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Panel Cointegration Tests of the Fisher

Hypothesis∗

Joakim Westerlund†

January 26, 2005

Abstract

Recent empirical studies suggest that the Fisher hypothesis, stating

that inflation and nominal interest rates should cointegrate with a unit

parameter on inflation, does not hold, a finding at odds with many theo-

retical models. This paper argues that these results can be explained in

part by the low power inherent in univariate cointegration tests and that

the use of panel data should generate more powerful tests. In doing so, we

propose two new panel cointegration tests, which are shown by simulation

to be more powerful than other existing tests. Applying these tests to a

panel of monthly data covering the period 1980:1 to 1999:12 on 14 OECD

countries, we find evidence supportive of the Fisher hypothesis.

JEL Classification: C12; C15; C32; C33; E40.
Keywords: Fisher Hypothesis; Residual-Based Panel Cointegration Test;

Monte Carlo Simulation.

1 Introduction

The ex ante real interest rate affects all intertemporal investment and savings
decisions in the economy. As such, the ex ante real rate is a key variable in
understanding the dynamics of asset prices over time. Its long-run behavior is
often analyzed through the Fisher identity, which defines the ex ante real rate
as the difference between the nominal rate and expected inflation. Beginning
with Mishkin (1992), research usually suggests that both realized inflation and
nominal interest rates are nonstationary, and hence are affected by permanent
shocks. Thus, for the ex ante real rate to be affected by only transitory distur-
bances, these findings imply that any permanent shocks to either the nominal

∗The author would like to thank David Edgerton and other seminar participants at Lund
University for helpful comments and suggestions. A GAUSS program that implements the
tests proposed in this paper is available from the author upon request.

†Department of Economics, Lund University, P. O. Box 7082, S-220 07 Lund, Sweden. Tele-
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rate or expected inflation must cancel out through the Fisher relationship. Since
permanent shocks to rationally expected inflation match the permanent shocks
to realized inflation, this suggests that ex ante real rates will be subject to per-
manent shocks unless inflation and nominal rates move one-for-one in the long
run. Thus, if inflation and nominal rates are nonstationary processes and the
Fisher hypothesis holds in the long run, then these series should be cointegrated
with a unit parameter on inflation. In this case, the series move one-for-one in
the long run such that their permanent disturbances cancel out leaving the real
rate stationary.

Despite the general acceptance of the Fisher hypothesis among economic
theoreticians, a stable long-run one-for-one relationship between inflation and
nominal interest rates has proven extremely difficult to establish empirically.
In fact, most time series evidence based on data for the United States tend to
favor a rejection of the hypothesis. A number of studies, including those of
Mishkin (1992), Crowder and Hoffman (1992), and Evans and Lewis (1995),
observe cointegration between inflation and nominal interest rates but with the
estimated parameter on inflation being significantly different from one suggest-
ing that ex ante real rates are subject to permanent shocks. Other studies, such
as those of Rose (1988), MacDonald and Murphy (1989), Bonham (1991), and
King and Watson (1997), fail to find cointegration in the first place in which
case the Fisher hypothesis may be rejected out of hand. Findings of this sort
are puzzling since they seem to directly contradict the first-order condition of
standard intertemporal models insofar these models predict that consumption
growth rates should also be affected by permanent shocks, a hypothesis typically
rejected by the data. Furthermore, assuming that inflation is primarily driven
be monetary growth, superneutrality fails as changes in the rate of monetary
growth affects inflationary expectations and subsequently real rates.

There are at least two limitations to the existing literature. One limitation is
the failure to account for the low power inherent in conventional cointegration
tests against highly autoregressive alternatives in small samples. In spite of
this, the low power of commonly applied tests continues to be one of the most
widely held explanations of the apparent failure of the Fisher hypothesis to
materialize. Another limitation of the earlier literature is that it is almost
exclusively concerned with data on the United States and only a few attempts
have been made based on international data. Three such studies are those of
Ghazali and Ramlee (2003), Koustas and Serletis (1999), and Strauss and Terrell
(1995). Ghazali and Ramlee (2003) employs monthly data from 1974:1 to 1996:6
on the G7 countries and cannot reject the null hypothesis of no cointegration
between the inflation and nominal interest rates. Similarly, using quarterly
data covering the period 1957:1 to 1995:2 for 11 OECD countries, Koustas and
Serletis (1999) find no evidence of cointegration for any of the countries except
Japan. Strauss and Terrell (1995) employs quarterly data between 1973:1 and
1989:4. Among the six OECD countries considered, the null of no cointegration
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can only be rejected for Japan. All three studies therefore reject the Fisher
hypothesis, which its indicative of its poor support internationally.

Given these apparent weaknesses in the earlier literature, it is surprising that
so little attention has been paid to panel data. Tests based on panel data are
distinct in that they bring more information to bare on the Fisher hypothesis
through the increased number of observations that derives from adding individ-
ual time series. To correct for these shortcomings, in this paper we investigate
the Fisher hypothesis using a panel of monthly data covering the period 1980:1
to 1999:12 on 14 OECD countries. In doing so, we propose two new residual-
based tests for the null hypothesis of no cointegration. The tests are based on
the Durbin-Hausman principle whereby two estimators of a unit root in the
residuals of an estimated regression are compared. Both estimators are consis-
tent under the null hypothesis but only one retains the property of consistency
under the alternative. Using sequential limit arguments, it is shown that the
test statistics are free of nuisance parameters and that they have a limiting nor-
mal distribution under the null hypothesis. Results from a small Monte Carlo
study suggest that the proposed tests have greater power than other popular
residual-based tests is samples comparable with ours. In our empirical analysis,
contrary to much of the earlier literature, we find evidence in favor of the Fisher
hypothesis.

