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Abstract—Due to changes in the development practices at
Axis Communications, towards continuous integration, faster
regression testing feedback is needed. The current automated re-
gression test suite takes approximately seven hours to run which
prevents developers from integrating code changes several times
a day as preferred. Therefore we want to implement a highly
selective yet accurate regression testing strategy. Traditional code
coverage based techniques are not applicable due to the size and
complexity of the software under test. Instead we decided to
select tests based on regression test history. We developed a tool,
the Difference Engine, which parses and analyzes results from
previous test runs and outputs regression test recommendations.
The Difference Engine correlates code and test cases at package
level and recommends test cases that are strongly correlated
to recently changed packages. We evaluated the technique with
respect to correctness, precision, recall and efficiency. Our results
are promising. On average the tool manages to identify 80% of
the relevant tests while recommending only 4% of the test cases
in the full regression test suite.

Index Terms—regression testing, industrial evaluation, contin-
uous integration

I. INTRODUCTION

Regression testing is widely used in industry to ensure
that introducing modifications to the software does not af-
fect system functionality. A common approach is to have a
dedicated regression test suite which is repeatedly run in its
entirety [1]. This strategy may be easy to implement but is
often unnecessarily expensive, especially if changes affect only
a small part of the whole system. As software development
practices changes towards shorter iterations and continuous
integration, regression tests are run more frequently which
in turn increase the demand for selective and minimized
regression testing.

A vast amount of research has been spent on regression test
selection (RTS), i.e. the design and evaluation of strategies
which focus testing only on changed parts of the system [2].
However, only few empirical evaluations of RTS techniques
are carried out in a real industrial context [3]. Many proposed
techniques are very meticulous in finding exactly which func-
tion affects which test, and must therefore perform a deep
and often time consuming static analysis to map changes
to tests. At a company with a large code base such fine-
grained correlations between tests and functions in the code
are not necessarily needed, or even possible to obtain. The
software under test, SUT, may be too large and complex,

involving interactions between several different components.
Such interactions are difficult to quantify by static analysis
alone. Furthermore, the value of a static analysis is short-lived
in an active, ever changing code base.

In this paper we report our experiences of implementing
and evaluating a tool that enables continuous analysis of
the history of changed packages and their test outcomes, to
support regression test selection on code package level. The
research was conducted at Axis Communications which has
a big regression test suite run daily. The full regression test
suite takes approximately seven hours to run which delays the
integration of new code to the platform severely. It is a huge
waste of time and makes development difficult and costly. In
our case correlations at package level is sufficient for the task
of giving us fast regression feed-back several times a day. With
a cheaper analysis we expect it to be performed more often
and thus better keep up with the transformations of an active
and volatile codebase.

The remainder of the paper is structured as follows: Sec-
tion II and III presents related work and the background of
the study. Section IV and V outlines the evaluation framework
and explains the process followed in this research. Section VI
and VII describe the Difference Engine and outlines our
results. In Section VIII and IX we discuss our results and
future work. Section X concludes the paper.

II. RELATED WORK

Much of the early RTS research is based on employing
static code analysis on a functional level to perform the test
case selection [4], [5], [6]. Since such analysis would be very
costly in our context1 – with the probable effect of not being
updated often enough to keep compatible with the changing
SUT – we decided using historical test data for test selection
would be a more effective approach.

Some studies, by e.g. Kim and Porter [7] show improve-
ments on the problem of test selection from costly static
analysis by including a historical context as well as taking into
consideration the fact that the tests need to be continuously
re-evaluated and re-prioritized. They achieved lower predicted
costs without reducing effectiveness by running only carefully
selected subsets of the test suite. However, in their work, Kim

1The code base contains more than 35 MLOC.
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and Porter only analyze a couple of smaller programs on a
function-based level involving only a relatively low amount
of tests, which is not generalizeable to our large test suite and
need for streamlining the regression testing process.

Wikstrand et al. studied the usage of a fixed-file cache for
RTS [8], [9]. The idea is to correlate tests to source code
based on information from closed error reports. A drawback
of this approach is the dependability on human based input.
Furthermore it requires a sufficient existing infrastructure to
aggregate this data from the change management process with
data from the testing process, which is not in place at Axis.
We do however explore the idea of keeping a cache of corre-
lations but we use data from one database with automatically
generated test data.

