
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Neural Network Approaches To Survival Analysis

Kalderstam, Jonas

2015

Link to publication

Citation for published version (APA):
Kalderstam, J. (2015). Neural Network Approaches To Survival Analysis. [Doctoral Thesis (monograph)].
Department of Astronomy and Theoretical Physics, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/6b3fdf14-e854-424b-80e0-49f04cbcfef7

N E U R A L N E T W O R K
A P P R O A C H E S T O

S U RV I VA L A N A LY S I S

Jonas Kalderstam

2015

Thesis for the degree of Doctor of Philosophy

Department of Astronomy and Theoretical Physics
Faculty of Science
Lund University

Thesis advisor: Mattias Ohlsson
Faculty opponent: Azzam Taktak

To be presented, with the permission of the Faculty of Science of
Lund University, for public critiscism in Sal F at Fysicum, on the 29th
of May 2015 at 13:15.

D
O

K
U

M
E
N

T
D

A
T
A

B
L
A

D
en

l
S
IS

61
41

21

Organization

LUND UNIVERSITY
Department of Astronomy and
Theoretical Physics
Sölvegatan 14A
SE–223 62 LUND
Sweden
Author(s)

Jonas Kalderstam

Document name

DOCTORAL DISSERTATION
Date of issue

April 2015
Sponsoring organization

Title and subtitle

Neural Network Approaches to Survival Analysis

Abstract
Predicting the probable survival for a patient can be very challenging for many diseases. In many forms of
cancer, the choice of treatment can be directly impacted by the estimated risk for the patient. This thesis
explores different methods to predict the patient’s survival chances using artificial neural networks (ANN).

ANN is a machine learning technique inspired by how neurons in the brain function. It is capable of learning
to recognize patterns by looking at labeled examples, so-called supervised learning. Certain characteristics of
medical data make it difficult to use ANN methods and the articles in this thesis investigates different methods
of overcoming those difficulties.

One of the most prominent difficulties is the missing data known as censoring. Survival data usually orig-
inates from medical studies, which only are conducted during a limited time period for example during five
years. During this time, some patients will leave the study for various reasons like death by unrelated causes.
Some patients will also survive the study without experiencing cancer recurrence or death. These patients
provide partial information about the survival characteristics of the disease but are challenging to include in
statistical models.

Articles I–III, and V utilize a genetic algorithm to train ANN models to maximize (or minimize) non-
differentiable functions, which are impossible to combine with traditional ANN training techniques which
rely on gradient information. One of these functions is the concordance index, which compares survival pre-
dictions in a pair-wise fashion. This function is often used to compare prognostic models in survival analysis,
and is maximized directly using the genetic algorithm approach. In contrast, Article V tries to produce the best
grouping of the patients into low, intermediate, or high risk by maximizing, or minimizing the area under the
survival curve.

Article IV does not use a genetic algorithm approach but instead takes the approach to modify the underlying
data. Regular gradient methods are used to train ANNs on survival data where censored times are estimated
in a maximum likelihood framework.

Key words:
Artificial Neural Networks, Machine Learning, Survival Analysis, Genetic Algorithms, Evolutionary Algorithms

Classification system and/or index terms (if any):

Supplementary bibliographical information: Language

English
ISSN and key title: ISBN

978–91–7623–307–8
Recipient’s notes Number of pages

139
Price

Security classification

Distributor
Jonas Kalderstam, Department of Astronomy and Theoretical Physics
Sölvegatan 14A, SE–223 62 Lund, Sweden
I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation,
hereby grant to all reference sources the permission to publish and disseminate the abstract of the
above-mentioned dissertation.

Signature Date 2015-04-21

N E U R A L N E T W O R K
A P P R O A C H E S T O

S U RV I VA L A N A LY S I S

Jonas Kalderstam

Copyright © 2015 by Jonas Kalderstam
Printed in Sweden by Media-Tryck, Lund 2015

ISBN 978–91–7623–307–8 (print); ISBN 978–91–7623–308–5 (pdf)

S U M M A RY I N S W E D I S H

Denna avhandling behandlar artificiella neuron nätverk och deras ap-
plikation inom medicin. Den utgår ifrån att det är viktigt att kunna
uppskatta en patients överlevnadschanser för att kunna erbjuda rätt
behandling för olika former av cancer. Generellt kan man säga att ju
värre prognos desto mer omfattande behandling behöver man sätta
in. Vissa patienter kan botas med enbart kirurgi eller strålbehandling
medan andra även kräver tilläggsbehandling så som cytostatika (cell-
gifter). Eftersom behandlingen kan vara påfrestande är det givetvis
ett mål att inte överbehandla patienter. I vissa fall har man endast till-
räckligt med resurser för att erbjuda en viss andel av patienterna den
mer omfattande behandlingen. I båda fallen finns det ett stort behov
av att tillförlitligt kunna uppskatta en patients prognos.

Det finns en uppsjö av olika faktorer som påverkar överlevnad och
eventuell risk. Till exempel ökar många gånger koncentrationen av
PSA (äggviteämne som produceras i prostatans körtelceller) i blodet
vid prostatacancer och höga halter av östrogen och progesteron (två
hormoner) kan ge ökad risk för bröstcancer. Att blodprov skulle upp-
visa förhöjda nivåer av PSA eller östrogen är dock långt ifrån ett en-
tydigt bevis på förekomsten av cancer. Bättre prediktion är möjlig om
man även tar hänsyn till andra faktorer så som ålder eller genetik,
men det blir snabbt ohanterligt att kombinera fler än ett fåtal faktorer,
speciellt om man måste göra det med hänsyn till tusentals patienter.

I överlevnadsanalys försöker man lösa detta hjälp av statistiska mo-
deller som kan kombinera ett teoretiskt sätt obegränsat antal faktorer.
Ett sätt att skapa statistiska modeller är genom att använda sig av ma-
skininlärning, även kallat artificiell intelligens i vissa sammanhang.
Maskininlärning tillåter en dator att på egen hand lära sig att identifi-
era mönster och samband. Det är med hjälp av maskininlärning som
en dator kan tyda dina röstkommandon, posten kan sortera dina vy-
kort och du kan söka efter bilder hos Google. I avhandlingen ligger
fokus på en speciell metod inom maskininlärning kallad artificiella

v

neuron nätverk (ANN) och på hur man kan träna dessa nätverk för
applikationer inom överlevnadsanalys. Ett ANN är en förenklad mo-
dell av vår egen hjärna. Denna består av ett komplext nätverk av mil-
jarder nervceller kallade neuroner. I jämförelse består ett ANN oftast
av ett tiotal men ibland upp till flera tusen neuroner. Trots den högst
begränsade kapaciteten jämfört med en mänsklig hjärna är ANN väl-
digt kapabla att lära sig att hitta mönster i data.

En annan maskininlärningsteknik som är inspirerad av naturen är
genetiska algoritmer. En genetisk algoritm är en simulering av na-
turlig evolution där en population av modeller tillåts para sig och
generera nya modeller som är korsningar av sina “föräldrar”. Pre-
cis som i naturen förekommer det också slumpmässiga mutationer
som introducerar förändringar i avkommans “gener”. Genom att lå-
ta strukturen hos ANN representera generna kan datorn automatiskt
utveckla egna modeller.