The paper proceeds as follows. Section 2 provides a brief presentation of
the Fisher hypothesis. Section 3 introduces the Durbin-Hausman test statistics,
whereas Sections 4 and 5 are concerned with their asymptotic and finite sample
properties. Sections 6 and 7 then present our empirical results. Section 8
concludes the paper. For notational convenience, the Bownian motion Bi(r)
defined on the unit interval r ∈ [0, 1] will be written as only Bi and integrals
such as

∫ 1

0
Wi(r)dr will be written

∫ 1

0
Wi and

∫ 1

0
Wi(r)dWi(r) as

∫ 1

0
WidWi. We

will use ⇒ to signify weak convergence,
p→ to signify convergence in probability

and [z] to signify the largest integer less than z.

2 The Fisher hypothesis

The Fisher hypothesis states that in long-run equilibrium, nominal rates should
adjust perfectly to changes in expected inflation leaving the expected ex ante
real interest rate unaffected. Formally, ignoring tax effects, the Fisher identity
can be stated as

rit = E(pit) + E(qit), (1)

where rit is the nominal interest rate observed at time t for country i, E(pit)
is the expected rate of inflation based on the currently available information
set, and E(qit) is the corresponding ex ante real interest rate. Under rational
expectations, the realized rate of inflation may be written as follows

pit = E(pit) + uit, (2)
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where uit is a mean zero stationary forecast error that is orthogonal to any
information known at time t. Equations (1) and (2) imply that the following
relation between rit, pit and E(qit) must hold by identity

rit − pit = E(qit)− uit. (3)

In this expression, only the inflation and nominal interest rates are observable.
The difference between these variables is identically qit, the ex post real interest
rate, comprised of the ex ante real rate and the forecast error. Because the
inflation and nominal interest rates are unit root processes, we can use panel
cointegration techniques to infer whether the ex post real interest rate contains
shocks with the same degree of persistence as those variables. In particular,
the relationship between the unit root components of these variables may be
examined through the following regression

rit = αi + βipit + eit. (4)

The regression is said to be cointegrated if the error eit is stationary, while it is
spurious if eit is nonstationary. The Fisher hypothesis posits the ex post real
interest rate a stationary variable. This suggests that inflation and the nominal
rate should cointegrate with a unit slope on inflation. To get an intuition on
this, notice that (3) and (4) imply that the ex post real interest rate can be
written in the following fashion

qit = αi − (1− βi)pit + eit − uit. (5)

This expression is very instructive when deriving testable long-run predictions
of the Fisher hypothesis. Given our assumption of rational expectations, the
forecast error of inflation must be unforecastable conditional on any information
known at time t suggesting that uit must be a stationary variable. Hence, qit

can only be nonstationary if E(qit) is nonstationary. In this model therefore,
the problem of testing the Fisher hypothesis is equivalent to testing whether the
ex ante real rate is stationary or not. The expressions in (3) and (5) suggest
that this variable can be written as

E(qit) = αi − (1− βi)pit + eit. (6)

Suppose that the inflation and nominal interest rates are cointegrated. In this
case, eit is stationary and the integratedness of the ex ante rate therefore only
depend on the integratedness of (1−βi)pit. Towards this end, consider first the
implications of letting βi = 1. In this case, (1 − βi)pit vanishes so variations
in the ex ante real rate only reflects temporary deviations from its mean value,
which is given by αi. Apparently, since the nominal interest rate moves one-for-
one with the rate of inflation in the long run, their unit root components cancel
out leaving the ex ante real rate unaffected in which case the full Fisher effect
is said to hold. By contrast, if we let βi 6= 1, then (1 − βi)pit will not vanish
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suggesting that the ex ante real rate must contain the same unit root component
as inflation and that it will be nonstationary. Of cause, rit and pit may still be
cointegrated even though the ex ante real interest rate is nonstationary. But
since βi 6= 1, there is said to be only a partial Fisher effect. If inflation and
nominal interest do not cointegrate, then eit is nonstationary so (4) becomes
spurious and there is no Fisher effect. It follows that cointegration is a necessary
condition for the Fisher hypothesis to hold in the long run.

3 The Durbin-Hausman tests

The previous section suggests that the testing for panel cointegration is key in
inferring the long-run Fisher hypothesis. In this section, therefore, we propose
two new tests for panel cointegration, which are shown through simulations to
be more powerful than other existing tests. The data generating process (DGP)
may be characterized in terms of the vector zit = (rit, pit)′ as follows

zit = zit−1 + vit. (7)

To be able to derive the tests, we make the following assumptions regarding the
cross-sectional and temporal properties of vit.

Assumption 1. (Error process.) (i) The process vit is i.i.d. cross-sectionally;
(ii) The partial sum process SiT =

∑[Tr]
t=1 vit satisfies the invariance principle

T−1/2SiT ⇒ Bi ≡ LiWi as T −→ ∞ with N held fixed, where Bi is a vector
Brownian motion with covariance matrix Ωi = L′iLi.

Assumption 1 provides us with the basic conditions for developing the Durbin-
Hausman tests. Assumption 1 (i) states that the individuals are i.i.d. over the
cross-sectional dimension. This condition is convenient as it will allow us to
apply standard central limit theory in a relatively straightforward manner. For
many empirical applications, however, the i.i.d. assumption may quite restric-
tive and Section 7 therefore suggests alternative tests based on the bootstrap
principle. Notwithstanding, for the present we shall require Assumption 1 (i)
to hold. Assumption 1 (ii) imposes a restriction on the temporal dependence
of vit. This restriction is generally considered to be quite weak and include, for
example, the entire class of all stationary autoregressive moving average pro-
cesses. In particular, it ensures that the covariance matrix of Bi, equally the
long-run covariance matrix of vit, exist and that it may be written as

Ωi ≡ lim
T−→∞

T−1E(SiT S′iT ) =
(

ω2
i11 ωi21

ωi21 Ωi22

)
.

