

€ Otherwise, we will still get a random sequence.

If the function h(·) is not immune against correlation, then we can guess
the initial states of the LFSRs just one by one. The complexity of this attack
will be O(

� m
i =1 2l i ), which is much faster than exhaustive search.

In the case when h(·) has kth order of correlation immunity, then we
should guess k +1 LFSRs at once, in order to have a biased sample sequence
for the right guess. Note also that the number of samples that we need to
observe depends on the nonlinearity of the function for xt . Afterwards, the
standard hypothesis testing between two binary distributions is performed
(see Section 3.4.6).

3.5.3 LFSR Reconstruction via General Decoding Problem

Meier and Staffelbach in 1988 proposed a slightly different model for the
correlation attack [MS88, MS89]. The problem of reconstructing the LFSR
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can be viewed as a decoding problem [Sie85, MG90, CS91], and the attack
from Siegenthaler is actually the subcase of thegeneral decoding problem (GDP).
The proposed scenario is shown in Figure 3.10.

LFSR

BSC
0

1

0

1

p

p

1-p
z1, z2, . . .s1, s2, . . .

Figure 3.10: The keystream as the noisy output from an LFSR.

In the decoding problem we observe the output z1, z2, . . . , zn of length
n, the noisy version of the LFSR sequences, and we wish to reconstruct
the initial state of the LFSR s0, . . . , sl Š 1. There is a set of solutions for this
problem, and the best overview of the methods can be found in Fredrik
J¬onssonÕs PhD Thesis [J¬on02].

Several techniques can be applied, depending on the particular case.
When the probability p is very close to 1/ 2, then it is hard to recover the
state of the LFSR. Earlier ideas allowed to perform this attack when p is
quite low. However, the later results allow to operate even when p is large
(e.g.,p � 0.45). Obviously, when p = 1 / 2 then this problem has no solution.

For simple coding arguments [Sha49], to recove the LFSR state uniquely,
the number n of samples should be around

n �
l

1 Š h(p)
, (3.63)

where h(p) is the binary entropy functiondeÞned as

h(p) = Š(p log2 p + (1 Š p) log2(1 Š p)) . (3.64)

There exist many algorithms related to the GDP. Most algorithms con-
sist of two phases: �nding parity check equationsor precomputation phase, and
decoding algorithmor active attack phase. Algorithms for both parts are se-
lected according to the particular parameters: generating polynomial is of
low weightor arbitrary, the length of the LFSR is shortor long, the accessible
length of the sequence isshortor long, and others.

In Appendix A.4.2 and A.4.3 we present best known techniques to re-
cover the state of the LFSR in such scenario.
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3.6 Other Attacks

In the previous two sections distinguishingand correlationattacks were pre-
sented more or less in detail. However, there exist many more attacks, and
some of them we mention in this section.

3.6.1 Differential Cryptanalysis

The original idea for the differential cryptanalysiscomes from Eli Biham and
Adi Shamir, who published a number of papers in 1980s on cryptanalysis
against various block ciphers and hash functions, including weaknesses in
DES, e.g., in [BS90]. Surprisingly it has appeared that DES is quite resistant
against differential attack, although a small change in it makes it weaker. It
means that designers of DES did know about this kind of attack in 1970s.
The NSA introduces some small changes in the original DES, to prevent the
cipher from attacks. This was one of the reason to keep the design evalua-
tion secret. Within IBM, this kind of attack was known as Ò Tickling attackÓ.
However, the differential attack on DES needs to have 247 chosen plaintexts.

A differential attackworks in the scenario when plaintext can be chosen.
The idea behind is that pairs of plaintext are chosen in such a way, that the
corresponding pairs of ciphertext (or, perhaps, keystreams) have some no-
ticeable properties. A pair of a chosen plaintext m1 and m2 usually makes
up a difference� , which can be deÞned in many ways, but usually just a
XOR: � = m1 � m2. The attacker then computes the difference in the cipher-
text, trying to determine some pattern in its statistics and reveal anomalities
in the distribution of ciphertextsÕ pairs.

The way how to Þnd the distribution of the differences in ciphertexts is
not known exactly. The general way is to trace the initial plaintexts differ-
ence through the stages of the cipher, achieving a difference characteristicon
each stage.

Resynchronisationattack is an extended differential cryptanalysis. You
are given a set of keystream produced with multiple unknown keys and
known IVs. In this scenario a distinguisher for the cipher can be found.

Other specialized types of the differential attack that can be mentioned
are as follows: truncated differential cryptanalysis [KB96]; impossible dif-
ferential cryptanalysis [BF00]; boomerang attack [Wag99]; higher order dif-
ferential analysis [Knu94]; differential power analysis [KJJ99]; and others...

3.6.2 Algebraic Attacks

The idea of an algebraic attacktakes its roots from the paper by Kipnis and
Shamir [KS99]. It says that the keystream generated from some PRNG can
be described by a system of Boolean equations of some degree, which hold
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with probability 1 (or, in some cases, slightly less than 1, when applicable).
The Þrst stage, therefore, simply requires to Þnd equations where only the
secret key bits are involved. Afterwards, solve the equations. However,
these equations are usuallynonlinearand of a high degree, but overde�ned. For
example, it can contain 8000 equations on 1600 variables. Fast methods from
analysis are generally not applicable. There is sometimes also a problem to
Þnd the equations, and sometimes non-trivial for stream ciphers.

The Þrst paper that proposes the basis for solving such overdeÞned com-
plex systems of equations is the paper from 2000 by Nicolas Courtois et
al. [CKPS00]. They propose an algorithm called XL. The idea behind is sim-
ple (although, many people do not believe that it works). We are good to
solve linear systems, but unable to solve system with quadratic terms. We
can then us the linearisation technique. Each term xi xj is then replaced with a
new variable yi,j , and treat them as independent from other variables. Then
we receive only linear equations. If the number of equations Neq is related
to the number of variables Nvar as Neq � N 2

var , then we can solve such a
system, perhaps, after a few guesses.

Assume we want to solve a system of equations on n variables x1, x2, . . . ,
xn , and let us have a set of equations { Qj } . Pick a value d 	 2 and let
xk = {

� k
j =1 xi j } i j is the set of all monomials of degree less than k. Then

we can generate new equations
� � k

j =1 xi j

�
Qi = 0 for all

� k
j =1 xi j � xk , for

all k � d Š 2. We then treat each monomial in xi Õs as an independent new
variable and solve the system by Gaussian elimination as usual. The higher
the value d the more equations we can derive, but the number of variables
increases rapidly. If d is small then it will not give us enough equations
either. It is a trade-off between the parameters.

For other recent results on algebraic attacks we would refer to, e.g., [CM03,
DKDM04,MPC04,DGM06,CKPS00,CP02,MHLL02,CP03,Cou03,Moh01].

3.6.3 Side-Channel Attacks

Side-channel attacks (SCA)usually refer to attacks based on some weakness
in a particular hardware (or, even in software in some cases) implementa-
tion of a cipher algorithm. Despite the analysis of the keystream, in SCA
a particular side-channel information is used, for example, timing or power
usageis analysed in speciÞc points of a chip, or a smart card device.

To mount a SCA an electromagnetic emissiontechnique can be used. It
has been shown that these attacks are efÞcient for block ciphers and vari-
ous public-key cryptography. In 1999, Kocher, Jaffe and Jun presented their
result on power analysis of the cipher DES on a speciÞc implementation.
They have shown how 6 bits of the secret Key can be guessed and veriÞed
independently.
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In a timing attack one can measure the actual time for different blocks
of the algorithm, which can also give the knowledge about what happens
inside. For example, timing analysis can easily distinguish whether the op-
eration was XOR or a multiplication. Even during a multiplication, one can
say how many summations were done at the end.

There exist several subcategories of the side-channel attacks, such as:
timing analysis [DKL + 98, Koc96]; power analysis attack [KJJ99]; acoustic
cryptanalysis [ST06]; and others...

An implementation of a cipher can avoid these attack by, for example,
buffering the output sequence. For more on side-channel attacks we would
refer to, e.g., [OI05,LALM04].

In above sections we gave a brief overview of cryptanalysis techniques.
However, the list of existing attacks is not limited; other attacks can also be
considered: slide attacks [BW99,BW00,Pha05]; integral cryptanalysis [KW02].
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4

Tools for Cryptanalysis

“Everything should be made as simple
as possible, but not simpler”

Albert Einstein

A s we saw in the previous section, linear cryptanalysis is one of the most
powerful cryptanalysis techniques. It is, for example, the fastest known

attack on DES. More recently, we have seen that linear cryptanalysis also
plays a major role in the area of stream ciphers. Many recent proposals have
been analysed through the idea of replacing nonlinear operations by linear
ones, hoping that obtained linear equations are correct with a probability
slightly larger than otherwise expected. Actually, the best known attacks on
many recent stream cipher proposals are linear attacks. This includes stream
ciphers like Scream [HCJ02], SNOW [EJ00, EJ02b], SOBER [HR00a, HR00b],
RC4 [Sma03], A5/1 [BGW99], and many others.

A large part of research in linear cryptanalysis on block ciphers is based
on bit-wise linear approximations. In short, the process consists of the fol-
lowing steps. We Þnd a sum of certain plaintext bits, ciphertext bits and key
bits such that this sum is zero with a probability 1/ 2 + � , where � is usually
small. By getting access to a large number of different plaintext/ciphertext

79
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pairs we can eventually Þnd out the value of the sum of key bits. This results
in a key recovery attack.

In linear attacks on stream ciphers, it is mostly the case that a linear ap-
proximation will give us a set of keystream symbols that sum to zero with
probability 1/ 2 + � . Since no key bits are involved in the expression, this
gives us a distinguishing attack. In some linear attacks on stream ciphers,
one has moved from the binary alphabet to instead consider a sum of vari-
ables deÞned over a larger set. For example, we can consider a sum of dif-
ferent bytes from keystream sequence if it is byte-oriented. Distinguishers
based on symbols from a larger alphabet have been dealt with in, for exam-
ple, [JM03,EJ02a,GH05].

It is clear that moving to a larger alphabet gives improved results. How-
ever, the computational complexity of Þnding the result increases. To be a
bit more speciÞc, assume for example that the operation X 1 � X 2 is replaced
by X 1 � X 2, where � denotes mod 2n addition. The usefulness of such an
approximation is given by the distribution Pr{ (X 1 � X 2) � (X 1 � X 2) = � } .
However, the complexity of computing this distribution can be large. For
example, for n = 32 bits a straight forward approach would require com-
plexity 264, which is an impossible size to implement.

In several previous papers related problems were studied. For exam-
ple, in [LM02] differential properties of addition, such as DC+ (�, � � � ) :=
Pr{ (x � y) � ((x � � ) � (y � � )) = � } , were studied in details, includ-
ing different useful and efÞcient computational algorithms. There are a few
other results where different classes of similar functions (mostly related to
differential properties) were achieved, e.g., in [LWD04, Max04, Lip02], and
others. However, these papers the focus is only on a small class of func-
tions, which can be regarded as a subclass of the functions studied in this
chapter, referred to as pseudo-linear functions. Moreover, our main concern is
the algorithms using large distribution tables, i.e., providing a practical tool for
cryptanalysis over large distributions(or a large alphabet). When, for exam-
ple, the probability space is |� | = 2 32, our algorithms and data structures
allow us to store and perform the most common operations over such huge
distributions, in a reasonable time on a usual PC.

Consider X 1, X 2, . . . , X k to be independent n bit random variables. If
they have arbitrary distributions, we show how to compute distributions
like Pr{ X 1� X 2�· · ·� X k } and Pr{ X 1� X 2� · · ·� X k } in complexity O(kn2n ).
For example, we compute the distribution Pr{ (X 1 � X 2) � (X 1 � X 2) = � }
in complexity 237 · c for some small c. The presented algorithms make
use of techniques from Fast Fourier Transformand Fast Hadamard Transform.
Although some of these techniques were also mentioned in a recent pa-
per [GM04], we include the full approach for completeness. We show how
they can be performed when more complicated data structures are used,
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introduced due to a high memory complexity.
Moreover, in cases when X 1, X 2, . . . , X k are uniformly distributed we

demonstrate a large class of functions F (X 1, X 2, . . . , X k ), for which the dis-
tribution Pr{ F (X 1, X 2, . . . , X k ) = � } can be efÞciently computed. Here,
the algorithms are based on performing a combinatorial count in a bit-wise
fashion, taking the Òcarry depthÓ into account. These results give us efÞcient
methods of calculating distributions of certainfunctions F (X 1, X 2, . . . , X k ).
Fortunately, this includes many functions that appear in linear analysis of
ciphers.

4.1 Pseudo-Linear Functions Modulo 2n

In this chapter we denote n bit variables by a capital letter X , and 1 bit
variables by a small letter x. Individual bits of X in a vector form are repre-
sented asX = xn Š 1 . . . x1x0. By X [a : b] we denote an integer number of the
form xb . . . xa+1 xa. If Y = ym Š 1 . . . y0, then X ||Y = xn Š 1 . . . x0ym Š 1 . . . y0 is
another integer number ( concatenation). We use Ô� Õ and Ô� Õ to denote arith-
metical addition and subtraction modulo 2n , respectively. However, when
the inputs to a function F (·) are from the ring Z2n , we assume Ô+ Õ to be an
addition in the ring as well. Matrix multiplication is denoted as Ô × Õ. When
Ô·Õ is applied to two vectors, it denotes element-by-element multiplication of
corresponding positions from the vectors.

4.1.1 A Pseudo-Linear Function Modulo 2n

Let X be a set ofk uniformly distributed n bit (nonnegative) integer random
variables X = { X 1, . . . , X k } , X i � Z2n . Let C be a set of n bit constants
C = { C1, . . . , Cl } . Let Ti be some symbol or expression on X and C. We
deÞnearithmetic, Boolean, and simple termsas follows.

De�nition 4.1 (Algebraic, Boolean, and Simple Terms): Given X and Cwe
say that:

(1) A is an arithmetic term, if it has only the arithmetic + operator between
the input terms (e.g., A = T1 + T2 + . . .).

(2) B is a Boolean termif it contains only bit-wise operators such as NOT,
OR, AND, XOR, and others (e.g., B = ( T1 � T2)|T3&T4 . . .).

(3) S is a simple termif it is a symbol from either X or C(e.g.,S = X i ).
��

Next, we deÞne a pseudo-linear function modulo2n .

De�nition 4.2 (Pseudo-Linear Function): F (X 1, . . . , X k ) is called apseudo-
linear function modulo2n (PLFM) on X if it can recursively be expressed in
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arithmetic ( A), Boolean (B), and simple (S) terms 1. We also assume the
number of A , B, and S terms to be a, b, and s, respectively. ��

Note, if a given function contains a subtraction � , then it can easily be
substituted by � using

X � Y 
 X � ( NOTY) � 1 mod 2n , (4.1)

which is valid in the ring of integers modulo 2n . Note that the number of
A-terms does not grow during the substitution.

As an example, let us consider a linear approximation of a modulo sum
of the kind ÔX 1 � X 2 � X 3 � X 1 � X 2 � X 3 � N Õ, whereN is the noise
variable introduced due to the approximation. The expression for the noise
variable is a PLFM:

N = F (X 1, X 2, X 3) = ( X 1 + X 2 + X 3) � X 1 � X 2 � X 3. (4.2)

Finding the distribution of such an approximation could be the bottle-
neck in cryptanalysis. The trivial algorithm for solving this problem would
be as follows.

1. Loop for all (X 1, X 2, X 3) � Z3
2n

2. T [(X 1 � X 2 � X 3) � X 1 � X 2 � X 3] + + .

After termination of the algorithm we have Pr{ N = � } = T [� ]/ 23n . The
complexity of this classical solution when the variables are 32 bit integers, is
O(296), infeasible for a common PC. Instead, we suggest another principle
to solve this problem, as follows.

1. for � = 0 . . . 2n Š 1
2. T [� ] = some combinatorial function.

In the following section we will show how this combinatorial function is
constructed.

4.1.2 Algorithm for Calculating the Distribution for a PLFM

The problem we are considering in this subsection is the following. Given a
PLFM F (X 1, X 2, . . . , X k ) on X and C, we want to calculate the probability
Pr{ F (X 1, X 2, . . . , X k ) = � } , for a Þxed value � , in an efÞcient way.

1Note that a PLFM is a T-function [KS03], but not vice versa.
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Let some arithmetic term A have k+ operators Ô+ Õ, i.e.,A = T0 + T1 +
. . . + Tk , where Tj are some other terms, possibly B or S. Then, considering
1 bit inputs, the evaluation of the A term can, potentially, produce the local
maximum carry value � max as

� max = �
k+ + 1

2
� . (4.3)

This carry value at some bit t can inßuence the next bits of the sum at posi-
tions t + 1 , t + 2 , etc. Therefore, the maximum carry value � max at every bit
t of the sum for A is then derived as the minimum integer solution for the
equation

� max = � (k+ + 1 + � max )/ 2� . (4.4)

Thus, for every arithmetic term A i the maximum local carry value, denoted by
� i max , is

� i max = k+
i , (4.5)

where k+
i is the number of additions in A i .

For any t bit truncated input tuple (X 1, . . . , X k ) to the function F (·) we
can deÞnea tuple of local carry valuesfor each of the A i -terms, as follows:

� |t = ( � 1, � 2, . . . , � a)|t , (4.6)

where � i is the corresponding local carry value for the A i -term, when the
inputs are t bit truncated, and it can also be expressed as

� i |t =

�



k +

i�

j =0

(Ti,j (X 1, . . . , X k ) mod 2t )

�


 div 2t , (4.7)

when A i = Ti, 0 + . . . + Ti,k +
i

.
Assume there is an oracleRt (� 0, � ) that can tell us the number of choices

of the tuple (X 1[0 : t Š 1], . . . , X k [0 : t Š 1]) out of 2t ·k possible combinations,
such that for each choice the function F produces a required vector of local
carry values � |t = � 0, and the condition F (X 1, . . . , X k ) = � mod 2t is
satisÞed, i.e.F (X 1, . . . , X k )[0 : t Š 1] = � [0 : t Š 1]. The probability we are
seeking can now be written as

Pr{ F (X 1, . . . , X k ) = � } =
1

2k·n

�

�

Rn (� , � ). (4.8)

It remains to show how to construct the oracles Rt (� 0, � ). Let us assume
that Rt (� 0, � ) is known for every � 0. When � |t = � 0 is Þxed, then, by
trying all combinations for tth bits of the inputs, i.e., testing each k bit vector
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(X 1[t : t], . . . , X k [t : t]), we can calculate the exact value ofF (X 1, . . . , X k )[t :
t], as well as the exact resulting local carries vector � |t +1 . Clearly, the oracle
Rt +1 (� � , � ) makes calls to Rt (� 0, � ), for various values of � 0. That relation
is linear, and can easily be represented in a matrix form. For this purpose,
let us introduce a one-to-one index mapping function

Index (� ) : ( � 1 × � 2 × . . . × � a) � 
 � [0 . . . 
 max Š 1], (4.9)

as follows.

Index (� ) = (( � 1 · (� 2max + 1) + � 2) · (� 3max + 1) + � 3) · . . . ,


 max =
a�

j =1

(� j max + 1) =
a�

j =1

(k+
j + 1) . (4.10)

Now, Rt (� , � ) for all � can be regarded as a vector
�

Rt (Index Š 1(0), � ), . . . , Rt (Index Š 1(
 max Š 1), � )
�

, (4.11)

also referred for simplicity as Rt , for all the consecutive valid tuples � . The
transformation from Rt to Rt +1 is a linear function, i.e., it can be written as

Rt +1 = M � t |t × Rt , (4.12)

where M � t |t is some Þxedconnection matrixof size (
 max × 
 max ), which, in
general, is different for different ts. It depends on the t th bits of the constants
involved in F (·), as well as on the value of the tth bit � t from the given � ,
since the oracle Rt +1 (� , � ) must also satisfy � taken modulo 2t +1 . If the
input variables are 0-truncated, then the only one vector � |0 = (0 , 0, . . . , 0)
of local carry values is possible, i.e., R0 = (1 0 . . . 0). Therefore, we assign
the oracle R0 to be just a zero vector, but R0(0, � ) = 1 .

In this way, 2n such matrices have to be constructed. However, in most
cases this number is much smaller. The algorithm to construct matrices
from (4.12) and then calculate (4.8) is given as follows.

Theorem 4.1: For a given PLFM F (X 1, . . . , X k ), and a Þxed � � Z2n , we
have:

Pr{ F (X 1, . . . , X k ) = � } =
1

2k·n (1 1 . . . 1) ×

�
0�

t = n Š 1

M � t |t

�

× (1 0 . . . 0)T ,

(4.13)
where M � t |t are connection matrices of size(
 max × 
 max ), precomputed with
the algorithm below.
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Algorithm: Construction of 2n matrices M � t |t .

1. Input:

F (X 1, . . . , X k ) Ð a PLFM with a arithmetical terms A i , each hav-
ing k+

i operators Ô+ Õ, correspondingly.

2. Data structures:


 max =
� a

i =1 (k+
i + 1) .

M { 0,1}| t =[0 ...n Š 1] [
 max ][
 max ] Ð2n square matrices of size(
 max ×

 max ), initialised with zeros.

3. Precomputation algorithm:
for t = 0 . . . n Š 1

Temporarily set the constants from Cto be just tth bit of the
original ones, i.e., set (C1, . . . , Cl ) = ( C1[t : t], . . . , Cl [t : t])

for (X 1, . . . , X k ) � { 0, 1} k – (all combinations for thet th bits ofX s)
for 
 = 0 . . . 
 max Š 1 – (all combinations for� )

(� 1, . . . , � a ) = Index Š 1(
 )
z Evaluate all µi = � i + A i (X 1, . . . , X n ), but in A i substitute

all sub-terms A j with the values (µj mod 2),
correspondingly


 � = Index (µ1 div 2, . . . , µa div 2) – (a new resulting� � )
Evaluate the function f = F (·) mod 2, but substitute

all terms A j with the values µj , correspondingly
M f |t [
 � ][
 ] := M f |t [
 � ][
 ] + 1

- Time Complexity: O(n · 
 max · 2k )
- Memory Complexity: O(2n · 
 2

max )

zVariables µi , which correspond to the terms A i , should be calculated recursively. The
deepestA term should be calculated Þrst, and so on.

��

Below we give an example that demonstrates all the steps of the algo-
rithm.

EXAMPLE 4.1 (Pseudo Linear Function):Let k = 3 , n = 5 . Assume that our
goal is to calculate the probability Pr{ F (X 1, X 2, X 3) = 101102} , where:

F (X 1, X 2, X 3) = ( X 1 � (X 2 � (X 1 � X 2 � 25)))) � (X 1 ANDX 3). (4.14)

The Þrst step is to cancel the operator � by (4.1), and by rewriting the
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expression we get:

F (X 1, X 2, X 3) = (

A 2� �� �

X 1 + (

B2� �� �
X 2 � (X 1 + ( NOTX 2� �� �

B1

) + 26

� �� �
A 1

))) � (X 1 ANDX 3)

� �� �
B3

.

(4.15)
The function F (·) is a PLFM, since it can be expressed inA and B terms

marked above. TheS terms are simply elements from the set { X 1, X 2, X 3, 26} ,
i.e.,

B1(X , C) = NOTX 2

A 1(X , C) = X 1 + B1(X , C) + 26
� �� �

k +
1 =2

B2(X , C) = X 2 � A 1(X , C)

A 2(X , C) = X 1 + B2(X , C)
� �� �

k +
2 =1

B3(X , C) = A 2(X , C) � (X 1 ANDX 3)

F (X 1, X 2, X 3) = B3(X , C) (4.16)

The algorithm to compute the 2n matrices M f |t is as follows.

1. 
 max = ( k+
1 + 1)( k+

2 + 1) = 3 · 2 = 6;
2. for t = 0 . . . 4
3. C = 26[t : t]
4. for (X 1, X 2, X 3) � { 0, 1} 3

5. for (� 1, � 2) = (0 . . . 2, 0 . . . 1)
6. µ1 = � 1 + X 1 + ( NOTX 2) + C
7. µ2 = � 2 + X 1 + ( X 2 � µ1 mod 2)
8. f = ( µ2 � (X 1 ANDX 3)) mod 2
9. M f |t [(µ1 div 2) · 2 + ( µ2 div 2)][� 1 · 2 + � 2] + +
Applying Theorem 4.1 to construct 2n matrices.

After all computations we receive the following matrices



4.1. Pseudo-Linear Functions Modulo 2n 87

M � 0 =0 |t =0 =�

	
	
	
	
	
	



1 0 2 0 0 0
0 5 0 0 0 0
1 0 2 0 1 0
0 1 2 2 0 5
0 0 0 0 1 0
0 0 0 0 0 1

�

�
�
�
�
�
�



M � 0 =1 |t =0 =�

	
	
	
	
	
	



5 0 0 2 0 0
0 1 0 0 0 0
1 0 0 2 5 0
0 1 2 2 0 1
0 0 0 0 1 0
0 0 0 0 0 1

�

�
�
�
�
�
�



M � 1 =0 |t =1 =�

	
	
	
	
	
	



2 0 0 0 0 0
0 0 0 0 0 0
2 0 1 0 2 0
2 2 0 5 0 0
0 0 1 0 2 0
0 0 0 1 2 2

�

�
�
�
�
�
�



M � 1 =1 |t =1 =�

	
	
	
	
	
	



0 2 0 0 0 0
0 0 0 0 0 0
0 2 5 0 0 2
2 2 0 1 0 0
0 0 1 0 0 2
0 0 0 1 2 2

�

�
�
�
�
�
�



.

No need to construct the matrices for t = 2 , 3, 4, because they will repeat
as M �| t =2 = M �| t =0 and M �| t =4 = M �| t =3 = M �| t =1 . This happens since
there are only two different combinations for any tth Òbit sliceÓ of constants
from the set C = { 26} . In particular, for every bit t we have 26[t : t] = 0 or 1
in step 3 in the Þgure above. Finally, from (4.13) we calculate

Pr{ F (X 1, X 2, X 3) = 101102} =
1

215 (1 1 1 1 1 1)× M 1|4 × M 0|3 × M 1|2×

× M 1|1 × M 0|0 × (1 0 0 0 0 0)T =
1

215 · 404� 0.0123291015625.

(4.17)

One can check this probability using the classical approach of trying all
possible values for (X 1, X 2, X 3) � Z3

25 and calculating the function F (·) di-
rectly from (4.14).

Preparing the matrices requires 2 · 23 · 6 = 96 steps (2 values for t, 8
combinations for (X 1, X 2, X 3), and the number of different local carries is

 max = 6 ); each step requires one function evaluation. To calculate one prob-
ability we need to make 5 multiplications of a matrix and a vector, which
takes5·62 operations, plus one scalar product of two vectors at the end, i.e.,
in total 186 operations. Calculating the complete distribution for all possible
� s takes25 · 186 = 5952operations in total. Note that the classical approach
requires 23·5 = 32768steps, including the function evaluation in each step.

��

The next example is taken from real cryptanalysis. In this example we,
additionally, demonstrate a new trick and show how time complexity can
be reduced even more than in Theorem 4.1. With a precomputation, which
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usually takes a negligible time, the construction of the complete distribution
can have a very small time complexity O(
 max · 2n ). This also shows the ad-
vantage of using the proposed technique since the computation complexity
of 296 steps from the classical approach is reduced down to 232.585 steps.

EXAMPLE 4.2 (Technique for Computation Complexity Reduction):Let us have
k = 3 uniformly distributed independent random variables X 1, X 2, X 3 �
Z232 , i.e., n = 32. Let us assume that we want to perform a linear approxi-
mation ÔX 1 � X 2 � X 3 � X 1 � X 2 � X 3 � N Õ, whereN is a noise variable
introduced due to the approximation. The task is to Þnd the bias � of the
noise variable N . The expression for N is:

N = ( X 1 + X 2 + X 3� �� �
A 1

) � X 1 � X 2 � X 3

� �� �
B1

mod 232, (4.18)

which is a PLFM with only one A term. The maximum carry-bit index value
is 
 max = ( k+

1 + 1) = 3 . Since no constants are involved, all matrices M �| t

for all ts are the same. Hence, only two matricesM 0|0 and M 1|0 have to be
constructed, using Theorem 4.1.

M � 0 =0 |t =0 =

�



4 0 0
4 0 4
0 0 4

�


 , M � 0 =1 |t =0 =

�



0 1 0
0 6 0
0 1 0

�


 . (4.19)

The probability Pr{ N = � } can now be calculated efÞciently. For exam-
ple,

Pr{ N = � = 0x72A304F8} =
1

23·32 (1 1 1) ×

�
0�

t = n Š 1

M � [t :t ]|0

�

× (1 0 0)T

=
1

296 · 2187· 251 � 0.266967773/ 232.

(4.20)

Note that the probability for an odd � is 0. To calculate one probability,
32· 32 + 3 = 291 operations are required. Hence, to calculating the complete
distribution, it would require 291· 232 operations.

However, this time complexity can be reduced signiÞcantly by using
speciÞc data structures, which we call Òfast-tablesÓ. Each table contains216

entries, each having 3-dimensional vectors. These tables are precomputed
as shown in Figure below.
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1. Data structures:

FastT[2][0 . . . 216 Š 1] Ð two Ôfast-tablesÕ

2. Initialisation:

FastT[0][0] = (1 0 0), FastT[1][0] = (1 1 1)

3. Precomputation of the tables:
for t = 0 . . . 15
for x = 1 , 0 (note, the order is backward)
for Y = 0 . . . 2t Š 1
z FastT[0][x||Yt ] = M x |t × FastT[0][Y]

FastT[1][x||Yt ] = FastT[1][Y]× M x |n Š t Š 1

Fast-tables precomputation algorithm.

zYt is a t bit value of Y . In, for example, C/C++, it would look
like: (x||Yt ) � (x<<t)|Y

This precomputation requires 216 · 2 · 32 = 9 · 217 operations. The advan-
tage is that any probability can now be derived as just one scalar product
2

Pr{ N = � } =
1

23·32 · < FastT[0][� 15 . . . � 0], FastT[1][� 16 . . . � 31] >, (4.21)

which takes only 3 operations (instead of 291). Finally, the bias � can be
derived as follows:

1. � = 0 .5 (the bias for odd values of� )
2. for � = 0 . . . 231 Š 1 (only even2� :s are considered)
3. � + = |Pr{ N = 2 � } Š 2Š 32|

The total time needed in this approach is the following sum: 2·23 ·3 = 48
to compute matrices, 9 · 217 to precompute fast-tables, and 3 · 231 to calcu-
late the bias � . In total, 6443630640� 232.585 operations are required. To
calculate the distribution of the noise variable N , the same number of op-
erations is needed, whereas the classical approach requires296 operations.
Thus, when the question is only to Þnd the bias � for some large distribu-
tion with memory limits conditions, the classical approach will fail because
of the memory limits. ��

2Note, the input for FastT [1][·] is bit-reversed.
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4.2 Distributions of Functions With Arbitrarily
Distributed Inputs

The previous section assumed X 1, X 2, . . . to be uniformly distributed, al-
lowing a combinatorial approach. In this section we consider X 1, X 2, . . .
independentbut with arbitrary distributions. Despite the fact that the ideas
described in this section were partly mentioned in [GM04], we include them
for completeness.

Let us have a probability space � of size q = |� | = 2 n and two distrib-
utions PX and PY over � for two random variables X and Y, respectively.
Given the distributions PX and PY we consider two major types of convo-
lution, deÞned as

PZ = PX � PY :�

Pr{ Z = Z0} =
�

� X 0 , Y0 � � :
X 0 � Y0 = Z 0

Pr{ X = X 0} · Pr{ Y = Y0} , � Z0 � Z2n ,

(4.22)
where � is either � or � .

In both cases the time complexity to calculate the resulting distribution
PZ is O(q2), i.e., quadratic. Due to such a high complexity, many attacks
in cryptanalysis deal with at most 16-18 bit distributions only. Nowadays,
when design of ciphers is often 32 bit oriented, it would be a useful task to
perform a convolution of two 32 bit distributions, i.e., calculating Pr{ X +
Y = � } for all � when X and Y have arbitrary distributions.

For notation purposes the distribution PX will also be represented as a
vector of size 2n of probabilities as

[PX ] = { pX (0), pX (1), . . . , pX (2n Š 1)} , (4.23)

where pX (X 0) = Pr { X = X 0} .

4.2.1 Convolution over �

If [PX ] and [PY ] are represented as two polynomials with coefÞcients from
these two vectors, then the resulting vector [PZ ] has coefÞcients of the prod-
uct of the polynomials [PX ] and [PY ]. Fast multiplication of two polynomi-
als can be done viaFast Fourier Transform (FFT)[CLRS01], the complexity of
which is O(qlogq) 3. The convolution over � can now easily be calculated
as

[PZ ] = [ PX � PY ] = FFTŠ 1
n (FFTn ([PX ])·FFTn ([PY ])). (4.24)

3The resulting polynomial [PX ]·[PY ] is of degree2q, but its powers have to be taken modulo
q. It means that the second half just needs to be added to the Þrst half of 2n coefÞcients, in order
to receive [PZ ]. However, this is done automatically when FFT of size q is applied to [PX ] and
[PY ] directly.
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4.2.2 Convolution over �

A similar idea can be applied to this type of convolution. Instead, we use
Fast Hadamard Transform (FHT)[CLRS01].