Konventionella träningsalgoritmer för ANN kräver ofta att den fel-
funktion (ett mått på hur mycket fel modellen gör vid prediktion av
till exempel överlevnad) man försöker minimera kan deriveras, vilket
för prognostiska tillämpningar ofta innebär en begränsning. Kombi-
nationen av genetiska algoritmer och ANN gör det möjligt att bygga
prognostiska modeller på ett mer direkt sätt än vad som annars ha-
de varit möjligt. Detta eftersom en genetisk algoritm kan minimera
vilken felfunktion som helst.

vi

A C K N O W L E D G E M E N T S

First I must express my sincerest gratitude to my supervisor Mattias
Ohlsson and assistant-supervisor Patrik Edén. Mattias for always be-
ing available for questions or brain-storming and Patrik for always
delivering a fresh perspective. And thank you both for giving me
the freedom to make the research my own; not all would accept that
a PhD-student of 2-months would declare that their great new idea
really doesn’t work and then completely change the direction of the
project.

Thanks to Anders Irbäck for all the running adventures at St Hans
and Skrylle, to Karl Fogelmark for making me appreciate the impor-
tant things in life: Emacs and Free Software, to Michaela Reiter-Schad
for all the discussions about finishing our dissertations, and to Bettina
Greese for dragging our anti-social asses out to lunch once in while.

A special mention goes out to Jose Ribeiro who — when I explained
my ideas of going back to university — advised that a young man
such as myself must follow his heart.

Tobias Olsson, for tolerating my nonsense and for being a true friend
all these years,どうもありがとうございます。

I thank my family, Åsa, Magnus, and Mamma, for always supporting
me and making me believe that I can do anything.

Finally, the most deserving of my gratitude is probably Maria, with-
out whom I might never have pursued a PhD. Thank you for being
there, and for bursting my bubbles of delusion from time to time.

vii

P U B L I C AT I O N S

The thesis is based on the following publications:

I Jonas Kalderstam, Patrik Edén, Pär-Ola Bendahl, Carina
Strand, Mårten Fernö, and Mattias Ohlsson. “Training artificial
neural networks directly on the concordance index for
censored data using genetic algorithms”, Artificial intelligence in
medicine, vol. 58, no. 2, pp. 125–132 (2013)

II Jonas Kalderstam, May Sadik, Lars Edenbrandt, and Mattias
Ohlsson. “Analysis of regional Bone Scan Index measurements
for the survival of patients with prostate cancer”, BMC medical
imaging, vol. 14, no. 1, pp. 24 (2014)

III Jonas Kalderstam, Patrik Edén, and Mattias Ohlsson.
“Ensembles of genetically trained artificial neural networks for
survival analysis”, Proc. 21st European Symposium on Artificial
Neural Networks, Computational Intelligence And Machine
Learning, Bruges (Belgium, 2013)

IV Jonas Kalderstam, Patrik Edén, Johan Nilsson, and Mattias
Ohlsson. “A regression model for survival data using neural
networks”, LU TP 15-08 (submitted 2015).

V Jonas Kalderstam, Patrik Edén, and Mattias Ohlsson.
“Identifying risk groups by optimizing on the area under the
survival curve”, LU TP 15-09 (submitted 2015).

ix

C O N T E N T S

1 introduction 1
1.1 Artificial neural networks 2
1.2 Training a neural network 7
1.3 Training with genetic algorithms 12
1.4 Survival data . 14

2 overview of the articles 21
2.1 Training artificial neural networks directly on the concor-

dance index for censored data using genetic algorithms . . 21
2.2 Analysis of regional Bone Scan Index measurements for

the survival of patients with prostate cancer 22
2.3 Ensembles of genetically trained artificial neural networks

for survival analysis . 23
2.4 A regression model for survival data using neural networks 24
2.5 Identifying risk groups by optimizing on the area under

the survival curve . 26

I training artificial neural networks directly on
the concordance index for censored data using
genetic algorithms 31

I.1 Introduction . 32
I.2 Materials and methods . 34
I.3 Results . 44
I.4 Discussion . 50
I.5 Conclusion . 52
I.6 Acknowledgements . 53

II analysis of regional bone scan index measure-
ments for the survival of patients with prostate
cancer 57

II.1 Background . 58
II.2 Methods . 59

xi

xii Contents

II.3 Results . 64
II.4 Discussion . 69
II.5 Conclusions . 72

III ensembles of genetically trained artificial neu-
ral networks for survival analysis 77

III.1 Introduction . 77
III.2 Methods . 78
III.3 Results . 82
III.4 Discussion & Conclusions 84

IV a regression model for survival data using neu-
ral networks 87

IV.1 Introduction . 88
IV.2 Theory . 89
IV.3 Experimental methods . 93
IV.4 Results . 98
IV.5 Discussion . 100
IV.6 Conclusions . 103
IV.7 Acknowledgements . 103

V finding risk groups by optimizing artificial neu-
ral networks on the area under the survival
curve using genetic algorithms 107

V.1 Introduction . 108
V.2 Methods and Materials . 109
V.3 Results . 113
V.4 Discussion . 118
V.5 Acknowledgments . 120

index 123

Till Åsa,
som fick in mig på fysik

Begin with a function of arbitrary complexity. Feed it values, “sense data”.
Then, take your result, square it, and feed it back into your original

function, adding a new set of sense data. Continue to feed your results
back into the original function ad infinitum. What do you have? The

fundamental principle of human conscioussness.

Academician Prokhor Zakharov, “The Feedback Principle”.

1
I N T R O D U C T I O N

The idea of an intelligent machine is far from new — it is an-
cient. Hephæstus, blacksmith to the gods, is for example said to
have created various robotic servants for his workshop on Mount
Olympus. Today, artificial intelligence and machine learning are ev-
erywhere: computers automatically identify people in photos, inter-
pret our speech, recommend movies and books to us, and play chess.
This thesis deals with the application of machine learning in medicine,
specifically clinical decision support [1]. On hearing the terms machine
learning and clinical decision support, one might imagine a patient walk-
ing into a doctor’s office, inputting their symptoms and vital values
on a terminal, dispensing a drop of their blood, allowing a computer
to announce the most likely illness and suitable course of treatment
— but this is not the point at all. The goal is to assist clinicians in
determining the prognoses of patients, and to, in the long run, offer
treatment specifically suited for each individual.

Clinical decision support could mean several things but the one
aspect which is the focus of all the articles in this thesis is risk predic-
tion. In many clinical applications, the choice of treatment depends
on the prognosis [2]. In cancer, the treatments themselves can often
be more physically straining than the actual disease symptoms, and
it is naturally the case that doctors try to avoid subjecting patients to
them if possible. The great uncertainty in prognosis however means
that many are treated unnecessarily [3]. Developing better clinical de-
cision support systems could decrease the uncertainty in prognoses,
allowing treatment to be focused on the patients with the worst ex-
pected survival chances.

1

2 introduction

While there are many methods used in the machine learning field,
this thesis focuses on one in particular which is inspired by the hu-
man brain: artificial neural networks. In Section 1.1 I explain how
they work, followed by a discussion on how they are capable of learn-
ing on their own in Sections 1.2 and 1.3. Finally, in Section 1.4, I
conclude by discussing some issues specific to survival data.

1.1 artificial neural networks

Artificial neural networks [4], also commonly referred to simply as
neural networks, is an approach which is based on a very simple
and abstract version of how the original biological neural networks
in our brains function. Because it is inspired by the brain, we “know”
a priori that artificial neural networks ought to be incredibly useful
for machine learning and this is why it has enjoyed much publicity
and speculation over the years. Even in popular culture one can find
many references to neural networks: Lieutenant Commander Data
from Star-Trek: The Next Generation frequently mentions that his an-
droid brain is based on a neural net, and Skynet from The Termina-
tor is described as a neural network which becomes self-aware (and
promptly decides to exterminate humanity).

A neural network is made up by a collection of neurons. Each
neuron has a number of input and output connections to other neu-
rons called synapses. Biological neurons are able to send signals to
other neurons by “firing” electrical impulses via these connections.
Multiple impulses from different neurons might amplify or dampen
each other, depending on the synapses. With enough incoming sig-
nal strength, a neuron will “fire” and propagate the signal to other
neurons. There are a lot more details to biological neurons such as
ion-channels, sodium-levels, their relations to other nerve cells etc,
but these facts are irrelevant when describing an artificial neuron. All
that essentially matters is the propagation of the electrical signal. A
simple abstract representation of a biological neuron called a percep-
tron [5] can be seen in figure 1.1.