In keeping with the previous cointegration literature, we place no restrictions
on Ωi. Notably, the fact that Ωi is permitted to vary between the individuals of
the panel reflects that we are in effect allowing for a completely heterogeneous
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long-run covariance structure. Moreover, we make no assumptions regarding
the endogeneity structure of the regressor, which is captured by the off-diagonal
element ωi21 of Ωi.

In this section, we are concerned with the problem of testing the hypothesis
of no cointegration in panel data. To this end, consider fitting the regression in
(4) using OLS. This regression may be written as

rit = α̂i + β̂ipit + êit. (8)

The residual series êit is stationary when rit and pit are cointegrated and it
has a unit root when they are not. Thus, testing the null hypothesis of no
cointegration is equivalent to testing the regression residuals for a unit root
using the following autoregression

êit = ρiêit−1 + uit. (9)

In what follows, we shall propose two test statistics that are based on the value
taken by the autoregressive parameter ρi. The first statistic is restricted in the
sense that it is constructed under the maintained assumption that the autore-
gressive parameter takes on a common value ρi = ρ for all individuals i. The
second statistics is unrestricted and does not require ρi to be equal for all i.
A consequence of this distinction arises in the formulation of the alternative
hypothesis of the test. For the restricted statistic, the null and alternative hy-
potheses is formulated as H0 : ρi = 1 for all i versus H1 : ρi = ρ < 1 for all i.
Hence, in this case, we are in effect presuming a common value for the autore-
gressive parameter both under the null and alternative hypotheses. A rejection
of the null should therefore be taken as evidence in favor of cointegration for
all the individuals in the panel. By contrast, for the unrestricted statistic, H0

is tested versus the alternative that H1 : ρi < 1 for i = 1, ..., N1 and ρi = 1
for i = N1 + 1, ..., N2. Thus, in this case, we are not presuming a common
value for the autoregressive parameter and, as a consequence, a rejection of the
null cannot be taken to suggest that the entire panel is cointegrated. Instead,
a rejection should be interpreted as providing evidence in favor of rejecting the
null hypothesis for a nonzero fraction of the panel.

Let ẽit = (êit, êit−1, ∆êit)′, Ei =
∑T

t=1 ẽitẽ
′
it and E =

∑N
i=1 ω̂−2

i1.2Ei, where
ω̂2

i1.2 = ω̂2
i11 − ω̂2

i21Ω̂
−1
i22 is any consistent estimator of ω2

i1.2 ≡ ω2
i11 − ω2

i21Ω
−1
i22.

The Durbin-Hausman statistics of H0 versus H1 is composed of two estimators
of ρi, which have different probability limits under the alternative hypothesis
but share the same property of consistency under the null. As shown by Choi
(1992, 1994), the pseudo instrumental variables (IV) estimators ρ̃i = E−1

i12Ei11

and ρ̃ = E−1
12 E11 are consistent under the null hypothesis but are inconsistent

under the alternative. On the other hand, the OLS estimators ρ̂i = E−1
i22Ei12

and ρ̂ = E−1
22 E12 are consistent both under the null and alternative hypotheses.

Hence, the pseudo IV and OLS estimators may be used to construct the Durbin-
Hausman statistics.
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Definition 1. (The Durbin-Hausman test statistics.) The statistics are defined
as follows

DHR ≡ σ̂2γ̂−2
0 (ρ̃− ρ̂)2E22 and DHU ≡

N∑

i=1

σ̂2
i γ̂−2

i0 (ρ̃i − ρ̂i)2Ei22,

where σ̂2
i =

∑M
k=−M ω(k/M)γ̂ik and Ω̂i =

∑M
k=−M ω(k/M)γ̃ik with γ̂ik and γ̃ik

being the k order autocovariances of the OLS estimates ûit and v̂it of uit and
vit = zit − z′it−1δi, and ω(j/M) is the Bartlett window 1 − j/(1 + M). The
quantities σ̂2 and γ̂0 are the cross-sectional averages of ω̂−2

i1.2σ̂
2
i and ω̂−2

i1.2γ̂i0.

For consistency of σ̂2
i and Ω̂i, it is necessary that M does not increase too fast

relative to T . Sufficient conditions are given by M −→ ∞ and M = O(T 1/3)
as T −→ ∞. Also, in view of DHR, note that, although the autoregressive
parameters are presumed equal, both the variances and the cointegration vec-
tors themselves are allowed to vary between the individuals of the panel. Thus,
the statistic only pools the information regarding the possible existence of a
cointegration relationship as indicated by the stationarity properties of the es-
timated residuals. The weighting terms ω̂2

i1.2 also deserves a special comment.
Asymptotically, the distribution of the test is invariant with respect to ω̂2

i1.2,
which suggests that we may construct a cumputually simpler unweighted statis-
tic that is asymptotically equivalent to DHR. In small samples, however, our
Monte Carlo experiments indicate that the weighted statistic performs better
and that the ω̂2

i1.2 terms therefore should be included in order to ensure that
the small-sample distribution of the statistic is free of the nuisance parameters
associated with the serial correlation properties of the data.

The restricted statistic is constructed by summing the separate terms over
the cross-section prior to multiplying them together. In contrast, the unre-
stricted statistic is constructed by first multiplying the various terms and then
summing over the N dimension. This makes the construction of DHU particu-
larly simple. In fact, closer inspection reveals that DHU is nothing but the sum
of N ratios corresponding to the conventional time series statistics studied in
Choi (1994). Note also the multiplicative form of the endogeneity and serial cor-
relation corrections employed by both statistics. This makes them computually
convenient in comparison to the semiparametric versions of the Dickey-Fuller
test statistics proposed by Pedroni (1999, 2004), where the corrections enters
both multiplicatively and additively.