FHT is a linear transformation of a vector of size 2n . This transforma-
tion can also be done by a matrix multiplication Hn × [V ], where Hn is a
well-known Hadamard matrix. FHT, however, performs this matrix mul-
tiplication for time O(qlogq = n · 2n ), the same as FFT. In practice, FHT
is much faster than FFT, since it does not need to work with complex and
ßoat numbers. Therefore, approximations of kind � � � are more prefer-
able, than otherwise. Additionally, the implementation of FHT is extremely
simple and short in C/C++, and can be done as follows.

Fast Hadamard Transform (FHT) implementation in C/C++

// butterfly operation
template<class T> void inline bfly (T &a, T &b)
{ T tmp; tmp=a; a+=b; b=tmp-b; }

// FHT n , size of the input distribution is 2n

template<class T> void FHT(int n, T * Dist)
{ for (int i=0; i<n; ++i)

for (int j=0; j<(1<<n); j+=1<<(i+1) )
for (int k=0 ; k<(1<<i); ++k)

bfly (Dist[j+k], Dist[j+k+(1<<i)]);
}

Since FHTŠ 1
n differs from FHT n only in the coefÞcient 2Š n , then the con-

volution over � via FHT is computed as

[PZ ] = [ PX � PY ] =
1
2n · FHTn (FHTn ([PX ])·FHTn ([PY ])). (4.25)

Finally, we point out that the convolution of a linear composition of k
independent terms is derived as

P(Z = C1 X 1 � C2 X 2 � ... � Ck X k )

=
1
2n · FHT n (FHT n ([PC1 X 1 ]) · . . . · FHT n ([PCk X k ])) , (4.26)

where Ci are some constants. In practice, this also means that if these dis-
tribution tables for X 1, . . . , X k are stored with precisions 
 1, . . . , 
 k bits af-
ter point, respectively, then for probabilities of Z the precision of only 
 =
n +

� k
j =1 
 j bits after point should be considered (or reserved) before the

FHT procedure.
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4.3 Data Structures for Large Distributions and
Operations

In the sections above several algorithms have been derived with good time
complexities, which, in most cases, allow us to operate on large distribu-
tions. However, memory complexity problems can be a main concern in
implementation. We have algorithms that operate with 32 bit distributions,
but how do we manage the memory? In this section we present a possible
solution, suggest our data structures for large distributions and show how
typical operations can be performed.

4.3.1 Data Structure Proposal

Let us assume that we want to operate on a distribution of size 2n , but the
operation memory allows us to work only with a distribution of the maxi-
mum size 2m , where m < n . In order to be able to work with large distribu-
tions of size 2n , we propose to use hard disk memory (HDD). If, for simplicity,
we deÞne

r = n Š m. (4.27)

Then one need to create2r Þles on HDD, which we denote as Filer
(0 ... 2r Š 1) ,

to store one distribution table. The upper parameter r denotes the number
of Þles to be created (2r ), and the index on the bottom is the selector of a
particular Þle. Sometimes we will also write

Filer
X :( A ) (4.28)

to show that this is the sub-distribution Þle A for the random variable X .
Each Þle stores the corresponding sub-distribution of size 2m . I.e., the prob-
ability Pr{ X = X 0} can be accessed by

Pr{ X = X 0} = Filer
X :( X 0 [m :n Š 1]) [X 0 mod 2m ]. (4.29)

Note that the upperr = ( n Š m) bits select the Þle, and thelowerm bits
are the cell index in the sub-distribution.

The operation memory is regarded as a fast memory, whereas the HDD
memory is regarded as a very slow memory. Working with such data structure
frequent access (loading and saving) to the Þles on HDD should be avoided,
since these operations are much slower than access to the memory. I.e., the
most operations have to be done in the operation memory domain, and the
number of accesses to the Þles has to be reduced as much as possible. In the
next parts of this chapter we present efÞcient solutions to apply common
algorithms when operating on large distributions with the proposed data
structures.
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4.3.2 A PLFM Distribution Construction

For a given pseudo-linear function F (·) modulo 2n , its distribution can be
constructed as follows.

1. for A = 0 . . . 2r Š 1
2. load sub-distribution SubDist [·] � Filer

(A )

3. calculate the vector
v = (1 1 . . . 1) × (

� 0
t = r Š 1 M A [t :t ]| t + m )

4. for B = 0 . . . 2m

5. SubDist [B ] = Pr { F = AB }
= v × (

� 0
t = m Š 1 M B [t :t ]| t ) × (1 0. . . 0)T

6. save sub-distribution Filer
(A ) � SubDist[·]

This algorithm requires accessing each Þle only once. Additionally, the
steps 3 and 5 could be done more efÞciently with precomputed fast-tables
(see Example 4.2).

4.3.3 A Function Y = F (X ) Evaluation Distribution

Let us have a distribution PX of a random variable X , stored in the sug-
gested data structures. Let us also have a function deÞned on one variable
F (X ). We need to construct the distribution of Y = F (X ) in an efÞcient
way. For example, this function could be a multiplication � · X in a Þnite
Þeld, a permutation of X , a multiplication on a matrix, or some other func-
tion on X in general.

One could take the values of X consecutively, and then each time cal-
culate Y . The problem appears when the consecutive values Y need to be
stored in different Þles. It could happen that we need to access the Y Õs Þles
O(2n ) times, which is very time-consuming.

We suggest the following algorithm consisting of three stages. In the Þrst
stage the function is evaluated and the resulting Y Õs are separated into two
Þles (bins), according to the upper bit value. In the second stage we perform
binary sortingalgorithm, each time dividing each bin into two new bins. In
the third stage probabilities from the bins are accumulated and the resulting
sub-distributions are transferred to the data structures of Y (Þles).
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Stage I: EvaluateY = F (X ) and separate into two �les (narrowed distribu-
tion)

1. create two files-bins f 0 = � File1
Y :(0) and f 1 = � File1

Y :(1)

2. for all A = 0 . . . 2n Š m Š 1
3. load sub-distribution SubDist X [·] � Filer

X :( A )

4. for all B = 0 . . . 2m Š 1
5. Evaluate Y0 = F (A||B )
6. Save the pair f Y0 [n Š 1:n Š 1] � (SubDist X [B ], Y0)
7. close the files f 0 and f 1

Stage II: Expand the �les� File1
Y :( A 1 ) � � File2

Y :( A 2 ) � . . . � � Filer
Y :( A r )

1. for k = 1 . . . r Š 1
2. for all A = 0 . . . 2k Š 1
3. open two files f 0 = � Filek+1

Y :( A || 0) and f 1 = � Filek+1
Y :( A || 1)

4. while( not the end of the file � Filek
Y :( A ) )

5. read the pair (p, Y0) � � Filek
Y :( A )

6. save the pair f Y0 [n Š kŠ 1:n Š kŠ 1] � (p, Y0)
7. close the files f 0 and f 1

Stage III: ConstructFiler
Y :( A ) from � Filer

Y :( A )

1. for all A = 0 . . . 2r

2. clear SubDist Y [0 . . . 2m Š 1]
3. while( not the end of the file � Filer

Y :( A ) )
4. read the pair (p, Y0) � � Filek

Y :( A )

5. SubDist Y [Y0]=SubDist Y [Y0]+p
6. save sub distribution Filer

Y :( A ) � SubDistY [·]

The complexity of this algorithm is O((1 + r ) · 2n ). However, the coefÞ-
cient r in the complexity can be reduced with a small programming trick. If
at the step II.3 we, instead, open 2d Þles (in Windows at most 29 Þles can be
open at the same time), and perform a d-tuple bits (not a binary) sorting at
once, then the complexity will be reduced to O((1 + r/d ) · 2n ). For example,
if the number of Þles is 216 (r=16), then with d = 8 we can compute the dis-
tribution of any function F (X ) by reading and storing distributions of size
2n from the Þles only 3 times (instead of 17).

Note that in the implementation of FFT the Þrst operation is the con-
struction of the distribution PRev( X ) for the bit reverseof the random vari-
ableX , which is just a subcase of the general problem of this subsection. We
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simply deÞne the function Y = F (X ) such that Y is the bit-reverseof X , and
apply the algorithm above. There are other nice and more efÞcient solutions
for this particular problem, but here we only mention them.

4.3.4 Convolution over �

To perform a convolution over � we need to be able to perform FHT on the
proposed data structures. We propose a modiÞed FHT algorithm, where
Þrst local FHTs for sub distributions are separately performed, and then
evaluate the ÒconvolutionÓ over the Þles as follows.

1. for A = 0 . . . 2r Š 1
2. load sub distribution SubDist [·] � Filer

(A )

3. FHT(m, SubDist)
4. save sub distribution Filer

(A ) � SubDist [·]
5. FHT � (r, NULL) -- the same FHT as before but

with another butterfly function
bfly � (j+k, j+k+(1<<i)).

The modiÞed butterßy function bfly � is

1. bfly � ( A, B )
2. load SubDist 1[·] � Filer

(A ) and SubDist 2[·] � Filer
(B )

3. for i = 0 . . . 2m Š 1
4. bfly(SubDist 1[i ], SubDist 2[i ])
5. save Filer

(A ) � SubDist 1[·] and Filer
(B ) � SubDist 2[·]

This algorithm requires to load/save each Þle r = n Š m times. The
modiÞed butterßy function bfly � can also be implemented memoryless.
It can read one value from File r

(A ) and one value from File r
(B ) , perform the

usual butterßy operation and save the results back to the Þles immediately.
There are two additional ideas to accelerate the FHT evaluation:

(a) In steps 3 and 4 of the algorithm above, only two Þles are processed. In-
stead, we could have a larger block of 2d Þles opened and processed at
the same time. The calculation of the butterßy function on two probabil-
ities SubDist 1[i ] and SubDist 2[i ] can be substituted by a ÔlocalÕ FHT
on 2d inputs, instead. Since the size of each Þle is2m , we need to repeat
this procedure 2m times for each group of 2d Þles (inputs are taken in
parallel from a group of 2d Þles opened at the same time, but the num-
ber of such parallel inputs for each group is 2m ). As a result, each Þle is
accessed approximately(r + 1) /d times.
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(b) The computation can also be split into 2c independent processes (2c

computers), and the results can be merged together afterwards.

4.3.5 Convolution over �

A convolution over � on the suggested data structures can be done in a
similar way as for � . In the Þrst step we perform the bit reversingopera-
tion on the input distribution, as described in Appendix B.3. Afterwards,
we use the same idea as in the previous subsection, based on theparallel
FFT circuit. The description of the parallel FFT circuit can be found in the
book [CLRS01].

4.4 Application Example: 32 bit Cryptanalysis of
SNOW 2.0

In this section we apply our results in linear cryptanalysis. We consider the
stream cipher SNOW 2.0 and we operate with large distributions to achieve
improved results.

A stream cipher is a cryptographic primitive used to ensure privacy on
a communication channel. The SNOW family is a typical example of word-
oriented KSGs based on a linear feedback shift register (LFSR). SNOW 2.0 is
an improved version of SNOW 1.0 aimed to be more secure and still more
efÞcient in performance. The most powerful attack on SNOW 2.0 was pre-
sented by Watanabe, Biryukov and De CannieÕre [WBC03] in 2003. It is
a linear distinguishing attack similar to the general framework presented
in [CHJ02,Gol96] and it requires a received keystream sequence of2225 bits
in length and has a similar time complexity.

In this section we propose an improved attack on SNOW 2.0. Whereas
the attack in [WBC03] uses a binary linear approximation approach, the new
attack is based on approximations of words, i.e., 32 bit vectors. This tech-
nique is more powerful and we get a reduction of the required keystream
length to 2202. To make the calculation of 32 bit distributions possible we
use algorithms and data structures described in the previous two sections.

4.4.1 A Short Description of SNOW 2.0

The structure of SNOW 2.0 is shown in Figure 4.1. It has 128 or 256 bit
secret key and a 128 bit initial vector. It is based on LFSR over F232 [x] and
the feedback polynomial is given by

� (x) = �x 16 + x14 + � Š 1x5 + 1 , (4.30)



4.4. Application Example: 32 bit Cryptanalysis of SNOW 2.0 97

where � is a root of the polynomial

y4 + � 23y3 + � 245y2 + � 48y + � 239 � F28 [y], (4.31)

and � is a root of
z8 + z7 + z5 + z3 + 1 � F2[z]. (4.32)

s0s1s2s3s4s5s6s7s8s9s10s11s12s13s14s15

S�R1 R2

�� Š 1

zi

FSM

running key

Figure 4.1: The structure of SNOW 2.0

The state of the LFSR is denoted by(st +15 , st +14 , . . . , st ). Each st + i is
an element of the Þeld F232 . The Finite State Machine (FSM) has two 32 bit
registers,R1 and R2. The output of the FSM Fi is given by

Fi = ( st +15 � R1t ) � R2t , t 	 0, (4.33)

and the keystream zt is given by

zt = Ft � st , t 	 1. (4.34)

Two registers R1 and R2 are updated as follows,

R1t +1 = st +5 � R2t ,

R2t +1 = S�(R1t ). (4.35)

where S�(W ) is a one-to-one mapping transformation S� : F232 � F232 .
If a 32 bit integer W is represented as a vector of four 8 bit bytes W =
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( w0 w1 w2 w3 )T , then

S�(W ) =

�

	
	



x x + 1 1 1
1 x x + 1 1
1 1 x x + 1

x + 1 1 1 x

�

�
�

 ·

�

	
	



SR [w0]
SR [w1]
SR [w2]
SR [w3]

�

�
�

 , (4.36)

where SR is the Rijndael 8-to-8 bit S-box, and the linear transformation (ma-
trix multiplication) is done in the Þeld F28 with generating polynomial

g(x) = x8 + x4 + x3 + x + 1 � F2[x]. (4.37)

4.4.2 Basic Idea Behind the New Attack

The basic idea behind the new attack is to Þnd such a linear combination
of the output words zi that is equal to 0 if the system is linear, or that some
biased noise is produced if the system is approximated by a linear function.
On the other hand, the linear combination representing the noise should be
unbiased if the given sequence zi is truly random.

Consider the feedback polynomial of the LFSR given in equation (4.30),
i.e., � (x) = �x 16 + x14 + � Š 1x5 + 1 . A similar relation holds for the LFSRÕs
output st at any time t, i.e.,

st +16 � � Š 1st +11 � st +2 � �s t = 0 , t 	 1. (4.38)

Next we make an approximation of the FSM to make it look linear. For
any time t 	 1 two output words zt and zt +1 can be expressed as

�
zt = st � (R1 � st +15 ) � R2

zt +1 = st +1 � S� (R1) � (R2 � st +5 � st +16 ).
(4.39)

Let us substitute � � � and changeS�(R) � R. Then the sum zt � zt +1

is expressed as

zt � zt +1 = st � (R1 � st +15 � Nc2(R1, st +15 )) � R2
� st +1 � (R1 � NS(S� (R1), R1))
� (R2 � st +5 � st +16 � Nc3(R2, st +5 , st +16 ))

= st � st +1 � st +5 � st +15 � st +16 � N0(t),

(4.40)

where N0(t) is a variable representing the error introduced by the linear
approximation in time t,

N0(t) = Nc2(R1, st +15 ) � NS(S�(R1), R1) � Nc3(R2, st +5 , st +16 ). (4.41)

Here Nc2(R1, st +15 ) is a noise random variable introduced by the ap-
proximation of the modulo sum of two variables of the kind Ò R1 � st +15 �
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R1� st +15 � Nc2Ó. The variableNc3(R2, st +5 , st +16 ) is a similar approxima-
tion noise, but for the modulo sum of three variables. Finally, NS(S�(R1), R1))
is the noise variable from the approximation Ò S�(R1) � R1 � NSÓ. Let us
derive a linear relation, based on (4.38).

0
Eq (4.38)

= ( st +16 � � Š 1st +11 � st +2 � �s t ) � (st +17 � � Š 1st +12 � t +3 � �s t +1 )

� (st +21 � � Š 1st +16 � st +7 � �s t +5 ) � (st +31 � � Š 1st +26 � st +17

� �s t +15 ) � (st +32 � � Š 1st +27 � st +18 � �s t +16 )

= ( st +16 � st +17 � st +21 � st +31 � st +32 ) � � Š 1 · (st +11 � st +12

� st +16 � st +26 � st +27 ) � (st +2 � st +3 � st +7 � st +17 � st +18 )

� � · (st � st +1 � st +5 � st +15 � st +16 )

Eq (4.39)
= ( zt +2 � zt +3 � zt +16 � zt +17 ) � � Š 1 · (zt +11 � zt +12 )

� � · (zt � zt +1 ) � (N0(t + 2) � N0(t + 16)) � � Š 1 · N0(t + 11)

� � · N0(t) = Z(t) � N (t),
(4.42)

where N (t) is the 32 bit total sum of noise variables introduced by several
approximations, expressed as

N (t) = ( N0(t + 2) � N0(t + 16)) � � Š 1 · N0(t + 11) � � · N0(t), (4.43)

and Z(t) is the ÒknownÓ part calculated from the output sequence at any
time t,

Z(t) = ( zt +2 � zt +3 � zt +16 � zt +17 ) � � Š 1(zt +11 � zt +12 ) � � (zt � zt +1 ). (4.44)

Obviously, N (t) � Z(t) = 0 .
After all, a linear distinguishing attack can now be performed, if we

know the distribution PN of the 32 bit noise variable N . For a sufÞciently
large number of received symbols from either the random distribution
PRandom , or the distribution of the noise PN , one can construct the type(or
empirical distribution) PType . We then make a decision whether the stream
comes from a truly random generator or from the cipher, according to the
distances from PType to PN and PRandom . Note that the 32 bit noise distrib-
ution deÞnitely contains the best binary approximation found in [WBC03],
but it also contains some additional information, which makes the bias of
the noise larger.

The procedure of a distinguishing attack when two distributions are
known is described in detail in Section 3.4.5.
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4.4.3 Computational Aspects

We adopted the data structures from Section 4.3 for our simulations as fol-
lows: we use 210 Þles, each containing222 points of a sub distribution. Since
the precision of the probabilities has to be at least 2Š (192 ·4+32) (four noises
N0, each containing NS with precision 2Š 32, Nc2 with precision 2Š 64, and
Nc3 with precision 2Š 96; plus 32 bits must be reserved for FHT), each cell
has to be of the minimum size of 100 bytes. I.e., each sub distribution in the
memory takes at least 400Mb. However, this estimate is conservative, and
in our simulations we used almost 2Gb of operation memory.

To calculate the bias of the 32 bit noise variable N , its distribution ta-
ble has to be constructed. It can be calculated via the distribution of N0,
expressed in (4.41).

To construct the distributions of Nc2 and Nc3 we use Theorem 4.1 (PLFM
construction). The expression for NS is a function on one variable, i.e., it
takes no more than O(232) operations to build the distribution PN S . Next,
the distribution of N0 is calculated via FHT with the algorithm from Sec-
tion 4.2 (convolution over � ) and Section 4.3.4 (FHT for large distributions).
Afterwards, the distribution of � · N0 and � Š 1 · N0 is computed using algo-
rithms described in Section 4.3.3 (function evaluation). Finally, we use FHT
to calculate the distribution of the total noise variable PN , and then calculate
the bias � = |PN Š PRandom |.

All these operations took us less than 2 weeks on a usual Pentium IV
3.4GHz, 2Gb of memory and 256Gb of HDD.

4.4.4 Simulation Results and Discussion

At the end of our simulations we received the distance � = |PN Š PRandom | �
2Š 101, which means that SNOW 2.0 can be distinguished from random with
the known keystream of size 2202, and with a similar time complexity. The
advantage of our attack is presented in the following table.

Attack on SNOW 2.0 bit(s) considered bias (� ) complexity

Watanabe et al. [WBC03] 1 2Š 112.25 2225

our attack 32 2Š 101 2202

For future research on this topic, it is important to note that the expres-
sion for the noise variable N (t) (4.42) contains two parts: Nc3(R2t , st +5 , st +16 )
and Nc3(R2t +11 , st +16 , st +27 ), which were in our simulations, considered as
independent. However, since they both use the same input st +16 , they are
not really independent and, theoretically, the result should be slightly im-
proved if one considers them mutually dependent.
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4.5 Summary

In this chapter we have proposed new algorithms for computation of distri-
butions of certain functions where input variables are from a large alphabet.
When the input variables were uniformly distributed, the distribution for a
class of functions called PLFM was shown to be efÞciently calculated. The
second case considered the same problem but for arbitrary distribution of
input variables. EfÞcient methods for calculating the distribution of sums of
variables both in Z2n and F2n were proposed, based on Fast Fourier Trans-
form and Fast Hadamard Transform, respectively.

The cryptologic applications of the results were demonstrated by ex-
tending the linear cryptanalysis of the stream cipher SNOW 2.0 to work
over a larger alphabet. We believe that there are many instances of stream ci-
phers as well as block ciphers, where cryptanalytic results can be improved
by considering analysis over a larger alphabet. In all these cases, the algo-
rithms derived in this chapter will be useful for calculating the performance
of such attacks.

We also believe that the technique considering Òlocal carriesÓ presented
in algorithms for PLFMs can easily be transformed to Þnd oneor even all
solutionsfor equations like

F (X 1, . . . , X k ) = 0 . (4.45)

Finding solutions for other kinds of equations, including F (X1, . . . , X k ) = �
and systems of equations, depends on Þnding solutions for an equation of
the Þrst kind. Consequently, many properties of PLFM functions can be
derived, as it was done for smaller classes in, e.g., [LM02,LWD04,Lip02].

Recently, at the conference FSE 2006, an improved distinguishing attack
on SNOW 2.0 was presented [NW06], which requires 2174 samples. The
authors exploited a better binary approximation of the MixColumn trans-
formation used in the cipher, and estimated the bias of the FSM approxima-
tion in an accurate way. We believe that the use of multiple approximations
jointly would improve their results as well. In order to perform calculations
over multidimentional distributions, the techniques from this chapter can
be used.

A few open problems can be mentioned. For example, we would like to
Þnd other classes of functions for which their distributions can be computed
efÞciently. We would also like to recognize further instances of existing ci-
phers where linear attacks over larger alphabets are applicable.
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5

Cryptanalysis of A5/1

EricssonÕs telephoneEiffel Tower, 1892

“The secret of getting ahead is getting started.
The secret of getting started is breaking your

complex overwhelming tasks into small
manageable tasks, and then starting

on the �rst one”

Mark Twain

The security of GSM conversation is based on usage of the A5 family of
stream ciphers. Many hundred million customers in Europe are pro-

tected from over-the-air piracy by the stronger version in this family, the
A5/1 stream cipher. Other customers on other markets use the weaker ver-
sion, A5/2. The approximate design of A5/1 leaked in 1994, and in 1999 the
exact design of both A5/1 and A5/2 was discovered by Briceno [BGW99].
A lot of investigations of the A5 stream ciphers followed.

The Þrst analysis of the A5/1 cipher resulted in ÒGuess-and-DetermineÓ
type of attacks [Gol97a]. Then a time-memory trade-off attack was pro-
posed by Biryukov, Shamir, and Wagner [BSW00], which in some cases can
break A5/1 in seconds. Unfortunately, it needs to use a huge precompu-
tational time and about 4 × 73Gb of hard memory. The attack complexity

103
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grows exponentially depending on the length of the LFSRs in the design of
a cipher. Another attack was presented by Biham and Dunkelman [BD00].
Their attack breaks the cipher within 239.91 A5/1 clocking assuming 220.8

bits of keystream available. This attack has expensive asymptotic behav-
iour. In 2002, Krause, [Kra02] presented a general attack on LFSR-based
stream ciphers, called BDD-based cryptanalysis. This attack requires com-
putation complexity of nO(1) 2an , a < 1 polynomial time operations, where
a is a constant depending on the cipher and n is the combined shift registers
length. For A5/1, the attack achieves a = 0 .6403, so the complexity is again
exponential with the shift registers length.

A completely different way to attack A5/1 was proposed by Ekdahl and
Johansson in 2001 [EJ01]. The attack needs a few minutes for computations,
and 2-5 minutes of conversation (plaintext). The idea behind the attack came
from correlation attacks. This is the only attack for which the complexity
does not grow exponentially with the shift registerÕs length.

Finally, Barkan, Biham and Keller [BBK03] investigated the usage of the
A5 ciphers in GSM. They demonstrated an active attack where a false base
station can intercept a conversation and perform a man in the middle at-
tack. By asking for usage of the weak A5/2 algorithm in the conversation
with the base station and then breaking it, the false base station Þnds the
session key which is also used in the A5/1 protected conversation with the
mobile unit. In [BBK03] the authors also propose the passive memory-time
trade-off ciphertext only attack. As one of the examples, if 5 minutes of con-
versation is available, then the attack needs one year of precomputations
with 140 computers working together, 22 × 200GBs hard discs. Then the at-
tack can be done in time 228 by one PC. Obviously, the authors did not try
to implement the attack and the complexity was just estimated.

In this chapter a new approach to attack the A5/1 stream cipher is pro-
posed. We consider the Ekdahl-Johansson attack as the basis, and apply
several new improvements. The new attack now needs only less than one
minute of computations, and a few seconds of known conversation. It does
not need any notable precomputation time, and needs reasonable space of
operation memory.

In the case of a ciphertext-only attack on A5/1, we start from the fact
that some redundancy is part of the plaintext. There are at least two kinds
of redundancy that are explicit and may be used in an attack where only
ciphertext is available. The �rst kind is the fact that coding is done be-
fore encryption, which results in linear relationships in the plaintext since
the parity check symbols are also encrypted. This observation was used
in [BBK03]. The secondkind of redundancy is the fact that during silence,
a special frame including a large number of zeros is sent [vS00]. Silence
occurs very often, but unfortunately these frames used for silence are trans-
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mitted less frequently, one to initialise a period of silence and then two each
second. The attack that we propose can be considered in a ciphertext-only
scenario, in which case we use this redundancy during silence to get some
known outputs from the cipher.

Although several of the previous attacks are sufÞcient to break A5/1 in a
known plaintext attack, we believe that further progress is very important.
The A5/1 stream cipher is perhaps the most used cipher in the world, and
from the wireless communication channel interception of the communica-
tion is very easy. Mobile base stations are not expensive to buy and they can
be used to record GSM conversations.

Although A5/1 is generally regarded as ÒbrokenÓ, one may look at the
practical difÞculty of actually getting access to a conversation, when the en-
crypted communication data is recorded. Previous attacks assume a known
plaintext, which is not really what we have in practice. In practice we have a
ciphertext-only attack, but the plaintext includes some known redundancy.
The only previous attack considering this situation is the one by Barkan,
Biham and Keller [BBK03]. This attack is a very nice idea, but as it is an
active attack it requires the man in the middle attack to be performed in real
time. A less complex case to perform in practice would be to assume that
we record an encrypted conversation to disk and then later analyse it to re-
cover the conversation. This is one case we have in mind when we present
our new algorithm.

This chapter is organized as follows. In Section 5.1 a short description
of the cipher A5/1 is given. The basic Ekdahl-Johansson attack on A5/1
is brießy described in Section 5.2. Then, in Section 5.3, we give new ideas
to improve the attack in general. The details and particulars of the attack
simulations are described in Section 5.3.2. In Section 5.4 the results of our
simulations are presented. Finally, we summarize the status of the A5/1
stream cipher.

5.1 Description of A5/1

A GSM conversation between A and B is a sequence of frames, each sent in
about 4.6 milliseconds. Each frame consists of 228 bits Ð 114 bits of which is
the message fromA to B , and the second half bits are representing commu-
nication from B to A. One session is encrypted with a secretsession keyK .
For the j th frame the running key generator is initialised with mixture of K
and the publicly known frame counter, denoted by Fj . It then generates 228
bits of running key for the current frame. The ciphertext is a binary xor of
the running key and the plaintext.

A5/1 consists of 3 LFSRs of lengths 19, 22, and 23, which are denoted
R1, R2, and R3, respectively. The LFSRs are clocked in an irregular fashion.
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values of clocking
C1 C2 C3 R1 R2 R3

1 � c c c ×
� �

c 1 � c c
�

×
�

c c 1 � c
� �

×
c c c

� � �

Table 5.1: Taps majority as the clocking control unit for A5/1.

Each of them has one tap-bit, C1, C2, and C3, respectively. In each step, 2 or
3 LFSRs are clocked, depending on the current values of the bitsC1, C2, and
C3. Thus, the clocking control device implements the majority rule, shown
in Table 5.1. Note, for each step the probability that an individual LFSR is
being clocked is 3/ 4.

After the initialisation procedure for the LFSRs, 228 bits of running key
are produced, using irregular clocking. In each step one bit of the running
key is calculated as the binary xor of the current output bits from the LFSRs.

0 107 20 22

0 10 2120

0 8 13 16 17 18
Clocking tap C1

Clocking tap C2

21

Clocking tap C3

Keystream

Clocking tap C1

Clocking tap C2

Clocking tap C3

Clock
controlling

circuit

R1 clocking control

R2 clocking control

R3 clocking control

Figure 5.1: The structure of A5/1 cipher

The initialisation process uses the session keyK and the known frame
counter Fn . First the LFSRs are initialised to zero. They are then clocked
64 times, ignoring the irregular clocking, and the key bits of K are consecu-
tively xored in parallel to the feedback of each of the registers. In the second
step the LFSRs are clocked 22 times, ignoring the irregular clocking, and the
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successive bits ofFn are again xored in parallel to the feedback of the LF-
SRs. Let us call the state of LFSRs at this time theinitial state of the frame.
In the third step the LFSRs are clocked 100 timeswith irregular clocking,
but ignoring outputs. Then, the LFSRs are clocked 228 times with the irreg-
ular clocking, producing 228 bits of the running key. For a more detailed
description of A5/1 we refer to [BGW99].

5.2 A Short Description of the Ekdahl-Johansson
Attack on A5/1

This attack was proposed in 2002 by Ekdahl and Johansson. The idea behind
the attack came from correlation attacks, and is based on the linearity of the
initialisation procedure. The attack needs a set of m frames (about 20000-
50000 in their attack), during one session, i.e., when the session keyK is not
changed.

For notation purposes, let the key K = ( k1, . . . , k64), and the frame
counter Fj = ( f 1, . . . , f 22), where ki , f j � F2, i = 1 ..64, j = 1 ..22. Denote by
uj

1(l1), uj
2(l2), and uj

3(l3) the output bits of LFSRs, if they are independently
clockedl1, l2, and l3 times, respectively, after the LFSRs being in the initial
state, and when the current frame is number j . The 228 bits of the running
key are then denoted asvj (101), . . . , vj (100 + 228), and every

vj (t) = uj
1(l1) � uj

2(l2) � uj
3(l3), (5.1)

for some unknownl1, l2, l3.
Note, that uj

1(l1) is a linear combination of K and Fj bits, since all oper-
ations before the initial state are linear. I.e., uj

1(l1) can be represented as

uj
1(l1) = X 1,l 1 (Fj ) + Y1,l 1 (K ), (5.2)

where X 1,l 1 (Fj ) is a known Þxed value and Y1,l 1 (K ) =
� 64

i =1 y1,l 1 ,i · ki is a
linear function with known coefÞcients y1,l 1 ,i � F2.

With the same arguments we deÞne

uj
2(l2) = X 2,l 2 (Fj ) + Y2,l 2 (K ),

uj
3(l3) = X 3,l 3 (Fj ) + Y3,l 3 (K ), (5.3)

where X a,l a (Fj ) and the coefÞcientsya,l a ,i � F2, for a = 2 , 3, la = 0 , 1, . . . ,
100 + 228, i = 1 , . . . , 64are precomputed and Þxed. Let us write

s1(l1) = Y1,l 1 (K ),

s2(l2) = Y2,l 2 (K ),

s3(l3) = Y3,l 3 (K ). (5.4)
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Our target is to estimate 19 bits from the Þrst LFSR s1(0), . . . , s1(18), 22
bits from the second LFSRs2(0), . . . , s2(21), and 23 bits from the third LFSR
s3(0), . . . , s3(22). These 64 bits map one-to-one to 64 bits of the keyK , if the
frame counter Fj is given.

REMARK : For notation purposes we write E
p
= �E , when �E appears to be an

estimator for E , such that Pr{ E = �E} = p, for some probability p.
�E can be derived from accessible data, or assumed (guessed).

One can think about the data we have access to as a binary table ofm
frames in the form

�

	
	
	



v1(101) v1(102) . . . v1(100 + 228)
v2(101) v2(102) . . . v2(100 + 228)

...
vm (101) vm (102) . . . vm (100 + 228)

�

�
�
�



. (5.5)

The idea behind the attack is the observation that

vj (101)
p
= s1(l1) + s2(l2) + s3(l3) + X 1,l 1 (Fj ) + X 2,l 2 (Fj ) + X 3,l 3 (Fj ) (5.6)

for some p �= 1 / 2, if l1, l2, l3 are chosen properly. The probability p is

p =
1
2

+
1
2

Pr{ (l1, l2, l3) at time t} , (5.7)

where Pr{ (l1, l2, l3) at time t} is the probability that at time 101 the LFSRs
were regularly clocked exactly l1, l2, l3 times, respectively. The probability
that at time t � { 101. . . 100 + 228} , the LFSRs have been clocked(l1, l2, l3)
times is

Pr{ (l1, l2, l3) at time t} =

� t
t Š l 1

�� t Š ( t Š l 1 )
t Š l 2

�� t Š ( t Š l 1 )Š ( t Š l 2 )
t Š l 3

�

4t . (5.8)

Let us now deÞne the known value

�Oj
l 1 ,l 2 ,l 3

(t) = vj (t) � X 1,l 1 (Fj ) � X 2,l 2 (Fj ) � X 3,l 3 (Fj ). (5.9)

Then we have
�Oj

l 1 ,l 2 ,l 3
(t)

p
= s1(l1) � s2(l2) � s3(l3). (5.10)

The case when �Oj
l 1 ,l 2 ,l 3

(t) is equal to the value s1(l1) � s2(l2) � s3(l3) can
happen only in two ways.

a) The LFSRs are really clockedl1, l2, l3 at time t, happening with probabil-
ity Pr{ (l1, l2, l3) at time t} . If so, the expression will be true with proba-
bility 1.
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b) If the condition in a) is not fulÞlled, the expression will still be true with
probability 1/ 2.