In this figure, the electrical signals have been replaced by simple
numbers. Bigger numbers represent stronger signals and just as an

artificial neural networks 3

Input

X2

X1

Y Output

Bias

ω2

ω1

ω0

Figure 1.1: A linear perceptron with inputs, and a bias which always out-
puts 1. Connection strengths are determined by weights ω. The
output of the perceptron is Y = ωo + ω1 · X1 + ω2 · X2.

electrical current has a polarity, the number can be either positive or
negative. Input signals are sent from the nodes marked X along the
connections (arrows) to the perceptron. The connections have differ-
ent strengths ω called weights which modulate the signals; making
them stronger/weaker and maybe changing their signs (polarity). At
last, the signals reach the perceptron, which does its own modulation
of the combined signal together with an already present current of
strength ω0 called the bias, and then re-transmits the final output sig-
nal. Mathematically, the process I have just described is quite straight-
forward:

Y(�X) = ω0 +
2

∑
i=1

ωi · Xi (1.1)

All incoming signals, or input values, are multiplied with correspond-
ing weights and then summed together with the bias weight. Even
with this abysmally primitive model of a one-neuron brain,1 we can
solve some simple problems such as building logic gates.

As you may or may not know, a computer at its very core is com-
prised of a complex network of logic gates. These gates individually
solve very simple problems but as a whole are capable of doing a
great deal of computation. Each gate takes a number of inputs which
are either 1 or 0. If we fix the number of inputs to two, figure 1.1 fits
perfectly as a model of such a gate. For each unique input pattern,
there is a corresponding target T, which also is either 1 or 0. Our per-

1 A human brain has 100 billion (1011) neurons, each connected to 7000 other neu-
rons [6], give or take.

4 introduction

X1 X2 T Y

0 0 0 −10

0 1 0 −4

1 0 0 −4

1 1 1 2

Table 1.1: AND-gate targets in T, replicated by a perceptron in Y with weights
�ω = {−10, 6, 6}. Y ≥ 0.5 is considered equivalent to T = 1, and
Y < 0.5 equivalent to T = 0.

ceptron’s output can take any value, so let us say that a value Y ≥ 0.5
is considered equivalent to 1, and any value Y < 0.5 is equivalent to
0. As a first example, let us take the AND-gate which only outputs 1
if both of its inputs are 1, otherwise it outputs 0. One set of weights,
making the perceptron replicate this gate, is: ω0 = −10, ω1 = ω2 = 6.
All possible inputs, target values, and corresponding perceptron out-
puts can be seen in table 1.1. Constructing a weight vector for the
OR-gate, which outputs 0 if all inputs are 0, or 1 if either input is 1, is
left as an exercise for the reader.

One logic gate which a single perceptron cannot solve [7] is the
exclusive-or (XOR). XOR outputs 1 if only a single input is 1, otherwise
it outputs 0. To understand why a perceptron cannot solve the XOR-
problem, we can express XOR with boolean algebra:

X1 ⊕ X2 = (X1 ∨ X2) ∧ ¬(X1 ∧ X2) (1.2)

Which reads “X1 exclusive-or X2 equals (X1 or X2) and not (X1 and
X2)”. In other words, the XOR-gate is made up by one OR-gate, two
AND-gates, and one NOT-gate (a NOT-gate merely turns 1 into 0, and 0
into 1).

To solve it we would need to connect several perceptrons (each
implementing a specific gate) and construct a multi-layer perceptron

artificial neural networks 5

(neural network). But multiple perceptrons can always be reduced to
just a single perceptron:

Y = ∑
j

ω̃j ∑
i

ω̂j,i · Xi = ∑
i

Xi

�
∑

j
ω̃j · ω̂j,i

�
= ∑

i
Xi · ωi (1.3)

So even though we have used the perceptron to create some logic
gates, we are unable to combine them to construct a functional com-
puter.2

To be able to construct a multi-layer perceptron, we’ll have to tweak
eq. 1.1 slightly by introducing an activation function (denoted by ϕ):

Y(�X) = ϕ

�
ω0 +

2

∑
i=1

ωi · Xi

�
(1.4)

So far, the perceptrons have used a linear activation function, e.g.
ϕ(x) = x. One non-linear activation function we can use instead is
the sigmoid function (also called the logistic function), an illustration
of which can be seen in figure 1.2:

ϕ(x) =
1

1 + exp (−x)
(1.5)

The sigmoid is merely a monotonic mapping from (−∞, ∞) to (0, 1)
(meaning that if xi < xj then ϕ(xi) < ϕ(xj)), so the weights which
made the perceptron function as an AND-gate still work.

Figure 1.3 shows a neural network implementing an XOR-gate as
described by eq. 1.2 using sigmoid activation functions, and the cor-
responding truth table is presented in table 1.2. This solution cannot
be reduced to a simple perceptron, courtesy of the sigmoid function.
A neural network such as this is also called a feed-forward neural net-
work because the neurons only connect from the inputs, towards the
outputs; there are no connections going back.

2 You can actually construct any gate, and hence a computer, using only NAND-gates
(NOT-AND) [8], which outputs 0 if both inputs are 1, and 1 otherwise.

6 introduction

x

ϕ(x)

0

0.5

1

−3 −2 −1 0 1 2 3

Figure 1.2: Illustration of the non-linear sigmoid activation function ϕ(x) =
1

1+exp(−x) .

X1 X2 T Y

0 0 0 0.08

0 1 1 0.87

1 0 1 0.87

1 1 0 0.04

Table 1.2: Truth table for the XOR-solution in figure 1.3. Y < 0.5 is considered
equivalent to T = 0, and Y ≥ 0.5 equivalent to T = 1.

The neurons are organized in layers.3 The first layer (to the left) is
the input layer, and is made up by the data. The last layer (to the
right) is the output layer. Any layers — and the neurons they con-
tain — located between the input and the output are called hidden.
The network in figure 1.3 has a single hidden layer with two hidden
neurons, which are connected to the inputs and the bias. The single
output neuron is then in turn connected to the hidden neurons and
the bias (and sometimes also to the inputs). There can be many hid-
den layers, but this is theoretically not any better than a single hidden
layer [9, 10].

The non-linearity of the sigmoid activation function mean we can
now make an arbitrarily complex neural network. In theory, we could

3 Some authors make the restriction that layers can only be connected to immediately
adjacent layers.

training a neural network 7

Input

X2

X1

ϕ

ϕ

ϕ Output

Bias

Bias

Bias

10

10

−1

−6

−6

10

6

6

−10

Figure 1.3: A neural network with a hidden layer containing two hidden
neurons. ϕ is the sigmoid activation function, and the weights
solve XOR exactly as the boolean expression in eq. 1.2. See also
table 1.2.

even build a computer by combining many networks, each imple-
menting a specific logic gate.

1.2 training a neural network

Having a complex neural network is no good unless we can find
appropriate weights for the connections. In the previous section, I
demonstrated a few manually constructed solutions to some fairly
simple problems. Manually constructing a solution to a more diffi-
cult problem would however be nigh on impossible. Take for exam-
ple something which comes natural to most of us: recognizing a face
in a picture. Facial recognition is something that humans excel at but
I challenge you to explain how you do it. Now you might think to
yourself something along the lines of “a face has eyes, a nose, and a
mouth”, to which I would ask how do you recognize an eye, or a nose for
that matter? How do you go from a picture, a collection of pixels, to
saying “that picture contains a face”? It is a question that most of us
are fundamentally unable to answer.