4 Asymptotic distribution

In this section, we characterize the asymptotic distribution of the test statistics
proposed in Section 3. For this purpose, we shall invoke the sequential limit
theory developed by Phillips and Moon (1999). In particular, it will be shown
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that both statistics require standardization based on the first two moments of
the following vector Brownian motion functional

Ki ≡
(

V ′
i Vi,

∫ 1

0

Q2
i , V

′
i Vi

(∫ 1

0

Q2
i

)−1
)′

,

where

Qi = W̄i1 −
(∫ 1

0

W̄i1W̄i2

) (∫ 1

0

W̄ 2
i2

)−1

W̄i2,

Fi =
∫ 1

0

W̄iW̄
′
i =

(
fi11 fi21

fi21 Fi22

)
and Vi =

(
1,−fi21F

−1
i22

)
.

Notice that Qi may be interpreted as the residual from a continuous time re-
gression of W̄i1 on W̄i2. It is the limiting representation of the residual êit

obtained from (8). Therefore, to account for the fact that (8) is fitted with an
individual specific constant term, this suggests that Qi should be based on the
demeaned standard Brownian motion W̄i = Wi −

∫ 1

0
Wi rather than Wi. In de-

riving the asymptotic theory, it is convenient to define Θ and Σ as, respectively,
the mean and the covariance of Ki. It is also convenient to define the vector
φ ≡ (Θ−1

2 ,−Θ1Θ−2
2 )′ and to let Σ̃ denote the upper left 2 × 2 submatrix of Σ.

Making use of these notations, we are now ready to state our first main result.

Theorem 1. (Asymptotic distribution.) Under Assumption 1 and 2, and the
null hypothesis of no cointegration, as T −→∞ prior to N

N−1/2DHR −N1/2Θ1Θ−1
2 ⇒ N(0, φ′Σ̃φ), (10)

N−1/2DHU −N1/2Θ3 ⇒ N(0, Σ33). (11)

The proof of Theorem 1 is outlined in the appendix. The proof of (10) pro-
ceeds by showing that the intermediate limiting distribution of DHR can be
written entirely in terms of the elements of the vector Brownian motion func-
tional Ki. Therefore, by virtue of cross-sectional independence, the limiting
distribution of the test statistic can be described in terms of differentiable func-
tions of i.i.d. vector sequences to which the Delta method is applicable. Hence,
by subsequently passing N −→∞, we obtain a limiting normal distribution for
the test statistic, which depend only on the first two moments of Ki. The DHU

statistic also attains a limiting normal distribution under the null hypothesis.
In this case, however, asymptotic results follow directly by the application of the
Lindberg-Lévy central limit theorem to an average of N i.i.d. random variables.

Theorem 1 indicates that each of the standardized statistics converges to a
normal distribution whose moments depend on various terms that are derived
from the underlying vector Brownian motion functional Ki. Although the stated
results are for the speciel case when (8) is fitted with a constant term and a
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single regressor, they are readily extendable to accommodate other deterministic
specifications as well as multiple regressors. In particular, if the test statistics
are based on (8) with no deterministic terms, then the limiting distributions
of DHU and DHR still have the same form as in (10) and (11) but now with
moments that are based on the standard Brownian motion Wi rather than
Wi −

∫ 1

0
Wi. Analogously, if the regression involves fitted constant and trend

terms, then the limiting distributions in (10) and (11) retain their stated forms
but involve moments of the demeaned and detrended standard Brownian motion
Wi +(6r−4)

∫ 1

0
Wi +(6−12r)

∫ 1

0
rWi. If we have multiple regressors, then Wi2

becomes a K dimensional vector Brownian motion and the formulaes should be
adjusted accordingly.

Approximations of the moments may be obtained by means of Monte Carlo
simulations. In this paper, we simulate both finite and asymptotic moments. In
the former case, the simulations are carried out by repeated application of the
test statistics to the DGP described in Section 3. In the latter case, the moments
are obtained on the basis of 10, 000 draws of K + 1 independent scaled random
walks of length T = 1, 000. Using these random walks as simulated Brownian
motions, we construct approximations of the functional Ki and then compute
approximate asymptotic moments. The simulated moments are reported for up
to six regressors in Table 1 of the appendix. For DHR statistic, our simulation
results indicate that the asymptotic results is borne out well in small samples
with the asymptotic moment approximations being close to their finite sample
counterparts. For the DHU statistic, however, the results suggest that the finite
sample moments sometimes can be far away from their theoretical values. To
account for such discrepancies, we estimate response surface regressions.

The estimation proceeds as follows. For each combination of K, T and N ,
we generate 1, 000 test statistics according to the DGP given by (7). For the
DHR statistic, T ∈ {50, 60, 70, 80, 100, 200} and N ∈ {5, 10, 15, 20}, whereas,
for the DHU statistic, T ∈ {50, 60, 70, 80, 100, 200, 500, 1000} and N = 1. Most
samples are relatively small as these seem to provide more information about
the shape of the response surfaces. A few large values of T are also included,
however, to ensure that the estimates of the asymptotic moments are sufficiently
accurate. Pending on the deterministic component of (8), moments for three
different model specifications are extracted and stored, one with no deterministic
component, one with a constant, and one with a constant and a linear time
trend. We then perform 50 replications of each experiment, which means that
the total number of observations available for each regression for the DHR and
DHR statistics are 1200 and 400, respectively. Although the fit of the regressions
generally were quite good, the results suggest that the estimates associated with
powers of T greater than unity have a tendency of becoming explosive in cases
where the dependent variable takes on relatively large values. To avoid this, we
fit the regressions with the inverse of the simulated moments as the dependent
variable.
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Since the regressions are heteroskedastic by construction, we use the gen-
eralized method of moments estimator discussed in MacKinnon (1996). The
estimated response surface parameters for each of the experiments are reported
in Table 2. For brevity, the table only report the estimated response surfaces for
up to three regressors. To test the null hypothesis of no cointegration based on
the estimated response surfaces from Table 2, one must first obtain the appro-
priate moments. This is done by calculating the fitted value of the dependent
variable, which is then inverted to get the moment. For example, for the DHU