This means that the relation (5.10) is biased (p > 1/ 2).
From the given frames we can estimate many of the linear combinations

s1(l1) � s2(l2) � s3(l3) for different triples (l1, l2, l3). But we only need 64
correct estimates in order to recover the key K uniquely.

To minimise the amount of frames m and perform the estimation with
low probability of error, Ekdahl and Johansson suggested to use the values
of vj (101), . . . , vj (164) for all j for better estimation of s1(l1) � s2(l2) � s3(l3).
The following expression can be used.

Pr{ s1(l1)� s2(l2) � s3(l3) = 1 , for the frame j } = pj
( l 1 ,l 2 ,l 3 ) =

=
�

t �{ 101... 164}

Pr{ (l1, l2, l3) at time t} ·
 

�Oj
l 1 ,l 2 ,l 3

(t) = 0
!

+ 1 / 2 ·

�


 1 Š
�

t �{ 101... 164}

Pr{ (l1, l2, l3) at time t}

�


 . (5.11)

This probability gives the estimation of the corresponding linear combina-
tion for one frame j . We will increase the possibility to estimate the value of
s1(l1)+ s2(l2)+ s3(l3) correctly, when m frames (samples)v1(101. . . 328), . . . ,
vm (101. . . 328)are given, as each of them provides some small contribution.
By calculating the likelihood ratio

� l 1 ,l 2 ,l 3 =
m�

j =1

log2

"
pj

( l 1 ,l 2 ,l 3 )

1 Š pj
( l 1 ,l 2 ,l 3 )

#

(5.12)

we achieve a likelihood value (estimate) which is taken over all m frames.
This can be turned into a binary estimate by

s1(l1) � s2(l2) � s3(l3)
p
=

�
0 if � l 1 ,l 2 ,l 3 	 0
1 if � l 1 ,l 2 ,l 3 < 0

, (5.13)

where p > 0.5 depends mainly on m. In [EJ01] the authors Þnally examine
different strategies for implementing the recovery of the key bits as efÞcient
as possible.

5.3 Explaining the New Attack

In this section we describe our discovered improvements in general. Our
main purpose is to reduce the number of frames m, which is needed for the
attack.
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5.3.1 Statistical Analysis of m Frames

We mentioned before that we have identiÞed two general ideas for improv-
ing the previous results. The Þrst is the fact that it is beneÞcial to study the
derivative sequences instead of the sequences themselves. Assume that at
time t the LFSRs are clockedl1, l2, and l3 times, respectively. Then we also
assume that at time t + 1 the third LFSR is not clocked. In this case we have
the equalities,

�Oj
l 1 ,l 2 ,l 3

(t) = s1(l1) � s2(l2) � s3(l3),

�Oj
l 1 +1 ,l 2 +1 ,l 3

(t + 1) = s1(l1 + 1) � s2(l2 + 1) � s3(l3). (5.14)

Then the probability

Pr{ �Oj
l 1 ,l 2 ,l 3

(t) � �Oj
l 1 +1 ,l 2 +1 ,l 3

(t + 1) = s1(l1) � s2(l2) � s1(l1 + 1) � s2(l2 + 1) }

=
1
4

· Pr{ (l1, l2) at time t} ,

(5.15)

where

Pr{ (l1, l2) at time t} =

� t
t Š l 1

�� l 1
t Š l 2

�

23t Š ( l 1 + l 2 )
. (5.16)

Note, that 1
4 · Pr{ (l1, l2) at time t} > Pr{ (l1, l2, l3) at time t} so it gives us

a larger bias when estimating the value of linear combinations of si (l i )Õs.
Below is a comparison of these probabilities.

(l1, l2, l3), t Pr{ (l1, l2, l3) at t} · 104 1
4 Pr{ (l1, l2) at t} · 104

(76, 76, 76), 101 9.7434 22.1207
(79, 79, 79), 105 9.2012 21.2840
(80, 80, 80), 105 6.6388 19.3778
(79, 80, 81), 106 8.3858 20.8899
(82, 82, 82), 109 8.7076 20.5083

The �rst ideato improve the attack is then to consider two consecutive
expressions (5.14). Their sum only depends on two LFSRs, and the proba-
bility of the event is higher than before. We also note that we can similarly
assume that LFSR-1 and LFSR-2 are not clocked at some timet. This gives
us 3 cases. We deÞne

1�zj
l 2 ,l 3

(t) = �Oj
l 1 ,l 2 ,l 3

(t) � �Oj
l 1 ,l 2 +1 ,l 3 +1 (t + 1)

p
= s2(l2) � s3(l3) � s2(l2 + 1) � s3(l3 + 1) ,

2 �zj
l 1 ,l 3

(t) = �Oj
l 1 ,l 2 ,l 3

(t) � �Oj
l 1 +1 ,l 2 ,l 3 +1 (t + 1)

p
= s1(l1) � s3(l3) � s1(l1 + 1) � s3(l3 + 1) ,

3 �zj
l 1 ,l 2

(t) = �Oj
l 1 ,l 2 ,l 3

(t) � �Oj
l 1 +1 ,l 2 +1 ,l 3

(t + 1)
p
= s1(l1) � s2(l2) � s1(l1 + 1) � s2(l2 + 1) .

(5.17)
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The case when3 �zj
l 1 ,l 2

(t) is equal to the value s1(l1) � s2(l2) � s1(l1 + 1) �

sj
2(l2 + 1) can happen in two ways,

a) The Þrst and the second LFSRs are indeed clockedl1, l2 times at time
t occuring with probability Pr{ (l1, l2) at time t} , AND at time t + 1 the
third LFSR is not clocked, with probability 1/ 4. The expression is always
true in this case.

b) If the condition in a) is not fulÞlled the expression will still be true with
probability 1/ 2.

The second ideais to consider d consecutive estimators jointly as one d-
dimension estimator. If we look at the sequence of d estimators of the form

3 �zj
l 1 ,l 2

(t), . . . ,3 �zj
l 1 + dŠ 1,l 2 + dŠ 1(t + d Š 1), then we note that they depend on

each other. To use this fact we suggest to consider not binary expressions,
but vectors of d bits. Introduce a new d bits vector, derived from the frame
j ,

3 �Z j
l 1 ,l 2

(t) =

�

	
	
	
	



3 �zj
l 1 ,l 2

(t)

3 �zj
l 1 +1 ,l 2 +1 (t + 1)

...

3 �zj
l 1 + dŠ 1,l 2 + dŠ 1(t + d Š 1)

�

�
�
�
�



(5.18)

=

�

	
	
	



vj (t) � vj (t + 1) � X 1,l 1 (j ) � X 2,l 2 (j ) � X 1,l 1 +1 (j )� X 2,l 2 +1 (j )
vj (t + 1) � vj (t + 2) � X 1,l 1 +1 (j ) � X 2,l 2 +1 (j ) � X 1,l 1 +2 (j )� X 2,l 2 +2 (j )

...
vj (t + d Š 1) � vj (t + d)� X 1,l 1 + dŠ 1(j )� X 2,l 2 + dŠ 1(j )� X 1,l 1 + d(j )� X 2,l 2 + d(j )

�

�
�
�



.

DeÞne thed-dimension vector 3Sl 1 ,l 2 (which is unknown for the attacker) as

3Sl 1 ,l 2 =

�

	
	
	



s1(l1) + s2(l2) + s1(l1 + 1) + s2(l2 + 1)
s1(l1 + 1) + s2(l2 + 1) + s1(l1 + 2) + s2(l2 + 2)

...
s1(l1 + d Š 1) + s2(l2 + d Š 1) + s1(l1 + d) + s2(l2 + d)

�

�
�
�



.

(5.19)
Then, from (5.17) it follows that

3Sl 1 ,l 2

p
= 3 �Z j

l 1 ,l 2
(t), (5.20)

with some biased probability p. Note that the symbols are now of alphabet
size 2d.

Examining this in more detail, consider d consecutive irregular steps.
The total number of possible scenarios is 4d, since in each step one of four
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types of irregular clockings can be chosen, according to the bits C1, C2, C3. If
we assume that at time t the Þrst and the second LFSRs are clocked exactly
l1, l2 times, then we can classify the bits of the vector 3 �Z j

l 1 ,l 2
(t). They can

be either Correct (i.e., the next clocking is the required one so the bit has
the same value as the corresponding bit in the vector 3Sl 1 ,l 2 ), or Random
(i.e., the bit can be 0 or 1, with probability 1/2). For each possible pattern
{ Correct, R andom} d we calculate the corresponding number of scenarios
out of 4d possible, by exhaustively trying all the scenarios. For example,
when d = 4 , we have the following distribution:
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where P0 = Pr { (l1, l2) at time t} and the assumption is that the Þrst two
LFSRs have clocked(l1, l2) at time t.

Let us assume that we have received the vector 3 �Z j
l 1 ,l 2

(t) = (0 , 1, 1, 0)T

at time t from the frame j . If we consider the hypothesis that 3Sl 1 ,l 2 =
(0, 0, 1, 1), then the error pattern is Ed = 3Sl 1 ,l 2 � 3 �Z j

l 1 ,l 2
(t) = (0 , 1, 0, 1). This

error patternEd can be the result of one of the following events: ER , E10, E11,
E14, E15. Thus, the conditional probability

Pr{ 3Sl 1 ,l 2 = (0 , 0, 1, 1)|3 �Z j
l 1 ,l 2

(t) = (0 , 1, 1, 0)} = Pr {Ed = (0 , 1, 0, 1)}

=
Pr{ ER }

24 +
Pr{ E10}

22 +
Pr{ E11}

23 +
Pr{ E14}

23 +
Pr{ E15}

24

= (1 Š P0)/ 24 + P0 · 275/ 212. (5.21)

Continuing in this way, the complete table for Pr{Ed} can be derived.
The distribution for d = 4 is given as in the table on the right.

Ed = 3Sl 1 ,l 2 � 3 �Z j
l 1 ,l 2

(t)
Ed Pr{Ed}

(0, 0, 0, 0) (1 Š P0)/ 24 + P0 · 431/ 212

(1, 0, 0, 0) (1 Š P0)/ 24 + P0 · 229/ 212

(0, 1, 0, 0) (1 Š P0)/ 24 + P0 · 293/ 212

(1, 1, 0, 0) (1 Š P0)/ 24 + P0 · 183/ 212

(0, 0, 1, 0) (1 Š P0)/ 24 + P0 · 341/ 212

(1, 0, 1, 0) (1 Š P0)/ 24 + P0 · 199/ 212

(0, 1, 1, 0) (1 Š P0)/ 24 + P0 · 263/ 212

(1, 1, 1, 0) (1 Š P0)/ 24 + P0 · 173/ 212

(0, 0, 0, 1) (1 Š P0)/ 24 + P0 · 377/ 212

(1, 0, 0, 1) (1 Š P0)/ 24 + P0 · 211/ 212

(0, 1, 0, 1) (1 Š P0)/ 24 + P0 · 275/ 212

(1, 1, 0, 1) (1 Š P0)/ 24 + P0 · 177/ 212

(0, 0, 1, 1) (1 Š P0)/ 24 + P0 · 323/ 212

(1, 0, 1, 1) (1 Š P0)/ 24 + P0 · 193/ 212

(0, 1, 1, 1) (1 Š P0)/ 24 + P0 · 257/ 212

(1, 1, 1, 1) (1 Š P0)/ 24 + P0 · 171/ 212

For each framej and for each vector (b0, . . . , bdŠ 1)T we then calculate
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Pr{ 3Sl 1 ,l 2 = ( b0, . . . , bdŠ 1)T in j th frame} = 3pj
l 1 ,l 2

(b0, . . . , bdŠ 1)

=
�

t �{ 101... 164}

Pr{ (l1, l2) at time t} · Pr{Ed = 3 �Z j
l 1 ,l 2

(t) � (b0, . . . , bdŠ 1)T }

+
1
2

�


 1 Š
�

t �{ 101... 164}

Pr{ (l1, l2) at time t}

�


 .

(5.22)

All the m frames give us a more precise estimation:

Pr{ 3Sl 1 ,l 2 = ( b0, . . . , bdŠ 1)T } = 3pl 1 ,l 2
(b0, . . . , bdŠ 1)

=
m�

j =1

3pj
l 1 ,l 2

(b0, . . . , bdŠ 1) = 2
� m

j =1 log 2 (3 pj
l 1 ,l 2

(b0 ,...,b d Š 1 )) . (5.23)

In this formula the last two values should both be divided by a factor equal
to their sum over all possible values of (b0, . . . , bdŠ 1). This factor has been
left out because we are really interested in the relative values of the probabil-
ities for different values of (b0, . . . , bdŠ 1). To simplify numerical calculations,
3pl 1 ,l 2

(b0, . . . , bdŠ 1) can be normalised through division by any constant.
We have just found the way how to calculate the probability Pr{ 3Sl 1 ,l 2 =

(b0, . . . , bdŠ 1)T } , for every d-dimension value (b0, . . . , bdŠ 1)T . In a similar
fashion, based on the equation (5.17), we can derive thed-dimension vec-
tors 1 �Z j

l 2 ,l 3
(t) and 2 �Z j

l 1 ,l 3
(t), and then deÞne the vectors 1Sl 2 ,l 3 and 2Sl 1 ,l 3 .

The formulas to calculate Pr{ 1Sl 2 ,l 3 = ( b0, . . . , bdŠ 1)T } and Pr{ 2Sl 1 ,l 3 =
(b0, . . . , bdŠ 1)T } are similar to equations (5.22) and (5.23).

Finally, we have a set of h tables like Pr{ r Sl i ,l j = ( b0, . . . , bdŠ 1)} . If we
ÒguessÓ the key�K , then in each such distribution table one row (probability)
can be selected, corresponding to �K . The measure of likelihood acceptance of�K
is the product of the selected probabilities through all theh tables.

Our task is then to select a set of ÒguessedÓ keys�K with maximum prob-
abilities, and then perform a test whether the real key K can be one of the
selected. More details depend on the exact structure of simulations, which
we discuss in the next section.

5.3.2 Creating Candidate Tables of s(l )-Sequences

In the previous subsection we have found how to create a distribution table
for d-dimension random variables r Sl i ,l j . If we have h such distributions,
then a ÒguessedÓ key�K is measured by its probability, as described above.
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We are now faced with the problem of how to select the most likely �K Õs in an
efÞcient way. For this purpose we partly use the idea that was introduced in
the Ekdahl-Johansson attack, but in a modiÞed way. In this section we show
the technical details of searching for the best �K Õs, and focus on computation
aspects.

The idea is that Þrst we choose some interval I 1 = [ I 1,a . . . I 1,b] and then
we construct h1 distribution tables for 3Sl 1 ,l 2 , where l1, l2 � I 1. I.e., the
number of distribution tables will be h1 = ( I 1,b Š I 1,a + 1) 2, and the number
of s1(l )Õs ands2(l )Õs that are involved in the linear expressions for3Sl 1 ,l 2 is
2 · (I 1,b Š I 1,a + 1 + d), see formula (5.19).

Let us consider some choice of values fors1(I 1,a ), . . . , s1(I 1,b+ d), s2(I 1,a ),
. . . , s2(I 1,b + d) to be a pair of vectors (S1,I 1 , S2,I 1 ) (note, the vector of inter-
est ends with I 1,b + d, rather then I 1,b + d Š 1; the reason can be seen from
(5.19), wherel 1, l2 � I 1), i.e.,

(s1(I 1,a ), . . . , s1(I 1,b + d), s2(I 1,a ), . . . , s2(I 1,b + d))
p
= ( S1,I 1 , S2,I 1 ). (5.24)

The measure of the choice is the probability mass deÞned as

�

l 1 ,l 2 �I 1

Pr{ 3Sl 1 ,l 2 |(S1,I 1 , S2,I 1 )} . (5.25)

Now, by exhaustive search the most likely r pairs (S1,I 1 , S2,I 1 ) form a set
3 � I 1 = { (S1,I 1 , S2,I 1 )} . The size of the exhaustive search is22·( I 1,b Š I 1,a +1+ d) .
In a similar way we can perform the same exhaustive search to create the
sets1 � I 1 = { (S2,I 1 , S3,I 1 )} and 2 � I 1 = { (S1,I 1 , S3,I 1 )} , each containing the
r most likely candidates.

To understand better how the exhaustive search for 3 � I 1 is done, one
can think of the matrix multiplication:
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where for every ÒguessedÓ vector(S1,I 1 , S2,I 1 ) (exhaustive search) the set of
vectors 3Sl 1 ,l 2

p
= 3Z l 1 b,l 2 is determined uniquely by the matrix multiplica-

tion. We can then calculate the value of our choice by formula (5.25). After
that, the most likely r pairs are selected and stored in the list (or table) 3 � I 1 .

Recall that to recover the key K uniquely, we need to have 64 bits: 19
bits of s1(l )Õs, 22 bits ofs2(l )Õs, and 23 bits ofs3(l )Õs. It means that ford = 4
it might be enough to have only one interval I 1 of size 19. When we try to
reduce the number of frames m needed for the attack, then there are two
reasons for why this simple scenario is not working:

a) to create one likelihood table 3 � I 1 the exhaustive search will be of size
22·(19+4) = 2 46 Ð this is practically impossible.

b) when the number of frames m is reduced, then the number of candidates
r must be increased signiÞcantly, so that the correct pairs are present in
the tables 1 � I 1 , 2 � I 1 , and 3 � I 1 . Otherwise, the joint intersection of these
sets will not give us the correct triple (S1,I 1 , S2,I 1 , S3,I 1 ).

To overcome these problems, we could take I 1 of a short size, and intro-
duce one more interval, I 2 = [ I 2,a . . . I 2,b], and then we construct two kinds
of tables � � I 1 and � � I 2 each of size r . We need to take I 2 such that it in-
tersectsI 1, otherwise the intersection would be r2, and, hence,r cannot be
large. Now in a similar way we can create the sets 1 � I 2 = { (S2,I 2 , S3,I 2 )} ,
2 � I 2 = { (S1,I 2 , S3,I 2 )} , and 3 � I 2 = { (S1,I 2 , S2,I 2 )} , each containing the r
most likely pairs, the measure of which is calculated similar to the formula
(5.25). Due to the intersection

Si, I 1 × S i, I 2 =

�
���

���

Si, I 1 �I 2 , if the end of Si, I 1 corresponds to the

beginning of Si, I 2

� , otherwise

(5.26)

the intersection of these two sets is

3 � I 1 �I 2 = 3 � I 1 � 3 � I 2 =

�
����

����

(S1,I 1 �I 2 , S2,I 1 �I 2 ) :

�
����

����

(S1,I 1 , S2,I 1 ) � 3 � I 1

(S1,I 2 , S2,I 2 ) � 3 � I 2

S1,I 1 × S 1,I 2 �= �

S2,I 1 × S 2,I 2 �= �

$
���%

���&

.

(5.27)
The larger the intersection of the intervals I 1 and I 2, the smaller the

intersection set, i.e., |3 � I 1 �I 2 | � | 3 � I 1 | · |3 � I 2 | = r 2. Let us call this type of
intersections as horizontal intersection. Similar horizontal intersections are
1 � I 1 �I 2 and 2 � I 1 �I 2 .
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By vertical intersection we call the intersections of the form:

1,2 � I i = 1 � I i � 2 � I i =

�

(S1,I i , S2,I i , S3,I i ) :

�
(S2,I i , S3,I i ) � 1 � I i

(S1,I i , S3,I i ) � 2 � I i

'

,

(5.28)
and 2,3 � I i , 1,3 � I i are deÞned in a similar way. One more triple vertical inter-
section is deÞned as

1,2,3 � I i = 1 � I i � 2 � I i � 3 � I i =

�
��

��
(S1,I i , S2,I i , S3,I i ) :

�
��

��

(S2,I i , S3,I i ) � 1 � I i

(S1,I i , S3,I i ) � 2 � I i

(S1,I i , S2,I i ) � 3 � I i

$
�%

�&
.

(5.29)

5.3.3 Design of Intervals

Let us take one interval I �
1 = [87 . . . 97]. Two extreme situations are when

(l1, l2) = (87 , 87) and (l1, l2) = (97 , 97). In each frame j there are only 228
bits are accessiblevj (101), . . . , vj (100 + 228). In Figure 5.2 we see that the
probability Pr{ (l1, l2) at time t} for this interval gets its maximum value on
around t � (116. . . 129). Hence, the bits around v(116) . . . v(129) give us the
most information about the d-dimension vectors, when l1, l2 � I 1. We can
also say that for this interval the informative bits are around v(105) . . . v(145),
because for any othervÕs the probability is almost 0.

Let us now consider three more intervals

I �
2 = [63 . . . 73],

I �
3 = [165 . . . 175],

I �
4 = [231 . . . 241]. (5.30)

In Figure 5.3 the bounded densities for each interval are shown. The interval
I �

2 is moved to the left below t < 101, where the valuable vÕs are inaccessible
for us. It means that this choice is not appropriate. On the other hand, the
interval I �

4 is moved to the right and very close to the right border of ac-
cessiblevÕs. This interval can be considered as the last appropriate interval.
Also note that as the interval is moved to the right the amplitude decreases,
i.e., the error probability of the random variables estimation is higher.

In our simulations we decided to choose the size of each interval to be
11. Independently of the parameter d 	 1 in each table 3 � I i we store only
the pairs (S1,I i , S2,I i ) of vectors each of size 12 bits only. Schematically, the
structure of intervals is depicted below in Figure 5.4.

Two neighbour intervals intersect in 6 positions, whereas the last d Š 1
positions are assumed to be badly estimated (tail bits). I.e., any horizontal
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Figure 5.2: The density of Pr{ (l 1 , l2) at time t} when (l1 , l2) =
(87, 87) and (l1 , l2) = (97 , 97).
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Figure 5.3: The bounded densities for I �
1 = [87 . . . 97], I �

2 =
[63. . . 73], I �

3 = [165 . . . 175], and I �
4 = [231 . . . 241].
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+d=4Size=11
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...

6 intersection bits

Figure 5.4: The structure of intervals used in simulations.

intersection of two tables 3 � I i and 3 � I i +1 will be done by 12 bits (6 bits
are s1(I i +1 ), . . . , s1(I i +1 + 5) , and similar 6 bits are s2(I i +1 ), . . . , s2(I i +1 +
5)). Also note that any vertical intersection will be done in 12 bits also.
The choice of this structure of the intervals allowed us to introduce several
efÞcient strategies to intersect the tables.

Since the size of each interval is 11, it means that the number of distribu-
tion tables of � Sl i ,l j -random variables is 112 = 121. When d = 4 , the number
of variables involved in � Sl i ,l j Õs is2·(11+4) = 30 . Hence, to create one� � I i -
set of the r most likelihood pairs, we need to perform an exhaustive search
of size 230. The number of such sets � � I i is 9 (3 intervals times 3 cases for
Õ*Õ).

In our simulations we have considered 28 intervals:
�

I 0 = [69 . . . 79]
I k = 6 · k + I 0 for k = 1 , 2, . . . , 27.

(5.31)

So, the last interval is I 27 = [231 . . . 241] (see also Figure 5.3 ). When for a
chosen interval I i we estimate the probability Pr{ 3Sl 1 ,l 2 = ( b0, . . . , bdŠ 1)T }
with the formula (5.22), then we only need to look through the bits vj that
are valuable for I i . Let us set the ÒwindowÓ of valuable bits to be of size
64, then, for example, for the interval I 1 on the Figure 5.3 the ÒwindowÓ is
t1 = [101 . . . 164], for I 3 � t3 = [203 . . . 266], and for I 4 � t4 = [266 . . . 329].
Actually, the ÒwindowÓ can be larger, but 64 bits completely cover the most
valuable vÕs for any intervalI i .

The likelihood sets � � I i , each containing r pairs, can be presented in
Table 5.2.

The time complexity to form these data is

O(3 · 28· (112 · 2d · m · 64 + 222+2 d)) . (5.32)
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I 0 I 1 . . . I 27

Case 1 1 � I 0 =
(S2,I 0 , S3,I 0 )

1 � I 1 =
(S2,I 1 , S3,I 1 )

1 � I 27 =
(S2,I 27 , S3,I 27 )

Case 2 2 � I 0 =
(S1,I 0 , S2,I 0 )

2 � I 1 =
(S1,I 1 , S2,I 1 )

2 � I 27 =
(S1,I 27 , S2,I 27 )

Case 3 3 � I 0 =
(S1,I 0 , S2,I 0 )

3 � I 1 =
(S1,I 1 , S2,I 1 )

3 � I 27 =
(S1,I 27 , S2,I 27 )

Table 5.2: Tabular representation of likelihood sets � � I i for 28 in-
tervals and 3 cases.

This is because there are 84 sets� � i ; to create each set requires112 distri-
bution tables of size 2d; to calculate each value in the table requires m · 64
operations; and the exhaustive search complexity for each set is222+2 d.

5.3.4 Strategies for Intersection of the Tables � � I i

When the Þrst part of the attack is done, the second part is just intersection
of the sets until we get the set of triples 1,2,3 � � of appropriate size. Here are
several strategies that we can follow to achieve our goal:

I. Intersection of 9 tables, larger . Try all triples of intervals (I k , I k+1 , I k+2 ),
for k = 0 , 1, . . . , 25. The intersection of 9 tables gives us the table
1,2,3 � I k �I k +1 �I k +2 of triples (S1,I k �I k +1 �I k +2 , S2,I k �I k +1 �I k +2 ,
S3,I k �I k +1 �I k +2 ). EachS contains 24 bits, but we need only 19, 22, and
23 bits for LFSR-1, LFSR-2, and LFSR-3, respectively. We can do Þrst
vertical intersections and get 1,2,3 � I i , and then perform horizontal in-
tersection. Since any of the intersections is done by 12 bits, the number
of the most likely pairs in � � I i can be quite large. For this strategy we
can safely user � 50000.

II. Intersection of 6 tables, mediumr . The same as Strategy I, but for each in-
terval one table is discarded. We just assume that the discarded tables
do not contain the correct pairs. Then perform the intersection of the
remaining 6 tables. The number of assumptions is 33. The parameter r
is about r � 30000.

III. Intersection of 4 tables, smallr . Try all pairs of intervals (I k , I k+2 ), for all
k = 0 , 1, . . . , 25. We assume also that one of the tables� � I k and one of
� � I k +2 do not contain the correct pair. The number of assumptions is
32. For the remaining 4 tables we perform the intersection. Note, there
is no horizontal intersection, but only 2 vertical intersections, one for
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I k and one for I k+2 . Due to this the critical value for the parameter r
is about r � 10000. The appropriate choice of the intersection scheme
made this strategy work.

IV. Intersection of 4 tables, smallr , version 2.The same as Strategy III, but
the pairs of intervals (I k1 , I k2 ) can be so that k1 = 0 , 1, . . . , 25, and
k2 = k1 + 2 , . . . , 28. Unfortunately, it can happen that someoutputs
from LFSRÕs in the second intervalI k2 will be a linear combination
of s(l )Õs fromI k1 . For LFSR-1, the size of which is 19, it is not very
critical because we achieve 24 bits of information. It means that even
if 5 bits will depend on others, we still have a full rank in translation
from s(l )Õs to 19 bits of the keyK . It is more critical for LFSR-3, which
is of length 23. Anyway, if the system will not be of full rank, then
some bits we can just guess. That makes this strategy work in general
(implementation is then more complicated).

V. Heuristic procedure,r is dynamic. Can be introduced in the following
way:
If in some step for some intersection �

� � �

�� we get � , or a very small
set, then increase the valuer for �

� and �

�� selectively, until their inter-
section give us a set of size at leastr 0, for some threshold value. Thus,
we can start creating the sets � � I i with a small value of r , and then
increase it selectively, when necessary.

So, here is a wide choice to choose a strategy. In our simulations we have
tried several of them.

5.4 Simulation Results

The attack can basically be divided into three steps,

1) Statistical analysis of m frames,

2) Decoding process and generating the tables� � I i ,

3) Intersection of the tables and check estimated keys �K .

For the Þrst two steps we present the actual time. The attack was im-
plemented on Pentium-4, CPU 2.4GHz, 256Mb RAM, OS Windows XP Pro
SP1.

1st step/ 2nd step m=2000 m=5000 m=10000
d=1 11 sec/ 18 sec 26 sec / 18 sec 58 sec / 18 sec
d=2 14 sec/ 8 min 32 sec / 8 min 72 sec / 8 min
d=4 40 sec/ 7 hrs 94 sec / 7 hrs 190 sec / 7 hrs
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The measure of ÒgoodnessÓ of the attack can be expressed in terms of the
number of frames m needed and its success rate. The attack was success-
fully implemented on a usual PC-computer, and it performs the attack from
several seconds to several minutes, depending on the choice of strategy, and
parameters m, d, and r .

Success rate of the attack depends on the choice of the design parameters
d and r , and the strategy that is used. For some values of m and d here we
present in Figures 5.5-5.8 the plots for the probabilities:

Pr{ the correct vector is in � � I i , for given parameter r } .

When the tables are constructed, in the intersection process it is very
important that the correct pair is present in the corresponding table. Other-
wise, the intersection will never give us the correct key.

In Figures 5.5-5.8 we show the real estimated success rates for different
strategies, with different number of frames m and the attack design para-
meter d. In Figure 5.5 consider the curve corresponding to d = 1 and to
Strategy I, when m = 10000 frames. For r = 15000 we have the success
rate of the attack around 58%, whereas for Strategies II-IV the success rate
is almost 100%.

From the plots below the Strategy IV looks the most attractive. In this
strategy we need to intersect only 4 tables, but the disadvantage is that
there is no horizontal intersection. And then after two vertical intersec-
tions we need to try all possible combinations of elements in two tables.
One more disadvantage is that we could get some equation dependencies
between two intervals, so then the actual time complexity will grow. On
the contrary, strategy III looks the next the most attractive, and there are no
problems with intervals. Since there are no horizontal intersections in these
strategies, this forces us to reduce the parameterr signiÞcantly. The criti-
cal value of this parameter is r cr = 10000, and the optimal is ropt = 2000
from the computational and memory points of view. Strategy II avoids such
problems mostly because of the presence of vertical intersections, which are
intersecting on 12 bits.

A practical solution to overcome the time-memory problems related to
intersections of the tables can be the use of the Heuristic Strategy V, com-
bined with one of the previous strategies. The idea of heuristic is to con-
trol the size of the intersection. If the size is likely to be increased by some
threshold criteria, then try to increase the initial parameter r until the limit
is reached, or solution is found. Heuristic can also control the size of the
tables independently, and this will give the best performance of the attack.

Dramatic advantage of use the proper design parameter d is seen in Fig-
ure 5.8. To make the advantage clearer that plot shows how much we gain
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Figure 5.5: Strategies comparison for m = 10000.
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Figure 5.7: Strategies comparison for m = 2000.
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when d is 1, 2, and 4. Whenr = 15000, the change of the parameterd from
d = 1 to d = 2 signiÞcantly increases the success rate from58% to 70%.
These simulations were done for m = 10000 frames, and with the applica-
tion of Strategy I.

Finally, we show the advantage of our attack in comparison with the
previous Ekdahl-Johansson attack in the following two tables:

Success Rate/ Ekdahl-Johansson Attack (2002)
(Time of the Attack) Number of Frames/(time of GSM conversation in min/sec)

ConÞguration 30000 50000 70000
(2m30s) (3m45s) (5m20s)

3 Intervals of size 7 0.02/(1min) 0.13/(2min) 0.49/(3min)
3 Intervals of size 8 0.02/(2min) 0.20/(3min) 0.57/(4min)
2 Intervals of size 9 0.03/(3min) 0.33/(4min) 0.76/(5min)

Success Rate/ Our Proposed Attack
(Time of the Attack) Number of Frames/(time of GSM conversation in min/sec)

ConÞguration 2000 5000 10000
(9sec) (43sec) (46sec)

St.I, d=2, r=10K 0.01/(8min) 0.05/(8min) 0.60/(8min)
St.II, d=1, r=5K 0.01/(29sec) 0.15/(44sec) 0.93/(76sec)
St.III, d=2, r=5K 0.02/(8min) 0.40/(8min) 0.99/(8min)
St.IV, d=2, r=5K 0.05/(10min) 0.85/(10min) 0.9999(10min)

5.5 Summary

We have demonstrated two new ideas that provide improved performance
for a correlation attack against A5/1. In simulation we get a high success
rate for only 2000-5000 frames, using very little computation. But there is
still deviation in performance depending on the strategies we choose, which
means that there may very well be further improvements to come. Another
further research topic would be to examine how small m can be made if we
allow a substantial increase in attack complexity. If m can be decreased a bit
further, ciphertext only attack may be practically possible.