So how is it that we are able to recognize so many things around
us? No one ever tells children what a face is; they learn it on their

8 introduction

own. But, at some point someone does say to them “that is a chair”.
They do not explain how to visually identify an object as a chair, they
merely point to one. A child might point to a table and say “chair”
but then he would be corrected “no, that is a table”. Each “yes” or
“no” will alter the synapses in the child’s brain — altering the weights
of the neural network. This is an example of supervised learning and
we can use the same technique to teach an artificial neural network
to recognize things. Of course, one question is still how to alter the
weights of the network.

First, I have to introduce the concept of an error function. If you
look at table 1.2, T lists the correct answers, 1 (yes) or 0 (no), and Y
is the output from the neural network. Obviously, a perfect network
would output 0 and 1 instead of 0.08 and 0.87. So an output Y closer
to the target T would have less error. Let us define a total error E as
the sum of all (one for each row in the table) such differences:

E =
4

∑
i=1

(Ti − Yi)
2 (1.6)

I also took the liberty of squaring each difference. Squaring the values
mean that the minimum value is zero, which only a perfect solution
can achieve. It also means that it does not matter if a network is
outputting a Y too high, or too low; sign does not matter. Eq. 1.6 is
commonly known as the sum of squares error function. It works well
when we have access to exact target values because this means that
we know a priori what the output of a perfect network would be and
thus how far away our current network is from that solution.

Now, the clever bit enters the stage. We can calculate how we
should change a weight to make the solution better by simply dif-
ferentiating the error function with respect to a weight:

Δωi = −η
δE
δωi

(1.7)

This is called gradient descent [11], and η is just a small constant called
the learning rate. You can of course be increasingly clever, but all
gradient techniques are based on the principle that you move in the
decreasing direction of the derivative for as long as you can, and then

training a neural network 9

0 10 20 30 40 50 60 70 80

Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr
or

Figure 1.4: Using gradient descent to find a solution to the XOR-problem
starting from a completely random set of weights. Less than 80
weight adjustments (called epochs) were required to reduce the
error to basically zero. The final weights can be seen in fig. 1.5.

you have arrived at your solution. An example of gradient descent
is shown in figure 1.4 where less than 80 weight adjustments were
required to move an initially completely random network to a set of
weights which solve XOR. The weights can be seen in figure 1.5.

Gradient descent works very well if you have proper targets to train
on, but real data does not have simple ones and zeros as in the XOR-
problem, instead it is noisy and contains random fluctuations. If you
consider an actual XOR-gate, as in a piece of hardware made up by
transistors, its output is a voltage. If you were to measure this out-
put, you would note that it is not a constant 1V. Most measurements
would be close to 1V but some measurements would deviate4 to 0.9V,
or even be 1.2V. What we would expect is a random normal distribu-
tion of values centered around the true value (1V). If we had enough
measurements, we could simply average them all and the noise would
be canceled out.

But with limited data, a neural network would eventually learn
the noise specific to the training data, something that is called over-
training. Greater flexibility in a model, e.g. more hidden neurons,

4 Voltage differences are exaggerated for this example.

10 introduction

Input

X2

X1

ϕ

ϕ

ϕ Output

Bias

Bias

Bias

−1.8

−1.8

0.5

−415.0

−414.7

12.1

54.3

−234.1

−6.6

Figure 1.5: Weights found by doing gradient descent on XOR.

increases the possibility of over-training. However, it is possible to
turn it to our advantage by combining many different models into an
ensemble [12]. By averaging the model predictions, the ensemble will
perform better than the average model. This effect is also commonly
referred to as the wisdom of the crowds in other contexts [13]. The
ensemble effect is visible in figure 1.6, where each individual neu-
ral network gets to train on the XOR-data in table 1.2 with gaussian
random noise added to the targets; resulting in target vectors such
as {−1.47,−0.89,−0.03, 1.9}. They are then tested on the true data
where there is no noise ({0, 1, 1, 0}) to see if they learned the noise
or the XOR-logic. To prove my point, any networks that do manage to
learn the XOR-logic are discarded and only the rest are combined into
an ensemble. No individual network is capable of correctly solving
the problem but as you can see in the figure, as the ensemble grows
the success rate increases. To make sure each member gets to train on
different noise in a real setting, you could add random noise to the
data as I have done here but usually you would randomly pick pieces
of the data to train on for each member, so-called bagging [14].

Gradient methods are fast and efficient but some problems cannot
be defined with differentiable error functions.

training a neural network 11

0 20 40 60 80 100

Ensemble size

0.0

0.2

0.4

0.6

0.8

1.0

X
O
R
su
cc
es
s-
ra
te

Figure 1.6: Making an ensemble from individual networks is very efficient.
Here the size of the ensemble is shown along the x-axis, and
the rate of success is shown along the y-axis. Each point is an
average of 100 repetitions. Note that the training data is noisy
and no individual network is capable of solving the non-noisy
problem; while an ensemble of 40 networks has an 80% success-
rate and 100 networks has a 99% success-rate.

12 introduction

X2

X1

ϕ

ϕ

ϕ

Bias

Bias

Bias

10

10

−1

−6

−6

10

6

6

−10

−1 10 10 10 −6 −6 −10 6 6

Corresponding genome of network:

Figure 1.7: A neural network’s weights can be written as a vector which can
be used as the genome in a genetic algorithm.

1.3 training with genetic algorithms

Luckily, it is still possible to train a network even without gradient
information. One way of doing this is using a genetic algorithm [15],
sometimes also referred to as an evolutionary algorithm. Much like
neural networks are abstract simple versions of human brains, a ge-
netic algorithm encodes the gist of natural selection [16], where the
strongest and most adapted individuals are more likely to repro-
duce and pass on their genes. The genes of a neural network are
its weights [17] and they can be encoded into a genome by writing
them as a vector in a predetermined order, as illustrated by figure 1.7.

Instead of training a single network as during gradient descent, a
genetic algorithm generates a population of networks and each net-
work’s fitness is assessed using an error function, called a fitness func-
tion in this context. The networks having the highest fitness (lowest
error) are more likely to be selected for breeding. Breeding two net-
works means producing offspring: a third (or more) network which
is a mix between the two parent networks. Just as a child inherits half
of its chromosomes from each parent [18], a neural network will in-

training with genetic algorithms 13

herit some weights from each parent network. Mixing two genomes
is referred to as crossover. Even though the population may start out
with completely random weights, networks with better fitness will
evolve over time. The size of the population is usually kept constant,
so to make room for the new generation every new-born network
means the death of the least fit network in the population. A gen-
eration is said to have elapsed when a population has given birth to
as many children as there are networks in the population. Over suc-
cessive generations, it is highly probable that a dominant “bloodline”
will emerge and take over the entire population. This will lead to in-
breeding, which is why crossover alone is not enough for the genetic
algorithm to be successful. Crossover is furthermore not enough if
all individuals in the population lacks a certain gene, vital for the
solution. As an example, take a population of humans who all have
brown eyes. If no one in the population carries the gene for green
eyes, then it does not matter how long you wait; no children with
green eyes will ever be born. That is, unless a child is born with a
mutation.