Rees et al. propose employing Bayesian graphical models
(BGMs) to optimize the failure probabilities for a given num-
ber of tests [10]. Although it is an interesting approach it was
not fully automated and results were inconclusive regarding
the benefit of creating BMGs in all contexts. Thus we chose
not to add this extra intelligence to our algorithm at this stage.

Huang et al. proposed and evaluated cost cognizant history
based test case prioritization [11]. They employ a genetic
algorithm to analyze historical data on regression test runs and
assign priorities to test cases. Also this algorithm adds intelli-
gence to the test selection compared to the one implemented
in this case study. We decided to keep the algorithm as simple
as possible to make introspection of results, maintenance and
possible future extension of the algorithm as easy as possible.

III. BACKGROUND

The main research question for this study was:

RQ: How to shorten lead times for regression testing to
enable fast feedback in a continuous integration context?

To explore this we iteratively built a tool for analyzing the
history of regression tests and correlate changed code with
failing tests on package level. Tests are then assigned risk
levels or weights which may be presented for a test coordinator
to assess manually. Alternatively, the regression test system
could be configured to automatically select tests with a risk
level above some specified threshold.

The SUT in our case contains several hundred packages
encompassing several millions of lines of code. The test
history at Axis resides in a vast MySQL database, called
DBDiffer. In this database various regression test data is kept,
and among this data one can extract which packages were
changed before the regression test suite was run, and which
tests failed and succeeded. DBDiffer contains everything we
need in order to find the correlation between code packages
and tests, but the data exists in several tables which are loosely
linked to each other through MySQL-id:s.

IV. METRICS

We evaluated the RTS strategies in accordance with the
framework by Rothermel and Harrold [12]. The goal of the test
selection, apart from saving time, is to be sure that the tests

that are run are relevant tests. A relevant test is in our case a
test that will flip2 due to the changed code. The trivial method
of finding all possible flips, i.e. achieving 100% recall3, is
to run all tests, but then precision would be low. Instead,
precision would be high if the only tests we suggest were
fault revealing tests. Both precision and recall are important
for test selection, and thus we calculate the F-measure based
on the ratio of the two as a singular measurement. In other
words, the F-measure is a way to compress two dimensions of
selection quality, recall and precision, into one dimension, to
make direct comparisons between different selection strategies
easier.

Precision is defined as the fraction of selected tests that
are relevant to a particular build. The precision score ranges
between 0.0 and 1.0. A precision of 1.0 means that 100% of
the selected tests are relevant tests.

precision =
|{relevant tests} ∩ {selected tests}|

|{selected tests}|
(1)

recall is defined as the fraction of relevant tests that are
included in the presented selected tests. Also the recall score
ranges between 0.0 and 1.0. A recall of 1.0 means that 100%
of the relevant tests are included in the set of selected tests.

recall =
|{relevant tests} ∩ {selected tests}|

|{relevant tests}|
(2)

Relevant is defined in this context as a test that has flipped.
Selected is defined in this context as a test suggested by the

Difference Engine.
The F-measure of precision and recall is defined as

F −measure = 2 ∗ precision ∗ recall
precision+ recall

(3)

Just like with precision and recall, the F-measure lies in
the range [0.0, 1.0]. 1.0 is a perfect score, meaning that both
precision and recall are perfect as well.

Efficiency is approximately assessed by calculating the
average execution time for a test case, multiply it by number of
selected tests and comparing with running the full regression
test suite.

V. RESEARCH PROCEDURE

For the sake of this study we developed three software
modules, see Figure 1, the Difference Engine, providing the
actual analysis of the correlations, and two auxiliaries: Seeker,
which extracts the historical test data, and Simulatron, which
generates simulated historical test data. Simulatron is used to
ascertain that the analysis performed by the Difference Engine
is plausible. All three programs were developed in parallel, and
iteratively and the results of improving Seeker or Simulatron
was used to improve the analysis of the Difference Engine.
During development we evaluated the tool with respect to
correctness, recall, precision and efficiency.