Recently, an improvement of this attack was presented at SAC 2005 [BB05],
which requires only 1500-2000 known frames for a key-recovering attack
with success of 91%. Their attack is partly based on our cryptanalysis pre-
sented in this chapter, but the new idea is to use conditional estimatorsthat
gain a factor two in the correlation bias.
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6

Cryptanalysis of VMPC and RC4A.
Weakness of RC4-like Ciphers

“If I have a thousand ideas and only one turns
out to be good, I am satis�ed”

Alfred Bernhard Nobel

In 1987, Ron Rivest from RSA Data Security, Inc. made a design of a byte
oriented stream cipher called RC4 [Sma03]. This cipher found its appli-

cation in many Internet and security protocols. The design was kept secret
up to 1994, when the alleged speciÞcation of RC4 was leaked for the Þrst
time [Sch96]. Since that time many cryptanalysis attempts have been done
on RC4 [Gol97b,KMP+ 98,FM00,MS01,PP03].

At FSE 2004, a new stream cipher called VMPC [Zol04] was proposed
by Bartosz Zoltak, which appeared to be a modiÞcation of the RC4 stream
cipher. In cryptanalysis, a linear distinguishing attack is one of the most
common attacks on stream ciphers. In the paper [Zol04] it was claimed that
VMPC is designed especially to resist distinguishing attacks.

At the same conference, FSE 2004, another cipher, RC4A [PP04], was
proposed by Souradyuti Paul and Bart Preneel. This cipher is another mod-
iÞcation of RC4.

In this chapter we point out a general theoretical weakness of such ci-
phers, which, in some cases, can tell us without additional calculations

127
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whether a new construction is weak against distinguishing attacks. We also
investigate VMPC and RC4A in particular and Þnd two linear distinguish-
ing attacks on them. RC4A can be distinguished from random using around
258 bytes of the keystream, whereas the attack on VMPC needs only 239.97

bytes. These are the Þrst existing attacks on VMPC and RC4A.
This chapter is organized as follows. In Section 6.2 we describe RC4,

RC4A, and the VMPC ciphers. In Section 6.3 we study digraphs on an in-
stance of VMPC, and then demonstrate a theoretical weakness of the RC4
family of stream ciphers in general. We propose our distinguishers for both
VMPC and RC4A in Sections 6.4 and 6.5. Finally, we summarize the results
and make conclusions in Section 6.6.

6.1 Introduction

6.1.1 Notation

The algorithms VMPC, RC4A and RC4 are byte oriented stream ciphers.
For notation purposes in this chapterwe consider VMPC-k, RC4A-k, and
RC4-k to be k bit oriented ciphers, where the original designs are when k =
8. Therefore, in the design of these ciphers, + means addition modulo 2k .
For simplicity in formulas, let q be the size of the permuters used in these
ciphers, i.e.,

q = 2 k . (6.1)

The ciphers have an internal state consisting of one or two permuters of
length q, and a few iterators. The idea of these designs is derived from the
RC4 stream cipher. Therefore, we call ciphers with a structure similar to RC4
as the RC4 family of stream ciphers. We denote by zt a k bit output symbol at
time t. When a permuter R[·] is applied r times, e.g.,R[R[. . . R[x] . . .]], then,
for simplicity, we sometimes denote it as Rr [x].

We will present linear distinguishing attacks, and use formulas and ideas
described in Section 3.4. Let us denote therandom distributionas PRandom ,
and the cipher distributionas PCipher . The number of samples required is
n, and the type is denoted as PType . We denote the bias as� = |PCipher Š
PRandom |.

We use both formulas, (3.29) and (3.31), to estimate the required number
of samples n.

6.1.2 Cryptanalysis Assumptions

We start our analysis of the RC4 family of stream ciphers by making the
following reasonable assumptions.
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(1) We assume that the initialisation procedure is perfect, i.e., all internal
variables (except known iterators) are from the uniform distribution. In
practice this is not true, but we make this assumption as long as we do
not investigate the initialisation procedures.

(2) In our distinguishers we construct a type PType by collecting samples
from the given keystream. Each derived sample at time t is from some
local distributionof the keystream. We assume that at any time the in-
ternal state of a cipher is uniformly distributed and we donÕt have any
knowledge about it. This assumption will be used to investigate differ-
ent local distributions in the next sections. In our simulations we ver-
iÞed that the internal state of VMPC is roughly uniformly distributed.
But for RC4A the internal state is not uniformly distributed.

(3) We assume that adjacent samples are independent. In practice it is not
true, because between two consecutive samples the internal states of a
cipher are dependent. It means that samples might have a strong de-
pendency, which may inßuence on the resulting type PType . To reduce
these dependencies we suggest to skip a few samples before accepting
one, then the consecutive adjacent samples will be much less dependent
on each other.

6.2 Descriptions of VMPC- k, RC4-k, and RC4A-k

The stream cipher RC4- k

RC4 [Sma03] was designed by Ron Rivest in 1987. It produces an inÞnite
pseudo-random sequence ofk bit symbols, which is used as the keystream.
Encryption is then performed by bitwise adding the keystream to the plain-
text. The structure of RC4-k is shown in Figure 6.1.

The stream cipher VMPC- k

VMPC [Zol04] was proposed at FSE 2004 by Bartosz Zoltak. This cipher
is also byte oriented (k = 8 ), and is a generalised version of RC4-k. The
structure of VMPC- k is shown in Figure 6.2.

The stream cipher RC4A- k

RC4A [PP04] was proposed at FSE 2004 by Souradyuti Paul and Bart Pre-
neel. This cipher is an attempt to hide the correlation between the internal
states and the keystream. The authors suggested to introduce a second per-
muter in the design. The structure of RC4A- k is shown in Figure 6.3.
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Internal variables:
i, j Ð integers� [0 . . . q Š 1]
R[0 . . . q Š 1] Ð a permuter of integers 0 . . . q Š 1

The RC4-k cipher
1. R[·] Ð are initialised with the secret key

i = j = 0

2. Loop until enough k bit symbols
i + +
j + = R[b]
swap( R[i ], R[j ])
output � R[R[i ] + R[j ]]

Figure 6.1: The structure of the RC4-k cipher.

Internal variables:
i, j Ð integers� [0 . . . q Š 1]
R[0 . . . q Š 1] Ð a permuter of integers 0 . . . q Š 1

The VMPC- k cipher
1. j, R [·] Ð are initialised with the secret key

i = 0

2. Loop until enough k bit symbols
j = R[j + R[i ]]
output � R[R[R[j ]] + 1]
swap( R[i ], R[j ])
i + +

Figure 6.2: The structure of the VMPC- k cipher.

6.3 Investigation of the RC4 Family
of Stream Ciphers

In this section we approximate different local distributionsof the accessible
keystream in the RC4 family of stream ciphers, with the assumptions that
were made in Section 6.1.2.

6.3.1 Digraphs Approach, on the Instance of VMPC- k

In this subsection we give the idea of how a distinguisher for VMPC can
be built. In previous work [FM00], the cipher RC4- k was analysed. The au-
thors suggested to observe two consecutive output symbols zt , zt +1 , and the
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Internal variables:
i, j 1, j 2 Ð integers� [0 . . . q Š 1]
R1[0 . . . q Š 1], R2[0 . . . q Š 1] Ð two permuters of integers 0 . . . q Š 1

The RC4A-k cipher
1. R1[·], R2[·] Ð are initialised with the secret key

i = j 1 = j 2 = 0

2. Loop until enough k bit symbols
i + +
j 1+ = R1[i ]
swap( R1[i ], R1[j 1])
output � R2[R1[i ] + R1[j 1]]
j 2+ = R2[i ]
swap( R2[i ], R2[j 2])
output � R1[R2[i ] + R2[j 2]]

Figure 6.3: The structure of the RC4A-k cipher.

knownvariable i jointly. For RC4-5 they could calculate theoretical probabil-
ities Pr{ (i, zt = x, zt +1 = y)} , for all possible n3 values of the triple (i, x, y )
(let us denote such a distribution as P(i,z t ,z t +1 ) ). But for RC4-8 the authors
could only approximate the bias for the distribution above due to high com-
plexity of the calculations, and show that a distinguisher needs around 230.6

samples (the required length of the plaintext to know).
We use a similar idea to create a distinguisher for VMPC- k. For this

purpose we investigate the pair (zt , zt +1 ) in the following scheme, which
is an extraction of steps in VMPC when generating two consecutive output
symbols.

i Ð known value at time t
j, R [·] Ð are from a random
source

1. zt = R[R2[j ] + 1]

2. swap( R[i ], R[j ])

3. j � = j + R[i + 1]

4. zt +1 = R[R3[j � ] + 1]

In Algorithm 1 we give an explicit algorithm to calculate the approxi-
mated distribution table P(i,z t ,z t +1 ) . For each valuei , in each cell of a tableT
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we want to store an integer number T [i, x, y ] of possible pairs (i, R [·]), which
cause the corresponding output pair (zt = x, zt +1 = y). It means, that the
probability of any triple (i, z t , zt +1 ) can be calculated as:

Pr{ (i, z t = x, zt +1 = y)} =
T [i, x, y ]

q · q!
. (6.2)

Algorithm 1: Recursive construction of the approximated distribution table
P(i,z t ,z t +1 )

Prepare the permuter: R[i ] = � at all positions, i.e., all cells of the per-
muter are undeÞned. In the algorithm the operation de�ne R[i ] means
that for the cell i in the permuter R[·] we need to try all possible values
0. . . (qŠ 1). Note, we cannot select a value which has been already used
in another cell of the permuter in a previous step. Before making a step
back by the recursion, restore the value R[i ] = � . In the case when the
cell R[i ] was already deÞned (is not � ) due to previous steps, then we
just go to the next step directly.
Do the following steps recursively:

€ for all i = 0 . . . q Š 1.

€ for all j = 0 . . . q Š 1.

€ deÞneR[j ].

€ deÞneR2[j ].

€ deÞneR[R2[j ] + 1] � remember x = R[R2[j ] + 1] .

€ deÞneR[i ].

€ swap(R[i ], R[j ]).

€ deÞneR[i + 1] � calculate j � = j + R[i + 1] .

€ deÞneR[j � ], then R2[j � ], then R3[j � ].

€ deÞneR[R3[j ] + 1] � remember y = R[R3[j ] + 1] .

€ T [i, x, y ]+ = ( q Š r )!, where r is the actual number of currently
deÞned cells in the permuter R[·].

The complexity of the algorithm is O(211k ) 1. In our simulations we

1The complexity to construct such a table with a similar algorithm for RC4- k is O(26k )
[FM00].
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could manage to calculate the approximation of P(i,z t ,z t +1 ) only for the re-
duced version VMPC-4. The bias of such a table appeared to be around
� � 2Š 8.7. It means that we can distinguish VMPC-4 from random hav-
ing plaintext of length around 218 4-bit symbols. For notation purposes,
let PVMPC Š k

( i,z t ,z t +1 ) be the distribution P(i,z t ,z t +1 ) for VMPC- k, and similar for

PRC4 Š k
( i,z t ,z t +1 ) .

The calculation of a similar distribution table for VMPC-8 meets com-
putational difÞculties, as well as for RC4-8 in [FM00]. One of the ideas
in [FM00] was to approximate the biases from small kÕs to a largerk, but
we decided to avoid this way. Instead, in the next sections we will present
only precise theoretical results on VMPC-8, and on the RC4 family of stream
ciphers in general.

6.3.2 Theoretical Weakness of the RC4 Family of Stream Ciphers

The recursive Algorithm 1 is trivial and slow, but we use it to show fur-
ther theoretical results. We prove that the approximated distribution table
P(i,z t ,z t +1 ) cannot be the uniform distribution when k is larger than some
threshold k0. Moreover, we prove that eachprobability of the approximated
distribution P(i,z t ,z t +1 ) differs from the corresponding probability in the case
of a random source. In other words, the approximated distribution P(i,z t ,z t +1 )

is biased and we Þnd the lower bound � min for the bias.

Theorem 6.1: For VMPC-k, where k 	 8, under the assumptions made in
Section 6.1.2, the following holds.

1. Each probability

Pr{ (i, z t = x, zt +1 = y)} �= 1 /q 3, (6.3)

although, in a random case it should be 1/q 3.

2. The bias� = |PRandom Š PVMPC Š k
( i,z t ,z t +1 ) | is bounded by

� 	 � min =
|� min | · q · (q Š 9)!

q!
	 qŠ 8k , (6.4)

where |� min | is the minimum value, such that

(q Š 1)(q Š 2) · . . . · (q Š 8) + � min 
 0 (mod q).

3. For VMPC-8, we have � min � 2Š 56.8.
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Proof:
(1) Consider Algorithm 1. In the last step the value of r , i.e., the number of
currently placed positions in the permuter, can be at most 9. It means that
when the algorithm is Þnished, each cell in PVMPC Š k

( i,z t ,z t +1 ) can be written in the
form k · (q Š 9)!, for some integer k.

On the other hand, for a truly random sequence, the probability must be
Pr{ (i, z t , zt +1 )} = 1 /q 3. From (6.2) it follows that k·(qŠ 9)!

q·q! must be equal to
1
q3 , i.e.,k must be equal to

q · (q Š 1) · . . . · (q Š 8)
q2 . (6.5)

Sincek is an integer, then q must divide (q Š 1) · . . . · (q Š 8). It is easy to
show that starting from k 	 8, this is not true.

(2) We now try to choose k such that Pr{ (i, zt , zt +1 )} is as close to1/q 3 as
possible. Let |� min | be the smallest value such that (qŠ 1) · . . . · (qŠ 8) + � min

is divisible by q. Then Pr{ (i, zt , zt +1 )} = 1
q3 ± q·| � min |· (qŠ 9)!

q3 ·q! . The minimum

value of |PRandom Š PVMPC Š k
( i,z t ,z t +1 ) | is then derived as

� min = q3 ·
q · |� min | · (q Š 9)!

q3 · q!
=

|� min | · q · (q Š 9)!
q!

. (6.6)

(3) For VMPC-8, the minimum � min is 128. Hence, the lower bound for the
bias is � min � 2Š 56.8. ��

For RC4-k a maximum of 6 positions can be Þxed, if we use a similar
algorithm. Hence, all cells of the distribution table PRC4 Š k

( i,z t ,z t +1 ) can be written
in the form k · (q Š 6)!. By similar arguments as above, we conclude.

Corollary 6.2: For RC4-k, k 	 4, under the assumptions made in Section 6.1.2,
the following holds.

1. Each probability in P RC4 Š k
( i,z t ,z t +1 ) is different from 1/q 3.

2. The minimum value � = |PRandom Š PRC4 Š k
( i,z t ,z t +1 ) | is bounded by

� 	 � min =
|� min | · q · (q Š 6)!

q!
	 qŠ 5k , (6.7)

where |� min | is the minimum value, such that

(q Š 1)(q Š 2) · . . . · (q Š 5) + � min 
 0 (mod q).

3. For RC4-k, k = 4 , . . . , 8, we have the following lower bounds.
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k=4 k=5 k=6 k=7 k=8
� min +8 Š8 Š8 Š8 Š120
� min 2Š 15.46 2Š 21.28 2Š 26.65 2Š 31.83 2Š 33.01

��

Theorem 6.1 above shows the way how one can think when designing
a new cipher from the RC4 family of stream ciphers to avoid these weak-
nesses. For the case of VMPC-8, for instance, we can say that the structure
seems to be weak, without any deeper additional investigations of the ci-
pher.

On the other hand, for RC4A-8 our theorem gave us a very small lower
bound, so that a hypothetical distinguisher would be slower than an ex-
haustive key search. It means that this cipher would resist distinguishing
attacks better than, for example, VMPC-8 or RC4-8. Note, these conclusions
were made with the assumptions from Section 6.1.2. However, in the next
sections we investigate digraphs for both ciphers VMPC- k and RC4A-k in
detail.

6.4 Our Distinguisher for VMPC- k

6.4.1 What Should the Probability of zt = zt +1 = 0 , When i = 0 and
j = 1 , Be?

If VMPC- k would be a truly random generator, then the answer to the ques-
tion of this section would be 1/q2, because when i and j are Þxed, then
Pr{ zt = 0 , zt +1 = 0 |i = 0 , j = 1 , Random source} = 1 /q 2. In the case of
VMPC-k this is not true. The only case when the desired outputs can be
produced is depicted in Figure 6.4. All the other permuters will lead to
other pairs of outputs (zt , zt +1 ) �= (0 , 0). As an example, in Figure 6.5 we
show one of the cases, which contradicts the desired conditions.

By this small investigation we have shown that

Pr{ zt = zt +1 = 0 |i = 0 , j = 1 , VMPC-k} =
(q Š 4)(q Š 4)!

q!

=
q Š 4

q(q Š 1)(q Š 2)(q Š 3)
� 1/q 3. (6.8)

This is signiÞcantly smaller when compared to

Pr{ zt = zt +1 = 0 |i = 0 , j = 1 , Random source} = 1 /q 2. (6.9)

If we now assume that for the other values of j the probability

Pr{ zt = zt +1 = 0 |i = 0 , j �= 1 , VMPC-k} � 1/q 2, (6.10)
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0 1 2

0 1 2

swap( R[i ], R[j ])

Case 1:R[j ] = j
0 = zt = R[R2[j ] + 1]

Effect: w �= 0 , 1

# Permuters = (q Š 4)
� �� �
choosew

· 1����
w+1

·(q Š 4)!

i j

w

w

j � = j + R[i + 1] = 1 + w
0 = zt +1 = R[R3[j � ] + 1]
� R3[j � ] + 1 m.b. = 2
� R[1 + w] m.b. = 2
� Effect: w �= Š1, 0, 1, 2

Figure 6.4: Condition: zt = zt +1 = 0 , i = 0 , j = 1 . The only case
when the condition is satisÞed.

... ...

xy y+1

... ...

xy y+1 0 1

0 1

swap( R[i ], R[j ])

Case 2:R[j ] �= j, i, i Š 1
0 = zt = R[R2[j ] + 1]

# Permuters = 0 (cannot exist)

i j

w

w

j � = j + R[i + 1] = 1 + w
0 = zt +1 = R[R3[j � ] + 1]
� R3[j � ] + 1 m.b. = y + 1
� j � m.b. = y + 1 = w + 1
� y = w Ð a contradiction!

Figure 6.5: Condition: zt = zt +1 = 0 , i = 0 , j = 1 . One of the cases
when it is not satisÞed.

like in a random case, then we can derive

Pr{ zt = zt +1 = 0 |i = 0 } =
�

1
q

·
1
q3 +

q Š 1
q

·
1
q2

�
, (6.11)

whereas in a random case it would be 1/q 2. In the case of a binary distri-
bution of two events, we have a bias � � 2Š k , and our hypothetical distin-
guisher needs to observe the eventzt = zt +1 = i = 0 from around 22k sam-
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ples (i.e., 25k bytes of the keystream). It means that VMPC-8 can be distin-
guished from random having around 240 bytes of keystream. In the next sec-
tion we show how to compute the exact probability Pr{ zt = zt +1 = 0 |i = 0 }
for VMPC-8.

6.4.2 Calculating Pr{ zt = zt +1 = 0 |i = 0 } , When j and R[·] are Random.

We could calculate the complete distribution table P(i,z t = x,z t +1 = y) for VMPC-
4, and the bias is � � 2Š 8.7. Unfortunately, we could not apply Algorithm 1
for VMPC-8, because the complexity is 288 Ð infeasible for a common PC.
Instead, we propose to consider only two events { zt = zt +1 = 0 } and its
complement, when i = 0 . We distinguish between the following two binary
distributions:

PVMPC Š k =
�

Pr{ zt = zt +1 = 0 }
1 Š Pr{ zt = zt +1 = 0 }

� �
�
�
�
i =0

,

and

PRandom =
�

1/q 2

1 Š 1/q 2

� �
�
�
�
i =0

. (6.12)

In Algorithm 2 we give the algorithm for calculating the probability
Pr{ zt = zt +1 = 0 |i = 0 } . It has complexity O(25k ), i.e., in order to calculate
this probability for VMPC-8 we need to make only 240 operations.

After simulation we have received the following result.

Theorem 6.3: For VMPC-8, under the assumptions made in Section 6.1.2,

Pr{ zt = zt +1 = 0 |i = 0 } =
15938227062862998000

256· 4096374767995023500000

� 2Š 16(1 Š 2Š 7.98322), (6.13)

and the bias is � � 2Š 7.98322. Thus, we can distinguish VMPC-8 from ran-
dom having around 1/ (p�2) � 231.97 samples (according to (3.31)), or28 ·
231.97 = 2 39.97 bytes of the keystream, when the two events from the equa-
tion (6.12) are considered. The cipher and random distributions are the fol-
lowing,

PRandom =
�

2Š 16

1 Š 2Š 16

� �
�
�
�
i =0

and

PVMPC Š 8 =
�

2Š 16(1 Š 2Š 7.98)
1 Š 2Š 16(1 Š 2Š 7.98)

� �
�
�
�
i =0

. (6.14)
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Algorithm 2: Recursive computation ofPr{ zt = zt +1 = 0 |i = 0 }
We use the same operationde�ne R[i ] as in Algorithm 1.
Do the following steps recursively:

€ for all j = 0 . . . q Š 1.

€ deÞneR[j ], then R2[j ].

€ Sincezt = 0 , then �x the position R[R2[j ] + 1] = 0 . If this position
is already deÞned (�= � ), and the value is not 0, or pointer to 0 is
already used, then track back by the recursion.

€ deÞneR[i = 0] .

€ swap(R[i ], R[j ]).

€ set R[i + 1] = R[1], if possible, otherwise return by recursion.

€ calculate j � = j + R[i + 1] which is the same as j + R[1].

€ Sincezt +1 = 0 , and 0 is already placed in the permuter R[·], then
we know the value R3[j � ] + 1 , hence, we also know the value
R3[j � ] = c. We can calculate the number of permuters of size q,
where R3[j � ] = c, and r positions are Þxed from the previous steps,
by the subalgorithm of complexity O(q), given in Subsection 6.4.4.

��

6.4.3 Simulations of the Attack on VMPC- k

Our theoretical distinguisher from the previous subsection is based on a
few assumptions from Section 6.1.2. First of all, by simulations we have
checked the distribution of the internal state of VMPC- k for different values
of k, and we did not Þnd any noticeable anomalies. From this we conclude
that the internal state is indeed distributed close to the uniform distribution,
and our theoretical distinguisher should work. Secondly, we can argue that
the samples are quite independent, because each sample is connected to the
known variable i , and the distance between two samples (for a Þxed i ) is q
rounds of the internal loop.

Theorem 6.3 states that the complexity of the attack on VMPC-8 is O(239.97).
However, we have performed simulations on the reduced version VMPC-4,
and showed the attack in practice.

VMPC-4 has one permuter of size 16, and the internal indices i and j are
taken modulo 16. In our simulations we made n = 2 34 iterations and from
234 received samples we have constructed the type (empirical distribution)
with probabilities Pr{ zt = x, zt +1 = y|i } . Below we show this table (type)
partly.
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n = 2 34 i=0 i=1 . . .
x � 0 1 2 . . . 0 1 2 . . .

To get the probability of the event (zt = x, zt +1 = y)|i the corresponding
cell should be divided by 162. In the case of a random source each such
event has the probability 1/ 162.

y � 0 0.9247 0.9987 1.0043 0.9929 0.9909 0.9989
1 1.0008 0.9881 1.0120 0.9931 0.9966 0.9907
2 1.0052 1.0057 1.0034 . . . 0.9950 1.0688 1.0652 . . . . . .
3 1.0063 0.9999 0.9956 1.0008 0.9926 0.9977
...

...
...

...
...

...
...

15 0.9974 0.9893 1.0085 1.0005 0.9912 0.9950

This table represents the type PType and we can see that many probabil-
ities are far away from 1/ 162, and the most biased probability is in the cell
(0, 0), which corresponds to

Pr{ zt = zt +1 = 0 |i = 0 } =
0.924744

162 . (6.15)

When the type (the table with probabilities) is derived, one can analyse two
possible distinguishers for VMPC-4.

(1) In the Þrst scenario we consider the whole distribution table, i.e., all
events of the form (i, zt = x, zt +1 = y). The probability of each event in
this case is1/ 163. Thus, each cell of the table (type) should be divided
by 1/ 163.

The bias of the received multi-dimensional type is � 0 = 2 Š 8.679648 , which
is close to the theoretical value calculated in the previous section � =
2Š 8.7. However, we could not calculate a theoretical bias for VMPC-8,
therefore, we consider the second scenario.

(2) In the second scenario we observe only two events { zt = zt +1 = 0 |i = 0 ,
the others} Ð as in (6.12). As we have mentioned, the probability of the
event (zt = zt +1 = 0) |i = 0 is much lower than the corresponding prob-
ability in the case of a random source. In this example, the received bias
is � 0 = 1 .0Š 0.924744� 2Š 3.73205, which, again, is close to the theoretical
value � = 2 Š 3.755716 (calculated in a similar way as for VMPC-8 in The-
orem 6.3). Thus, the attack complexity is 162/� 2 � 211.7 For other values
of k the simulation results are presented in the table below.

k=3 k=4 k=5 k=6 k=7 k=8
Theoretical bias, � 2Š 2.55 2Š 3.76 2Š 4.87 2Š 5.93 2Š 6.97 2Š 7.98

Simulations of the Attack on VMPC- k
Number of rounds, n 230 230 230 235 Ñ Ñ

The real bias, � 0 2Š 2.56 2Š 3.73 2Š 4.93 2Š 5.91 Ñ Ñ
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Our simulations show that the attack on VMPC- k works in practice. We
have also shown that the dependency of the adjacent samples does not have
much inßuence on the type.

6.4.4 Subalgorithm for Algorithm 2

Problem statement: We are given a permuter template of size q, where r
positions are already placed, whereas the rest are undeÞned. We want to
calculate the number of permuters satisfying the given template, such that
R3[j � ] = c, where j � and c are some known positions in the permuter.

The algorithm that solves this problem is given in Figures 6.7 and 6.6.

Sub-Algorithm: a

1. Go forward by the path j � � R[j � ] � R2[j � ] � R3[j � ], as much as
possible, but not more then 3 steps. Let g be the point in this path
where we have stopped, and lg be the number of steps we made (from
0 to 3).

2. Go backward by the path c � RŠ 1[c] � RŠ 2[c] � RŠ 3[c], as much
as possible, but not more then 3 steps. Leth be the point in the path
where we have stoped, and lh be the number of steps we made (from
0 to 3).

3. if (lg = 3 and g �= c) or (lh = 3 and h �= j � ) then return 0;
if ( lg = 3 and g = c) or (lh = 3 and h = j � ) then return (q Š r )!;
if ( lg + lh 	 3) return 0.

4. Count the number t1 of positions x �= g, h in the permuter R[·] for
which R[x] = RŠ 1[x] = � (see Fig. 6.7(1)).
Count the number t2 of positions x �= g, h, for which R[x] �= � , g, h,
and RŠ 1[x] = R2[x] = � (see Fig. 6.7(2)).

5. Now there are 7 possibilities to connect positions g and h, and they
are depicted in Figure 6.7(aÐg):

a) g = h, lg + lh = 0 � add (q Š r Š 1)! cmb. b.
b) g = h, lg + lh = 0 , t1 	 2 � add t1(t1 Š 1)(q Š r Š 3)! cmb.
c) g = h, lg + lh = 0 � add t2(q Š r Š 2)! cmb.
d) g �= h, lg + lh = 2 � add (q Š r Š 1)! cmb.
e) g �= h, lg + lh = 1 � add t1(q Š r Š 2)! cmb.
f) g �= h, lg + lh = 0 , t1 	 2 � add t1(t1 Š 1)(q Š r Š 3)! cmb.
g) g �= h, lg + lh = 0 � add t2(q Š r Š 2)! cmb.

aThe complexity of the subalgorithm is O(q)
bHere Òcmb.Ó is a short form for ÒcombinationsÓ

Figure 6.6: Subalgorithm for Algorithm 2.
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d)

f)
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e)

2)
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dist=3 Š lg Š lh
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t1

t1

t1t1

t2

t2

Count t1 of such

Count t2 of such

� �

��

Figure 6.7: Possibilities to connect g and h, used in subalgorithm.

6.5 Our Distinguisher for RC4A- k

6.5.1 Building a Distinguisher

In this section we investigate the cipher RC4A- k (see Figure 6.3), and pro-
pose our distinguisher for RC4A-8. We again idealize the situation by the
preliminary assumptions from Section 6.1.2, i.e., at any time t the values
j 1, j 2, R1[·], and R2[·] are considered from the uniform distribution, and un-
known for us. We would like to investigate the following scheme extracted
from RC4A- k.

i Ð known value at even time t
j 1, j 2, R1[·], R2[·] Ð are from a random source

1. zt = R2[R1[i ] + R1[j 1]]

2. swap( R2[i ], R2[j 2])

3. zt +1 = . . .

4. zt +2 = R2[R1[i + 1] + R1[j 1 + R1[i + 1]]]

For cryptanalysis of RC4A- k, we use similar ideas as before. Our method-
ology of Þnding anomalies for both VMPC- k and RC4A-k was just to con-
sider the distribution tables like P(i,z t ,z t +2 ) for small values of k, using an Al-



142 6. Cryptanalysis of VMPC and RC4A. Weakness of RC4-like Ciphers

gorithm 1-like procedure. If some anomaly is found then we concentrate on
them in particular for larger values of k, and try to understand why anom-
alies exist.

For RC4A-k we have noticed that Pr{ zt = zt +2 | i is even} �= 1 /q , i.e.,
these probabilities do not correspond to the random distribution. The com-
plementary probabilities Pr{ zt �= zt +2 | i is even} are equal to each other, but
not equal to 1/q . On the other hand, all probabilities Pr{ zt = zt +2 | i is odd} =
1/q Ð correspond to the random distribution. So, our target is to calculate
the probabilities Pr{ zt = zt +2 | i is even} for RC4A-8. We have used a sim-
ilar idea as in the Algorithm 2, but much simpler. Our optimised search
algorithm to Þnd all such probabilities has complexity O(26k ). The result of
this work is the following.

Theorem 6.4: For RC4A-k, under the assumptions made in Section 6.1.2,
consider the following vector of events, and its random distribution,

Events =

�

	
	
	
	
	



zt = zt +2 , i = 0
zt = zt +2 , i = 2

...
zt = zt +2 , i = q Š 2

other cases

�

�
�
�
�
�



, PRandom =

�

	
	
	
	
	



1/q 2

1/q 2

...
1/q 2

1 Š 1/ (2q)

�

�
�
�
�
�



. (6.16)

For RC4A-8, the bias PRC4A Š 8 is � � 2 · 2Š 30.05. Hence, our distinguisher
needs around 258 bytes of the keystream. ��

6.5.2 Checking the Assumptions

By simulations we found that the internal state of RC4A- k is not close to the
uniform distribution. We could clearly see these anomalies when running
simulations many times for different k, each time sampling from at least
n = 2 30 rounds of the loop. To begin counting anomalies, we would like
to note that the internal variables j 1, R1[·] are updated independently from
j 2, R2[·] as follows.

One-Round-Update for j � , R� [·], where � is 1 or 2
1. i + +

2. j � + = R� [i ]

3. swap( R� [i ], R� [j � ])

It means that all anomalies found for j 1, R1[·] are true for j 2, R2[·] as
well. We found an event for which the probability is far from the proba-
bility of this event in the case of a random source. In particular, Pr{ j 1 =



6.6. Summary 143

i + 1 } � qŠ 1
q2 , when in the random case it should be 1/q . Other probabil-

ities are Pr{ j 1|i, j 1 �= i + 1 } � q2 Š q+1
q2 (qŠ 1) . For example, for RC4A-4, it ap-

peared that Pr{ j 1 = i + 1 } � 0.05859375, and the others are Pr{ j 1|i, j 1 �=
i + 1 } � 0.06276042Ð the difference is noticeable. Some other less notable
non-uniformities in the internal state were also found.

6.5.3 Simulations of the Attack on RC4A- k

Despite Þnding the non-uniformity of the internal state of RC4A- k we make
a set of simulations to see how our distinguisher behaves. We consider the
attack scenario as in Theorem 6.4.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
Theoretical bias, � 2Š 10.01 2Š 14.01 2Š 18.00 2Š 22.00 2Š 26.00 2Š 29.05

Simulations of the Attack on RC4A- k
Number of rounds, n 230 230 234 240 240 Ñ

The real bias, � 0 2Š 8.92 2Š 12.27 2Š 15.07 2Š 18.04 2Š 20.03 Ñ

Note that the number of actual samples n in our simulations is larger
than 1/� 2

0. From (3.29) it follows that we have distinguished the cipher with
a very small probability of error, and the real theoretical bias without pre-
sumptions should be close to what we get in our simulations. From the
table above we see that the bias in practice (when the internal state is not
from the uniform distribution) is larger than the approximated value of the
bias (the uniformly distributed internal state), for k = 3 , . . . , 7. The same
behaviour of the distinguisher we expect for k = 8 as well. Since we could
not perform simulations for k = 8 , we decided to leave theoretical bias as
the lower bound of the attack, i.e., � = 2 Š 29.05 for k = 8 , the complexity is
O(258). However, we expect this bias to be even larger, and the complexity
of the attack lower.

6.6 Summary

In this chapter we have shown some theoretical weaknesses of the RC4 fam-
ily of stream ciphers. We have also investigated the recently suggested
stream ciphers VMPC-k and RC4A-k, and found linear distinguishing at-
tacks on them. They are regarded as academic attacks which show weak
places in these ciphers. The table below summarizes our results in this chap-
ter:
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Theoretical Our Distinguishers
Cipher Lower Bound for � , Complexity (# of symbols)

k = 8 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8
RC4-kÕ87 2Š 33 (Cor.6.2) Ñ Ñ Ñ Ñ Ñ 230.6, in [FM00]
VMPC-kÕ04 2Š 56.8 (Th.6.1) 216 � 220 225 230 235 240

RC4A-kÕ04 Ñ 218 228 236 244 252 258

The distinguisher for VMPC-8 that we propose is the following 2:

Distinguisher for VMPC-8:

(i) Observe n = 2 40 output bytes. Calcu-
late the number L of occurences such
that a = zt = zt +1 = 0 .