In nature, many mutations are either harmless or have a negative
impact on the individual. Some however give rise to useful adapta-
tions to the environment. Mutation is the reason some adult humans
are able to digest milk [19], but it is also the cause of certain genetic
disorders such as color blindness [20] and accelerated aging (Proge-
ria) [21]. In the genetic algorithm, mutation promotes population
diversity. Crossover will otherwise reduce the genetic diversity over
time as in-breeding becomes more common. Also, as in the example
with eye color, mutation is necessary in order to introduce otherwise
missing genes. A simple way of introducing mutation into neural net-
works is to randomly change some weights in children after crossover.
For example, for each new-born network, select one weight at ran-
dom, and add a random number which is picked from the normal
distribution:

ω� = ω + R (1.8)

Most random numbers will be very close to zero, and so most mu-
tations will only barely effect the networks. But, some can be just

14 introduction

Crossover Mutation

Figure 1.8: Generation of offspring in the genetic algorithm. First, two par-
ents are selected at random (but individuals with better fitness
are more likely to be selected). The genes of the two parents are
colored differently in-order to trace their origin throughout the
process. Second, crossover is performed on the parents. Here a
pivot point is selected between the second and third genes. Each
offspring gets one side of the pivot point from each parent. Third,
the offspring are subjected to random mutations before being in-
serted into the population.

enough of a nudge “in the right direction”, increasing the fitness of
the offspring. Figure 1.8 illustrates the how two parents can give rise
to two offspring. Here, a pivot point is randomly selected between
the second and third genes. After crossover, one offspring has the
first two genes of its mother and the last three genes from its father,
while the second offspring sports the opposite set. Then, some ran-
dom mutations are introduced: the first offspring gets its third gene
mutated, and the second offspring gets its fifth gene mutated. The
final result is two offspring which are similar, but not quite identical
to their parents. Note that even if the two parents were genetically
identical, mutation would ensure that the offspring were not.

A genetic algorithm is a flexible optimization method with few con-
straints. This freedom means that you could in theory use a genetic
algorithm to figure out the best solution to many problems which are
difficult to express mathematically. Two such examples are designing
electronic circuits [22] and designing race cars [23]. A third example
is ranking cancer patients according to survival chance [2].

1.4 survival data

Previous sections have demonstrated how neural networks can be
constructed and trained to solve problems. Specifically, I showed a

survival data 15

few designs and corresponding sets of weights that would answer
questions such as “are both inputs active?” (AND), and “Is only one
input active?” (XOR). The exact same approach can be used to answer
a more clinical question like “is this patient, given these test results,
at risk of dying from cancer?”.

For the data sets used in this thesis, the endpoint of interest is
typically death or cancer recurrence. If this were all, then training a
neural network would be easy and not much different from training
on the XOR-problem. What complicates matters is that a patient can
exit the study for reasons other than the endpoint of interest. This
patient is then said to be censored. To give a grim example, consider
a patient which is part of the study for one year and then gets run
over by a bus. The patient has now exited the study for reasons other
than cancer-related death. The complication arises because now we
have partial information and it is not obvious how to take that into
account because there is no target variable to train on in this case.
We know the patient was alive one year into the study, but have no
idea on what would have happened next. A more cheerful example
of censoring is when people simply survive the study, referred to as
tail-censored as they make up the end of the survival time distribution.
For many kinds of cancer, a substantial fraction of the patients will
not die or have recurrence during the medical study’s limited time
frame. Ironically, improved treatment methods during the last fifty
years have meant that more people are censored from studies, making
future data analysis more difficult and studies more expensive.

When approached from a statistical perspective, censoring is con-
sidered to be uninformative [24], e.g. random and uncorrelated from
the true survival time. A naive approach to dealing with this might
be to simply discard all censored times and train your neural net-
works directly on the remaining non-censored times, but this would
introduce a bias in the model. It is most apparent when you con-
sider discarding a chunk of tail-censored patients from the data set.
You would be removing the healthiest individuals from the data set:
those that survived, and thus train only on the ones with the worst
prognoses. If the goal is to identify the ones with the best prognoses
to avoid over-treating them, this is clearly not a bright idea. A sub-
stantial part of the available data can also be censored. Figure 1.9

16 introduction

0 2 4 6 8 10

Time in years

0.0

0.2

0.4

0.6

0.8

1.0

D
is
ea
se

fr
ee

All

Non-censored

All 2695
N-C 732

2371
459

1915
224

1399
104

984
32

636
0

At risk

Figure 1.9: Kaplan-Meier plot of disease free survival in breast cancer [2].
The solid lines includes all patients in the data set (2695), while
the dashed line only includes the non-censored individuals (732).
All patients start at year 0 after the tumor(s) was removed sur-
gically. Over time, patients are removed from the data due to
cancer recurrence or are censored.

illustrates how the survival in a data set looks if the censored individ-
uals are ignored. For the data sets used in this thesis, typically 50%
or more patients are censored. One data set [25] even has more than
87% censoring. Discarding them would make smaller data sets all but
disappear.

A further complication arises when you consider what kind of error
function to use. The partial nature of censored survival times make
something like the sum of squares unusable. This goes for all statis-
tical models and not just ANN. One performance measure which is
often used in medical statistics is Harrell’s concordance index [26] (c-
index). The c-index is a measure of how well a model is able to sort,
or rank, the patients. It is a number which is calculated by comparing
all predictions and survival times pair-wise:

C =

∑
i,j∈V

c(i, j)

|V| (1.9)

survival data 17

Survival Time

T1

Invalid cen-
soring times

Valid censoring
times

T2

Figure 1.10: In dashed, the censoring range which would invalidate the pair
from inclusion in calculation of the concordance index. Solid
line indicates where censoring still makes it a valid pair. If none
are censored, then any pair of times are valid.

You count the number of valid pairs (i, j in V) of predictions that are
in concordance (c(i, j)) with the corresponding event times, and then
divide by the number of valid pairs (|V|). Concordance means that
if event times Ti < Tj, then the corresponding predictions τi < τj. A
pair is valid if either none of Ti and Tj are censored, or if one of them
is censored after the event time. This is also illustrated in figure 1.10.

The c-index is a number between 0 and 1 where 1 means the model’s
predictions results in a perfect sorting of the patients according to sur-
vival time. 0 means a perfect reversed sorting, so multiplying predic-
tions by -1 results in perfect ranking. 0.5 is the expected result for a
completely random ordering. It is not a differentiable function, which
rules out using it as an error function in gradient descent but it can
be used as the fitness function in a genetic algorithm. That means a
neural network can be trained to rank patients according to survival
time. The output of such a model is referred to as a prognostic index
(or sometimes prognostic score). An accurate prognostic index could
be used in a clinical setting to differentiate treatment, or to stratify
groups according to risk in a phase-2 trial [27].

Hopefully, you should by now have some idea of how neural net-
works can be trained into prognostic models. The next chapter pro-
vides an overview of the articles, summarizing the goals and method-
ologies, and outlining the results.

18 introduction

references

1. E. S. Berner, Clinical decision support systems: theory and practice.
Springer Science & Business Media, 2007.

2. J. Kalderstam, P. Edén, P.-O. Bendahl, C. Strand, M. Fernö, and
M. Ohlsson, “Training neural networks directly on the concor-
dance index for censored data using genetic algorithms,” Artificial
Intelligence in Medicine, vol. 58, no. 2, pp. 125–132, 2013.

3. L. J. Esserman, I. M. Thompson, and B. Reid, “Overdiagnosis and
overtreatment in cancer: an opportunity for improvement,” Jama,
vol. 310, no. 8, pp. 797–798, 2013.

4. W. S. McCulloch and W. Pitts, “A logical calculus of the ideas im-
manent in nervous activity,” The bulletin of mathematical biophysics,
vol. 5, no. 4, pp. 115–133, 1943.

5. F. Rosenblatt, “The perceptron: a probabilistic model for informa-
tion storage and organization in the brain.,” Psychological review,
vol. 65, no. 6, p. 386, 1958.

6. D. A. Drachman, “Do we have brain to spare?,” Neurology, vol. 64,
no. 12, pp. 2004–2005, 2005.

7. M. Minsky and S. Papert, “Perceptron: an introduction to com-
putational geometry,” The MIT Press, Cambridge, expanded edition,
vol. 19, p. 88, 1969.