2A flipped test case is a test case that changes its verdict between two
consecutive test runs.

3Rothermel and Harrold use the term inclusiveness instead of recall.
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Seeker Simulatron

Difference 
Engine

Analysis & Recommendations

Fig. 1. Graph describing the program dependency chain

A. Check for Correctness

A “correct” correlation in this context is a correlation
between a code package and a test that we know must be
true (i.e. if executed the test case would execute the code in
the code package). This is basically what other RTS strategies
achieve through static analysis of code and tests.

Since this information is not available, and would be pro-
hibitively costly to extract through static analysis, in our con-
text we assessed the correctness of the suggested correlations
with the simulated data produced by Simulatron. With data
generated by Simulatron we know whether the correlations
found are valid since it is immediately apparent from the
names of the code packages and test names.

We evaluated the test selection algorithm’s ability to find
correct correlations by determining whether the most highly
weighted correlations were true correlations (i.e. that the
correlations are not due to package changes and test flips that
coincide by chance). We parsed the outcome of an analysis on
simulated data and assigned and calculated the percentage of
true correlations.

The following Simulatron parameters were used:
• 75% package noise and 30% test noise, for a variable

number of builds. – This means that in 75% of the builds
a random package will be changed, but its corresponding
test wont flip, and in 30% of all builds a test will flip but
its corresponding package will not be changed.

• 99% package noise and 99% test noise, for a variable
number of builds.

• 500, 1000 and 10 000 builds.
• A pool of 100 packages to change.
• A pool of 100 tests to flip.
75% package noise and 30% test noise were chosen because

a cursory inspection and analysis of the historical test data
show that these numbers resembles the real data, approxi-
mately. Simulated data with 99% package noise and 99% test
noise is more noisy than the real data, but is included to see
how the Difference Engine performs with data that is noisier
than the real data.

It should be noted that Simulatron generates much more
dense data than the true historical data extracted with Seeker.

Many of the builds that Seeker extracts are blank builds,
meaning that either no packages have been changed or no tests
have flipped since the preceding build. With data generated by
Simulatron, however, all builds are guaranteed to have at least
one package changed, and one test flipped.

B. Optimizing with respect to Number of Analyzed Builds

With an increasing number of Builds, we can hypothesize
that both precision and recall must increase. Thus we measured
precision and recall for different sizes of build sets. We used
Simulatron to create build sets of various sizes; 10, 100, 500,
1k, 2.5k and 10k builds. We then calculated the F-measure
between precision and recall for the different sizes of build
sets.

The Simulatron parameters will be the following:
• 75% package noise, meaning that 75% of the builds

will contain changed packages with no corresponding test
flips.

• 30% test noise, meaning that 30% of the builds will con-
tain flipped tests with no corresponding package changes.

• A pool of 100 code packages to change.
• A pool of 100 test packages to flip.
• 10, 100, 500, 1000, 2500 and 10 000 builds.

C. Evaluation with Real Data

Even if the Difference Engine performs well with simulated
data in the two prior evaluation steps, the question is if
these suggestions can be used to accurately predict the flips
that actually occur on real data. We evaluated this using the
historical builds, extracted by Seeker. To avoid the bias of
overfitting our prediction model we split the historical data
into a training set and a validation set. We split the data into 10
different parts, where 9 parts were used for training and 1 part
for validation. Each of the ten parts were used as validation
once, while the remaining comprise the training set. For each
of the 10 validation sets we calculated recall and precision.

We compared three RTS strategies:
• Retest all – No test selection is performed; run all tests.
• Wide selection – Select all tests that have ever flipped,

regardless of which packages have been changed. This
can be useful if the narrow selection method returns very
few suggested tests, or none.

• Narrow selection – Select tests based on which packages
have been changed for a particular build. Some packages
will have no correlated tests, which is when it might be
useful to fall back to the wide test selection strategy.

VI. DIFFERENCE ENGINE, SEEKER AND SIMULATRON

All code was written in Python, which is a flexible and clear
language with many readily available machine learning li-
braries and diagram generating utilities4. The code was written
with the functional programming paradigm in mind, in order
to avoid producing side effects and make unit testing easier.