(ii ) Calculate two distances:
� Random = |2Š 16 Š 28 · L/n |
� VMPC = |(2Š 16 Š 2Š 23.98322 ) Š 28 ·L/n |

(iii ) If � Random > � VMPC then keystream of
VMPC-8 , elsea random sequence.

If the internal state of a cipher from the RC4 family is uniformly distrib-
uted, then, based on our discussions in Section 6.3, we conclude that such
ciphers are not very secure. When the internal state is non-uniformly dis-
tributed then the real bias would more likely be larger rather than smaller,
and the complexity of the attack would be lower, in most cases. We could
observe that effect on the example of RC4A-k. It seems that the security level
of such constructions depends more on the degree of the recursive relations
between output symbols and internal states, rather than on the length of the
permuter(s).

One of the solutions to protect against of such distinguishing attacks is to
increase the number of accesses to the permuter(s) in the loop. This solution
will increase the relation complexity between adjacent outputs. Another
solution is to discard some output symbols before accepting one. Unfortu-
nately, both the suggestions signiÞcantly decrease the speed of these ciphers
and the main purpose of such designs (speed) is then destroyed.

2The distinguisher for RC4A-8 is in a similar fashion as for VMPC-8.
� In the Þrst scenario from Subsection 6.4.3 the attack complexity for VMPC-4 is O(218 ).



7

Cryptanalysis of “Scream”

ÒScreamÓ by Edvard Munch

“Anyone attempting to generate random
numbers by deterministic means is,

of course, living in a state of sin”

John Von Neumann

Recently, we have seen many proposals of stream ciphers that have not
been thoroughly analyzed yet. To mention a few, there are SNOW 2.0

[EJ02b], MUGI [WFY+ 02], Scream [HCJ02], Turing [RH03], Rabbit [BVP+ 03]
and Helix [FWS + 03]. Most of these ciphers are signiÞcantly faster than for
example AES, and if we could gain trust in their security they would be very
interesting alternatives for encryption.

Scream was developed by the IBM researchers Coppersmith, Halevi, and
Jutla in 2002 [HCJ02]. It is a purely software-oriented stream cipher. The
design is based on the ideas behind the SEAL stream cipher [RC94], but
considered to be more secure (SEAL is not very secure, see e.g. [Flu01]).
In the proposal, several versions of Scream are given. The so-called Òtoy
cipherÓ denoted Scream0 uses the AESS-box whereas the Scream stream

145
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cipher uses secretS-boxes, generated by the key. A third version ScreamF

is also given, but it is not considered in this chapter.

In the security analysis of the Scream family of ciphers [HCJ02], two
distinguishing attacks on Scream0 (the Òtoy versionÓ) were proposed. The
best one has complexity around 280. However, for Scream, no attacks have
yet been published, but the authors conjecture that there could exist a linear
distinguishing attack if a sequence of 280 output bytes is available.

For Scream, the situation with cryptanalysis is a bit complicated. In our
distinguishing attack on Scream, one of the distributions is unknown due
the fact that the S-boxes are secret. But as it was evident in Section 3.4.7, this
does not affect the possibility of applying a linear distinguishing attack. The
detailed description of statistical analysis on Scream is given in Section 7.2.

In this chapter we propose a distinguishing attack on Scream based on a
derived linear approximation of the (nonlinear) S-boxes used in the cipher.
It also demonstrates how to overcome the problem related to the situation
when the S-boxes are unknown. Our distinguisher has a detectable advan-
tage when only 295 words of the keystream are given. The advantage is very
close to1 when the keystream length is 2115 words. This means that Scream
does not offer full security. By full security we mean that there is no type of
attack faster than exhaustive key search. On the other hand, the complexity
of the attack is larger than what the Scream inventors conjectured in their
paper.

The rest of the chapter is organized as follows. First in Section 7.1 we
describe the stream cipher Scream. Before analysing Scream, in Section 7.2
we give our ideas how a distinguisher for Scream can be built, provide sta-
tistical tools for further analysis, and also derive and deÞne our theoretical
distinguisher on Scream. Detailed analysis of the cipher, its algorithms and
internal states provided is in Section 7.3. In Subsection 7.3.4 we introduce
noise variables due approximations, and refer to standard assumptions in
linear cryptanalysis given in Subsection 7.2.2. The results of our simulations
are presented in Section 7.4. Section 7.5 contains a short discussion on com-
putational aspects. In Section 7.6 we propose possible improvements of our
attack. Finally, in Section 7.7 we shortly discuss our ideas and conclude.

De�nitions and Notation

In this chapter variables denoted by a capital letter X will usually mean a
16-byte block, and its individual bytes we denote by X = ( x0, x1, . . . , x15).
We introduce the most common variables and their notation used along the
chapter:
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P = ( P0, P1, . . .) plaintext
C = ( C0, C1, . . .) ciphertext
O = ( O0, O1, . . .) keystream (output stream)
K = ( key0, . . . , key15) the secret key
SR [·], S1[·], S2[·] byte oriented S-boxes
PX distribution for some random variable X
PX (x) = Pr { X = x} = Pr { x} probability of the event X = x
PU uniform distribution
PN noise distribution
� distance between distributions
Px type, or an empirical distribution
n the number of samples for Px

m the number of subdistinguishers
SDi i -th subdistinguisher
p� , p� error probabilities of two kinds in hypothesis testing
perr probability of error for one subdistinguisher

De�nition 7.1: For any 16-byte vector X = ( x 0, . . . , x7, x8, . . . , x15) � F16
28

and any integer number i � { 0, 1, . . . 15} we deÞne �X and �i as

�X = ( x8, . . . , x15, x0, . . . , x7) (7.1)

and
�i = i + 8 mod 16. (7.2)

��

In formulas, symbol � means a sum modulo 28, whereas � or just +
means the XOR of the two arguments.

7.1 A Short Description of Scream

The stream cipher Scream functionality is presented in Figure 7.1. Scream
takes as an input a 128 bit key and a nonce value. The nonce value can be
viewed as a part of the key that is allowed to be public. For any such pair,
Scream produces an arbitrary long pseudo-random sequence (keystream se-
quence), denoted by O = O0, O1, O2, . . ., where Oi � F16

28 .
In the initialisation stage, Scream initialises a number of state variables

(X, Y, Z ) and tables (W and S-box tables), see [HCJ02] for the details. Then
Scream enters the Òmain loopÓ, where in each iteration (i = 1 , 2, . . .) in the
main loop the state variables and tables are updated and one output word
Oi is generated.
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Initialization
procedure

Internal State

"main" loop

The "main"  loop
frequently uses F(x)

Nonlinear part

Key
128 bits

Scream

O0, O1, . . . � F16
28

W [·] � F16
28 [16]

X, Y, Z � F16
28

i w � Z16

F (X ) : F16
28 � F16

28

Figure 7.1: Scream functionality.

The calculations in the ÒmainÓ loop of Scream are based on a certain
function F (X ) : F16

28 � F16
28 called the Òround functionÓ. This function is

quite similar to a round function in block ciphers and uses S-boxes with
mixing operations.

The structure of F (X ) is illustrated in Figure 7.2. This function uses two
different instances of a Òhalf-roundÓ function, denoted GS1 ,M 1 and GS2 ,M 2 ,
where S1, S2 are two S-boxes, andM 1, M 2 are two matrices.

An important aspect from the initilisation is the fact that Scream uses
secret (keyed)S-boxed, derived from the key (but independent of the nonce)
using the AES S-box, as follows,

setS1[x] := SR [. . . SR [SR [x � key0]� key1] . . . � key15], for all x � [0 . . . 255],
(7.3)

where SR is the AESS-box, and key0, . . . , key15 are 16 bytes of the secret key
K (Note that in (7.3) � denotes integer addition modulo 256). Furthermore,
the secondS-box is deÞned asS2[x] = S1[x � 00010101].

All byte operations in Scream are evaluated in the Þeld F28 with gener-
ating polynomial g(x) = x8 + x7 + x6 + x + 1 . Let � denote the primitive
element such that g(� ) = 0 . We sometimes write Ò+Ó instead of Ò� Ó when
operating with bytes in Scream.

Finally, we give the description of the ÒmainÓ loop of Scream. A pseudo-
code of the ÒmainÓ loop of Scream is as follows.
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Figure 7.2: The schemes of the round function F (X ) (left) and the
Òhalf roundÓ function GS,M (right), respectively.
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Figure 7.3: Scream round function in details. Variables in bold are
used to form linear relations for the attack.
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State: X, Y, Z Ð three 16-byte blocks
W Ð a table of sixteen 16-byte blocks
i w Ð an index into W (initially i w = 0 )

1. repeat (until you get enough output bytes)
2. for i = 0 to 15
3. X := F (X � Y)
4. X := X � Z
5. output X � W [i mod 16]
6. if i = 0 mod 2 then
7. rotate Y by 8 bytes, Y := Y8..15,0..7

8. else if i = 1 mod 4 then
9. rotate each half of Y by 4 bytes,Y := Y4..7,0..3,12..15,8..11

10. else ifi < 15
11. rotate each half of Y by three bytes to the right,

Y := Y5..7,0..4,13..15,8..12

12. endÐif
13. endÐfor
14. Y := F (Y � Z )
15. Z := F (Z � Y )
16. W [i w ] := F (W [i w ])
17. i w := i w + 1 mod 16
18. endÐrepeat

In line 5. above the output sequence O = O0, O1, O2, . . . is generated,
one word each time.

In summary, the X and Y variables are frequently updated in the inner
loop using the F () function, whereas the Z variable is slowly updated once
in each round. One 16-byte vector of the table W is updated during one
round, whereas the remaining entries are unchanged.

For analysis purposes of the round function F (X ) in further sections,
we also present its detailed structure in Figure 7.3. Highlighted variables
are used to derive the Þrst approximated expression in equation (7.16), de-
scribed later in the chapter.

We have given a very brief overview of the design of Scream, without
explaining the initialisation using the key and the nonce. For this and a
more detailed description of Scream, we refer to [HCJ02].

7.2 Preparing a Distinguisher for Scream

7.2.1 Ideas for the Distinguisher

The main ideas behind our distinguisher for Scream can be highlighted here
as follows.
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(a) The internal state of Scream is large. However, the tableW [·] is changed
slowly along the rounds. This fact can be used to eliminate the contri-
bution from W [·], if one considers rounds where the table is unchanged.
This is possible since the index i , which selects the row from the table
W [i ], is known.

(b) Due to approximations of nonlinear blocks in the cipher, a linear com-
bination of noise variables is introduced. Since the S-boxes are keyed,
then the distribution of the sum of noise variables is unknown. A type
(an empirical distribution) is constructed from the samples, which are
collected from the keystream. Usually, we need to test whether the con-
structed type is from the noise distribution or from the uniform distri-
bution. However, since the noise distribution is unknown, we, instead,
test the distance from the type to the uniform distribution only.

(c) The distance between the noise and the uniform distribution depends
on the secret key and a chosen approximation function. In this case
we perform a hypothesis testing for many randomly chosen approxi-
mations. We hope that for at least one of the approximations, the noise
distribution has a large distance from the uniform distribution. With
a larger distance the number of required samples becomes less. If one
of the tests shows that the distance between the type and the uniform
distributions is far away, then we conclude that the given stream (key-
stream) is from the cipher.

7.2.2 Assumptions

As we mentioned before, in our attack on Scream we approximate nonlinear
parts by some linear functions. During these substitutions we introduce
noise variables. To continue, we need to make a few assumptions, which
are usually standard for linear cryptanalysis.

1. We assume that after each approximation of a nonlinear part of Scream
we introduce a new independent noise random variable. However, if two
parts of the cipher are approximated then in the real life these two new
noise variables will be dependent, since they both come from the same
source. Usually, these kinds of dependencies are rather small, and in the
case of Scream we can note a similar situation. In the attack on Scream
the inputs to nonlinear parts will be almost independent(contain differ-
ent cells from the table W ), when approximate S-boxes. Therefore, we
ommit this small dependency and make such an assumption. We use
this assumption when, for example, we derive the distribution of linear
combinations of noise variables in equations (7.17) and (7.19).
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2. From the output sequence we collect samples, which form a type (a pseudo
empirical distribution). We assume that all samples are independent. How-
ever, this is not true in the real life. We think that we sample from a local
distribution PN , but the samples are dependent. If, for example, at time
t we approximate some parts A0, A1, and A2, and in time t + 1 approxi-
mated parts are A1, A2, and A3 Ð obviously, two consecutive samples will
be dependent.

However, we can make that assumption as well. Between two consecu-
tive samples their dependency is negotiated by the inherent operations
of the cipher Scream, which is supposed to scramble the information 1.

3. The distinguisher for Scream consists of a set ofm subdistinguisher. When
deriving formulas for success and error probabilities, we also assume
that subdistinguishers are independent.

In the following of this chapter we refer to these assumptions during
derivation of formulas and results.

7.2.3 A Distinguisher for Scream

As it was mentioned in the introduction part, the main idea in a linear dis-
tinguishing attack is to Þnd suitable linear approximations. Nonlinear parts
of a cipher are substituted by some linear functions, and the introduced er-
rors are compensated by introducing noise variables. This substitution is
modelled through the notation

S(x) = R(x) + N (x),

where S(x) is the nonlinear part that we try to approximate, R(x) is a lin-
ear function, and N (x) denotes a new unknown random variable with a
(usually) biased distribution. For increased efÞciency of the attack, the in-
troduced noise variables should have a signiÞcant bias. This is completely
determined by the choice of the linear approximation of the corresponding
nonlinear operation.

After approximation, all operations in the ÒlinearisedÓ part of the cipher
are linear. In this case we Þnd some linear expression L 1 including only
symbols from the output stream of the ÒlinearisedÓ cipher (the linear cipher
without noise variables), which is always equal to a constant (usually equal
to 0).

If we then apply the expression L 1 to the real cipher, where now the
noise variables are included, then, obviously, we get the second linear ex-
pression L 2 consisting of the noise variables only, that sum to some linear

1In the case when two consecutive samples are very much dependent one can skip a few
samples before accepting one, making the dependency as small as necessary
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function of output symbols L1. If we know the distribution of each noise
variable, then, usually, it does not take much effort to get the distribution
of the linear combination of all of them, L2, which we denote by PN . These
noise variables are dependent, but we assume them beeing independent, as
stated in Subsection 7.2.2. In this way, we collect samples from the approx-
imated distribution PN . A collection of n samples then constructs a type
Px .

If the output is a truly random sequence, then the collected samples (the
type Px ) are drawn from the uniform distribution PU , since any nonzero lin-
ear combination of uniformly distributed random variables produces sam-
ples from PU as well. Finally, the decision rule from the hypothesis testing
algorithm gives the answer, testing Px � PN against Px � PU

2.
When examining the above procedure regarding the Scream cipher, we

have some interesting observations. In particular, the only nonlinear part in
the cipher is the S-box 3, which is a one-to-one function S : F28 � F28 . As
all operations in Scream are byte oriented, it is appropriate to consider linear
approximations over the �eldF28 . This is in opposite to the general approach
in linear cryptanalysis, which usually considers binary approximations.

Furthermore, the S-box is secret since it is initialized with the secret 128
bit key K . The situation when one of the distributions is unknown makes
the direct use of a hypothesis testing algorithm useless. But the problem can
be resolved by the following approach.

De�nition 7.2 (Distinguisher for Scream): The distinguisher for Scream is
an X-Distinguisher, for which known random distribution is P0 = PU , and
unknownnoise distribution is P1 = PN .

Each subdistinguisher SDi uses a randomly chosen linear function Ri :
F28 � F28 which is its approximation of the S-box, when the key K is the
same for all subdistinguishers. Let PN (K,R i ) denote the corresponding un-
known noise distribution, and let � i = |PN (K,R i ) Š PU |, which is also un-
known. From the keystream O, each SDi constructs its own type Px i , ac-
cording to the linear combination L1 described above.

The overall distinguisher for Scream is then as follows,

� (O) =

�
(CIPHER) if SDi (O) = PU for A T LEAST ONE i = 1 , 2, . . . , m ,

(RANDOM) if SDi (O) = PN for A LL i = 1 , 2, . . . , m.
(7.4)

��

2In the notation of Subsection 3.4.7, here the distribution PU is PR , and PN is PC.
3Scream uses two secretS-boxesS1 and S2. First S1 is initialised by the secret key K , and

the second boxS2(x) is deÞned asS1(x � c), where c is the constant of design. Therefore, here
and further on we talk about one secret S-box in Scream, in particular S2.
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Error probabilities for this distinguisher are given in Sections 3.4.7
and 3.4.8. More detailed investigation of Scream and Þndings of the lin-
ear expressionsL 1 and L 2, estimation of � 0, m and n values are described in
the next sections.

7.3 Scream Structure Analysis

Having described the general ideas on how to mount a distinguishing at-
tack and having discussed some particular issues relating to Scream, we
are now ready to do the detailed analysis. In particular, we want to Þnd
a good ÒpathÓ through the cipher which gives rise to the L1 and L 2 linear
expressions discussed before. For this purpose we analyze the details of
the components of Scream. The detaled structure of the round function is
shown in Figure 7.3.

7.3.1 TheF –Function Analysis

In this subsection we analyze the round function F (·) and introduce some
notation. For each output byte from the function, we derive analytical ex-
pressions and obtain some useful properties.

De�nition 7.3: Let us deÞne the function � : F6
28 � F28 as:

� (p1, . . . , p6) = S1[p1 + S2[p2]

+ (1 + � ) · S2[p3]] + � · S1[p4 + S2[p5] + (1 + � ) · S2[p6]],
(7.5)

and the function � : F8
28 � F28 as:

� (p1, . . . , p8) = S1[p1] + � · S1[p2] + S2[p3 + S2[p4] + (1 + � ) · S2[p5]]

+ (1 + � ) · S2[p6 + S2[p7] + (1 + � ) · S2[p8]], (7.6)

where S1[·] and S2[·] are two secret S-boxes used in Scream, andpi � F28 .
��

Let us use the following notation for the function F :

F (X ) = F (x0, x1, . . . , x15) = ( f 0(X ), f 1(X ), . . . , f 15(X ))

= ( x�
0, x�

1, . . . , x�
15) = X �, (7.7)

where X, X � � F16
28 and x�

0, x�
1, . . . , x�

15, x0, x1, . . . , x15 � F28 . The function
F (X ) satisÞes the following two properties.
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Proposition 7.1: For k = 0 , 1, 2, 3 and all indices taken modulo 16,

x�
4k+0 = f 4k+0 (X ) = � (x4k+10 , x4k+8 , x4k+5 , x4k+7 , x4k+1 , x4k+4 ),

x�
4k+1 = f 4k+1 (X ) = � (x4k+7 , x4k+1 , x4k+4 , x4k+10 , x4k+8 , x4k+5 ),

x�
4k+2 = f 4k+2 (X ) = � (x4k+0 , x4k+13 , x4k+10 , x4k+8 , x4k+5 , x4k+7 ,

x4k+1 , x4k+4 ),

x�
4k+3 = f 4k+3 (X ) = � (x4k+13 , x4k+0 , x4k+7 , x4k+1 , x4k+4 , x4k+10 ,

x4k+8 , x4k+5 ). (7.8)

Proof: The equations can be veriÞed against the algorithm description. ��

Proposition 7.2: For any X � F16
28 , j = 0 , 1, . . . , 15,

f j (X ) = f �	 ( �X ). (7.9)

Proof: The proof is a case by case veriÞcation forj = 0 , 1, 2, 3 using Propo-
sition 7.1 and DeÞnition 7.3. ��

7.3.2 TheS-box Approximation

Let us represent the S-box function S2[x] as a sum of some arbitrarily se-
lected linear function

R(x) =
7�

i =0

ai x2i

, where x, ai � F28 , (7.10)

and an unknown noise term N (x). Then,
�

S2[x] = R(x) + N (x),
S1[x] = S2[x + c],

(7.11)

where c is a known constant used in Scream. The function R(x) is a linearised
polynomial4 in the Þeld F28 of characteristic 2, since the property R(x + y) =
R(x)+ R(y) holds, but R(c· x) �= c·R(x) in general. In the attack we can use
this type of approximation and we call it linear. We would like to select a
linear function R(x) as close to theS-box mapping as possible. This means
that the distribution of the noise N (x) (when x is selected at random) is as
far as possible from the uniform distribution. This can be measured by the
statistical distance introduced in Section 7.2.

Since the relation between two S-boxes S1 and S2 is obvious, in this
chapter we consider the approximations only for one S-box, in particular
for S2.

4Another name for these polynomials is generic vectorial linear functions.
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7.3.3 The “Main” Loop Analysis

In this section we investigate the expressions for the output blocks Oi � F16
28 ,

i = 0 , 1, . . ., each consists of 16 bytes according to the ÒmainÓ loop of Scream.
Let us Þrst introduce some notation.

De�nition 7.4: We introduce the notation X (i ), Y (i ) and Z (i ) for the value
of the internal state variables X, Y, Z after the i th time they are assigned
new values in the main loop, with X (0), Y(0) and Z (0) being the values of
X, Y, Z when we output the Þrst block O0. ��

Then we start to derive expressions for the output blocks as follows.

O0 = X (0) + W [0], hence� X (0) = O0 + W [0].
O1 = X (1) + W [1], hence� X (1) = O1 + W [1],

where

�
�

�

Y (1) = Y (0) rotated by 8 bytes = �Y(0),
X (1) = F (X (0) + Y(1)) + Z (0) =
= F (O0 + W [0] + �Y (0)) + Z (0),

� O1 = F (O0 + W [0] + �Y (0)) + Z (0) + W [1].
O2 = X (2) + W [2], hence� X (2) = O2 + W [2],

where

�
�

�

Y (2) = Y (1) rotated each half by 4 bytes ,
X (2) = F (X (1) + Y(2)) + Z (0) =
= F (O1 + W [1] + Y(2)) + Z (0),

� O2 = F (O1 + W [1] + Y(2)) + Z (0) + W [2].
O3 = X (3) + W [3], hence� X (3) = O3 + W [3],

where

�
�

�

Y (3) = Y (2) rotated by 8 bytes= �Y(2),
X (3) = F (X (2) + Y(3)) + Z (0) =
= F (O2 + W [2] + �Y (2)) + Z (0),

� O3 = F (O2 + W [2] + �Y (2)) + Z (0) + W [3].
...
O16+2 = X (16 + 2) + W [2], hence� X (16 + 2) = O16+2 + W [2],

where Z (1) = F (Z (0) + Y (16)),
� O16+2 = F (O16+1 + W [1] + Y (16 + 2)) + Z (1) + W [2].

O16+3 = X (16 + 3) + W [3], hence� X (16 + 3) = O16+3 + W [3]
� O16+3 = F (O16+2 + W [2] + �Y (16 + 2)) + Z (1) + W [3]

...

It follows from the ÒmainÓ loop description that after the Þrst 16 output
blocks only the entry W [0] is changed in the table W . After the next 16
output blocks only W [1] is changed, and so on. This means thatW [2] and
W [3] are included unchanged in both the expressions for O2, O3, and the
expressions for O16+2 , O16+3 , respectively.
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Further useful observations are that the variable Z changes its value only
after every 16 output blocks. Also, the variable Y is rotated by 8-bytes every
second step, otherwise it uses another permutation of its bytes. This leads
us to consider the following selection of output blocks.

Let us choose four output blocks O16k+ r , O16k+ r +1 , O16l + r , O16l + r +1 such
that the triple (k, l, r ) has the following properties,
�
�

�

0 � k < l
r � { 2, 4, 6, 8, 10, 12, 14}
W [r ] and W [r ± 1] have not been changed betweenkth and l th rounds.

(7.12)
This basically means that we look for two pairs of output blocks (from the
rounds k and l) such that the state variable Y is rotated by 8-bytes between
the consecutive blocks making up a pair (the value of r is even), and such
that W [r ] and W [r ± 1] have not been changed between and during the kth

and l th rounds of the ÒmainÓ loop.
For these four output blocks we obtain the following four equations,

�
���

���

O16k+ r = F (O16k+ r Š 1 + W [r Š 1] + Y (16k + r )) + Z (k) + W [r ],
O16k+ r +1 = F (O16k+ r + W [r ] + �Y (16k + r )) + Z (k) + W [r + 1] ,
O16l + r = F (O16l + r Š 1 + W [r Š 1] + Y(16l + r )) + Z (l ) + W [r ],
O16l + r +1 = F (O16l + r + W [r ] + �Y (16l + r )) + Z (l ) + W [r + 1] .

(7.13)

7.3.4 Introduction of Noise Variables

Recall, that the function F (·) consists of several operations which are all
linear except one, the S-box mapping. Thus, F (·) is linear if and only if the
S-box is linear. We represent the S-box as it was proposed in equation (7.11)
(S2[x] = R(x) + N (x)). To get the most efÞcient attack, we generally require
a minimum number of approximated S-boxes (active S-boxes). Studying
the Òlinear pathsÓ of these expressions, we Þnd that there are two different
relations that contain the minimum number of 24 linearly approximated S-
boxes. We continue to focus only on these two relations.

De�nition 7.5: Let us introduce two polynomials over the Þeld F28

R�(x) = R((1 + � )R(x)) =
7�

i =0

r 2i +1
i (1 + � )2i

x22i

, (7.14)

and

R�� (x) = R(R(x)) =
7�

i =0

r 2i +1
i x22i

, (7.15)
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where the coefÞcientsr i are those used in the R(x) polynomial, i.e., R(x) =
� 7

i =0 r i x2i
. ��

Based on the structure of the F (·) function (see Figure 7.3), we can de-
rive an expression for a linear combination of the bytes x�

0, x�
1, x�

8, and x�
9 as

follows,

� 2

1 + �
· (x�

0 + �x �
1 + x�

8 + �x �
9)

= � 2 · [R�� (x0 + x8) + R�(x5 + x13) + R(x2 + x10)] + N0,8, (7.16)

where N0,8 is a linear combination of noise variables N (x) and deÞned as

N0,8 = � 2 · [N (v2 + c) + N (v10 + c) + R(N (x0)) + R(N (x8))

+ R((1 + � )N (x5)) + R((1 + � )N (x13))] . (7.17)

Furthermore, we derive the second expression for a linear combination of
the bytes x�

2, x�
3, x�

10, and x�
11 as follows,

(x�
2+(1 + � ) · x�

3 + x�
10 + (1 + � ) · x�

11) = � 2 · (R�� (x0 + x8) + R�(x5 + x13)

+ R(x2 + x10)) + ( � 2 + � + 1) · R(x0 + x8) + R(x5 + x13) + N2,10,
(7.18)

where N2,10 is deÞned as

N2,10 = � 2 · (N (v2) + N (v10)) + ( � 2 · R(N (x0)) + ( � 2 + � + 1) · N (x0 + c))

+ ( � 2 · R(N (x8)) + ( � 2 + � + 1) · N (x8 + c)) + ( � 2 · R((1 + � )N (x5))

+ N (x5 + c)) + ( � 2 · R((1 + � )N (x13)) + N (x13 + c)) .
(7.19)

Here v2 and v10 are two intermediate values obtained in the calculation of
the function F (X ) (see Figure 7.3 and [HCJ02]). Let us explain in detail the
interpretation of the expression for N0,8. Above, N0,8 represents the noise
introduced by the required linear approximations. It denotes a random vari-
able which is a sum of 6 random variables, each one of them corresponding
to the noise variable added by the application of the S-box S2[·] on a partic-
ular input variable. We regard these noise variables as independent, accord-
ing to our assumptions from Subsection 7.2.2. Recall that N (x) is deÞned as
S2[x] + R(x) and has in general a nonuniform distribution. Each such noise
variable N (x) has a certain (but unknown) bias, and the sum of such noise
variables will also have a certain (but much lower) bias.

In the next step we combine the expressions (7.16) and (7.18) to get a
linear input-output relation for the F (·) function as given in Figure 7.3.
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Recall the notation X, X � � F16
28 and F (X ) = X �. We introduce the fol-

lowing notation,

L OUT (F (X )) =
� 2

1 + �
(x�

0+ x�
8)+

� 3

1 + �
(x�

1+ x�
9)+( x�

2+ x�
10)+(1+ � )(x�

3+ x�
11);

(7.20)
L IN (X ) = � 2 · [R�� (x0 + x8) + R�(x5 + x13) + R(x2 + x10)]

+ � 2 · (R�� (x0 + x8) + R�(x5 + x13) + R(x2 + x10))

+ ( � 2 + � + 1) · R(x0 + x8) + R(x5 + x13)

=( � 2 + � + 1) · R(x0 + x8) + R(x5 + x13); (7.21)

N� (X ) = � 2 · [N (v2 + c) + N (v10 + c) + R(N (x0)) + R(N (x8))

+ R((1 + � )N (x5)) + R((1 + � )N (x13))]

+ � 2 · (N (v2) + N (v10)) + ( � 2 · R(N (x0))

+ ( � 2 + � + 1) · N (x0 + c)) + ( � 2 · R(N (x8))

+ ( � 2 + � + 1) · N (x8 + c)) + ( � 2 · R((1 + � )N (x5))

+ N (x5 + c)) + ( � 2 · R((1 + � )N (x13)) + N (x13 + c))

= � 2 · (N (v2) + N (v2 + c) + N (v10) + N (v10 + c))

+ ( � 2 + � + 1) · (N (x0 + c) + N (x8 + c))

+ ( N (x5 + c) + N (x13 + c)) , (7.22)

where c is a known constant, and N� (X ) is a linear combination of 6 dif-
ferent noise variables each distributed as N (x). Note, if the input for the
expression L OUT (·) is X , then the xi Õs are without prime signs.

Proposition 7.3: For any 16-byte vector X � F16
28 we have

L OUT (F (X )) = L IN (X ) + N� (X ). (7.23)

��

We have now established a useful linear input-output relation for the F (·)
function. The Þnal step is to extend this relation to the whole cipher and
remove the F (·)-function application. It should result in an expression in-
cluding only output symbols and biased noise.

De�nition 7.6: Let us deÞneO� (k,l,r ) and O� (k,l,r ) as

O� (k,l,r ) = O16k+ r + O16k+ r +1 + O16l + r + O16l + r +1 ,

O� (k,l,r ) = O16k+ r + O16k+ r Š 1 + O16l + r + O16l + r Š 1.

��
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Let us take any triple (k, l, r ) satisfying (7.12). Then we can derive the fol-
lowing expression.

L OUT (O� (k,l,r ) )
(Def .7.6)

= L OUT (O16k+ r + O16k+ r +1 + O16l + r + O16l + r +1 )
(7.13)
= L OUT [ F (O16k+ r Š 1 + W [r Š 1] + Y (16k + r ))

+ F (O16k+ r + W [r ] + �Y (16k + r ))

+ F (O16l + r Š 1 + W [r Š 1] + Y(16l + r ))

+ F (O16l + r + W [r ] + �Y (16l + r ))]
(Prop .7.3)

= L IN (O16k+ r Š 1 + W [r Š 1] + Y(16k + r )) + N� (·)

+ L IN (O16k+ r + W [r ] + �Y (16k + r )) + N� (·)

+ L IN (O16l + r Š 1 + W [r Š 1] + Y (16l + r )) + N� (·)

+ L IN (O16l + r + W [r ] + �Y (16l + r )) + N� (·)
(Def .7.6)

= L IN (O� (k,l,r ) ) + N 4
� ((k, l, r ))

+ L IN (W [r ] + W [r Š 1] + W [r ] + W [r Š 1])

+ L IN (Y (16k + r ) + �Y (16k + r ) + Y(16l + r )

+ �Y (16l + r ))

(L IN (X + �X )=0)
= L IN (O� (k,l,r ) ) + N 4

� ((k, l, r )) ,

(7.24)

where

N 4
� ((k, l, r )) = N� (O16k+ r Š 1 + W [r Š 1] + Y(16k + r ))

+ N� (O16k+ r + W [r ] + �Y (16k + r ))

+ N� (O16l + r Š 1 + W [r Š 1] + Y (16l + r ))

+ N� (O16l + r + W [r ] + �Y (16l + r )) . (7.25)

Corollary 7.4: For (k, l, r ) satisfying (7.12) we have

L OUT (O� (k,l,r ) ) + L IN (O� (k,l,r ) ) = N 4
� ((k, l, r )) . (7.26)

��

The left hand side is a linear combination of output bytes and the right
side is a linear combination of 24 noise variables (4 items by 6 biased noise
variables each). These noise variables from the sum are dependent, since
they are from the same source (Scream keystream generator). However,
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their dependence is rather small, and we safely can treat them as indepen-
dent random variables. Recall that the distribution of N�

4((k, l, r )) is inde-
pendent of (k, l, r ). Let us denote this distribution by PN .

To conclude what we have done, deÞne L 1(O) to be the multiset of all
samples possible to construct as above, i.e.,

L 1(O) = {L OUT (O� (k,l,r ) ) + L IN (O� (k,l,r ) ) : (k, l, r ) satisfy (7.12)} . (7.27)

We summarize as follows.