8. C. Peirce, M. Fisch, and C. Kloesel, Writings of Charles S. Peirce:
1879-1884. Writings of Charles S. Peirce, Indiana University Press,
1989.

9. G. Gybenko, “Approximation by superposition of sigmoidal func-
tions,” Mathematics of Control, Signals and Systems, vol. 2, no. 4,
pp. 303–314, 1989.

10. K. Hornik, “Approximation capabilities of multilayer feedfor-
ward networks,” Neural networks, vol. 4, no. 2, pp. 251–257, 1991.

11. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” NATURE, vol. 323, p. 9,
1986.

12. P. S. A. Krogh, “Learning with ensembles: How over-fitting can
be useful,” in Proceedings of the 1995 Conference, vol. 8, p. 190, 1996.

13. C. Mackay, Extraordinary Popular Delusions and the Madness of
Crowds. Barnes & Noble Publishing, 2004.

References 19

14. L. Breiman, “Bagging Predictors,” Machine Learning, vol. 24, no. 2,
pp. 123–140, 1996.

15. D. E. Goldberg, Genetic algorithms in search, optimization, and ma-
chine learning. Addison-Wesley, Reading, MA, 1989.

16. C. Darwin, On the Origin of the Species by Natural Selection. Murray,
1859.

17. D. J. Montana and L. Davis, “Training feedforward neural net-
works using genetic algorithms,” in Proceedings of the 11th inter-
national joint conference on Artificial intelligence - Volume 1 (N. S.
Sridharan, ed.), IJCAI’89, (San Francisco, CA, USA), pp. 762–7,
Morgan Kaufmann Publishers Inc., 1989.

18. W. S. Sutton, “The chromosomes in heredity,” The Biological Bul-
letin, vol. 4, no. 5, pp. 231–250, 1903.

19. F.-Z. Chung, H. Tsujibo, U. Bhattacharyya, F. S. Sharief, and S. Li,
“Genomic organization of human lactate dehydrogenase-a gene.,”
Biochem. J, vol. 231, pp. 537–541, 1985.

20. M. Albrecht, “Color blindness,” Nature methods, vol. 7, no. 10,
pp. 775–775, 2010.

21. J. K. Sinha, S. Ghosh, and M. Raghunath, “Progeria: A rare ge-
netic premature ageing disorder,” The Indian journal of medical re-
search, vol. 139, no. 5, p. 667, 2014.

22. G. W. Greenwood and A. M. Tyrrell, Introduction to evolvable hard-
ware: a practical guide for designing self-adaptive systems, vol. 5. John
Wiley & Sons, 2006.

23. F. Castellani and G. Franceschini, “Use of genetic algorithms as
an innovative tool for race car design,” tech. rep., SAE Technical
Paper, 2003.

24. J. D. Kalbfleisch and R. L. Prentice, The statistical analysis of failure
time data, vol. 360. John Wiley & Sons, 2011.

25. N. E. Breslow and N. Chatterjee, “Design and analysis of two-
phase studies with binary outcome applied to wilms tumour
prognosis,” Journal of the Royal Statistical Society: Series C (Applied
Statistics), vol. 48, no. 4, pp. 457–468, 1999.

26. F. E. Harrell, R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati,
“Evaluating the yield of medical tests,” Jama, vol. 247, no. 18,
pp. 2543–2546, 1982.

20 introduction

27. M. R. Segal, “Regression trees for censored data,” Biometrics,
pp. 35–47, 1988.

2
O V E RV I E W O F T H E A RT I C L E S

In Articles I–III neural networks are trained to maximize the c-index
using a genetic algorithm. Article V also features a genetic algorithm,
but it optimizes the area under the survival curve instead in order to
predict risk groups. A gradient method is used in Article IV to train
on survival times which are estimated using a maximum likelihood
approach.

2.1 training artificial neural networks directly on the
concordance index for censored data using genetic
algorithms

Censored data often means that prognostic models are evaluated us-
ing the concordance index (c-index) [1]. Using machine learning
methods to generate prognostic models is then often challenging be-
cause the c-index is not differentiable, and machine learning usually
uses some kind of gradient method [2] to train the models. A com-
mon workaround is to construct a function which is similar to the
c-index, but also differentiable [3], which allows common gradient
methods to be applied. In this article, we generate a prognostic model
using neural networks by modifying the training method instead. By
using a genetic algorithm [4, 5], we are able to use the c-index itself
as the error function during training.

Each neural network outputs an arbitrary number which can be
used to sort the patients according to survival. Because each network
will have its own arbitrary scale, making an ensemble of many such
networks is not possible by the usual method of averaging results. We

21

22 overview of the articles

introduce the concept of a normalized relative rank to allow an ensem-
ble [6] to be created. By comparing each network prediction to its
own outputs on the training data, a rank relative to the training data
can be calculated. By dividing by the size of the training data, a nor-
malized rank between 0 and 1.0 is achieved which can be averaged in
the ensemble result.

Our neural network model is compared to the well-known Cox
proportional hazards model [7] on two data sets: one artificial, and
one clinical. The artificial data set is constructed so as to be unsolv-
able by the Cox model in-order to demonstrate the neural network’s
advantage to detect non-linear correlations in the data and that our
training method actually works in practice. The clinical data set is an
amalgamation of 5 different medical studies [8–12]; all dealing with
recurrence of breast cancer.

The results indicate that a linear model works best for the clinical
data set. In terms of c-index, the two models are nearly identical and
the difference is not statistically significant. This means that neural
networks, in combination with the genetic training approach, are at
least as good as the Cox model on linear data. But the ability to also
exploit non-linear correlations, if they are there, makes the neural
network approach ultimately more flexible.

My contributions

I did much of the theoretical work, performed all computational work,
generated figures 3–8, and co-authored the manuscript.

2.2 analysis of regional bone scan index measurements
for the survival of patients with prostate cancer

In prostate cancer, as in many other forms of cancer, an advanced
state of the disease will have tumors spreading to the skeleton of the
patient. These bone metastases have a severely negative impact on the
survival [13, 14]. A common method for monitoring bone metastases
is a bone scan. By scanning the skeleton, the tumor burden can be
measured and calculated as a percentage of total skeletal mass, a so-

ensembles of genetically trained ann 23

called bone scan index (BSI) [15]. Previous studies have shown that
the BSI is correlated with survival in prostate cancer [16–18] but the
question if tumor location plays a role is less known [19, 20]. This
work tries to answer the question if it makes a difference where the
tumors are located from the point of view of survival.

An automated method [21] for analyzing bone scan images was
used to compute BSI values in twelve skeleton regions for 1013 pa-
tients diagnosed with prostate cancer. These input values were used
to generate prognostic models with both the Cox model and the neu-
ral network approach we introduced in Article I. Both models per-
formed similarly on the test set, as compared by the c-index, ruling
out significant non-linear effects among the skeletal regions.

To ascertain whether any region is more strongly associated with
survival than any other, a combination of forward and backward-
elimination was used. While information about locality did not in-
crease the c-index performance of models compared to models using
only the total BSI value, we were able to conclude that information
about three specific regions gives comparable information to that of
all twelve regions or equivalently the total BSI.

My contributions

I was part of the theoretical work, performed all computational work,
generated all figures, and co-authored the manuscript.

2.3 ensembles of genetically trained artificial neural
networks for survival analysis

When developing the genetic training approach in Article I, enabling
the c-index to be used directly as the error function when training
neural networks, our approach was compared to the linear Cox model.
In this paper, we extend the comparison to include another machine
learning approach called support vector machines (SVM) on two other
clinical data sets. The SVM approach, developed by Van Belle et
al. [22, 23], uses a modified version of the c-index as its error func-
tion.