4The library sklearn for example, provided a module for running the K-fold
cross validation technique used for evaluation, and the library matplotlib has
been used to generate the diagrams in this paper.
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The core code modules have nearly 100% unit test coverage,
and should therefore be easy to modify and improve should
the need arise. Some object oriented features are utilized as
well in order to gather functions into logical units and enable
composability and enhance usability.

A. Difference Engine

The Difference Engine takes a set of builds5 as input, and
gives a weighted correlation between code packages and test
cases as output. Each build is extracted from the data generated
by either Seeker or Simulatron.

Since the raw historical data in the database does not contain
information of changed packages or flipped6 test cases this
must be calculated on the fly when performing the analysis
by comparing consecutive builds. Correlations are calculated
according to the following:

1: Compare each build with its previous build to identify
changed packages and flipped test cases.

2: For each flipped test case in a build increase its correlation
coefficient to each of the changed packages of that build.

Thus the strength of the correlation between a test and a
code package depend on how many times they are found to
co-change with respect to two consecutive builds.

The underlying algorithm used to find the correlations
between code packages and tests can be expressed more
succinctly in pseudo code:

For each <build_result> in <set>:
For each <code_package> in <build_result>:

If <code_package> is changed:
For each <test> in <build_result>:

If <test> flipped:
correlation_coefficient += 1

B. Seeker

The purpose of Seeker is to extract the relevant records from
the database of historical regression test data, and organize
them into a format parsable by the Difference Engine. Builds
only exist conceptually. In order to find which modules where
changed in a build, and which test cases flipped, packages
and tests first have to be linked to the build in question. When
parsing the database, Seeker needs to perform two actions:

1: Extract all code packages and their revisions and map
them to their unique MySQL build identifier.

2: Extract the statuses and names from all test cases and map
them to their unique MySQL build identifier.

The Seeker then joins all code packages and test cases based
on their unique identifiers to create the builds. All subsequent
builds are then added to an ordered list to form a build
set, which is the intermediate data format passed on to the
Difference Engine for analysis.

5In this paper we refer to a build as a set of packages and their revisions
together with the corresponding regression tests and their verdicts

6A flipped test case is a test case that changes its verdict between two test
runs

C. Simulatron

Since the database containing the historical test results is
gargantuan, around 100 gigabytes, and the code base contains
several millions of lines of code, it is impossible to intuitively
determine whether the correlations found by the Difference
Engine are correct and not due to random noise or to errors
in the correlation algorithm.

Simulatron was developed to enable assessment of the result
produced by the Difference Engine. It creates a simulated
regression test history where packages and tests are named
so that it is immediately apparent whether they should be
correlated or not. In their survey [2] Yoo and Harman argue
that a realistic simulation may provide an efficient manner in
which to assess RTS selection strategies.

Simulatron is used to generate:
• a variable number of code packages
• tests for each package
• associated test flips when changing a package
• noise, i.e. flipped tests with no corresponding package

change, or package changes with no corresponding test
flip

• a simulated regression test history containing the pack-
ages, tests and noise specified above.

Noise in this context is Simulatron adding random changes
to packages, or random flips to tests, in order to simulate the
noise present in the real historical data extracted from the
database. Noise in the real data is not entirely random however,
and may be due to a variety of reasons. For example, with real
historical data, 2 packages are, in average, changed per build.
This means that any potential test flips that occur will correlate
both code packages to the tests, even if only changes in one
package is responsible for the flip. In practice, this means that
one of the code packages will be falsely correlated to the test,
and we have “noise”. Another possible source of noise is when
something outside of the control of the regression test suite,
for example a network error, causes tests to flip.

A great advantage of having Simulatron is that if the
correlation algorithm used by the Difference Engine proves to
be inaccurate or inadequate, a modified or entirely different
algorithm can be quickly tested and evaluated easily with
simulated data from Simulatron. Another advantage is that
simulated test history can easily be generated by Simulatron
to test different variations in input data, to see how such
variations affect the performance of the selection algorithm.