Theorem 7.5: Under the assumptions made in Subsection 7.2.2, the sam-
ples in L 1(O) are taken from the distribution PN . ��

We have found how to calculate a set of samples L 1(O) from the observed
output stream O = O0, O1, . . ., and that these samples are drawn from the
distribution PN .

Note that the distribution PN depends on which linear approximation
R(x) we select for the S-box. Furthermore, for a known S-box mapping the
PN distribution can be easily calculated for any values r 0, r 1, . . . , r 7 � F28

chosen in the linear approximation of the S-box. However, the problem we
face involves a secretS-box, and then we can not derive the distribution PN

explicitly, although, we can simulate it.

7.4 Simulations to Construct the Distinguisher

The general idea and the structure of the distinguisher for Scream is given
in DeÞnition 7.2. For a chosenR(x), a linear approximation of the S-boxes
in Scream, a type Px i is constructed from the samples L 1(O) according to
the expression (7.27). We also need to establish how many samples we can
get from t output words.

Proposition 7.6: The number of available triples (k, l, r ) satisfying (7.12) in
O0, O1, · · · , Ot is around t ·637

256 , when t is large.
Proof: According to the description of the ÒmainÓ loop of Scream only one
entry of the table W [i w ] is updated after 16 output symbols are produced,
the value of i w is increased and taken modulo 16. It means that the distance
between kth and l th rounds cannot be more than 16, otherwise sensitive
entries of the table W [·] will be changed in between. Consider the situation
when r = 2 . To satisfy the equation (7.12) the Þrst round index k cannot be
equal to 1, 2, or 3, modulo 16, otherwise W [r, r ± 1] will be changed between
the rounds. From the other hand, the second round index l can be equal
to 1 modulo 16 (the value W[1] will be changed after the output symbols
O16l + i from this round are used in our formulas), however, it still cannot be
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� 0/� Pmax |K (� 0/� ) � 0/� Pmax |K (� 0/� )
2Š 46 0.001 2Š 53 0.64
2Š 47 0.009 2Š 54 0.84
2Š 48 0.017 2Š 55 0.94
2Š 49 0.038 2Š 56 0.99
2Š 50 0.097 2Š 57 0.999
2Š 51 0.19 2Š 58 1.000
2Š 52 0.39

Table 7.1: Conditional probabilities Pr{ max
R 1 ,...,R m

|PN Š PU | �

� 0 /� | K } for different � 0 /� , in average.

equal to 2 or 3 modulo 16. By counting, if k 
 4 mod 16, then the possible
values for l are { k + 1 , k + 2 , . . . , k + 13} Ð 13 in total. If k 
 5 mod 16
then l has 12 ways to be chosen. Finally, in one round of the index iw we
have 13 + 12 + 11 + . . . + 1 = 91 ways to choose the pair (k, l ), and then
the situation will be repeated. The same case happens for other values of
r . Sincer can be one out of 7 values, the number of possible triples (r, k, l )
within one round of the index iw is 7·91 = 637. In one round of the index iw

256 output symbols Oi are produced, hence, the overall rate of the number
of triples is 637· t/ 256. Since we have to cut a few valid triples in the tails of
accessible keystream, the real number of available triples is slightly less. ��

The next step is to estimate the PDF for Pr{ � · max
R 1 ,...,R m

|PN Š PU | 	

� 0 | K } , i.e., the probability that the maximum distance between noise and
uniform distributions among m different approximations Ri will not be less
than � max , for some chosen threshold � 0 and Þxed � . It is a conditional prob-
ability (conditioned on the secret key K ), where � 0 will be used later as the
decision threshold. Let us denote this probability as

Pmax |K (� 0/� ) = Pr { max
R 1 ,...,R m

|PN Š PU | 	 � 0/� | K } . (7.28)

This distribution is constructed via simulations, that we performed in
our work.

In one round of these simulations, for a Þxed key K and many linear
approximations R we calculate the distribution of N (x) from (7.11). We
then calculate the distribution PN from (7.22) and (7.25), which is a linear
combination of 24 different biased random variables distributed like N (x).

We have tested around 210 different randomly chosen keys, and for each
of them we tried around m = 2 20 different randomly chosen linear ap-
proximations. The distribution of N (x) is calculated according to (7.11),
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Simulation scheme for estimating Pmax |K (� 0/� )

I. In�nite-loop

II. Choose the secret keyK randomly.

III. Loop i = 1 , . . . , m – for a suf�ciently large m

1) Choose an approximation R(·) randomly: { r 0, r 1, . . . , r 7} , where
r i � F28 .

2) Make sure that � x � PU : R(x) � PU , otherwise, choose another
approximation.

3) Construct the tables S(x), R(x), and N (x), for � x � F28 .

4) Construct three 8 bit noise distributions (see (7.22) and (7.25))

PN 1 (t) = Pr { t = � 2 · (N (x) + N (x + c)) , x � PU } ,

PN 2 (t) = Pr { t = ( � 2 + � + 1) · N (x), x � PU } ,

PN 3 (t) = Pr { t = N (x), x � PU } . (7.29)

5) Evaluate the 8 bit distribution for the sum of 24 noise variables
from equation (7.25), which is exactly the same asPN = ( PN 1 +
PN 2 + PN 3 )× 8. The evaluation can be done logarithmically, and
PN is now the distribution of 24 introduced noise variables.

6) Calculate the distance� i = |PN Š PU |.

end-loop

IV. Calculate � max = max { � 1, � 2, . . . , � m } and attune the probability mass
function Pmax |K (� 0/� ).

V. end-loop
��

and then we calculate the distribution PN from (7.22) and (7.25), which is a
linear combination of 24 different biased random variables distributed like
N (x). In Table 7.1 we illustrate the following probability mass function for
Pmax |K (� 0/� ).

From Table 7.1 one can note a trade-off. From one hand we would like to
choose the threshold � 0 such that the probability rate is high. From another
hand, according to Theorem 3.6, a small � 0 means a large number of samples
n required.

The remaining part is to estimate the necessary number of subdistin-
guishers m. During the simulations from Algorithm 7.4 we also calculated
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the smallest value k such that max{ � 1, . . . , � k } = max { � 1, . . . , � m } , which
is the minimum number of subdistinguishers required to receive the max-
imum distance |PN Š PU |, conditioned on K . This allowed us to estimate
the probability Pr{ maximum value is received | m is Þxed} . Table 7.2 illus-
trates that if we take m > 220, then it will be useless, because the best linear
approximation R(·) with the maximum possible distance � = |PN Š PU| will
already be reached5 . Therefore, we can safely set the number of subdistin-
guishers to be m = 2 20.

Number of subdistinguishers m Pr{ maximum distance value
� = |PN Š PU | is reached}

210 0.017
211 0.037
212 0.076
213 0.150
214 0.270
215 0.490
216 0.720
217 0.910
218 0.980
219 1.000
220 1.000

Table 7.2: Probabilities to reach the maximum distance PN Š PU

for different values of m.

Formulas connecting parameters of the distinguisher for Scream depend
on the choice of � max . If we assume that with probability 1 Š Pmax |K (� 0/� )
we have a random distinguisher, then the actual advantage is then calcu-
lated as

AdvD = |1 Š p� Š p� | · Pmax |K (� 0/� ). (7.30)

The typical values and the relation between the number of accessible
samples and the advantage of the distinguisher for Scream are presented
in Table 7.3. We can see that when around2100 samples are available, the
distinguisher has an advantage around 2Š 10. Otherwise, when n � 2120, the
advantage is almost 1.

5The probability that the maximum distance will not appear before 220 is not zero. How-
ever, we did not meet such a case during our tests.
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When m = 2 20 subdistinguishers are used, and the desired values of
the desired error probability p� is Þxed, whereasp� remains negligible.

� max Pmax |K (� 0/� ) p� < 2Š 10 p� < 2Š 20

� opt n AdvD � opt n AdvD

2Š 46 0.001 299.45 2Š 9.9672 299.6 2Š 9.9658

2Š 48 0.017 2103.45 2Š 5.8797 2103.6 2Š 5.8783

2Š 50 0.097 2107.45 2Š 3.3673 2107.6 2Š 3.3659

2Š 52 0.390

0.
85

87 2111.45 0.3896

0.
81

12 2111.6 0.3900
2Š 54 0.840 2115.45 0.8392 2115.6 0.8400
2Š 56 0.990 2119.45 0.9890 2119.6 0.9900
2Š 57 0.999 2121.45 0.9980 2121.6 0.9990
2Š 58 1.000 2123.45 0.9990 2123.6 1.0000

Table 7.3: Typical values for the advantage and the number of sam-
ples.

7.5 Computational Aspects

One may think that the complexity for one SDi is O(n), and since we have
m subdistinguishers, then the overall complexity for the distinguisher for
Scream isO(m · n) = O(220 · n), which is quite large and the complexity is
almost an exhaustive search. By the following computational approach we
reduce O(m · n) to O(n + m · const).

We observe that the expression (7.27) can be written in the form

|(k,l,r ) : L OUT (O� (k,l,r ) ) + L IN (O� (k,l,r ) )

= 
 k,l,r + R(� k,l,r ) + ( � 2 + � + 1) · R(� k,l,r ), (7.31)

where � k,l,r , 
 k,l,r , � k,l,r � F28 are three bytes which can be calculated from
the known output stream O, for any time t.

We want to construct m different types from n samples, which are cal-
culated from the same set of n triples (�, 
, � ), but each time by applying
different approximations R(x). For this purpose, we Þrst construct a table
of the number of occurences for each triple (�, 
, � ) in the sample set L 1(O),
denoted T[�, 
, � ] = { #of occurences in the output stream} . The table has the
size 23·8 = 2 24, all possible combinations of 3 bytes. Afterwards, for each
approximation function R(x) the corresponding type Px i can be constructed
directly from the table.

The complexity of calculating all types is O(m · 224). The complexity
to calculate the table T [�, 
, � ] is O(n). Therefore, the overall complexity is
O(n + m · 224).

Theorem 7.7: For the proposed Scream distinguisher (see DeÞnition 7.2
and Theorem 7.5) under assumptions made in Subsection 7.2.2, in the case
of using m subdistinguishers with different linear approximations of the S-
box we get the overal time complexity around O(n + m · 224). ��



7.6. Improvements 167

7.6 Improvements

In this section we give a few techniques for improving the attack.

7.6.1 Using a 16 bit Noise Construction

Consider the equations (7.16) and (7.18) Ð they describe byte relations Òinput-
outputÓ where the byte noise variables are introduced. By the previous
technique we summed up these equations together and derived the equa-
tions (7.20), (7.21), (7.22), and (7.23). We just note that for the same triple
(k, l, r ), the input to these equations is from the same source, i.e., instead of
summing up, we consider these two byte relations jointly, which potentially
gives us more information. In this case, the noise variable is now a 16 bit
random variable, constructed from

� N 0, 8
N 2, 10

�
. We use again the expressions

O� (k,l,r ) and O� (k,l,r ) in order to eliminate the F (·)-function application.
The 16bit model can now be constructed directly

Proposition 7.8: From the expressions (7.16) and (7.18), for any16-byte
vector X � F16

28 the following equation holds

16L OUT (F (X )) = 16L IN (X ) + 16N � (X ), (7.32)

where

16L OUT (F (X )) =
( 1

1+ � · (x�
0 + � · x�

1 + x�
8 + � · x�

9)
x�

2 + (1 + � ) · x�
3 + x�

10 + (1 + � ) · x�
11

)
; (7.33)

16L IN (X ) =

*

+
R(x2 + x10) + R�� (x0 + x8) + R�(x5 + x13)

(1 + � + � 2) · R(x0 + x8) + � 2R�� (x0 + x8) + R(x5 + x13)
+ � 2 · R((1 + � )R(x5 + x13)) + � 2 · R(x2 + x10)

,

- ;

(7.34)

16N � (X ) =
(

N (v2 + c)
� 2 · N (v2)

)
+

(
R(N (x0))

(1 + � + � 2) · N (x0 + c) + � 2 · R(N (x0))

)

+
(

R((1 + � ) · N (x5))
N (x5 + c) + � 2 · R((1 + � ) · N (x5))

)

+
(

N (v10 + c)
� 2 · N (v10)

)
+

(
R(N (x8))

(1 + � + � 2) · N (x8 + c) + � 2 · R(N (x8))

)

+
(

R((1 + � ) · N (x13))
N (x13 + c) + � 2 · R((1 + � ) · N (x13))

)
,

(7.35)
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where c = 000101012 is the constant, and 16N � (X ) is a linear combination of
6 16bit noise variables, represented through the 8 bit noise N (x) introduced
in (7.11). ��

Similar to Corollary 7.4 we derive a 16 bit relation betwen the noise and
output symbols, and the expression (7.32) can be applied for the output
stream O without calling the unknown F (·)-function.

Corollary 7.9: For any triple (k, l, r ) satisfying (7.12) we have

16L OUT (O� (k,l,r ) ) + 16L IN (O� (k,l,r ) ) = 16N 4
� ((k, l, r )) , (7.36)

where

16N 4
� ((k, l, r )) = 16N � (O16k+ r Š 1 + W [r Š 1] + Y (16k + r ))

+ 16N � (O16k+ r + W [r ] + �Y (16k + r ))

+ 16N � (O16l + r Š 1 + W [r Š 1] + Y(16l + r ))

+ 16N � (O16l + r + W [r ] + �Y (16l + r )) . (7.37)

��

The left part is a linear combination of the output bytes, whereas the
right side is the sum of 24 16-bit noise variables. Let us deÞne the multiset
of 16 bit samples as:

16L 1(O) = { 16L OUT (O� (k,l,r ) ) + 16L IN (O� (k,l,r ) ) : (k, l, r ) satisfy (7.12)} .
(7.38)

The distribution of 16N 4
� ((k, l, r )) is independent on (k, l, r ), and we de-

note this distribution as 16PN .

Theorem 7.10: The 16 bit samples 16L 1(O) are taken from the distribution
16PN . ��

We have just found the way to sample 16 bit random variables from the
given output stream O = O1, O2, . . ., and these samples are from the biased
(unknown) distribution 16PN . Then we can perform the attack on Scream
in a similar way, as described in Section 7.4.

7.6.2 Using Several Linear Approximations R j in Parallel

Consider again the byte relation found in the previous sections and given
by the formula (7.26). When we calculate a byte-sample, we can use the for-
mula (7.31). Assume we choose three linear approximations R1(x), R2(x),
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R3(x) of the S(·)-boxes, and we now wish to consider three byte-samples
jointly, according to these three approximations, i.e.:

3× 8L 1(O) =

�



L OUT (O� (k,l,r ) ) + L IN (O� (k,l,r ) )|R= R 1

L OUT (O� (k,l,r ) ) + L IN (O� (k,l,r ) )|R= R 2

L OUT (O� (k,l,r ) ) + L IN (O� (k,l,r ) )|R= R 3

�




=

�



N�

4((k, l, r )) |R= R 1

N�
4((k, l, r )) |R= R 2

N�
4((k, l, r )) |R= R 3

�


 = 3× 8N 4
� ((k, l, r )) . (7.39)

All the three samples are taken from the same source at the same time,
but only the approximations are different. For a random source, the distrib-
ution of this triple vector (a 24 bit sample) would look like

�



x + R1(y) + ( � 2 + � + 1) R1(z)
x + R2(y) + ( � 2 + � + 1) R2(z)
x + R3(y) + ( � 2 + � + 1) R3(z)

�


 , for x, y, z � PU . (7.40)

For an appropriate choice of the approximations, this distribution is again
the uniform distribution. So, further we consider only such triples (R1(·),
R2(·), R3(·)) , for which the random distribution of this triple vector is uni-
form (for simplicity purposes).

The advantage of using these different approximation functions in par-
allel is that we can extract more information from the stream produced by
Scream, and our simulations gave us improved results.

One more improvement can be to consider multiple approximations in
parallel, but for the case of 16 bit sampling, as described in the previous
subsection. We only mention this idea, but we did not implement it due to
very high computational complexity.

7.6.3 Simulation Results for the Improved Versions

Due to a very high computational complexity we could not perform many
simulations for the attack with improvements described in the previous
subsections (16 bit and 24 bit cases) and create the distribution for Pr{ � ·

max
R 1 ,...,R m

|PN Š PU | 	 � 0 | K } as we did before for the 8 bit case (see Ta-

ble 7.1). However, we could perform just a few simulations to be able to see
the advantage of the improvements, and compare all the described tech-
niques. Here we present one comparison result produced by our simulation
program.
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Key = D2 A6 C5 C1 30 6A 1A 22 2C 5B D7 7B B8 31 26 58
Approximations 8 bit 16 bit Triple × 8
A0 = 77 6E 4A A1 4C EA 22 74 2Š 65.000 2Š 62.425

A1 = 45 15 21 B6 39 97 B9 CF 2Š 63.641 2Š 63.359 2Š 51.396

A2 = 80 A3 B8 2F 17 28 83 F9 2Š 62.425 2Š 62.397

This output table has the values Ri for three different approximations
A0, A1, and A2, and the key K . In the table the distances |PN Š PU | are
shown for three different attack techniques with the same approximations
(the triple approximation technique uses the A0, A1, and A2 approxima-
tions).

The larger the bias gets, the less number of samples we need, i.e., the
time complexity for the attack is low if the bias is large. Obviously, the ap-
proach with a triple approximation gives us the reduction of the number
of subdistinguishers. An interesting question is whether this improvement
can give signiÞcantly larger bias than our byte oriented attack or not. How-
ever, due to a very high computational complexity of these simulations, we
could not give a deÞnite answer on this question.

7.7 Summary

In this paper we have derived a linear distinguishing attack on Scream, and
also suggested some improvements. The Þnal distinguisher is presented in
Figure 7.4. In this type of attack we approximate nonlinear parts, and in-
troduce corresponding noise variables. When all the operations are made
linear using linear approximations, it is possible to Þnd some linear equa-
tion(s) on the output words. One side of that equation contains a linear
combination of the output words, whereas the second side contains a linear
equation of introduced noise variables. If these noise variables are biased,
then a distinguisher can be built.

In the case of Scream, the only the nonlinear parts are two byte-oriented
secretS-boxes. In our work we show how to use an approximation over the
larger Þeld F28 , in particular, we write S(x) = R(x) + N (x), where R(x) =
� 7

i =0 r i x2i
, r i � F28 and N (x) is a noise variable. The distribution of the

byte-oriented noise variable N (x) is possible to calculate only if the S-box
and R(x) are known. The problem with Scream was that it has secretS-
boxes, i.e., they are initialised with the secret key, and the effect (bias) of a
choice of the function R(x) is not possible to predict. One choice of R could
give us a good bias of the noise variable N , and another choice can be not a
good one.
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However, we could treat the case when the distributions of the noise
variables are unknown. To overcome this problem we suggest to build
many similar subdistinguishers, but with different linear approximations.
We can choose the number of subdistinguishers m = 2 20 such that with a
very high probability (in our simulations this probability is 1) one of the
approximations reaches the largest distance � max = � 0/� between the noise
and the uniform distributions for a Þxed secret key. This distance and the
probability of error pe of each subdistinguisher inßuent on the required
length n of accessible keystream.

In Section 7.6 we consider two general ways to improve the attack. Actu-
ally, in our work we could manage to Þnd two relations on the same output
words. The �rst ideais to use these two different byte relations jointly, which
theoretically should extract more information about the given system. In
this case the noise variable is a 16 bit random variable. Our second ideais
based on the equation (7.31), where the linear combination of the known
part can be represented as a linear combination of the R(x) function in-
stances. We suggest to choose three different approximation functions, and
consider a 24 bit symbol derived from the output stream, as shown in (7.40).
If the choice of these approximations Ri (x) is proper then in the random
case this 24 bit symbol is from the uniform distribution. The corresponding
24 bit noise variable will have a stronger bias.

By simulations, we estimated the advantage of our distinguisher. For a
given keystream of length 2100 there is a detectable advantage. When the
keystream length is 2120, the advantage of our distinguisher is very close to
1. By this we have shown that Scream can be distinguished faster than an
exhaustive search. In our work we made simulations for the proposed 8 bit
oriented case of the attack, and also show the effect of the improvements
from Section 7.6. We believe that this kind of technique can be successfully
applied to other ciphers.
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Distinguisher:

1. Choose the number of subdistinguishers m = 2 20 .
The number of necessary samples isn �= 27.45 /� 2

max , where � thr = 0 .85� max for some Þxed
� max � [2Š 46 . . . 2Š 58 ]. The advantage of the distinguisher is according to Table 7.3.

2. Create data structures
- T [0..255, 0..255, 0..255] � { 0, 1, . . . 255} Ð the 3-dimensional matrix
- P [0..220 Š 1, 0..255] � [0..1] Ð real valued probability table
- A[0..220 Š 1, 0..7] � { 0, 1, . . . 255} Ð the coefÞcients of subdistinguishers

3. Initialization
- � x, y, z � [0..255] � T [x, y, z ] = 0 ;
- � i � [0..216 Š 1], j � [0..255] � P [i, j ] = 0 .0;
- � i � [0..216 Š 1], j � [0..7] � A[i ][j ] = random value from { 0, 1, . . . 255}

4. Calculation of the tableT [x, y, z ]
for i = 1 to n

4.1 takei th valid triple (ki , l i , r i ) satisfying (7.12);
4.2 calculate 3 bytes:b1 = � k i ,l i ,r i , b2 = � k i ,l i ,r i and b3 = � k i ,l i ,r i

in the notation of the equation (7.31);
4.3 T [b1, b2, b3] = T [b1, b2, b3] + 1 ;

end for i ;
5. Calculate the probability table

for b1 = 0 to 255
for b2 = 0 to 255

for b3 = 0 to 255
5.1 for i = 0 to 220 Š 1
5.2 representb1, b2, b3 as elements from the ÞeldF28 with

generating polynomial g(x) = x8 + x7 + x6 + x + 1 and
calculate the byte B = b1 + R(b2) + ( � 2 + � + 1) R(b3),

where R(x) =
� 7

j =0 (A[n, j ] · x2j
);

5.3 SetP [i, B] = P [i, B] + T [b1 ,b2 ,b3 ]
n ;

5.4 end for i ;
5.5. end for b3, b2, b1;
6. Calculate the distances for each subdistinguisher and make the �nal decision
6.1. for i = 0 to 220 Š 1
6.2. � =

� 255
j =0 |P [i, j ] Š 2Š 8|

6.3. if � � � 0 then SDi (O) = • OUTSIDEŽ and the �nal decisionis
A: the keystream is from Scream . Stop the process.

6.4. end for i ;
7. All SDi (O) = • INSIDEŽ and the �nal decisionis

B: the keystream is Random

Figure 7.4: Distinguisher for Scream.
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Cryptanalysis of the
“Grain” Family of Stream Ciphers

“Anything will give up its secrets if you love it enough. Not only
have I found that when I talk to the little �ower or to the little

peanut they will give up their secrets, but I have found that
when I silently commune with people they give up their

secrets also – if you love them enough”

George Washington Carver

Recently, a new European project eSTREAM [ECR05] has started, and
at the Þrst stage of the project 35 new proposals were received by May

2005. Although many previous stream ciphers were broken, collected crypt-
analysis experience allowed to strengthen new proposals signiÞcantly, and
there are many of them that are strong against different kinds of attacks.
One such good proposal was the new stream cipher Grain

The stream cipher Grain was developed by a group of researchers M. Hell,
T. Johansson, and W. Meier, and was especially designed for being very
small and fast in hardware implementation. It uses the key of length 80 bits
and the IV is 64 bits, its internal state is of size 160 bits. Grain uses anonlin-
ear feedback shift register(NLFSR) and alinear feedback shift register(LFSR), and
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the idea to use NLFSR is quite new in modern cryptography. The claimed
security level of Grain is 280, and it was stated that there exist no attacks sig-
niÞcantly faster than 280. When a key-recovering attack is considered, the
idea behind the strength of Grain is amazingly based on the well-known
general decoding problem(GDP), which is hard to solve. To use GDP in the
design of a stream cipher was a quite clever idea, and it was also discussed
before in, e.g. [JJ02]. Therefore, instead of analysing just Grain, in this chap-
ter we study this design structure in general, and we call this class of stream
ciphers asthe “Grain” family of stream ciphers.

In this chapter we focus on statistical properties of the keystream, reveal-
ing two key-recovering and one distinguishing attack on Grain. We show
possible weaknesses, if the Boolean functions used in the design are cho-
sen improperly. We also show the relation between the strength of ÒGrainÓ
against a key-recovery attack and the general decoding problem. For the
proposed instance Grain [HJM05a] we found a statistical leakage in the key-
stream, which allowed us to mount a distinguishing attack with time com-
plexity O(254), when keystream of length O(251) is available. This attack
is deÞnitely signiÞcantly faster than O(280). Moreover, we also present a
key recovery attack against Grain which requires 243 computations and 238

keystream bits to determine the 80 bit key.
This chapter is structured as follows. In Section 8.1 the ÒGrainÓ fam-

ily of stream ciphers is deÞned. In Section 8.2 the correlation between the
keystream and the state of the LFSR is derived. In Section 8.4 we use the
weakness of the Grain instance to turn it into a distinguishing attack. We
show that the security level of this class of stream ciphers is related to the
general decoding problem in Section 8.3. We show how to use fast Fourier
techniques to recover the state of the LFSR and the NFSL in Sections 8.5
and 8.6. Finally, we summarize the results and make the conclusions in Sec-
tion 8.8.

8.1 The “Grain” Family of Stream Ciphers

The ÒGrainÓ family of stream ciphers is a bit-oriented design, and its general
structure is depicted in Figure 8.1. Let the LFSR have length l and its gener-
ating polynomial is f (·) = 0 . Its output is denoted as y = y0, y1, . . ., where
the Þrst l bits is the initial state of the LFSR. Let the length of the NLFSR be
m. The feedback function g(·) = 0 for the NLFSR is a Boolean function on
the states of the NLFSR and the LFSR. We denote the output of the NLFSR
asx = x0, x1, . . ., where the Þrst m bits is the initial state of the NLFSR. The
keystream sequence isz = z0, z1, . . .. At each time instance t, one bit of the
keystream zt is the result of a Boolean function h(·), the input of which are
the bits from the states of the NLFSR and the LFSR, at the corresponding
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z1, z2, . . .

h(x)

g(x) f (x)

NLFSR LFSR

Figure 8.1: The structure of the ÒGrainÓ family of stream ciphers.

time t.
For some arbitrary Boolean function � (·) let wL (� (·)) and wN (� (·)) de-

note the number of operands, taken from the LFSR and from the NLFSR,
respectively. The total number of variables for the function � (·) is denoted
asw(� (·)) .

For the particular instance of Grain, let the current LFSR content be de-
noted by Yt = ( yt , yt +1 , . . . , yt +79 ). The LFSR is governed by the linear re-
currence

yt +80 = yt +62 � yt +51 � yt +38 � yt +23 � yt +13 � yt . (8.1)

Let the current NLFSR content be denoted by X t = ( xt , xt +1 , . . . , xt +79 ).
The NLFSR feedback is disturbed by the output of the LFSR, so that the
NLFSR content is governed by the recurrence

xt +80 = yt � g(xt , xt +1 , . . . , xt +79 ), (8.2)

where the expression of nonlinear feedback function g is given by

g := xt +63 � xt +60 � xt +52 � xt +45 � xt +37 � xt +33 � xt +28 � xt +21 � xt +15

� xt +9 � xt � xt +63 xt +60 � xt +37 xt +33 � xt +15 xt +9 � xt +60 xt +52 xt +45

� xt +33 xt +28 xt +21 � xt +63 xt +45 xt +28 xt +9 � xt +60 xt +52 xt +37 xt +33

� xt +63 xt +60 xt +21 xt +15 � xt +63 xt +60 xt +52 xt +45 xt +37

� xt +33 xt +28 xt +21 xt +15 xt +9 � xt +52 xt +45 xt +37 xt +33 xt +28 xt +21 .
(8.3)

The cipher output bit zt is derived from the current LFSR and NLFSR
states as the exclusive or of the masking bit xt and a nonlinear Þltering func-
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tion h as follows

zt = h(yt +3 , yt +25 , yt +46 , yt +64 , xt , xt +63 )

= xt � h� (yt +3 , yt +25 , yt +46 , yt +64 , xt +63 )

= xt � xt +63 pt � qt , (8.4)

where pt and qt are the functions of yt +3 , yt +25 , yt +46 , yt +64 given by

pt = 1 � yt +64 � yt +46 (yt +3 � yt +25 � yt +64 ),

qt = yt +25 � yt +3 yt +46 (yt +25 � yt +64 ) � yt +64 (yt +3 � yt +46 ). (8.5)

The Boolean function h� is correlation immune of the Þrst order. As no-
ticed in [HJM05a], Òthis does not preclude that there are correlations of the output
ofh(·) to sums of inputsÓ, but the designers of Grain appear to have expected
the NLFSR masking bit xt to make it impractical to exploit such correlations.

The key and IV setup consists of loading the key bits in the NLFSR, load-
ing the 64 bit IV followed by 16 ones in the LFSR, and clocking the cipher
160 times in a special mode where the output bit is fed back into the LFSR
and the NLFSR. Once the key and IV have been loaded, the keystream gen-
eration mode described above is activated and the keystream sequencez is
produced.

8.2 Deriving Linear Approximations of the LFSR
Bits

8.2.1 Linear Approximations Used to Derive the LFSR Bits

The purpose of the attack is, based on a keystream sequence(zt )t =0 ...n Š 1

corresponding to an unknown key K and a known IV value, to recover
the key K . The initial step of the attack is to derive a sufÞcient number
L of linear approximation equations involving the l = 80 bits of the initial
LFSR stateY0 = ( y0, . . . , y79) (or equivalently a sufÞcient number L of linear
approximation equations involving bits of the sequence yn ) to recover the
value of Y0. Hereafter, as will be shown in Section 8.6, the initial NLFSR
stateX 0 and the key K can then be easily recovered.

The starting point for the attack consists in noticing that though the
NLFSR feedback function g is balanced, the function g� given by g�(X t ) =
g(X t ) � xt is unbalanced. We have

Pr{ g� (X t ) = 1 } =
522
1024

=
1
2

+ � g� , (8.6)

where � g� = 5
512 . It is useful to notice that the restriction of g� to input

values X t such that xt +63 = 0 is totally balanced and that the imbalance of
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the function g� is exclusively due to the imbalance of the restriction of g� to
input values X t such that xt +63 = 1 .

If one considers one single output bit zt , the involvement of the masking
bit xt in the expression of zt makes it impossible to write any useful ap-
proximate relation involving only the Yt bits. But if one considers the sum
zt � zt +80 of two keystream bits output at a time interval equal to the NLFSR
length n = 80, the xt � xt +80 contribution of the corresponding masking bits
is equal to g� (X t ) � yt , and is therefore equal to yt with probability 1

2 + � g� .
As for the other terms of zt � zt +80 , they can be approximated by linear
functions of the bits of the sequence y. In more details,

zt � zt +80 = g� (X t ) � yt � h(yt +3 , yt +25 , yt +46 , yt +64 , xt +63 )

� h(yt +83 , yt +105 , yt +126 , yt +144 , xt +143 ). (8.7)

Since the restriction of g� (X t ) to input values such that xt +63 = 0 is
balanced, we can restrict our search to linear approximations of the term
h�(yt +3 , yt +25 , yt +46 , yt +64 , xt +63 ) to input values such that xt +63 = 1 , which
amounts to Þnding linear approximations of pt � qt .

We found the set containing two the best linear approximations for this
function, namely

L 1 = { y3 � y25 � y64 � 1;

y25 � y46 � y64 � 1} . (8.8)

Each of the approximations of L 1 is valid with a probability 1
2 + � 1, where

� 1 = 1
4 .

Now the term h�(yt +83 , yt +105 , yt +126 , yt +144 , xt +143 ) is equal to either
pt +80 � qt +80 or qt +80 , with a probability 1

2 for both expressions. We found
the set of the 8 best simultaneous linear approximations for these two ex-
pressions, namely

L 2 = { yt +83 � yt +144 � 1;

yt +83 � yt +126 � yt +144 ;

yt +83 � yt +105 ;

yt +83 � yt +105 � yt +126 ;

yt +83 � yt +105 � yt +126 � yt +144 � 1;

yt +83 � yt +105 � yt +144 � 1;

yt +105 � yt +144 ;

yt +105 � yt +126 � yt +144 � 1} . (8.9)

Each of the 8 approximations of L 2 has an average probability � 2 = 1
8 of

being valid.
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Thus, we have found 16 linear approximations of zt � zt +80 , namely all
the linear expressions of the form

yt � l1(yt +3 , yt +25 , yt +46 , yt +64 ) � l2(yt +83 , yt +105 , yt +126 , yt +144 ), (8.10)

where l1 � L 1 and l2 � L 2. Each of these approximations is valid with a
probability 1

2 + � , where � is derived from � g� , � 1, and � 2 using the Piling-up
Lemma 3.5:

� =
1
2

· 22 · � g� · � 1 · � 2 =
5

4096
� 2Š 9.67. (8.11)

The extra multiplicative factor of 1
2 takes into account the fact that the con-

sidered approximations are only valid when xt +63 = 1 . The LFSR derivation
attacks of Section 8.5 exploit these 16 linear approximations.

8.2.2 Generalisation of the Attack Method

In this section, we try to generalise the previous approximation method.
The purpose is not to Þnd better approximations than those identiÞed in
Section 8.2.1, but to derive some design criteria on the Boolean functions g
and h. However in the previous approximation, we used the fact that the
bias of g depends on the value of xt +63 , so that the approximations of g
and h are not correct independently. We do not take this phenomenon into
account in this section. Therefore, we only provide a simpliÞed picture of a
potential generalised attack.