statistic in the model with no deterministic component with K = 1 and T = 50,
the approximate expected value is 18.0420, which is computed as the inverse
of the fitted value 0.0730 − 0.8755/50 − 0.1595/502. Based on the calculated
moments, one then computes the value of the relevant standardized test statis-
tic so that it is in the form of (10) or (11). Because both statistics diverges to
positive infinity under the alternative hypothesis, the computed value should
be compared with the right tail of the normal distribution. If the computed
value is greater than the appropriate right tail critical value, we reject the null
hypothesis.

5 Monte Carlo simulations

In this section, we compare and evaluate the small-sample properties of the
Durbin-Hausman test statistics relative to that of eight other residual-based
tests for cointegration recently proposed by Pedroni (1999, 2004). For this
purpose, a small set of Monte Carlo experiment were conducted with the DGP
tailored to reflect the most relevant features for the long-run Fisher hypothesis.
In particular, we assume that the regression is fitted with a constant term only
and that there is a single regressor in which case the DGP may be written as

rit = αi + βipit + eit,

eit = ρieit−1 + uit + θuit−1,

where (uit,∆pit)′ ∼ N(0, V ) and V is a symmetric matrix with V11 = V22 = 1
and V12 = V21. For each experiment, we generate 1, 000 panels with N ∈
{10, 20} individual and T ∈ {50, 100} + 50 time series observations. The first
50 observations for each cross-section is then disregarded in order to attenuate
the effect of the initial value. The DGP is parameterized as follows. The au-
toregressive parameter ρi determines whether the null hypothesis it true or not.
Under the null hypothesis, we set ρi = 1 for all i, while, under the alternative
hypothesis, ρi < 1. Specifically, for the restricted test, ρi = ρ for all i, whereas,
for the unrestricted test, the fraction of spurious individuals is set equal to 0.1.
The regression parameters αi and βi are both allowed to vary and are drawn
from U(0.4, 1.2). The remaining parameters θ, δ and V12 introduce nuisance
in the DGP. First, a nonzero value on θ imply that eit will have a first order
moving average component. Second, the degree of exogeneity in the DGP is
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governed by V12. The regressor is strictly exogenous if V12 = 0, while it is
weakly exogenous if V12 = 0.4. All computations was performed in GAUSS.

Figure 1: Size-adjusted power for the restricted tests when N = 10.

The tests are constructed using the moments based on the response surface
estimates presented in Table 2. The performance of the Durbin-Hausman statis-
tics are compared to eight of the statistics developed in Pedroni (1999, 2004).
To this effect, we shall use GZt and GZρ to denote the semiparametric group
mean t and ρ statistics proposed in Pedroni (2004). The corresponding panel
statistics are denoted PZt and PZρ, respectively. The augmented Dickey-Fuller
versions of these test statistics are presented in Pedroni (1999). They are de-
noted by GDFt, GDFρ, PDFt and PDFρ. As with DHR and DHU , the Panel
and Group Mean statistics differ mainly due to the fact that, while the former
presumes a common value of the autoregressive parameter ρi under the alter-
native, the latter does not. Therefore, the most relevant comparisons here are
between DHR and the panel statistics, and between DHU and the group mean
statistics. For brevity, we present only the size-adjusted power of the tests and
the empirical size on the five percent level.

Consider first the size of the tests presented in Tables 3 and 4. Since all tests
have been constructed using either semiparametric or parametric adjustments to

11



Figure 2: Size-adjusted power for the restricted tests when N = 20.

account for the temporal dependence of the data, special attention is paid to the
choice of bandwidth or lag length parameter. Three such choices are considered;
M1 = [4(T/100)2/9], M2 = [2T 1/3] and M3 = [0.5T 1/3]. Judging from the
results presented in the tables, although all three choices generally produce
test with good size, it appears as that M1 tend to work best for the Durbin-
Hausman statistics. In fact, when the moving average parameter is nonnegative,
size accuracy is almost perfect in all panels. The results are less encouraging
when θ = −0.4 in which case both the DHR and the DHU statistics suffer from
severe size distortions. Similar results are obtained for the other tests. One
exception is the ADF type tests, where M2 tend to lead to a over-rejection of
the null hypothesis. Apparently, too generous a lag length causes the number
of free parameters to become unwieldy thereby leading to a deterioration in the
small-sample performance of the tests.

Next, we continue to the results on the power of the tests presented in Fig-
ures 1 through 4.1 In this case, θ = 0 so there is no moving average component
present. Based on the good performance of the tests under the null hypothe-

1In Figures 1 through 5, the curves representing the size-adjusted power of the test statistics
have been smoothed slightly by means of a least squares spline of neighboring points.
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Figure 3: Size-adjusted power for the unrestricted tests when N = 10.

sis, the bandwidth parameter is set equal to M1. All results are adjusted for
size so that each test has the same rejection frequency of five percent when the
null hypothesis is true. As suggested by the figures, the proposed test statistics
are almost uniformly more powerful than the other tests. Notably, the power
advantage appear to be much greater for the DHU statistic than for the DHR

statistic. As expected, we see that the power falls as the autoregressive param-
eters approach one. Another expected result is that the power increases quickly
for both statistics as N and T grows. To emphasize the additional power that
comes from using panel data rather than a single time series, Figure 5 plots
the raw power of the Durbin-Hausman statistics for some small values on N

when T = 50. As illustrated by the figure, the power is strictly increasing in
N and the advantage relative to the pure time series case when N = 1 may
be considerable even for as small panels as N = 5. Among the remaining test
statistics, Figures 1 trough 4 indicate that the semiparametric tests generally
perform best and that the DF type tests perform worst. In fact, for the group
mean statistics, Figures 3 and 4 suggest that the power can be very poor unless
T > 50 or N > 10, or both.

