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Abstract. The region of neutron-rich nuclei beyond 208Pb has been very difficult to ex-
plore due to its high mass and exoticity. However, recent experimental improvements
allowed one to perform a quite extended isomer decay spectroscopy of these nuclei.

1 Introduction

The study of exotic nuclei has shown that significant changes of the well-known shell structure along
the stability valley occur, especially for very neutron-rich nuclei with mass numbers below 100. The
two most accessible doubly-magic nuclei above A=100 are 132Sn (Z=50, N=82) and 208Pb (Z=82,
N=126). Both of them are very neutron rich but the second one is nonetheless stable. The evolution
of the Z=50 shell above N=82, and in general the structure of nuclei around 132Sn, is nowadays an
object of intense research at radioactive beams facilities accelerating fission fragments around A=140.
On the other side, little is known on the evolution of Z=82 shell closure beyond N=126 and on the
neutron-rich nuclei around 208Pb, because of the experimental difficulties to reach such nuclei [1–3].
The study of these isotopes is relevant also for nuclear astrophysics, since the measurement of their
β-decay half lives will improve the understanding of the r-process stellar nucleosynthesis in heavy
nuclei [4].

2 Experimental details

The neutron-rich nuclei beyond 208Pb have been populated by exploiting UNILAC-SIS accelerator
facilities at GSI. A 1 GeV/A 238U beam at an intensity of around 1.5×109 ions/spill was provided by
the accelerators. The ∼ 1 s spills were separated by ∼2 s without beam. The beam impinged on a
2.5 g/cm2 Be target (followed by a 223 mg/cm2 Nb stripper to increase the number of fully-ionized
atoms) and the isotopes resulting from the fragmentation reaction were separated and identified
with the double-stage magnetic spectrometer Fragment Separator FRS [5]. The FRS allows one to
discriminate the magnetic rigidities of the fragments with a resolution sufficient to distinguish the
masses of adjacent isotopes even at the high masses of interest (A ∼ 210-220). As stated above,
the experimental challenges related to this region are numerous and not limited to the difficulty in
mass and atomic number resolution. In fact, a significant problem is also the fact that the magnetic
rigidities of the primary beam charge states (mainly 238U91+ and 238U90+) and of some nearby nuclei
(mainly Rn, Ra isotopes) are similar to the magnetic rigidities of the fully-stripped neutron-rich lead
isotopes, in particular 212Pb and 214Pb. The high yield of uranium ions from the primary beam and
of certain Ra and Rn fragments would lead to an unacceptably high counting rate at the intermediate
focal plane, where several detectors for position and time detection are placed. In order to avoid the
problem, a homogenous 2 g/cm2 Al degrader was placed after the first dipole, to exclude from the
acceptance of the FRS the uranium charge states and other heavy fragments, enabling a sustainable
counting rate in the intermediate focal plane detectors. Slits after the first and the second dipoles
were also partially inserted in the beam line of the spectrometer to cut the remaining contamination
from the primary beam charge states. The angle of the wedge-shaped 758 mg/cm2 Al degrader at the
intermediate focal plane was set to produce a monochromatic beam, its thickness being limited by
the minimum energy required to measure the atomic number at the final focal plane.
The identification in magnetic rigidity (Bρ) is achieved through focal-plane position measurements
compared to positions of a beam with a well-known Bρ. The plastic scintillators at the intermediate
and final focal planes allow one to extract the time of flight (TOF). The mass over charge ratio (A/q)
of the fragments is calculated from the TOF and the Bρ, measured on an event-by-event basis. The
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atomic number of the fragments is obtained from two ionization chambers placed in the final focal
plane. Finally, the comparison of the Bρ before and after the Al wedge-shaped degrader allows one to
discriminate a possible change in the ion charge state. These measurements are sufficient to provide
a complete identification of the isotopes event by event. Figure 1 shows the typical identification
plot from the described setup, where only fully-stripped ions are considered. The different isotopes
are clearly separated in the well-defined blobs in both Z and A/Z ratio. At the final focal plane,
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Figure 1. Ion identification plot at the final focal plane of the FRS.

the ions were slowed down in a thick Al degrader in order to reduce the energy of the fragments
of interest so they could be implanted in a composite double-sided silicon-strip (DSSSD) detector
system comprising 3 layers, every one with three DSSSD pads [6, 7]. Each DSSSD, 16 × 16 pixels,
had dimensions 5 × 5 cm2 and a thickness of 1 mm with an energy detection threshold of 160 keV.
The DSSSD detector system was surrounded by the RISING γ spectrometer [8, 9], consisting of 105
germanium crystals arranged in 15 clusters with 7 crystals each. The full-energy gamma-ray peak
detection efficiency of the array was measured to be 15% at 662 keV [8] and its time correlation with
the active stopper allowed one to perform both isomer spectroscopy and β-delayed γ-ray spectroscopy.

3 Isomer-Decay spectroscopy

Many neutron-rich isotopes were identified for the first time. A significant number of new isomers
were hence discovered. Seniority isomers were measured in 212,214,216Pb along the Z=82 shell clo-
sure [1]. The study of their structure with state-of-the-art shell-model calculations has pointed out the
importance of considering effective three-body forces when calculating the electromagnetic transition
strengths with the shell model [1] in restricted valence space. Figure 2 shows a typical time-energy
matrix obtained from the RISING array, gating on the 216Pb nucleus. Three lines, corresponding to
the γ rays emitted after the isomer decay, are clearly visible.
The 210Hg nucleus was also produced and studied [10]. Its structure is somehow surprising because

it deviates from the one of 208Hg [3]. A 3− state has been tentatively identified below 1 MeV, at odd
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Figure 2. Time-energy matrix for the isotope 216Pb.

with the present understanding of nuclear structure in this region.
Other isomers were also observed in the one proton-particle and one proton-hole bismuth and thal-
lium isotopes, respectively. While the isomer measured in 217Bi is in line with the expectations from
the seniority scheme already observed for the lead isotopes, the metastable states in 211,213Tl are at
variance with the seniority-like structure of 209Tl [3].
Finally, the use of an active stopper also enabled the measurement of the β half life of the isotopes
in this region [4]. They are of crucial importance for understanding the rapid stellar nucleosynthesis
process, as they act as a benchmark for calculations in more exotic nuclei.
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