24 overview of the articles

For this new comparison, the training methodology has also been
refined. Optimal training parameters in the genetic algorithm, and
the best number of hidden neurons in the networks, are found for
each data set separately. In addition, the minimally optimal ensemble
size is found to be 30 neural networks for both data sets.

Because we did not have access to the source code of Van Belle et al.,
we had to compare our results to what they reported in their paper.
Slightly differing methodologies and different test set randomization
makes the test results slightly numerically different. As a numerical
guide, the Cox models can be compared directly between their and
our results. When taking that difference into account, all three models
(ANN, SVM, Cox) seem to perform very similar on the two data sets.

My contributions

I shared equally in the theoretical work, performed all computational
work and co-authored the manuscript.

2.4 a regression model for survival data using neural
networks

A prognostic index, as calculated in Articles I–III, can be used to sort
patients into risk groups. A genetic algorithm allowed us to use the
c-index, a ranking measure, as our error function during training. In
this article a different approach is taken. Instead of changing the
training algorithm, we construct a new error function which models
the future survival of censored patients.

An estimation of the survival time can still be used to sort patients
into risk groups but offers additional information compared to a prog-
nostic index. While perhaps not useful directly in terms of treatment
choice, it could assist a clinician in the communication with the pa-
tient. Furthermore, such point estimations can make it easier to ascer-
tain which input variables are the most important contributors to the
predicted survival [24]

This new error function is differentiable, which allows gradient
methods to be used during training. The error function is a modi-

regression model for survival data using ann 25

fication of the mean square error (MSE). The error to the true sur-
vival time of censored events is modeled using a maximum likelihood
framework, thus the name mean square likely error (MSLE). The nature
of the error function means that the neural networks will output a
prediction of the actual survival time of the patients. A one-time
pre-calculation of many factors is possible making the error function
efficient (O(N)) during actual training. The aim is to utilize infor-
mation present in the data set about the future of censored events;
information which is ignored by the c-index.

The new MSLE function is compared to a simpler and more naive
approach which we call mean square censored error (MSCE), originally
presented by Van Belle et al. [25]. In the MSCE, predictions for cen-
sored events can only have an error if the prediction is an under-
estimate of the censoring time, as no data exists beyond the censoring
point.

The two error functions are compared on five distinct data sets [26–
30] with differing characteristics in terms of number of patients, cen-
soring, and number of input variables. MSLE had significantly better
performance in terms of c-index on two data sets. In addition to com-
paring the c-index, we also compared the actual predictions using
the mean square error. To be able to validate the predictions on cen-
sored events, we used only the non-censored events and randomly
censored the data ourselves. This allowed the models to train on cen-
sored data, while still enabling predictions to be validated against the
true survival times. In this case, MSLE gave rise to better predictions.
We conclude that MSLE has advantages on large data sets with a high
degree of censoring.

My contributions

I was part of the theoretical work, performed all computational work,
generated all figures, and co-authored the manuscript.

26 overview of the articles

2.5 identifying risk groups by optimizing on the area
under the survival curve

A prognostic index, or survival predictions, are often used to sort pa-
tients into risk groups. Risk grouping can be used to guide treatment
choices, or to stratify clinical studies [31]. Most prognostic models,
whether they are based on neural networks [3, 29], SVMs [22, 23], or
Cox models [7], generate risk groupings almost as an after-thought.
They are primarily concerned with optimizing something other than
the optimal grouping. In many instances though, risk grouping is the
primary use-case for prognostic models. In this article, we investi-
gate the potential benefits of training neural networks specifically on
generating the best possible risk grouping. We focus on generating
groups corresponding to low, intermediate, and high risk.

Intuitively, it should be easier to find a good grouping such as that
compared to ranking all patients individually according to risk. A
ranking model might get trapped in local optima where any change
would be worse than the current patient sort order. A grouping model
however is not constrained by what the individual sort order might be
and might thus be free to explore more aspects of the parameter space.
The hypothesis is that this might allow more non-linear correlations
to be exploited by the neural networks.

It is difficult to define what the best possible risk grouping is. It
is clear that for the outer low and high-risk groups, the bigger the
better: a low-risk group of 100 patients is clearly more trustworthy
than a “group” of 1. For two groups of the same size, which is bet-
ter depends on the survival of the patients. A good low-risk group
would be expected to have a high median survival time, and a high
end survival rate. Oppositely, a good high-risk group should have as
low median survival time and end survival rate as possible. These
properties are both captured in the survival curves (Kaplan-Meier
estimator [32]). By once again using a genetic algorithm, and train
neural networks on either maximizing, or minimizing, the area under
the survival curve it is possible to implicitly optimize the risk-grouping
directly. As a final step, we create ensembles which outputs a predic-
tion: “low”, “intermediate”, or “high” risk.

References 27

This optimization procedure is compared with Cox proportional
hazards [7] — which generates a prognostic index, and a decision
tree method known as recursive partitioning (Rpart) [31] — which also
generates a risk-grouping directly, on five clinical data sets with vary-
ing properties. Our interpretation of the results is that the method
works and stands up well against Cox and Rpart, and that it manages
to combine strengths from both models.

My contributions

I did much of the theoretical work, performed all computational work,
generated all figures, and co-authored the manuscript.

references

1. F. E. Harrell, R. M. Califf, D. B. Pryor, K. L. Lee, and R. A. Rosati,
“Evaluating the yield of medical tests,” Jama, vol. 247, no. 18,
pp. 2543–2546, 1982.

2. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” NATURE, vol. 323, p. 9,
1986.

3. E. Biganzoli, P. Boracchi, L. Mariani, and E. Marubini, “Feed for-
ward neural networks for the analysis of censored survival data: a
partial logistic regression approach,” Statistics in Medicine, vol. 17,
no. 10, pp. 1169–1186, 1998.

4. D. E. Goldberg, Genetic algorithms in search, optimization, and ma-
chine learning. Addison-Wesley, Reading, MA, 1989.

5. D. J. Montana and L. Davis, “Training feedforward neural net-
works using genetic algorithms,” in Proceedings of the 11th inter-
national joint conference on Artificial intelligence - Volume 1 (N. S.
Sridharan, ed.), IJCAI’89, (San Francisco, CA, USA), pp. 762–7,
Morgan Kaufmann Publishers Inc., 1989.

6. P. S. A. Krogh, “Learning with ensembles: How over-fitting can
be useful,” in Proceedings of the 1995 Conference, vol. 8, p. 190, 1996.

7. D. R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 34, no. 2, pp. 187–

28 overview of the articles

220, 1972.
8. L. Rydén, P.-E. Jönsson, G. Chebil, M. Dufmats, M. r. Fernö,

K. Jirström, A.-C. Källström, G. Landberg, O. Stå l, S. Thorsten-
son, and B. Nordenskjöld, “Two years of adjuvant tamoxifen in
premenopausal patients with breast cancer: a randomised, con-
trolled trial with long-term follow-up.,” European journal of cancer,
vol. 41, pp. 256–64, Jan. 2005.

9. G. Chebil, P.-O. Bendahl, I. Idvall, and M. Fernö, “Comparison
of immunohistochemical and biochemical assay of steroid recep-
tors in primary breast cancer–clinical associations and reasons for
discrepancies.,” Acta oncologica, vol. 42, pp. 719–25, Jan. 2003.

10. A.-K. Falck, P.-O. Bendahl, C. Ingvar, P. Lindblom, K. Lövgren,
K. Rennstam, M. Fernö, and L. Rydén, “Does Analysis of Dissem-
inated Tumor Cells in Bone Marrow Give Additional Prognostic
Information in Primary Breast Cancer? Analysis of Disseminated
Tumor Cells in Bone Marrow — Report of a Prospective Study
with 5 Years Follow-Up,” Cancer Research, vol. 70, no. 24, pp. 105–
6, 2010.