In summary, we find that the Durbin-Hausman tests show higher size-adjusted
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Figure 4: Size-adjusted power for the unrestricted tests when N = 20.

power than the other tests considered and, at the same time, maintain the nomi-
nal size well in small samples. Since the power advantage is particularly striking
in small panels, this leads us to the conclusion that the proposed tests should
be particularly well suited for testing the long-run Fisher hypothesis.

6 Empirical results

In this section, we present the empirical evidence on the Fisher hypothesis.
For this purpose, data on 14 OECD countries between 1980:1 and 1999:12 are
obtained from the OECD Main Economic Indicators data base. The data is
monthly and include for each county a short-term nominal interest rate and the
consumer price index. Both variables were converted into annualized values.

We begin the empirical analysis by testing the variables for unit roots. In
a recent study, Im et al. (2003) develop two panel ADF type test statistics
that can be used for testing the null hypothesis of a unit root in the variables
when the underlying DGP is heteroskedastic and serially correlated. They are
the Zt̄ and Z̃t̄ statistics. Both are consistent and attains a limiting normal
distribution under the null hypothesis as T −→ ∞ prior to N . Under the
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Figure 5: Power for different values of N when T = 50.

alternative hypothesis, both statistics diverge to negative infinity, which suggests
that the left tail of the normal distribution should be used to reject the null.
The statistics differ in that they have different distributional properties for a
fixed T in which case the Z̃t̄ statistic is analytically more manageable and is
likely to lead to more accurate tests in small samples.

Both statistics are constructed as simple averages of N individual ADF test
statistics, which implies that we need to chose the functional form of the indi-
vidual ADF test regressions in order to implement the tests. To this end, since
the series are clearly trending, we are interested in testing the null hypothesis
of a unit root against the alternative of trend stationarity. This imply that we
should fit the regressions with both a constant and a linear time trend. Different
choices of lag length seem to have little or no effect on the test results so we
set the lag length equal to M1 defined in the previous section. In fact, since all
results presented herein seem very robust to various choices of lag lengths and
bandwidths, we use M1 throughout.

The appropriate moments needed to construct the Zt̄ and Z̃t̄ statistics for
the model with a time trend are not available, and must therefore be obtained
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by means of Monte Carlo simulation.2 As described in Section 4, this calls for
an evaluation of the intermediate limiting distribution of the tests, which is the
conventional Dickey-Fuller distribution defined in e.g. Im et al. (2003). For this
purpose, we make 10, 000 draws of a single random walk of length T = 1, 000,
which is then used to compute the moments. The simulated expectation and
variance are −2.2208 and 0.5785, respectively. The lower tenth and fifth per-
centiles of the Dickey-Fuller distribution is also simulated in order to implement
the tests on an individual basis. The simulated ten and five percent critical
values are −3.1476 and −3.4798, respectively.

The individual Zt̄ and Z̃t̄ statistics, abbreviated tiT and t̃iT , are presented
in Table 5. We see that the null hypothesis of a unit root in the variables cannot
be rejected on the five percent level for any of the 14 countries.3 These results
suggest that we also should be able to reject the stationarity hypothesis for the
panel as a whole. Indeed, the calculated values on the Zt̄ and Z̃t̄ statistics for the
nominal interest rate are −0.7805 and −0.6429, respectively. The corresponding
values for inflation are −0.9421 and −0.7938. Hence, the null cannot be rejected
individually nor for the panel as a whole on any conventional significance level.
We therefore conclude that the variables are nonstationary.

As argued in Section 2, in the presence of unit roots, the long-run Fisher hy-
pothesis necessitates that inflation and the interest rate be cointegrated. There-
fore, we now proceed by testing the variables for cointegration. Results for each
individual country are presented in Table 4. The DHS statistic is the Durbin-
Hausman test developed by Choi (1994), while the ADF statistic appears in
Phillips and Ouliaris (1990). Consistent with the specification of the cointe-
grated regression derived in Section 2, the tests are based on a regression fitted
with a constant term only.

The results reported in Table 5 suggest that the null hypothesis of no cointe-
gration can be rejected on the 10 percent level for at least 10 countries, Austria,
Belgium, Canada, France, Germany, Italy, Spain, Switzerland, United Kingdom,
and United States. For the remaining countries, except possibly for Finland,
we end up marginally accepting the null hypothesis on the 10 percent level. It
is well known, however, that univariate tests of this sort may have low power in
small samples when the variables are nearly spurious. For this reason, we now
employ the panel Durbin-Hausman statistics developed in Section 3 and 4. As
in Section 5, we compute the statistics based on the moments calculated from
the response surface estimates reported in Table 2. The calculated values on
DHR and DHU are 4.4785 and 4.6465, respectively. Thus, compared with the
right tail of the normal distribution, we reject the null on all conventional levels
of significance. Consequently, since the variables appear to be cointegrated, we
conclude that there is at least a partial Fisher effect present.

2Im et al. (2003) tabulate both finite and asymptotic moments for the Zt̄ and Z̃t̄ statistics
when the data is generated while allowing for a nonzero mean.