VII. RESULTS AND ANALYSIS

A. Noise

Figure 2 illustrate how the correlation weights indicate that
a test outcome is dependent on changes to a code package.
The example shows the results produced when running the
Difference Engine analysis on simulated data generated by
Simulatron. Here we see that package3_test has a correla-
tion weight of 19 to package3. This means that a change to
package3 that constitutes a new bug or a bug fix correlates
very strongly to a change (flip) in the test outcome for this
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Input:

$ ˜/difference\_engine regression\_test\_data.db

Output:

... Analyzing data

Results:

code/package3.py
package3_test: 19
package2_test: 2

code/package94.py
package94_test: 8
package3_test: 3
package17_test: 1

Fig. 2. Difference Engine example run on simulated data

test. Since we are using simulated data we can tell from the
name that this test is in fact dependent on package3 and that
this strong correlation is quite correct. If this analysis had
been performed on real data, it would then be prudent to run
package3 test every time a package3 is changed.

The correlation weight between package94 and the test
for package3 is interesting, since it means that three times
when this test flipped package94 was changed as well. The
correlation is totally random however, and is just due to
the noise that Simulatron adds when generating simulated
regression test data. In reality package94 just happened to be
changed three times at the same time as a bug was either
fixed or added to package3. There are a lot of packages with
correlation weights of 1, but most have been removed from the
heavily pruned example output above. A weight of 1 is too low
to be able to distinguish true correlations from random noise.
That is, if two packages are changed and only one test flips,
both packages will have their correlation weight increased by
one, yet only one of the changes caused the flip. It isn’t until
we start to see a trend, that is, weights of 2 or more, that
we can be more sure of the correlations between the code
packages and test packages.

B. Correctness

The results shown in Table I show that the correlation
algorithm is very robust. Even when there is both package and
test noise in 99% of the builds, the correct correlation is still
weighted the highest in almost all cases. The more builds that
are analyzed, the better the algorithm will perform in mapping
the correct test to their corresponding package.

C. Number of Builds

Early prototyping work during the iterative development of
the code showed that one weakness of the Difference Engine is
that it does not work well if the BuildSet it analyzes contains
too few Builds, which is not very surprising. The minimal
number of Builds necessary to provide a reasonable analysis
is highly dependent on the input data, and which packages you

TABLE I
SHARE OF CORRECT CORRELATIONS IN SIMULATED DATA

Nbr builds Pkg noise % Test noise % correct correlations %

500 75 30 96
500 99 99 88

1000 75 30 99
10k 75 30 100
10k 99 99 100

Fig. 3. F-measure for 50, 100, 500, 1k, 2.5k and 10k builds, using the narrow
test selection strategy. The F-measure for no test selection is also shown, for
reference.

are interested in finding test correlations for. For example, if
you look for correlations for one specific package, you may be
very lucky and the package will have been changed often in
many recent builds, and therefore have many relevant and/or
high correlations with tests, or very unlucky and the package
will never have changed in the BuildSet you analyzed, and
will therefore have no correlations. 10 builds are generally
not enough to produce any meaningful test selection analysis.
Most often there is not enough data to perform a narrow test
selection.

In the diagram in Figure 3 the F-measure appears to reach
a maximum at around 100 builds, before deteriorating. The
Difference Engine did not perform as could be expected (i.e.
that more builds will lead to better F-measure values), which
in hindsight should be quite obvious; given enough builds,
the accumulated noise quickly overwhelms the true correlation
data.

The narrow selection continuously outperforms running all
tests, until the amount of noise is too overwhelming. At that
stage, at 10k analyzed builds, it performs as bad as running all
tests, since it will basically recommend running all tests. This
owes a lot to the fact that at the default settings, the Difference
Engine performs no filtering at all, and even correlations of
weight 1 are included in the selection of recommended tests.
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A 1-weight correlation is just as likely to be random noise as a
true correlation. Thus, as the number of builds increase, more
noise is added to the set of recommended tests, until finally,
there is virtually no difference between the set of selected tests
and the set of all tests.