The function g(X t , Yt ) operates onw(g) = wL (g)+ wN (g) variables taken
from the LFSR and the NLFSR, wherewL (g) is the number of variables taken
from the LFSR and wN (g) the number of variables taken from the NLFSR.
Let the function Ag(X t , Yt ) be a linear approximation of the function g, i.e.,

Ag(X t , Yt ) =
wN (g)Š 1�

i =0

di xt + 
 g ( i ) �
wL (g)Š 1�

j =0

cj yt + � g ( j ) , cj , di � F2, (8.12)

such that the distance between g(·) and Ag(·) deÞned by

dg = # { x � Fw(g)
2 : Ag(x) �= g(x)} > 0, (8.13)

is strictly larger than zero. Then, we have

Pr{ Ag(x) �= g(x)} =
1

2w(g)
dg, (8.14)

i.e.
Pr{ Ag(x) + g(x) = 0 } = 1 / 2 + � g, (8.15)



8.2. Deriving Linear Approximations of the LFSR Bits 179

where the bias is
� g = 1 / 2 Š 2Š w(g) dg. (8.16)

Similarly, the function h(X t , Yt ) can also be approximated by some linear
expressions of the form

Ah (X t , Yt ) =
wN (h)Š 1�

i =0

ki xt + 
 h ( i ) �
wL (h)Š 1�

j =0

l j yt + � h ( j ) , kj , l i � F2. (8.17)

Recall, zt
p
= Ah (·)t with some probability p. Having the expressions

(8.12) and (8.17), one can sum up togetherwN (Ag(·)) expressions ofAh (·) at
different times t, in such a way that all terms X t will be eliminated (just be-
cause the termsX t will be cancelled due to the parity check function Ag(·),
leaving the terms Yt and noise variables only). Note also that any linear
combination of Ah (·) is a linear combination of the keystream bits zt .

The sum of wN (Ag(·)) approximations Ah (·) will introduce wN (Ag(·))
independent noise variables due to the approximation at different time in-
stances. Moreover, the cancellation of the termsX t in the sum will be done
by the parity check property of the approximation Ag(·). If the function
Ah (·) contains wN (Ah ) terms from X t , then the parity cancellation expres-
sion Ag(·) will be applied wN (Ah ) times. Each application of the cancella-
tion expression Ag(·) will introduce another noise variable due to the ap-
proximation ng : g(·) � Ag(·). Therefore, the application of the expression
Ag(·) wN (Ah ) times will introduce wN (Ah ) additional noise variables ng.
Accumulating all above and following the Piling-up Lemma, the Þnal corre-
lation of such a sum (of the linear expression on Yt ) is given by the following
Theorem.

Theorem 8.1: There always exists a linear relation in terms of bits from the
state of the LFSR and the keystream, which have the bias:

� = 2 (wN (A h )+ wN (A g )Š 1) · � wN (A h )
g · � wN (A g )

h , (8.18)

where Ag(·) and Ah (·) are linear approximations of the functions g(·) and
h(·), respectively, and:

Pr{ Ag(·) = g(·)} = 1 / 2 + � g, Pr{ Ah (·) = h(·)} = 1 / 2 + � h . (8.19)

This theorem gives us a criteria for a proper choice of the functions g(·)
and h(·). The biases� g and � h are related to the nonlinearityof these Boolean
functions, and the values wN (Ag) and wN (Ah ) are related to the correlation
immunity property; however, there is a well-known trade-off between these
two properties [Sie84]. Unfortunately, in the case of Grain the functions g(·)
and h(·) were improperly chosen.
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8.3 Relation to the General Decoding Problem

The GDP was explicitly discussed in Section 3.5.3. Recall the equation 3.63,
i.e., the initial state of the stream cipher Grain could theoretically be re-
covered if n � 18604655� 224.2 bits of the keystream are available. It
has also been shown that the decoding problem is hard. However, for
some special cases different decoding algorithms can be applied, that can re-
cover the initial state much faster than exhaustive search. These techniques
are usually called fast correlation attacks, some of them are introduced in,
e.g. [JJ99a,JJ00,CJS00,MFI02,CJM02], and other literature.

In this section we show that cryptanalysis of the ÒGrainÓ family of stream
ciphers can easily be converted to the general decoding problem, with the
same bias, the one derived in the previous section.

Let Yt = ( yt , . . . , yt + n Š 1) be the state of the LFSR at time instancet. I.e.,
the initial state is Y0. Any state Yt can be expressed via the initial stateY0 by
the multiplication with some l × l matrix A several times (see Section 2.5.3)
as follows

Yt = Y0 × At . (8.20)

In the previous section we have shown how to Þnd a linear relation be-
tween the keystream bits zt , zt +1 , . . ., and the output bits produces from the
LFSR yt , yt +1 , . . ., for any time instance t. This relation ut can also be ex-
pressed as

ut =
�

i �B

zt + i
p
=

�

j �A

yt + j , (8.21)

where A and B are some sets of indices. Thus,u is another stream directly
derived from z. We apply (8.20) to derive the relation to the decoding prob-
lem as follows

Ut = ( ut , . . . , ut + n Š 1)
p
=

�

j �A

Y0 × At + j

= ( Y0 ×
�

j �A

Aj ) × At = Q0 × At . (8.22)

I.e., we have shown that the sequenceu is the sequence from the same LFSR,
but with another initial state Q0, which is uniquely related to the original
initial state Y0. The probability p is the correlation probability derived in the
previous section, and it remains unchanged. We state this result in the form
of the following Proposition.

Proposition 8.2: Key-recovering cryptanalysis of the ÒGrainÓ family of stream
ciphers can be converted to analysis of the general decoding problem. There-
fore, the strength of the ciphers in this class is based on the difÞculty to solve
the general DP. ��
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For the stream cipher Grain, a new sequenceu is deÞned as (B = { 0, 80} )

ut = zt + zt +80 . (8.23)

The matrix M =
�

j �A Aj is of full rank (which is not necessary always
the case). Therefore, by observing the sequenceu we actually observe the
output from the LFSR with the same generating polynomial f (x), but an-
other initial state Q0 = Y0 × M .

8.4 Distinguishing Attack on Grain

In a linear distinguishing attackone observes the keystream and collects the
samples from it. These samples form the type PType, or empirical distribu-
tion. If the observed sequence is from the cipher, then the type will con-
verge to the cipher distributionPCipher . If, otherwise, the stream is from a
truly random generator, then the type will converge to the random distribu-
tion PRandom. The convergence is as close to the original distribution as the
number of samples L goes to inÞnity. For more details see Section 3.4.

The distinguishing attack that we brießy describe in this section is given
more in detail in, e.g. [EJ04]. Let us now study the generating function for
the LFSRf (·) closer. From [PK95] a � -weight multiple will have the degree
roughly

d = ( � Š 1)!1/ ( � Š 1) 2n/ ( � Š 1) , (8.24)

where l is the size of the LFSR, and the weight � 	 3. It means that one
could Þnd another parity check equation f � (·) = 0 for the stream u that will
be valid with the bias

� = 2 � Š 1� � . (8.25)

Therefore, considering the required number of samples from (3.29), and
the degree of the parity check polynomial, we derive the required length of
the keystream n to be

n � d + L = ( � Š 1)!
1

� Š 1 · 2
l

� Š 1 +
1

(2� Š 1� � )2 . (8.26)

For the stream cipher Grain we have l = 80 and � = 2 Š 9.678, and with
� = 3 the length of the keystream needed is

n � 240.5 + 2 54. (8.27)

Recall, in Section 8.2.1 we actually found 16 approximations, each of
which will lead to a different sequence i u, i = 1 , . . . , 16. But the parity check
function f � (·) will still remain the same. It means that at every time instance
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t eight samples can be received, instead of one. Therefore, the Þnal length
of the keystream required for the successful distinguishing attack is

nGrain � 16Š 1 · 254 = 2 50. (8.28)

We specify the distinguisher in Table 8.1.

Assume we found f � (x) = 1 + xa + xb = 0 , then:

I := 0

for t = 0 . . . 250 (time instances)

for i = 1 , . . . , 16 (16 approximations)

if (i ut + i ut + a + i ut + b) = i c then I := I + 1

if (I/ 254 Š 1/ 2) > (2Š 9.678/ 2)

then output : Grain

else output : Random source

where i c =

�
0, if approx. (8.10) has positive bias
1, otherwise

Table 8.1: The distinguisher for Grain.

8.5 Deriving the LFSR Initial State

In the former section, we have shown how to derive an arbitrary number
R of linear approximation equations in the l = 80 initial LFSR bits, of bias
� � 2Š 9.67 each, from a sufÞcient number of keystream bits. Let us denote
these equations by

n Š 1�

i =0

� j
i · yi = bj , j = 1 , . . . , R, (8.29)

where � j
i � F2.

In this section we show how to use these relations to derive the initial
LFSR stateY0. This can be seen as a decoding problem, up to the fact that the
code length is not Þxed in advance and one has to Þnd an optimal trade-off
between the complexities of deriving a codeword (i.e., collecting an appro-
priate number of linear approximation equations) and decoding this code-
word.
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An estimate of the number L of linear approximation equations needed
for the right value of the unknown to maximize the indicator

I = #
�

j � { 1, . . . , L }

�
�
�
�

n Š 1�

i =0

� j
i · yi = bj

.
, (8.30)

or at least to be very likely to provide say one of the two or three highest
values of I , can be determined as follows.

Under the heuristic assumption that for the correct (resp. incorrect)
value of Y0, I is the sum of L independent binary variables xi distributed
according to the Bernoulli law of parameters p = Pr { xi = 1 } = 1

2 Š �
and q = Pr { xi = 0 } = 1

2 + � (resp. the Bernoulli law of parameters
Pr{ xi = 1 } = Pr { xi = 0 } = 1

2 , mean value µ = 1
2 , and standard deviation

� = 1
2 ), L can be derived by introducing a threshold of say T = L( 1

2 + 3�
4 )

for I and requiring:

(i) that the probability that I is larger than T for an incorrect value of Y0

is less than a suitably chosen false alarm probability pfa .

(ii) that the probability that I is lower than T for the correct value is less
than a non detection probability pnd of say 1%.

For practical values of pfa , the Þrst condition is by far the most demanding.
Setting the false alarm rate to pfa = 2 Š l ensures that the number of false
alarms is less than 1 in average.

Due to the central limit theorem,
�

x i Š Lµ	
L�

is distributed as the normal
distribution, so that

Pr{
1
L

�
xi Š µ >

3�
4

} = Pr {
�

xi Š Lµ
�

L�
>

3
�

L�
4�

} (8.31)

can be approximated by 1	
2


/ + �
� eŠ t 2

2 dt, where � = 3
	

L�
2 . Consequently,

if L is selected in such a way that 3
	

L�
2 = � , i.e.

L =
�

2�
3�

� 2

, (8.32)

where � is given by:

1
�

2�

+ �0

�

eŠ t 2
2 dt = pfa = 2 Š l , (8.33)

then inequality (8.31) is satisÞed.
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A naive LFSR derivation method would consist of collecting L approxi-
mate equations, computing the indicator I independently for each of the 2l

possible values of Y0 and retaining those Y0 candidates leading to a value
of I larger than the L ( 1

2 + 3�
4 ) threshold. This method would require a low

number of keystream bits (say L +80
16 ) but the resulting complexity L · 280

would be larger than the one of exhaustive key search.
In the rest of this section, we show that much lower complexities can

be obtained by using the fast Walsh transform algorithm and a few extra
Þltering techniques in order to speed up computations of correlation indi-
cators. Former examples of applications of similar fast Fourier transform
techniques in order to signiÞcantly decrease the total complexity of correla-
tion attacks can be found in [Dod03,CJM02].

8.5.1 Use of the Fast Walsh Transform to Speed Up Correlation
Computations

8.5.1.1 Basic Method

Let us consider the following problem. Given a sufÞcient number M of
linear approximation equations of bias � involving m binary variables y0 to
ym Š 1, how to efÞciently determine these m variables? Let us denote these
M equations by

� m Š 1
i =0 � j

i · yj = bj , j = 1 , . . . , M . For a sufÞciently large
value of M , one can expect the right value of (y0, . . . , ym Š 1) to be the one
maximizing the indicator

I (y0, . . . , ym Š 1) =#
�

j � { 1, . . . , M }

�
�
�
�

m Š 1�

i =0

� j
i · yj = bj

.

=
L
2

+ 2 · S(y0, . . . , ym Š 1), (8.34)

where:

S(y0, . . . , ym Š 1) =#
�

j � { 1, . . . , M }

�
�
�
�

m Š 1�

i =0

� j
i · yi = bj

.

Š #
�

j � { 1, . . . , M }

�
�
�
�

m Š 1�

i =0

� j
i · yi �= bj

.
. (8.35)

Equivalently one can expect (y0, . . . , ym Š 1) to be the value which max-
imizes the indicator S(y0, . . . , ym Š 1). Instead of computing all of the 2m

values of S(y0, . . . , ym Š 1) independently, one can derive these values in a
combined way using fast Walsh transform computations in order to save
time.
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Let us recall the deÞnition of the Walsh transform. Given a real function
of m binary variables f (x1, . . . , xm Š 1), the Walsh transform of f is the real
function of m binary variables F = W (f ) deÞned by

F (u0, . . . , um Š 1) =
�

x 0 ,...,x m Š 1 �{ 0,1} m

f (x0, . . . , xm Š 1)(Š1)u0 x 0 + ... + um Š 1 x m Š 1 .

(8.36)

Let us deÞne the function s(� 0, . . . , � m Š 1) by:

s(� 0, . . . , � m Š 1) =#
1

j � { 1, . . . , M }
�
� (� j

0, .., � j
m Š 1)

= ( � 0, . . . , � m Š 1) � bj = 1
2

Š #
1

j � { 1, . . . , M }
�
� (� j

0, .., � j
m Š 1)

=( � 0, . . . , � m Š 1) � bj = 0
2

. (8.37)

The function s can be computed in M steps. Moreover, it is easy to check
that the Walsh transform of s is S, i.e.,

� (y0, . . . , ym Š 1) � { 0, 1} m , W (s)(y0, . . . , ym Š 1) = S((y0, . . . , ym Š 1)) . (8.38)

Therefore, the computational cost of the estimation of all the 2m values
of S using fast Walsh transform computations is M + m · 2m ; the required
memory is 2m .

8.5.1.2 Improved Hybrid Method

More generally, if m1 < m , one can use the following hybrid method be-
tween exhaustive search and Walsh transform in order to save space.

For each of the 2m Š m 1 values of (ym 1 , . . . , ym Š 1), deÞne the associated
restriction S� of S as them1 bit Boolean function given by

S�(y0, . . . , ym 1 Š 1) =#
�

j � { 1, . . . , M }

�
�
�
�

m 1 Š 1�

i =0

� j
i · yi =

m�

i = m 1

� j
i · yi � bj

.

Š #
�

j � { 1, . . . , M }

�
�
�
�

m 1 Š 1�

i =0

� j
i · yi �=

m�

i = m 1

� j
i · yi � bj

.
.

(8.39)
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It is easy to see that if we deÞne

s�(� 0, . . . , � m 1 Š 1) =#
�

j � { 1, . . . , M }

�
�
�
� (� j

0, . . . , � j
m 1 Š 1)

= ( � 0, . . . , � m 1 Š 1) �
m�

i = m 1

� j
i · yi � bj = 1

.

Š #
�

j � { 1, . . . , M }

�
�
�
� (� j

0, . . . , � j
m 1 Š 1)

= ( � 0, . . . , � m 1 Š 1) �
m�

i = m 1

� j
i · yi � bj = 0

.
,

(8.40)

then S� is the Walsh transform of s� .
Therefore, the computational cost of the estimation of all the 2m values

of S using this method is 2m Š m 1 L + m1 · 2m 1 . If we compare this with the
former basic Walsh transform method, we see that the required memory
decreases from2m to 2m 1 , whereas the time complexity remains negligible
as long asm1 � log2(M ).

8.5.2 First LFSR Derivation Technique

In order to reduce the LFSR derivation complexity when compared with the
naive method of complexity L ·2l , we can exploit more keystream to produce
more linear approximation equations in the unknowns y0 to yl Š 1, and retain
only those equations involving the m < l variables y0 to ym Š 1, i.e., which
coefÞcients in the l Š m variables ym to yl Š 1 are equal to 0.

Thus a fraction of about 2m Š l of the relations are retained and we have
to collect about L2l Š m approximate relations to retain L relations. This re-
quires a number of keystream bits of

L2l Š m + 80
16

. (8.41)

As seen in the former section, once the relations have been Þltered, the
computational cost of the derivation of the values of these m variables using
fast Walsh transform computations is about m2m for the basic method, and
more generally 2m Š m 1 (N + m12m 1 ) if fast Walsh transform computations
are applied to a restricted set m1 < m variables.

Thus, the overall time complexity of this method is

L2l Š m + m2m , (8.42)
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and more generally

L2l Š m + 2 m Š m 1 (L + m12m 1 ). (8.43)

Once the m variables y0 to ym Š 1 have been recovered, one can either
reiterate the same technique for other choices of the m unknown variables,
which increases the complexity by a factor of less than 2 if m 	 l

2 , or test
each of the 2l Š m candidates in the next step of the attack (NLFSR and key
derivation).

An estimate of the number L of equations needed is given by

L =
�

2�
3�

� 2

, (8.44)

where � is determined by the condition

1
�

2�

+ �0

�

eŠ t 2

2 dt = 2 Š m . (8.45)

This condition ensures that the expected number of false alarm is less than
1.

The minimal complexity is obtained for m = 49. For this parameter
value, we have � = 7 .87and L = 2 24. The attack complexity is about 255, the
number of keystream bits required is around 251, and the memory needed
is about 249.

8.5.3 Second LFSR Derivation Technique

An alternative method is to derive new linear approximation equations (of
lower bias) involving m < l unknown variables y0 to ym Š 1 by combining
the R available approximate equations of bias � pair-wise, and retaining
only those pairs of relations for which the l Š m last coefÞcients collide. One
obtains in this way about L � = R2 · 2m Š l Š 1 new afÞne equations in y0 to
ym Š 1, of bias � � = 2 � 2. The allocation of the m variables maximizing the
number of satisÞed equations can be found by fast Walsh computations as
explained in the former Section.

The number L � of relations needed is about
�

2�
3� �

� 2
, where � is determined

by the condition 1	
2


/ + �
� eŠ t 2

2 dt = 2 Š m . The required number R of rela-

tions of bias � is therefore R = ( L �2l Š m Š 1)
1
2 , and the number of keystream

bits required is about R+80
16 . The complexity of the derivation of the L � rela-

tions is max(R, L � ) = max(( L �2l Š m Š 1)
1
2 , L � ).
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Once the L � relations have been derived, the computational cost of the
derivation of the values of these m variables using fast Walsh transform
computations is about m · 2m for the basic method, and more generally
2m Š m 1 (L � + m1 · 2m 1 ) if fast Walsh transform computations are applied to a
restricted set m1 < m variables.

Thus the total complexity of the derivation of the m LFSR bits is:

max((L �2l Š m Š 1)
1
2 , L � ) + m2m , (8.46)

and more generally:

max((L �2l Š m Š 1)
1
2 , L �) + 2 m Š m 1 (L � + m12m 1 ). (8.47)

The minimal complexity is obtained for m = 36. For this parameter
value, we have � = 6 .65 and L � = 2 41. The attack complexity is about 243,
the number of keystream bits required is about 238 and the memory required
is about 242.

8.6 Recovering the NLFSR Initial State and the
Key

Once the initial state of the LFSR has been recovered, we want to recover the
initial state (x0, . . . , x79) of the NLFSR. Fortunately, the knowledge of the
LFSR removes the nonlinearity of the output function and we can express
each keystream bit zi by one of the following four equations depending on
the initial state of the LFSR:

zi = xi ,

zi = xi � 1,

zi = xi � x63+ i ,

zi = xi � x63+ i � 1. (8.48)

Since functions p and q underlying h� are balanced, each equation has
the same occurrence probability. We are going to use the non linearity of
the output function to recover the initial state of the NLFSR by writing the
equations corresponding to the Þrst keystream bits.

The 16 Þrst equations are linear equations involving only bits of the ini-
tial state of the NLFSR because63 + i is lower than 80.

To recover all the bits of the initial state, we introduce a technique which
consists of building chains of keystream bits. The equations for keystream
bits z17 to z79 involve either one bit of the LFSR ( zi = xi or zi = xi � 1) or
two bits ( zi = xi � x63+ i or zi = xi � x63+ i � 1). An equation involving only
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one bit allows us to instantly recover the value of the corresponding bit of
the initial state. This can be considered as a chain of length 0. On the other
hand, an equation involving two bits does not allow this because we do not
know the value of x63+ i (for i > 16).

However, by considering not only the equations for zi but also all the
equation for zk·63+ i for k 	 1, we can cancel the bits we do not know and re-
trieve the value of xi . With probability 1

2 , the equation for z63+ i involves one
single unknown bit. Then it provides the value of x63+ i and consequently
the value of xi . Here the chain is of length 1, since we have to consider one
extra equation to retrieve xi . The equation for z63+ i can also involve two
bits with probability 1

2 . Then we have to consider the equation of z2·63+ i ,
which can also either involve only one bit (we have a chain of length 2) or
two bits and we have to consider more equations to solve. Each equation
has a probability 1

2 to involve 1 or 2 bits. Consequently the probability that a
chain is of length l is 1

2l +1 and the probability that a chain is of length strictly
larger than l is 1

2l +1 .
We want to recover the values of x17, . . . , x79. We have to build 64 differ-

ent chains. Let us consider n = 63 · l bits of keystream. The probability that
one of the chains is of length larger than n is less than 64· 2Š l Š 1 and there-
fore less than 2Š l +5 . If we want this probability to be bounded by 2Š 10, then
l > 15 and n > 945sufÞces. Consequently a few thousands of keystream
bits are needed to retrieve the initial state of the NLFSR and the complexity
of the operation is bounded by 64· l .

Since the internal state transition function associated to the special key
and IV setup mode is one to one, the key can be efÞciently derived from
the NLFSR and LFSR states at the beginning of the keystream generation by
running this function backward.

8.7 Simulations and Results

To conÞrm that our cryptanalysis is correct, we ran several experiments.
First we checked the bias � of Section 8.2.1 by running the cipher with a
known initial state of both the LFSR and the NLFSR, computing the linear
approximations, and counting the number of fulÞlled relations for a very
large number of relations. For instance we found that one linear approxi-
mation is satisÞed 19579367 times out of 39060639, which gives an experi-
mental bias of 2Š 9.63, to be compared with the theoretical bias � = 2 Š 9.67.

To check the two proposed LFSR reconstruction methods of Section 8.5,
we considered a reduced version of Grain in order to reduce the memory
and time required by the attack on a single computer: we shortened the
LFSR by a factor of 2. We used an LFSR of size 40 with a primitive feedback
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polynomial and we reduced by two the distances for the tap entries of func-
tion h� : we selected taps number 3, 14, 24, and 33, instead of 3, 25, 46, and
64 for Grain.

The complexity of the Þrst technique for the actual Grain is 255 which is
out of reach of a single PC. For our reduced version, the complexity given
by the formula of Section 8.5.1 is only 235. We exploited the 16 linear ap-
proximations to derive relations colliding on the Þrst 11 bits. Consequently
the table of the Walsh transform is only of size 229. We used 15612260� 223

relations, which corresponds to a false alarm probability of 2Š 29. Our im-
plementation required around one hour to recover the correct value of the
LFSR internal state on a computer with a Intel Xeon processor running at
2.5 GHz with 3 GB of memory. The Walsh transform computation took only
a few minutes.

For the actual Grain, the second technique requires only 243 operations
which is achievable by a single PC. However it also requires 242 of memory
which corresponds to 350 GB of memory. We do not have such an amount
of memory but for the reduced version the required memory is only 229.
Since the complexity given by the formula of Section 8.5.3 is dominated by
the required number of relations to detect the bias, our simulation has a
complexity close to 243. In practice, we obtained a result after 4 days of
computation on the same computer as above and 2.5 · 1012 � 241 relations
where considered and allowed to recover the correct LFSR initial state.

Finally, we implemented the method of Section 8.6 to recover the NLFSR.
Given the correct initial state of the LFSR, and the Þrst thousand keystream
bits, our program recovers the initialisation of the NLFSR in a few seconds
for a large number of different initialisations of both the known LFSR and
unknown NLFSR. We also conÞrmed the failure probability assessed in Sec-
tion 8.6 for this method (which corresponds to the occurrence probability of
at least one chain of length larger than 15).

8.8 Summary

We have presented a key-recovery attack against Grain which requires 243

computations, 242 bits of memory, and 238 keystream bits. This attack sug-
gests that the following slight modiÞcations of some of the Grain features
might improve its strength:

€ Introduce several additional masking variables from the NLFSR in the
keystream bit computation.

€ Replace the nonlinear feedback function g in such a way that the asso-
ciated function g� be balanced (e.g. replaceg by a 2-resilient function).
However this is not necessarily sufÞcient to thwart all similar attacks.
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€ Modify the Þltering function h in order to make it more difÞcult to
approximate.

€ Modify the function g and h to increase the number of inputs.

Following recent cryptanalysis of Grain including the key recovery attack
reported here and distinguishing attacks based on the same kind of linear
approximations as those presented in Section 8.2 [Max06, KHK05] the au-
thors of Grain proposed a tweaked version of their algorithm [HJM05b],
where the functions g and h have been modiÞed. This new version of Grain
appears to be much stronger and is immune against the statistical attacks
presented in this chapter.

The results presented in this chapter have also inßuenced the design of
Grain-128 [HJMM06], a new 128 bit version of the cipher, where I am a co-
author.
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9

Statistical Analysis of “Dragon”

“If I could be a bird, I think I’d be a penguin,
because then I could walk around on two feet

with a lot of other guys like me”

Jack Handey

Dragon is a word oriented stream cipher [CHM + 05] submitted to the
eSTREAM project, designed by a group of researchers, Ed Dawson et

al. It is a word oriented stream cipher that operates on key sizes of 128 and
256 bits. The original idea of the design is to use a nonlinear feedback shift
register (NLFSR) and a linear part (counter), combined by a Þlter function to
generate a new state of the NLFSR and produce the keystream. The internal
state of the cipher is 1088 bits, which is updated by a nonlinear function
denoted by F . This function is also used as a Þlter function producing the
keystream. The idea to use a NLFSR is quite modern, and there are not
many cryptanalysis techniques on NLFSRs yet developed. Since the internal
state of the cipher is large (1088 bits), any kinds of TMTO attacks are not
applicable.

193
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The authors of Dragon propose to resynchronisethe stream after 264 words
are produced, i.e., every pair (K, IV ) can be used to generate a keystream
portion of size no more than 264 words.

REMARK : Let Dragon 0 be the cipher Dragon without the resynchronisation
requirement.

In this chapter we study the keystream from Dragon 0 and show a sta-
tistical weakness. One can Þnd samples from the keystream with the bias
around 2Š 77.5. We then propose two statistical distinguishers that distin-
guish Dragon 0 from a random source both requiring around
O(2155) words of the keystream. In the Þrst scenario the time complexity
is around O(2155+32 ) with the memory complexity O(232), whereas the sec-
ond scenario needs only O(2155) of time, but O(296) of memory. The attack
is based on a statistical weakness introduced into the keystream by the Þlter
function F .

When we have full Dragon, we can construct an advanced distinguisher
as described in Section 3.4.9, which has a positive advantage.

The outline of the chapter is the following. In Section 9.1 a short descrip-
tion of the stream cipher Dragon is given. Afterward, in Section 9.2, we
derive linear relations and build our distinguisher. In Section 9.3 we sum-
marize different attack scenarios on Dragon, and Þnally, in Section 9.4 we
present our results, make conclusions and discuss possible ways to over-
come the attack.

Notation and Cryptanalysis Assumptions

For notation purposes we use � and � to denote 32 bit parallel XOR and
arithmetical addition modulo 232, respectively. By x � k we denote a binary
shift of x by k bits to the right. We write x(t ) to refer the value of a variable x
at the time instance t. By PExpr we denote a distribution of a random variable
or an expression ÒExpr Ó.

To build the distinguishers, standard statistical assumptions can be made,
similar to Section 3.4.2.

(a) Assume that at any time t the internal state of NLFSR is from the uni-
form distribution, i.e., the words Bi are considered independent and
uniformly distributed.

(b) Assume that the samples collected from the keystream are independent.
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9.1 Short Description of Dragon

Dragon is a stream cipher constructed using a large nonlinear feedback shift
register, an update function denoted by F , and a memory denoted by M 1.
It is a word oriented cipher operating on 32 bit words, the NLFSR is 1024
bits long, i.e., 32 words long. The words in the internal state are denoted
by Bi , 0 � i � 31 . The memory M (counter) contains 64 bits, which is
used as a linear part with the period of 264. The cipher handles two key
sizes, namely 128 bits keys and 256 bit keys, in our attack we disregard the
initialisation procedure and just assume that the initial state of the NLFSR
is truly random.

Each round the F function takes six words as input and produces six
words of output, as shown in Figure 9.1.

a b c d e f

a' b' c' d' e' f'

H1 H2 H3

G1

G2

G3

Figure 9.1: The F -function of Dragon.

These six words, denoted by a, b, c, d, e, f, are formed from words of
the NLFSR and the memory register M , as explained in (9.1), where M =

1This is a rather new way to design stream ciphers, when two independent linear and non-
linear parts are combined by a Þlter function. Similar ideas are used in other proposals to
eSTREAM, e.g., stream cipher Grain and others.
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Input = { B0|| . . . ||B31, M }
1. (M L ||M R ) = M.
2. a = B0, b = B9, c = B16, d = B19, e = B30 � M L , f = B31 � M R .
3. (a� , b� , c� , d� , e� , f � ) = F (a, b, c, d, e, f).
4. B0 = b� , B1 = c�

5. Bi = Bi Š 2, 2 � i � 31.
6. M + +
7. k = a� ||e�

Output = { k, B0, . . . , B31, M }

Figure 9.2: DragonsÕs Keystream Generation Function.

(M L ||M R ).

a = B0 b = B9 c = B16

d = B19 e = B30 � M L f = B31 � M R
(9.1)

The F function uses six Z232 � Z232 S-boxes G1, G2, G3, H1, H2 and
H3, the purpose of which is to provide high algebraic immunity and nonlin-
earity. These S-boxes are constructed from two other Z28 � Z232 S-boxes,
S1 and S2, as shown below.

G1(x) = S1(x0) � S1(x1) � S1(x2) � S2(x3)

G2(x) = S1(x0) � S1(x1) � S2(x2) � S1(x3)

G3(x) = S1(x0) � S2(x1) � S1(x2) � S1(x3)

H1(x) = S2(x0) � S2(x1) � S2(x2) � S1(x3)

H2(x) = S2(x0) � S2(x1) � S1(x2) � S2(x3)

H3(x) = S2(x0) � S1(x1) � S2(x2) � S2(x3), (9.2)

where 32 bits of input, x, is represented by its four bytes asx = x0||x1||x2||x3.

The exact speciÞcation of theS-boxes can be found in [CHM + 05]. The
output of the function F is denoted as(a� , b� , c� , d� , e� , f � ), from which the two
words a� and e� forms 64 bits of keystream as k = a� ||e� . Two other output
words from the Þlter function are used to update the NLFSR as follows B0 =
b�, B1 = c� , the rest of the state is updated as B i = Bi Š 2, 2 � i � 31.
A short description of the keystream generation function is summarized in
Figure 9.2.
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9.2 Linear Analysis of Dragon 0

9.2.1 Linear Approximation of the Function F

Recall, at time t the input to the function F is a vector of six words

(a, b, c, d, e, f) = ( B0, B9, B16, B19, B30 � M L , B31 � M R ). (9.3)

The output from the function is (a� , b� , c� , d� , e� , f � ). To simplify further ex-
pressions let us introduce new variables.

b�� = b� a = B9 � B0,

c�� = c � (a � b) = B16 � (B9 � B0),

d�� = d � c = B19 � B16,

f �� = f � e = B30 � B31 � M L � M R . (9.4)

If the words denoted by B s are independent, then these new variables
will also be independent (since B19 is independent of B16 and random, then
d�� is independent and random as well; similarly, independence of B16 lead
to the independence of c�� , etc.).

The output from F can be expressed via(a, b�� , c�� , d�� , e, f �� ) as follows.

a� = ( a � f �� ) � H1(b�� � G3(e � d�� )) �
�

(f �� � G2(c�� )) �
�

c�� � H2(d�� � G1(a � f �� ))
� �

,

e� = ( e � d�� ) � H3(f �� � G2(c�� )) �
�

(d�� � G1(a � f �� )) �
�

(a � f �� ) � H1(b�� � G3(e � d�� ))
� �

.
(9.5)

Let us now analyse the expression for a� . The variable b�� appears only
once (in the input of H1), which means that this input is independent from
other terms of the expression, i.e., the term H1(. . .) can be substituted by
H1(r1), where r1 = f �� � G2(c�� ) is some independent and uniformly distrib-
uted random variable. A similar situation will happen when the function
H2 is considered.