3On the 10 percent level, we marginally reject the null of a unit root in the rate of inflation
for the United States using the tiT statistic.
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As pointed out in Section 2, the OLS estimator will be consistent under fairly
general conditions when applied to the cointegrated regression in (9). However,
the nonzero correlation between the regression error and the first differentiated
regressor induces nuisance parameters in the asymptotic distribution of the OLS
estimator, which then falls outside the local asymptotic mixture of normals fam-
ily. Moreover, the use of overlapping data, where the horizon of the inflation and
interest rates are longer than the monthly observation interval, may induce serial
correlation in the equilibrium errors. To account for both of these features, we
employ the dynamic OLS (DOLS) estimator of Stock and Watson (1993), and
Saikkonen (1991) and the fully modified OLS (FMOLS) estimator of Phillips
and Hansen (1990). These estimators are asymptotically equivalent and fully
efficient in the presence of serially correlated errors and endogenous regressors.
The difference between them lies in the methods undertaken in order to ensure
efficiency of the cointegration parameters. Specifically, while the DOLS employs
a parametric correction whereby lags and leads of the first differentiated regres-
sor are introduced, the FMOLS adjusts for the temporal dependencies of the
data by directly estimating the various nuisance parameters semiparametrically.
To this effect, we use two lags and leads of the first difference of inflation to
construct the DOLS, whereas the FMOLS is based on the Bartlett kernel.

The results from the estimated cointegration parameters are reported in
Table 6. We see that the estimated individual slope parameters generally lie
close to their hypothesized value of one. The range of the estimated slopes are
0.6134 to 1.3310 for the DOLS, 0.4184 to 1.3394 for the FMOLS, and 0.4548
to 1.2499 for the OLS. Based on the asymptotic normal distribution, we can
rarely reject the null hypothesis of a unit slope parameter on the one percent
level. The pooled estimates are reported in the last row of the table. Consistent
with the individual county regressions, we see that the pooled slopes are close
to unity and that the null hypothesis of a unit slope cannot be rejected on
the five percent level using the normal distribution for any of the estimators.
These estimates should, however, be interpreted with caution as the poolability
restriction do not seem to be supported by the data.4

Consistent with the results of e.g. Mishkin (1992), Crowder and Hoffman
(1992), and Evans and Lewis (1995), we observe some countries where the esti-
mated slope is significantly less than unity. One interpretation of this finding is
that the ex ante real interest rate is subject to permanent shocks and that these
shocks are negatively correlated with the permanent shocks to inflation, which is
inconsistent with the Fisher hypothesis. To appreciate this, note from (5) that
the unit root component of the ex post real rate can be written as −(1−βi)pit.
Thus, a unit positive permanent shock to inflation translate into a permanent
shock in the ex post real rate of magnitude −(1−βi). Since βi < 1 in this case,

4The calculated Wald test statistics for a homogenous slope parameter are 87.0098 for the
DOLS, 42.9126 for the FMOLS and 87.2586 for the OLS estimator. Under the null hypothesis
of a common slope, these statistics have a limiting chi-squared distribution with 13 degrees of
freedom in which case the five percent critical value is 22.3621.
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Figure 6: Kernel densities of the slope parameters and their t-ratios.

a positive shock to inflation correspond to a negative shock to the ex post real
rate. Another implication of (5) is that the ex post real rate is equal to the ex
ante real rate less a stationary error term. It follows that the ex ante rate is
nonstationary and that its long-run trajectory is opposite to that of inflation.

Contrary to this interpretation, Crowder and Hoffman (1996), and Caporale
and Pittis (2004) argues that a less than unit slope may not reflect the actual
DGP but rather a downward endogeneity bias on the part of the estimators
employed. To investigate this possibility, we engage in a small Monte Carlo
study where the DGP is chosen to mimic the process generating the observed
data. To this effect, recall that eit is the regression error in (4). The DGP
may be described by the error vector vit = (eit, ∆pit)′, which is assumed to
evolve according to the first order vector autoregression vit = vit−1δ + uit,
where uit∼N(0, Σ). The DGP is first calibrated using the observed OECD data
to obtain values for δ and Σ. These are then used to generate simulated data
along the lines described in Section 5.5

Figure 6 present the kernel densities of the estimated slope parameters and
their t-ratios.6 There are two important results. First, the bias distributions are

5The data is generated for N = 1 and T = 200 observations with αi = βi = 1. The number
of replications is 10, 000. The DGP is parameterized by δ11 = 0.92, δ12 = 0, δ21 = −0.16,
δ22 = 0.13, Σ11 = 0.8, Σ12 = Σ21 = −0.1 and Σ11 = 0.14.

6The densities for the slope parameters and their t-ratios are estimated using a Gaussian
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peaked to the left of zero suggesting that the estimators are biased downwards
with the OLS estimator being the most biased. Second, the distributions of
the t-ratios are highly non-central and shifted to the left. Notably, the mean
values of the t-ratios are −1.2736 for the DOLS, −0.5468 for the FMOLS and
−1.5202 for the OLS, which is indicative of large size distortions. Indeed, the
probability of rejecting a true null hypothesis of βi = 1 using a double-sided
test against the normal distribution on the nominal five percent level is 0.342
for the DOLS, 0.198 for the FMOLS and 0.386 for the OLS. Hence, inference
based on the normal distribution is likely to be highly deceptive. To account for
this, we obtain the five percent critical values form the empirical distribution,
which should enable valid inference. The left tail critical values for the DOLS,
FMOLS and OLS estimators are −3.8392, −4.1619 and −5.5901, respectively.
Based on these values, the null of a unit slope cannot be rejected for any of the
countries using the t-ratios reported in Table 6.