The solution to this problem is to introduce an intelligent
way of culling the noise. Currently the Difference Engine sup-
ports a primitive filter for discarding all test recommendations
beneath a specified threshold weight. Setting this threshold at
1, will keep the narrow test selection superior to running all
tests longer, but it will eventually be overwhelmed as well.

Consequently, a future improvement to the Difference En-
gine would be to introduce a form of memory to the analysis.
As more builds are added to the analyzed pool, the weights
should be decreased for tests that have not flipped for some
amount of time. The history based prioritization model pro-
posed by Kim and Porter [7] could be applied for this purpose.

Finally, observing Figure 3, counterintuitively it seems that
after a 100 builds, more analyzed builds give worse results.
The reason is that the recall is perfect already at 500 builds,
and cannot go any higher after that, while the precision
continues dropping as more noise is added to the results of
the analyzed builds. All in all, the results of this part of
the evaluation provide compelling reasons for introducing a
strategy for handling the accumulation of test noise.

D. Effectiveness on Real Data

Figure 4 displays the recall of the different test selection
strategies. As expected the average recall for running all tests
is the highest, since running all tests guarantees that you will
not inadvertently miss out on any relevant tests. The wide test
selection places second, and the narrow test selection places
last, also according to expectations, since they run fewer tests
in turn. While the narrow selection might appear to have 20%
worse recall than selecting all tests, this number is somewhat
pessimistically skewed as the (arithmetic) mean is sensitive to
extreme outliers. It is very likely that sometimes the narrow
selection has a recall of 0 which will drag the average recall
down a lot.

Figure 5 displays the precision of the different test selection
strategies. The more specific the test selection strategy, the
greater the precision. While the absolute values of the preci-
sion appear very low, the relative ratio between retest all and
test selection is the important factor. Greater precision means
less time wasted on running irrelevant tests, which was the
goal of performing this study.

Also, it is important to keep in mind that the test selection is
only a recommendation based on historical data. Just because
a (correct) correlation has been found between a code package
and a test, there is no guarantee that said test will flip
just because that package is changed. Given the plausible
assumption that the codebase is relatively stable, i.e. that new
code most of the time does not introduce faults, most tests that
are run will not flip. If a test is recommended, but it does not
flip, its precision will inevitably suffer, no matter how accurate
the RTS selection technique is. In relative terms the narrow

Fig. 4. Recall for narrow, wide and retest all strategy

Fig. 5. Precision for narrow, wide and retest all strategy

test selection strategy significantly outperforms the retest all
strategy, by about a factor of 14.

E. Efficiency

We use a simple cost model: If analysis time +
subset test run time < full test run time time is
saved. Furthermore we consider all tests equal in duration.
This is obviously not true, and will have to be revised at a
later date in order to achieve a more correct analysis, but the
work involved is considerable, and outside the scope of this
study.

Extracting the data from the database with Seeker takes
slightly less than 5 minutes. Analyzing the data with the
Difference Engine takes less than 15 seconds. So we can
say that analysis time is approximately 5 minutes. The
subset test run time, or, the duration of running the se-
lected tests, is calculated as the number of tests suggested by
a selection model, multiplied by the average duration time of
one test. All tests make up 1265 units and take about 7 hours
to complete. The average duration of one test is therefore
calculated to 760/1265 which is 0.33 minutes.

The time savings are presented in Table II. The duration is
calculated by multiplying the number of tests with the average
duration of one test (0.33 minutes). The total is calculated by
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adding the time of analysis (5 minutes, worst case scenario)
to the duration.

A lot of time is saved by running only the tests rec-
ommended by the Difference Engine. With the narrow test
selection strategy, it is possible to perform 20 integrations in
the same time frame as it takes to perform one integration
running all tests. At that rate, it is doubtful whether the
regression test runtime is a bottleneck any longer; more likely,
the bottleneck will be other manual processes that are involved
in an integration of new code into the platform.

Finally, an interesting observation due to how the wide RTS
strategy is implemented, i.e. recommending all tests that have
ever flipped, regardless of which package has been changed,
we see in table II that over 60% of all the tests in the full
regression test suite have never flipped. Therefore, running
the full test suite in every integration regardless of how small
the change is, is generally a huge, huge waste of time. Just
culling the tests that have never shown any relevant results
would result in reducing the time spent on regression testing
by 60%. A full regression test run could still be performed
nightly as a safety check.