11. S. Hansen, D. A. Grabau, F. B. Sørensen, M. Bak, W. Vach, and
C. Rose, “The prognostic value of angiogenesis by Chalkley count-
ing in a confirmatory study design on 836 breast cancer patients.,”
Clinical cancer research, vol. 6, pp. 139–46, Jan. 2000.

12. Swedish Breast Cancer Cooperative, “Randomized trial of two
versus five years of adjuvant tamoxifen for postmenopausal early
stage breast cancer. Swedish Breast Cancer Cooperative Group.,”
Journal of the National Cancer Institute, vol. 88, no. 21, pp. 1543–9,
1996.

13. M. S. Soloway, S. W. Hardeman, D. Hickey, J. Raymond, B. Todd,
S. Soloway, and M. Moinuddin, “Stratification of patients with
metastatic prostate cancer based on extent of disease on initial
bone scan.,” Cancer, vol. 61, pp. 195–202, 1988.

14. M. Noguchi, H. Kikuchi, M. Ishibashi, and S. Noda, “Percentage
of the positive area of bone metastasis is an independent predictor
of disease death in advanced prostate cancer.,” British journal of
cancer, vol. 88, pp. 195–201, 2003.

15. Y. E. Erdi, J. L. Humm, M. Imbriaco, H. Yeung, and S. M. Larson,
“Quantitative bone metastases analysis based on image segmenta-

References 29

tion,” J Nucl Med, vol. 38, pp. 1401–1406, 1997.
16. R. Kaboteh, P. Gjertsson, H. k. Leek, M. Lomsky, M. Ohlsson,

K. Sjöstrand, and L. Edenbrandt, “Progression of bone metastases
in patients with prostate cancer - automated detection of new
lesions and calculation of bone scan index.,” EJNMMI research,
vol. 3, no. 1, p. 64, 2013.

17. D. Ulmert, R. Kaboteh, J. J. Fox, C. Savage, M. J. Evans, H. Lilja,
P.-A. Abrahamsson, T. Björk, A. Gerdtsson, A. Bjartell, P. Gjerts-
son, P. Höglund, M. Lomsky, M. Ohlsson, J. Richter, M. Sadik,
M. J. Morris, H. I. Scher, K. Sjöstrand, A. Yu, M. Suurküla,
L. Edenbrandt, and S. M. Larson, “A Novel Automated Platform
for Quantifying the Extent of Skeletal Tumour Involvement in
Prostate Cancer Patients Using the Bone Scan Index.,” European
urology, vol. 62, no. 1, pp. 78–84, 2012.

18. Y. Mitsui, H. Shiina, Y. Yamamoto, M. Haramoto, N. Arichi, H. Ya-
sumoto, H. Kitagaki, and M. Igawa, “Prediction of survival bene-
fit using an automated bone scan index in patients with castration-
resistant prostate cancer.,” BJU international, vol. 110, pp. E628–34,
2012.

19. J. Rigaud, R. Tiguert, L. Le Normand, G. Karam, P. Glemain,
J.-M. Buzelin, and O. Bouchot, “Prognostic value of bone scan
in patients with metastatic prostate cancer treated initially with
androgen deprivation therapy.,” The Journal of urology, vol. 168,
pp. 1423–1426, 2002.

20. J. A. Hovsepian and D. P. Byar, “Quantitative radiology for stag-
ing and prognosis of patients with advanced prostatic carcinoma.
Correlations with other pretreatment characteristics.,” Urology,
vol. 14, pp. 145–150, 1979.

21. M. Sadik, M. Suurküla, P. Höglund, A. Jarund, and L. Edenbrandt,
“Quality of planar whole-body bone scan interpretations - a na-
tionwide survey,” European Journal of Nuclear Medicine and Molecu-
lar Imaging, vol. 35, pp. 1464–1472, 2008.

22. V. Van Belle, K. Pelckmans, J. A. K. Suykens, and S. Van Huffel,
“Support Vector Machines For Survival Analysis,” in Proceedings
of the third international conference on Computational Intelligence in
Medicine and Healthcare (CIMED) (E. Ifeachor and A. Anastasiou,
eds.), pp. 1–8, 2007.

30 overview of the articles

23. V. Van Belle, K. Pelckmans, S. Van Huffel, and J. Suykens, “Sup-
port vector methods for survival analysis: a comparison be-
tween ranking and regression approaches,” Artificial Intelligence
in Medicine, vol. 53, no. 2, pp. 107–118, 2011.

24. N. R. Cook, “Use and misuse of the receiver operating character-
istic curve in risk prediction,” Circulation, vol. 115, no. 7, pp. 928–
935, 2007.

25. V. Van Belle, K. Pelckmans, J. A. Suykens, and S. Van Huffel, “Ad-
ditive survival least-squares support vector machines,” Statistics
in Medicine, vol. 29, no. 2, pp. 296–308, 2010.

26. J. D. Kalbfleisch and R. L. Prentice, The statistical analysis of failure
time data, vol. 360. John Wiley & Sons, 2011.

27. C. L. Loprinzi, J. A. Laurie, H. S. Wieand, J. E. Krook, P. J.
Novotny, J. W. Kugler, J. Bartel, M. Law, M. Bateman, and
N. E. Klatt, “Prospective evaluation of prognostic variables from
patient-completed questionnaires. north central cancer treatment
group.,” Journal of Clinical Oncology, vol. 12, no. 3, pp. 601–607,
1994.

28. T. M. Therneau, Modeling survival data: extending the Cox model.
Springer, 2000.

29. J. Kalderstam, P. Edén, P.-O. Bendahl, C. Strand, M. Fernö, and
M. Ohlsson, “Training neural networks directly on the concor-
dance index for censored data using genetic algorithms,” Artificial
Intelligence in Medicine, vol. 58, no. 2, pp. 125–132, 2013.

30. J. Stehlik, L. B. Edwards, A. Y. Kucheryavaya, P. Aurora, J. D.
Christie, R. Kirk, F. Dobbels, A. O. Rahmel, and M. I. Hertz, “The
Registry of the International Society for Heart and Lung Trans-
plantation: twenty-seventh official adult heart transplant report–
2010.,” The Journal of heart and lung transplantation : the official pub-
lication of the International Society for Heart Transplantation, vol. 29,
no. 10, pp. 1089–103, 2010.

31. M. R. Segal, “Regression trees for censored data,” Biometrics,
pp. 35–47, 1988.

32. E. L. Kaplan and P. Meier, “Nonparametric estimation from in-
complete observations,” Journal of the American statistical associa-
tion, vol. 53, no. 282, pp. 457–481, 1958.

I N D E X

activation function, 5
linear, 5
sigmoid, 5

censoring, 15
clinical decision support, 1
concordance index, 16, 37, 79,

95
Cox proportional hazards model,

44, 63, 78, 109

error function, 8, 16
mean square censored, 90
mean square likely, 92
sum of squares, 8

evolutionary algorithm, see ge-
netic algorithm

genetic algorithm, 12, 39, 63, 80,
111

crossover, 13
fitness function, 12
generation, 13
genome, 12
mutation, 13
pivot point, 14

logic gates, 3, 7
AND, 4, 15
NAND, 5
OR, 4
XOR, 4, 6, 9, 15

multi-layer perceptron, 5–6

neural network, 2
bias, 3
ensemble, 10, 41, 64, 81, 112
feed-forward, 5
hidden layers, 6
weights, 3

noise, 9

perceptron, 2–5
prognostic index, 17, 33, 70, 77,

89, 108

ranking, 16
normalized relative, 42, 81

training, 7–14, see also genetic
algorithm

gradient descent, 8, 9
over-training, 9
supervised, 8

123