We would like to approximate the expression for a� as

a� = a � Na, (9.6)

where Na is some non uniformly distributed noise variable. If we XOR both
sides with a and then substitute a� with the expression from (9.5), we derive

Na = a � (a � f �� ) � H1(r 1) �
�

(f �� � G2(c�� )) � (c�� � H2(r 2))
�

. (9.7)
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Despite the fact that G and H are Z232 � Z232 functions, they are not
likely to be one-to-one mappings (consider the way the S-boxes are used
as Z28 � Z232 functions 2) . It means that even if the input to a G or a H
function is completely random, then the output will still be biased. More-
over, the output from the expressions ( x � Gi (x) and similarly x � H i (x)) is
also biased, sincex in these expressions play a role in the approximation of
the Gi and the Hi functions. These observations mean that the noise vari-
able Na, is also biased if the input variables are independent and uniformly
distributed.

By a similar observation, the expression for e� can also be approximated
as follows.

e� = e � Ne, (9.8)

where Ne is the noise variable. The expression for Ne can similarly be de-
rived as

Ne = e � (e � d�� ) � H3(r 3) �
�

(d�� � G1(a�� )) � (a�� � H1(r 4)
�

, (9.9)

where a�� = a � f �� is a new random variable, which is also independent
since it has f �� as its component, and f �� does not appear anywhere else in
the expression (9.9). The two new variables r 3 and r4 are also independent
and uniformly distributed random variables by similar reasons.

9.2.2 Building the Distinguisher

The key observation for our distinguisher, is that one of the input words to
the Þlter function F , at time t is repeated as a part of the input to F at time
t + 15, i.e.,

e( t +15) = a(t ) � M (t +15)
L . (9.10)

Let us consider the following sum of two words from the keystream.

s(t ) = a�( t ) � e�( t +15) = ( a(t ) � N (t )
a ) � (a( t ) � M (t +15)

L � N (t +15)
e )

= N (t )
a � N (t +15)

e� �� �
N ( t )

tot

� M (t +15)
L . (9.11)

By this formula we show how to sample from a given keystream, so that
the samples s(t ) are from some nonuniform distribution PDragon of the noise

variable N (t )
tot (later this distribution is also referred to as PN ( t )

tot
). The col-

lected n samples s(t ) , t = 1 , 2, . . . , n form a type PType. Let the noise distrib-
ution be PDragon, and the uniform distribution be PRandom). We use (3.29) for a

2The cipher Turing uses similar Z232 � Z232 functions based on Z28 � Z232 S-boxes,
which can be regarded as a source of weakness. However, no attack was found on Turing so
far.
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rough estimate of the required number of samples n. We refer to Section 3.4
and, e.g., to [CHJ02,Gol94] for more details.

The remaining question is how to deal with the counter value ML . Below
we present a set of possible solutions that one could consider.

(1) Guess the initial state of the counter M (0) (in total 264 combinations),
and then construct 264 types from the given keystream, assuming the
value M (t )

L in correspondence to the guessed initial value of M (0) . How-
ever, it will increase the time complexity of the distinguisher by a factor
of 264.

(2) Guess the Þrst 32 bitsM (0)
R of the initial value of the counter M (0) , i.e.,

232 values. I.e., at any time t we can expressM (t )
L as follows.

M (t )
L = M (0)

L � � ( t ) , (9.12)

where � ( t ) is known at each time, since M (t )
R is known. Recall (9.11), the

noise variable N (t )
tot is expressed ass(t ) � M (t +15)

L . However, using (9.12)
this expression can be approximated as

s(t ) � (M (0)
L � � ( t +15) ) � s( t ) � (M (0)

L � � ( t +15) ) � N2, (9.13)

where N2 is a new noise variable due to the approximation of the kind
Ò� � � Ó. SinceM (0)

L can be regarded as a constant for every sam-
ple s(t ) , it only ÒshiftsÓ the distribution, and will not change the bias.
Consider that a shift of the uniform distribution is again the uniform
distribution, so, the distance between the noise and the uniform distrib-
utions will remain the same. This solution requires O(232) guesses, and
also introduce a new noise variable N2.

(3) Consider the sum of two consecutive samples s(t ) � s( t +1) . Since M L

changes slowly, then with probability (1Š 2Š 32) we have M (t )
L = M (t +1)

L ,
and this term will be eliminated from the expression for that new sam-
ple. Unfortunately, this method will decrease the bias signiÞcantly, and
then the number of required samples N will be much larger than in the
previous cases.

In our attack we tried different solutions, and based on simulations we
decided to choose solution (2) for our attack, as it has the lowest attack com-
plexity.

9.2.3 Calculation of the Noise Distribution

Consider the expression for the noise variable

s(t ) � M (t +15)
L = N (t )

a � N (t +15)
e . (9.14)
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For simplicity in the formula, we omit time instances for variables.

N (t )
tot = N (t )

a � N (t +15)
e = ( a � f �� ) � (a � d�� ) � H1(r 1) � H3(r3)�

�
� �

f �� � G2(c�� )
�

�
�
c�� � H2(r 2)

� �
�

� �
d�� � G1(a�� )

�
�

�
a�� � H1(r 4)

� �

(9.15)

We propose two ways to calculate the distribution of the total noise ran-
dom variable N (t )

tot . Let us truncate the word size to k bits (when we consider
the expression modulo 2k ), then in the Þrst case the computational complex-
ity is O(24k ) . This complexity is too high and, therefore, requires the noise
variable to be truncated by some number of bits k � 32, much less than 32
bits. The second solution has a better complexity O(k2k ), but introduces two
additional approximations into the expression, which makes the calculated
bias smaller than the real value, i.e., by this solution we can verify the lower
bound for the bias of the noise variable. Below we describe two methods
and give our simulation results on the bias of the noise variable N (t )

tot .

(I) Consider the expression (9.15) taken modulo 2k , for some k = 1 . . . 32.
Then the distribution of the noise variable can be calculated by the
following steps.

a) Construct three distributions, two of them are conditioned

P(G2 (c�� ) mod 2 k |c�� ) , P(G1 (a�� ) mod 2 k |a�� ) , P(H 1 (x ) mod 2 k )
3.

The algorithm requires one loop for c�� (a�� and x) of size 232. The
time required is O(3 · 232).

b) Afterwards, construct two more conditioned distributions

P(d�� � G1 (a�� )) � (a�� � H 1 ( r 4 )) mod 2 k |d�� )

and
P(f �� � G1 (c�� )) � (c�� � H 2 ( r 2 )) mod 2 k |f �� ) .

This requires four loops for d�� , a�� , x(= G1(a�� ) mod 2k ), and y(=
H1(r4) mod 2k ), which takes time O(24k ) (and similar for the sec-
ond distribution).

c) Then, calculate another two conditioned distributions

P(Expr1 |a) = P(( a� f �� ) � ( f �� � G1 (c�� )) � (c�� � H 2 ( r 2 )) mod 2 k |a) ,

P(Expr2 |a) = P(( a� d�� ) � (d�� � G1 (a�� )) � (a�� � H 1 ( r 4 )) mod 2 k |a) .

Each takes timeO(23n ).

3If the inputs to the H i functions is random, their distributions are the same, i.e., PH 1 =
PH 2 = PH 3 .
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d) Finally, combine the results, partially using FHT, and then calculate
the bias of the noise:

PN tot = P(Expr1 |a) � P(Expr2 |a) � PH 1 � PH 3 .

This will take time O(23k + 3 k · 2k ).

This algorithm calculates the exact distribution of the noise variable
taken modulo 2k , and has the complexity O(24k ). Due to such a high
computational complexity we could only manage to calculate the bias
of the noise when k = 8 and k = 10:

� I |k=8 = 2 Š 80.59

� I |k=10 = 2 Š 80.57
. (9.16)

(II) Consider two additional approximations of the second � to � in (9.15).
Then, the total noise can be expressed as

N (t )
tot = H1(r1) � H2(r2) � H3(r3) � H1(r4) �

�
G2(c�� ) � c�� �

�
�
G1(a�� ) � a�� � � N3 � N2,a � N2,e, (9.17)

where
N3 = ( a � f �� ) � (a � d�� ) � f �� � d�� ,

and N2,a and N2,e are two new noise variables due to the approxima-
tion � � � , i.e., N2,a = ( x � y) � (x � y), for some random inputs x
and y, and similar for N2,e. Introduction of two new noise variables
will statistically make the bias of the total noise variable smaller, but
it can give us a lower bound of the bias, and also allow us to operate
with distributions of size 232.

First, calculate the distributions P(H i ) , P(G1 (a�� ) � a�� ) and P(G1 (c�� ) � c�� ) ,
each taking time O(232). Afterward, note that the expressions for
N2,a , N2,e and N3 belong to the class of pseudo-linear functions modulo
2k (PLFM), which were introduced in Section 4.1. In the same chap-
ter, algorithms for construction of their distributions were also pro-
vided, which take time around O(� · 2n ), for some small � . The last
step is to perform the convolution of precomputed distribution tables
via FHT in time O(k2k ). Algorithms (PLFM distribution construction
and computation of convolutions) and data structures for operating
on large distributions are given in Section 4.1. If we consider k = 32,
then the total time complexity to calculate the distribution table for
Ntot will be around O(238) operations, which is feasible for a common
PC. It took us a few days to accomplish such calculations on a usual
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PC with memory 2Gb and 2 × 200Gb of HDD, and the received bias of
Ntot was

� II |k=32 = 2 Š 74.515. (9.18)

If we also approximate (M (0)
L � � ( t ) ) � (M (0)

L � � ( t ) ) � N2, and add
the noise N2 to Ntot , we receive the bias

� �
II |k=32 = 2 Š 77.5, (9.19)

which is the lower bound. Our distinguisher requires approximately
O(2155) words of keystream, according to (3.29).

9.3 Attack Scenarios

9.3.1 On Truncated Dragon 0

In the previous section we have shown how to sample from the given key-
stream, where 32 bit samples are drawn from the noise distribution with the
bias � �

II |k=32 = 2 Š 77.5. I.e., our distinguisher needs around O(2155) words
of keystream to successfully distinguish the cipher from random. Unfortu-
nately, to construct the type correctly we have to guess the initial value of
the linear part of the cipher, the lower 32 bits M (0)

R of the counter M . This
guess increases the time complexity of our attack to O(2187), and requires
memory O(232). The algorithm of our distinguisher for Dragon is given in
Table 9.1.

We, however, can also show that time complexity can easily be reduced
downto O(2155), if memory of size O(296) is available. Assume we Þrst
construct a table T [�][ s] = # { t 
 � mod 2 64, s( t ) = s} , where the samples
are taken ass(t ) = a�( t ) � e�( t +15) . Afterwards, for each guess of M (0)

L the
type PType(·) is then constructed from the table T in time O(296). Hence, the
total time complexity will be O(2155 + 2 32 · 296) � O(2155). This scenario is
given in Table 9.2.

9.3.2 On Full Dragon

One can derive an advanced distinguisher(see Section 3.4.9) for Dragon based
on multiple distinguishers for Dragon 0 built in the previous sections. The
derived bias of sampling is 2Š 77.5, and the time for ÒguessingÓ in Scenario I
takes the multiple of O(232) time. Resynchronisation runs after every 264

keystream words.
According to (3.61) for success with probability close to 1 we should have

around n � O(2278) samples, which is over the exhaustive search. However,
if, say, n � O(2253) samples are available, then this distinguisher will still
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for 0 � M (0)
R < 232

PType(x) = 0 , � x � Z232

� = 0 (or = Š1, if M (0)
R = 0 )

for t = 0 , 1, . . . , 2155

if (M (0)
R � t) = 0 then � = � � 1

s(t ) = a�( t ) � e�( t +15) � �

PType(s( t ) ) = PType(s( t ) ) + 1

I =
�

x � Z232
PType(x) · log2(PDragon(x)/ 2Š 32)

If I 	 0 break and output : Dragon

output : Random source

Table 9.1: The distinguisher for Dragon 0 (Scenario I).

for 0 � t < 2155

T [t mod 264][a�( t ) � e�( t +15) ] + +

for M (0)
R = 0 , . . . , 232 Š 1

for � = 0 , . . . , 264 Š 1

for x = 0 , . . . , 232 Š 1

PType

�
x �

�
(� � M (0)

R ) � 32
� �

+ = T[�][ x]

I =
�

x � Z232
PType(x) · log2(PDragon(x)/ 2Š 32)

If I 	 0 break and output : Dragon

output : Random source

Table 9.2: Distinguisher for Dragon 0 with lower time complexity
(Scenario II).
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have some advantage. The success probability can be calculated via formu-
las from Section (3.5.1). Roughly, the advantage of such a distinguisher for
Dragon will then be at least O(2Š 25). When the key of 256 bits is used, this
is slightly faster than the brute-force attack.

9.4 Summary

Two versions of a distinguishing attack on Dragon 0 were found. The Þrst
scenarios requires a computational complexity of O(2187) and needs mem-
ory O(232). However, the second scenario has a lower time complexity
around O(2155), but requires a larger amount of memory O(296).

However, when only one pair (K, IV ) can be used to generate the key-
stream of size 264, we could only Þnd a distinguisher which has an advan-
tage around O(2Š 25), and the keystream is O(2253), which is a slightly less
efforts than for an exhaustive search. For a cipher with a huge internal state
it still shows a potential weakness in the keystream, and shows its diver-
gence from a purely random number generator.

We give a few suggestions now to prevent Dragon from the described
weakness:

1) The linear part M changes predictably, when the initial state is known.
It might be more difÞcult to mount the attack if the update of M would
depend on some state of the NLFSR.

2) Another leakage is that two words a� ||e� are accessible to the attacker. If
we would have an access only to a� , or, may be, some other combina-
tion of the output from F (like, the output a� ||d� , instead), then it might
also protect the cipher from this attack. However, both these suggestions
have weaknesses for different reasons.

3) One more weakness are poorGi and Hi S-boxes. Perhaps, they can be
constructed in a different way, such that S-boxes to be closer to a one-to-
one mapping function.

A few other new stream cipher proposals to eSTREAM are based on
NLFSRs, which has not been extensively investigated so far. We believe
that it is important to study such primitives, since it could be an interesting
replacement for widely used LFSR based stream ciphers.

We believe that a potentially stronger chosen IV distinguishing attack
can be attached to the full Dragon. An attack with support of exploiting IV
difference might be more efÞcient than the one derived in this chapter.
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Concluding Remarks

“Happiness is not that blind
as it seems”

Russian Emperor, Ekaterina II

This thesis tries to accumulate linear cryptanalysis techniques on stream
ciphers; it presents information about theoretical analysis methods and

statistical processing of information extracted from the keystream of a stream
cipher. Different analysis issues are described for various scenarios. Addi-
tionally, various extended distinguishers are introduced, for example when
the noise distribution is unknown.

Moving from a binary to a multidimensional analysis yields a much bet-
ter result in cryptanalysis. However, when moving to a multidimentional
analysis one can meet technical problems with the implementation and the
evaluation of analysis algorithms. For several scenarios that cover most
cases in cryptanalysis, we provide necessary algorithms and data structures
that allowed us to overcome such technical problems. These techniques
gave us new results in cryptanalysis of different primitives, the examples of
which were also presented.

However, there are still open problems. For example, if a pseudo-linear
function could be extended with the operators � , � , � , � (shifts and ro-
tations), then we might have a powerful tool for Þnding collisions for hash
functions such as MD4/5 and SHA-0/1. Although nowadays stream ci-
phers attract much of scientiÞc attention, hash functions will obviously re-
ceive a closer look in the near future.

205
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A

Common Statistics in
Cryptanalysis

“I only know that I know nothing”

Socrates

A.1 One Sample Point Inference

Let us denote µ and � to be the meanand the varianceof the probability
mass function P, from where the sample xn is drawn. For the type Px

(which is constructed from the sample xn ) we deÞne the sample meanand
sample unbiased varianceas follows.

x =
1
n

n�

i =1

xi

s2 =
1

n Š 1

n�

i =1

(xi Š x)2. (A.1)

207
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Theorem A.1 (Central Limit Theorem (CLT)): A random sample x n satis-
Þes

x Š µ
�/

�
n

n 
�� N (0, 1), (A.2)

i.e.,

lim
n 
�

Pr{
x Š µ
�/

�
n

� z} = �( z). (A.3)

��

In the Theorem above �( x) is the cumulative density function for the
normal distribution N (0, 1), deÞned as

�( x) =
1

�
2�

x0

Š�

eŠ 1
2 y 2

dy

=
1
2

�
1 + erf(x/

�
2)

�
,

� Š 1(p) =
�

2 · erf Š 1(2p Š 1), (A.4)

and erf is the error functiondeÞned as

erf(x) =
2

�
�

x0

0

eŠ t 2
dt. (A.5)

Actually, when � is unknown but the number of samples n is large, peo-
ple often approximate the value � � s, i.e., the variation is itself estimated
along with the mean.

A.1.1 z-statistics

This statistic is applied when the variance � is known. The null-hypothesis
H0 is µ = µ0, and there can exist three different alternative hypothesis

€ H1 : µ > µ 0 Ð is a one-sided from the right hypothesis.

€ H1 : µ < µ 0 Ð is a one-sided from the left hypothesis.

€ H1 : µ �= µ0 Ð is a two-sided hypothesis.

The z-statistics is the value

z =
x Š µ0

�/
�

n
n 
�� N (0, 1), (A.6)
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which is N (0, 1) distributed if the hypothesis is true. The p value is the area
under the curvefor PDF of the normal distribution, for x larger or smaller
than z, or |x| just larger than z, depending on the alternative hypothesis
choice.

EXAMPLE A.1 (Two-Sided Z-Statistics):A sample of 40 sales receipts from a
grocery store has �µ = $137 and � = $30.2. We have two hypothesis

H0 :µ = 150,

H1 :µ �= 150, (A.7)

and require the signiÞcance level to be p� = 0 .01, i.e., 1% of a wrong answer
is allowed.

For the decision purpose, we Þrst calculate the statistic z

z =
137Š 150

30.2
�

40
= Š2.72. (A.8)

�3 �2 �1 0 1 2 3
0
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Figure A.1: The probability mass function of N (0, 1), and the rejec-
tion regions for the two-sided decision rule.

From Figure A.1 it is easy to see that we need to put half of p� in the left
tail, and the other half of p� in the right tail. Thus, the decision rule is

� =

�
H0, if |z| � 2.58

H1, if |z| > 2.58
(A.9)
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Since | Š 2.72| > 2.58, we conclude that the mean is signiÞcantly different
from $150, and reject the null hypothesis in favour of the alternative. ��

The conÞdence levelp� and the value of z are related as

p� = �( Š|z|). (A.10)

Typical values for z and the corresponding p-values are as follows.

ConÞdence interval 1 Š p� p� zp� / 2

0.90 0.10 1.645
0.95 0.05 1.96
0.99 0.01 2.58

When � is not known, but the number of samples n is large (n > 30),
then usually people approximate � � s, and continue with the z-statistic.

A.1.2 t-statistics

When the value of � is not known andthe sample size n is small (n < 30),
then a t-statistic is used:

t =
x Š µ0

s
�

n
� tn Š 1, (A.11)

where tn Š 1 is the StudentÕst-distribution with degree of freedom n Š 1. This
is a quite seldom example in cryptanalysis, and we give it for completeness.

A.2 One Sample Multi-Dimensional Inference

In the previous sections we have shown how to perform inference when one
parameter was enough to estimate. However, when many parameters have
to be tested, other methods can be used.

A.2.1 Chi-Square Test

Proving that two distributions are the same or different is an important task
for cryptanalysis. Chi-square test of signiÞcance provides necessary tech-
nique to establish a relevant hypothesis.

Let us have k bins (assume |X | = k) and n samples x1, x2, . . . , xn from
the population P. The samplesxn form the type Px . Let oi be the number
of observedevents in the i th bin, and ui is the number of expectedevents in the
same bin, according to P. Then the chi-square statistic is

� 2 =
k�

i =1

(oi Š ui )2

ui
=

�

x �X

(Px (x) Š P(x))2

P(x)/n
n 
�� P� 2

�
. (A.12)
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The chi-square probability density functionis as follows

P� 2
�
(x) =

xr/ 2Š 1eŠ x/ 2

�( r/ 2)2r/ 2
, (A.13)

where �( x) is the standard gamma function1

�( x) =

�0

0

tx Š 1eŠ t dt. (A.14)

The cumulative distribution function is then

Q� 2
�
(x) =

� (�/ 2, x/ 2)
�( �/ 2)

, (A.15)

where � (a, z) is the incomplete gamma functiondeÞned as

� (a, z) =

z0

0

taŠ 1eŠ t dt. (A.16)

In other words, it is the probability that the sum of � independent ran-
dom normalvariables of unit variance will be larger than � 2. Because of the
central limit theorem, when n is large, the variable (oi Š ui )2/u i tends to be-
have as normaly distributed. However, since this is an approximation of the
real distribution of the statistic, thus,

This statistic requires either a large number of binsk, or a large number of
samplesn;

then the chi-square statistic behaves rather close to � 2
� . If the number of

samples n is much larger than the number of bins k, then this statistics can
be fairly applied. The parameter � is the degree of freedom. If the sum of oi Õs
is equal to the sum of µi Õs (which is the usual case), then

� = k Š 1. (A.17)

If we make a hypothesis that the type Px is drawn from some priori
distribution P, then the error probability (or level of conÞdence) of such a
hypothesis is strongly related to the threshold that is chosen to compare the
statistic � 2 with. That threshold is also called the critical value� 2

crit for the
decision. For example, when � = 2 and maximum 5% of a error decision is
allowed, the threshold for the chi-square statistic should be at least 5.99, as
it can be seen in Figure A.2.
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Figure A.2: Theoretical sampling distribution of Chi-square when
the degree of freedom is 2.

In cryptanalysis, typical values for � are powers of 2, such as1, 2, 4, 8, . . ..
In Figure A.3 the probability (PDF) and cumulative (CDF) density functions
of � 2

� for typical values of freedom degree � are shown.

EXAMPLE A.2 (� 2 Test of Fitting [Rob]): Suppose at a sneaky casino they use
dice that are slightly biased as given in the expected frequency column be-
low. When the pit-boss gets a new die he performs the test to determine
whether or not the die is biased in the same way or not. After n = 120 times
of rolling the die, the pit-boss made up the following table ( k = 6 ).

Value Observed Expected
frequency frequency

1 20 24
2 23 24
3 19 18
4 26 22
5 18 14
6 14 18

1When x is a positive integer, �( x) = ( x Š 1)!.
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Figure A.3: Probability and cumulative density functions for � 2
� :

(a) PDF � 2
� =1 ,2,4,8,16 ; (b) CDF � 2

� =1 ,2,4,8,16 ; (c) PDF� 2
� =32 ,64,128 ,256 ;

(d) CDF � 2
� =32 ,64,128 ,256 .

So now we have two hypothesis as follows

H0 : observed values are like expected

H1 : observed values are different than expected. (A.18)

Let us have a signiÞcance levelp� = 0 .05. Then we have the � 2 value

� 2 =
(20 Š 24)2

24
+

(23 Š 24)2

24
+

(19 Š 18)2

18

+
(26 Š 22)2

22
+

(18 Š 14)2

14
+

(14 Š 18)2

18
� 3.5229, (A.19)
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where the degree of freedom is � = 5 . Consulting the tables for the � 2
� distri-

bution we see that the p-value is around 70% (here, p = Pr { � 2
5 > 3.5229} �

0.7), and it is more than 5%. Hence, we acceptH 0. ��

A.2.2 Kolmogorov-Smirnoff Test

The measured in the K-S test is simple: d is the maximum valueof the ab-
solute difference between two cumulative distribution functions, i.e.,

d = max
Š� <x 0 < �

|Px (X < x 0) Š P(X < x 0)|, (A.20)

where X is some random variable.
A central feature of K-S test is that it is invariant under reparameteri-

sation of X . The function that enters into the calculation of the conÞdence
level is the following sum

QKS (� ) = 2
��

j Š 1

(Š1)j Š 1eŠ 2j 2 � 2

, (A.21)

which is a monotonic function with QKS (0) = 1 and QKS (� ) = 0 . In terms
of this function, the signiÞcance level of d is then approximated as

Pr{ d > �d} = QKS

�
[
�

n� + 0 .12 + 0.11/
�

n� ]d
�

, (A.22)

where n� is the effective number of data points, n� = n for the case of one
distribution, and n� = n 1 n 2

n 1 + n 2
for the case when two types are compared with

n1 and n2 samples, respectively.

A.3 Convergence in Distribution

In this section we try to establish the relation between the sample size n, the
distance from the type Px to the priori population distribution P, and the
error probability of a decision rule p� for speciÞc cases.

A.3.1 Information Theoretical Approach

We again assume that we have some i.i.d. xn = ( x1, x2, . . . , xn ) sample of
n events from some distribution P over the domain X . The sample forms
the type Px . For some appropriately chosen parameter � 0 we deÞne the
decision rule as follows.

� (Px ) =

�
H0, if � (Px ||P) � � 0

H1, if � (Px ||P) > � 0
(A.23)
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Then the divergence between Px and P depends on n and its upper
bound is expressed by the following theorem.

Theorem A.2 (Theorem 12.2.1 from [CT91]):

p� = Pr { � (Px ||P) > � 0} � 2
Š n

�

� 0 Š|X |
log( n +1)

n

�

(A.24)

and consequently, � (Px ||P) � 0 with probability 1 as n � � . ��

From the theorem above the sample sizen is easy to derive if one consider

n
m.b.
	

Š log2 p� + |X | log(n + 1)
� 0

. (A.25)

For example, if n is around 2128, then one should assume the relation

n 	
Š log2 p� + 128|X |

� 0
. (A.26)

The decision rule can be bounded via another metric, statistical distance
of degree 1. If we set

� =

3
� 0 ln 2

2
, (A.27)

then we can derive the following expression:

Pr{| Px Š P| > � } = Pr {| Px Š P|2 > ln 2 · � 0/ 2}
(Lem .3.3)

� Pr{ � (Px ||P) > � 0}

(Th .A .2)
� 2

Š n
�

� 0 Š|X |
log( n +1)

n

�

(A.27)
= 2

Š n
�

2� 2

ln 2 Š|X |
log( n +1)

n

�

. (A.28)

A.3.2 Through the Relation to � 2 Test for � -Flat Distributions

Consider the case when the priori probability mass function is a � -�at func-
tion, deÞned as follows.

De�nition A.1: ( � -Flat Distribution) Distribution P over the probability
spaceX is called � -ßat if � x � X � P(x) = 1

|X | + � x , where |� x | � � , for
some Þxed� 	 0. ��
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Note that any distribution is 1-ßat, and 0-ßat distribution is the uniform
distribution. When the sample xn is drawn according to P from n trials, we
are interested in the error probability

p� = Pr {| Px Š P| > � } , (A.29)

where � is some parameter chosen in advance. I.e., the decision rule for our
hypothesis is

� (Px ) =

�
H0 : if |Px Š P| � �
H1 : if |Px Š P| > �.

(A.30)

To start with, consider the following intermediate ChebyshevÕs lemma.

Lemma A.3 (Chebyshev’s Sum Inequalities): If a1 	 a2 	 . . . 	 ak and
b1 	 b2 	 . . . 	 bk then

k
k�

i =1

ai bi 	

�
k�

i =1

ai

� �
k�

i =1

bi

�

. (A.31)

Similarly, if a1 	 a2 	 . . . 	 ak and b1 � b2 � . . . � bk then

k
k�

i =1

ai bi �

�
k�

i =1

ai

� �
k�

i =1

bi

�

. (A.32)

��

From these inequalities it follows that

k�

i =1

x2
i 	

1
k

�
k�

i =1

|xi |

� 2

, (A.33)

for any values of x1, . . . , xk , since we can simply sort xi Õs and then setai =
bi = xi . Recall the � 2 statistic from Section A.2.1. It behaves asP� 2

�
as long

as the number of samples n tends to inÞnity (actually, it is enough to have
n 	 35� ). For a typical cryptanalysis case, the degree of freedom� = |X |Š 1
is never large; for a byte-wise distribution it is � = 255. On the other hand,
the number of samples n is typically huge, such as n = 2 20, 250, 2100 . . ..
Therefore, in cryptanalysis we can apply the � 2 statistic rather safely. Recall
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the expression for the � 2 statistic,

� 2 = n ·
�

x �X

(Px (x) Š P(x))2

P(x)

(Def .A .1)
	

n
1

|X | + �

�

x �X

(Px (x) Š P(x))2

(A.33)
	

n

|X |
�

1
|X | + �

� (2 · |Px Š P|)2, (A.34)

behaving as P� 2
�

when n is large, independentlyof the priori distribution P.
Demanding that |Px Š P| should be at most � for the null hypothesis to be
accepted, the corresponding threshold for the statistic is then derived as

� 2
crit 	

4n� 2

1 + � |X |
, (A.35)

and, therefore, the decision rule is � (Px ) = H0 if � 2 � � 2
crit .

When � is negligible(i.e., � |X | is much less than 1), we can approximate
that decision rule as � (Px ) = H0 if � 2 � 4n� 2. I.e., the probability of success
is at least the probability Pr{ � 2 < 4n� 2} . Thus, we have

p� � 1 Š Q� 2
|X |Š 1

(4n� 2) = 1 Š
� (q,2n� 2)

�( q)
, (A.36)

where q = |X |Š 1
2 .

From Figure A.3 one can observe thatnegligible error probability is achieved
whenn is taken such that2: 4n� 2 	 2|� |, from where we conclude that the
sample sizen is well enoughto be around

n 	
|X |
2� 2 . (A.37)

EXAMPLE A.3 (Distribution Fitting Through Statistical Distance via� 2
� ):

Assume we collect n samplesxn from some priori probability density func-
tion P over the probability space X of size |X | = 256. The distribution P is
a � -ßat distribution with � � 1/ |X |. We would like to know how large the
number of samples n should be, so that the statistical distance |Px Š P| is
not more than � = 2 Š 55; what is the error probability?

2Actually, from Figure A.3 it is easy to see that the error probability is rapidly changed
from 1 to 0 when the critical threshold � 2

crit is around � . Thus, letting � 2
crit = 2 |� | we receive

a negligible error probability, around 2Š 50 (calculated in Matlab). This probability is larger
when � is small, and gets smaller when � increases.
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We just take n according to (A.37) as

n 	
256

2 · (2Š 55)2 = 2 117. (A.38)

The error probability is then calculated according to (A.36) as

p� � 1 Š Q� 2
255

(4 · 2117 · (2Š 55)2) � 2Š 100. (A.39)

However, if we would take n = 2 116 (that corresponds to � 2
crit � � ),

then the error probability will be signiÞcant, p� � 0.4706. This example also
shows that the found bound is rather tight. ��

A.4 Statistics for Correlation Attacks

A.4.1 On Bit Estimation

In Section 3.5.1 a classical scheme for a bit estimation is given. The proba-
bility of error for such a scenario is when the number of wrong bits in the
sequencezn is more than n/ 2. There are, basically, two possible ways to
calculate this probability.

A.4.1.1 Via Combinatorics

Let n0 = n/ 2 and # zn denotes the number of ones in the sequence, then we
have [MW06]:

perr = Pr { # zn 	 n0|X = 0 }

=
n�

k= n 0

�
n
k

�
(1 Š p)k pn Š k

= I 1Š p(n0, n Š n0 + 1) , (A.40)

where I p(a, b) is the incomplete beta functiondeÞned as

I p(a, b) =
1

B (a, b)

p0

0

taŠ 1(1 Š t)bŠ 1dt, (A.41)

and B (a, b) is the beta functiondeÞned as

B (a, b) =
�( a)�( b)
�( a + b)

, (A.42)



A.4. Statistics for Correlation Attacks 219

where �( n) is the gamma functiondeÞned in (A.14).
When n is large (and this is the usual case), then the easiest way to get

success and error probabilities is to use the tools of Matlab, such as

perr = betainc (1 Š p, n0, n Š n0 + 1)

= betainc (1 Š p, n/ 2, n/ 2 + 1)

psucc = betainc (p, n/ 2 + 1, n/ 2) (A.43)

A.4.1.2 Via Probability Theory

Let p = 1 / 2 + � and then 1 Š p = 1 / 2Š � , for some � > 0. Note that the error
probabilities for X = 0 and X = 1 , are the same. Therefore, we assume that
X = 1 . Then, the samplesxi satisfy Bernoulli distribution Be(1

2 + �, ( 1
2 +

� )( 1
2 Š � )) .
Let Sn =

� n
i =1 zi , then Sn � Bin 1

2 + � (k, n). When n is large then the
central limit theorem (CLT)tells us that

�
n( 1

n Sn Š µ)
�

� N (0, 1).

I.e.,Bin 1
2 + � (k, n) � N (µ, � ), with µ = n( 1

2 + � ), and � 2 = n( 1
4 Š � 2). The

error probability is then calculated as

perr = Pr { Sn < n/ 2|X = 1 } <
1

�
�

2�

n/ 20

Š�

eŠ (yŠ µ)2 / (2 � 2 ) dy

=
1
2

(
1 + erf

�
n/ 2 Š µ

�
�

2

�)
=

1
2

*

+1 + erf

�


 Š �
�

n/ 2
4

1
4 Š � 2

�




,

- , (A.44)

where erf(z) is the error functiondeÞned in (A.5).

EXAMPLE A.4 (Bit Estimation): Let p = 1 / 2 + 2 Š 20 and n = 2 38. Then by
the Þrst method (combinatorics) we have

perr � 0.1586 psucc � 0.8414. (A.45)

Whereas, by the second method we receive

perr < 0.1587, (A.46)

which is the upper bound for the error probability. Note that the values
from both methods are quite close to each other, it happens because when
n is large the binomial distribution is well approximated by the normal dis-
tribution. ��
















