F. Validity

While the data produced by Simulatron is designed to be
similar to the real data extracted by Seeker, there are still some
differences. Simulatron generates much more dense data than
Seeker, meaning that changes (i.e. changed code and flipped
tests) are guaranteed to happen for every build. This is not
the case with real historical regression test data where large
portions of the data have either no changed packages or flipped
tests and therefore cannot be used for analysis. However, the
denseness of the simulated data is a conscious choice since
it enables evaluation of long term trends not immediately
apparent when analyzing real historical data. This also means
that there is a risk of missing some vital characteristic that
will only be visible when real data is used.

Due to the denser data some trends are significantly accel-
erated when analyzing the simulated data compared to when
analyzing real historical data. This should be considered given
the results presented, where accumulated noise will quickly
deteriorate the F-measure as the number of builds increase. It
will not happen as quickly when running the analysis on real
data.

There are two apparent problems with using the F-measure
to verify the efficacy of the test selection strategy proposed
in this paper. The first is related to how precision is defined;
in essence, precision is a value to measure whether a rec-
ommended test has flipped. A code package may be very
strongly correlated to a test, but there is no guarantee that
the test will flip just because that particular code package has
been changed. In most cases the test will not flip, since most
changes to the code do not cause any faults, and this means
that the value of the precision will suffer greatly. The second
problem is related to recall. With any form of non-safe test
selection strategy there is always the risk that a relevant test
will be missing from the pool of recommended tests. This

means we cannot solely rely on the tests selected by the
Difference Engine, and we will still have test runs that take
the full 7 hours to complete.

A less apparent problem with the F-measure as an evaluation
tool is that for most intents, great recall and decent precision
are more beneficial than decent recall and great precision, yet
it is not taken into account when calculating the F-measure.

VIII. DISCUSSION

RTS techniques may be beneficial if implemented properly.
Our approach differ from much of the previous research on
RTS in that we do not analyze the code but create correlation
between tests and code solely based on test history. This makes
our analysis less costly. Performing static analysis would
not be practical in our context since the SUT are too large
and complex. The algorithm implemented by The Difference
Engine is very simple, but works fine and is fast even for
large and complex systems. It is, on the other hand, highly
dependent on having a regression test history to analyze and
draw conclusions from. To provide a sufficient analysis we
need a lot of historical data which cover all code packages
and tests, and the data needs to contain enough failing tests
to provide sufficient correlations. Ironically, the test selection
algorithm thrives on an unstable code base that regularly
introduces faults for as many different packages as possible,
which is usually something you do not want when running
regression tests.

Running only the recommended tests will starve the Differ-
ence Engine of historical data to analyze. Thus it is imperative
that the full regression test suite is run periodically, for instance
in regular nightly builds. Given this strategy, a test will only
be missing from the pool of recommended tests for one day,
then the full regression test run will pick it up during the night
and it will be included in the set of recommended tests the
next day. It is however important to remember that the (slight)
risk of missing relevant tests will still be there for a full day,
which has to be taken into account when verifying firmware
using only the tests recommended by the Difference Engine.

In previous studies [3], [13] random test selection has been
shown to be an effective RTS strategy. In our context selecting
random tests would be an abysmal approach in comparison
to the strategies enabled with the Difference Engine. Since
the average share of relevant tests per test run is so small
(2/1265), a randomized choice would give poor values for
the F-measure. If selection is narrow recall would be very
low and if selection is widened to improve recall precision
would suffer too much. A randomized RTS strategy also has
the disadvantage that two consecutive test runs are likely to
look entirely different. For various reasons engineers at Axis
often want to compare the results of the newest regression
test run with older versions. When the selection of tests is
totally random such a comparison will not be possible since the
selection of tests is likely to differ too much between different
versions. The only benefit of random selection is that it is
cheap computation-wise, as all it needs to do is randomly draw
some tests from the test pool. However, the analysis performed
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TABLE II
TIME SAVING CALCULATIONS

Task #Tests Duration (min) Total (min) Time saved (min) Time saved (%)

Retest all 1265 420 420 0 0
Wide selection 470 152 157 263 63

Narrow selection 50 16 21 399 95

by the Difference Engine is also very fast; it finishes in mere
seconds.

IX. FUTURE WORK

While the results of this research are useful already, there
are of course a lot of improvements that can be added at a later
date. Although the software is already performant enough, it
can be enhanced. Python has an abundant selection of libraries
that are specifically tuned for the kind of computations used
to analyze the historical test data. A lot of bespoke code can
be replaced by existing, more efficient libraries. For example,
there is a library called Pandas, featuring data structures
optimized for the kind of data processing required by the
Difference Engine to successfully analyze the raw data it has
to work with. Currently the most time consuming process is
the extraction of data from the MySQL database. This could
be optimized further.

A lot can be learned by adding more metadata to the final
analysis. For example, which code package causes most tests
to flip? Which package causes the least amount of tests to flip?
Which package is changed the most, and which is changed the
least? Which tests fail or flip most often? What is the average
amount of packages that change per build, and what is the
average amount of tests that flip?

Given more powerful and flexible data structures than the
ones currently implemented in the Difference Engine, these
questions can be answered quite easily. Said answers can then
be used to gain a better understanding of how the regression
test suite performs, provide ideas to attain better performance
from the test suite, and perhaps even help explain why some
previously inexplicable things occur during regression test
runs.

Some tests in the regression test suite have proven to
be quite unstable and adding support for blacklisting such
troublesome tests is important, which is another improvement
that can be added to the Difference Engine. With proper
metadata and analysis this process can even be automated.

Since the correlation calculations benefit from code errors
causing tests to flip, increasing the occurrence of flips by
intentionally introducing code errors through mutation testing
would accelerate the rate by which the correlation database
can accrue relevant data.

Initially we had plans for utilizing a more advanced analysis
algorithm since we somewhat incorrectly assumed that the
original algorithm would not produce as good results as it did.
One idea was to realize part of this more advanced algorithm
by employing Bayesian inference, which is a method of

statistical inference that can be used to update the probability
for a hypothesis as more evidence is acquired. We still believe
this is a suitable and natural further improvement for evolving
the algorithm.

The correlation weights given by the initial analysis of
the current implementation of the Difference Engine can
seamlessly be used as the prior probabilities for which code
packages and tests are correlated. Bayesian inference is a tool
that has been used effectively to improve machine learning
and statistical methodologies over a broad field of sciences.

Finally, it is vital to find a way to automate the selection
of tests and seamlessly integrate it into the developer work-
flow and code verification process to ensure that employing
advanced RTS strategies is as easy as possible for its intended
users.

X. CONCLUSION

The desired outcome of this research is to minimize the time
of the regression testing feedback loop during the day when
developers are working on the code. During the night, nightly
builds will ensure that the whole regression suite is run, to
catch any potential regressions the minimized test selection
might have missed, and to update the database with historical
data to be used in subsequent analyses for finding correlations
between tests and code packages.

We found that test selection based on historical data can
show marked improvements in regression test execution time
while still finding almost as many faults as running all tests
would. While performing the narrow test selection might on
average appear to yield 20% less recall than running all tests,
it is important to remember that running all tests is a very
expensive insurance policy, and that in most cases the narrow
selection included all relevant tests.

However, we assume that any selection algorithm will miss
out on important tests, and therefore we strive to provide
a selection algorithm that can be continuously adjusted and
calibrated. The test recommendations given by the Difference
Engine are essentially self correcting, if one makes sure that
the latest build is added to the pool of analyzed builds. In
other words, one might miss out once on a flipping test, but
the next time it will be in the list of recommended tests, if the
analysis is performed continuously. This self correction comes
at a price, however. As the recall is increased and as more tests
are added to the list of recommended tests, the precision will
inevitably drop further.

The cost saving potential of implementing intelligent test
selection for the daily regression tests at Axis is considerable,
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and the risks involved are only slight in comparison to the
money that can be saved. The RTS strategy suggested show a
potential of a 20-fold increase in integration productivity.
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