In summary, consistent with the results of Crowder and Hoffman (1996), and
Caporale and Pittis (2004), the evidence of this section suggests that we cannot
reject the full Fisher effect for any of the countries or for the panel as a whole. To
test the robustness of this conclusion, we reestimated the empirical model based
on both annual and quarterly OECD data. Some additional estimates were also
obtained using the yield on long-term government bonds as interest rate. For
brevity, however, we do not report these results but we briefly describe them.
Regardless of sample frequency, we still find cointegration between the inflation
and nominal interest rates. The full Fisher effect is also supported using the
empirical critical values. The results obtained using long-term interest rates are
qualitatively similar. An additional, and perhaps even more important, caveat
is that all forms of cross-sectional dependency thus far has been disregarded.
To this end, the next section proposes bootstrapped cointegration tests that are
robust to general forms of cross-sectional dependencies.

7 Bootstrap tests

Recall that the properties of the Durbin-Hausman test statistics rely on the
assumption of cross-sectional independence. When this assumption is violated,
the statistics suffer from nuisance parameter dependencies in which case their
asymptotic distributions are unknown. In our case, there are at least two reasons
for believing that the data may not be i.i.d. cross-sectionally. First, inflation
rates may be correlated across countries because of common oil price shocks.
Second, nominal interest rates may be correlated across countries due to the
strong links between financial markets. Although the first type of dependence
may be accommodated by using data that has been demeaned with respect to
a common time effect, the size of such tests may be quite unreliable once we
allow for more general types of correlation structures. One possible response to

kernel with bandwidth parameter 0.1 and 0.6, respectively.
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this is to follow Maddala and Wu (1999) in employing the bootstrap approach,
which enables us to make accurate inference using the empirical distributions
of the test statistics.

The problem is how to generate the bootstrap distributions. To this end, we
propose generating the data nonparametrically using the sampling scheme S2

described in Li and Maddala (1996, 1997). Specifically, if the null hypothesis is
specified as ρi = 1 for all i, then this scheme suggests that the sample should
be generated while imposing a unit root in the equilibrium errors. Thus, the
bootstrap sample e∗it is generated as

e∗it = e∗it−1 + u∗it,

where u∗it is the bootstrap sample from the centered residual ũit = ûit −
T−1

∑T
t=1 ûit obtained by performing OLS on (9). Because the errors are cross-

sectionally correlated, however, we cannot resample ũit directly. Instead, we
resample v̂t = (ũ′t,∆p′t)′, where ũt = (ũ1t, ..., ũNt)′ and ∆pt = (∆p1t, ..., ∆pNt)′.
By resampling the data in this way, we can preserve the cross-sectional correla-
tion structure of vt. Notably, by resampling v̂t rather than ũt, we can preserve
any endogenous effects that may run across the individual regressions of the
system. Next, we generate the bootstrap sample r∗it as

r∗it = α̂i + β̂ip
∗
it + e∗it,

where α̂i and β̂i are the parameters from (8). For initiation of e∗it and p∗it, we use
the value zero. Once the sample r∗it and p∗it has been obtained, the bootstrapped
test statistics may be readily computed. This procedure is then repeated a large
number of times, which gives us the empirical distributions of the statistics.

The five percent critical values for the DHR and DHU statistics obtained
using 1, 000 bootstrap replications are 19.922 and 4.435, respectively. Thus,
based on the DHU statistic, we reject the null hypothesis of no cointegration
on the five percent level using the bootstrapped distribution. In contrast, we
cannot reject the null on the five percent level using the DHR statistic. This is
not unexpected, however, given the results on the individual cointegration tests,
which suggest that the homogenous alternative may be too restrictive in this
case. Generally speaking, these empirical findings seem to confirm our simula-
tion results, which suggest that the DHR statistic suffers from substantial size
distortions when the errors are cross-sectionally correlated. The DHU statistic
also suffers from size distortions but not nearly as severe as those for the DHR

statistic. In fact, the DHU statistic appears to be rather robust against small
to moderate degrees of cross-section dependence. The bootstrap approach elim-
inates these distortions and leads to tests with good size properties, although
both tests tend to be somewhat under-sized.
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8 Conclusions

Recent empirical studies suggest that the Fisher hypothesis, stating that infla-
tion and nominal interest rates should cointegrate with a unit parameter on
inflation, do not hold, a finding at odds with many theoretical models. This
paper argues that these results can be explained in part by the low power in-
herent in univariate cointegration tests and that the use of panel data should
generate more powerful tests. Therefore, in this paper we investigate the Fisher
hypothesis using a panel of monthly data covering the period 1980:1 to 1999:12
on 14 OECD countries. In doing so, we propose two new residual-based tests
for the null hypothesis of no cointegration. The tests are based on the Durbin-
Hausman principle whereby two estimators of a unit root in the residuals of a
cointegrated regression are compared. Both estimators are consistent under the
null hypothesis but only one retains the property of consistency under the alter-
native. Using sequential limit arguments, it is shown that the test statistics are
free of nuisance parameters and that they have a limiting normal distribution
under the null hypothesis. Results from a small Monte Carlo study suggest that
the proposed tests have greater power than other popular residual-based tests
is samples comparable with ours. In our empirical analysis, contrary to much
of the earlier literature, we find evidence in favor of the Fisher hypothesis.
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Appendix A Mathematical proofs

In this appendix, we derive the limiting distributions of the Durbin-Hausman
test statistics under the null hypothesis of no cointegration. Unless otherwise
stated, the limit arguments are taken passing T −→ ∞ with N held fixed. For
illustrative purposes, we shall focus on the simple case when the regression (11)
is fitted without any deterministic components.

Proof of Theorem 1. To prove the limiting distribution for the restricted
Durbun-Hausman test statistic, we make the assumption that ρi = ρ for all i.
Thus, since ρ = 1 under the null hypothesis, we may write

T ρ̂ =
(
T−2E22

)−1
T−1E12 = T +

(
T−2E22

)−1
T−1E23, (A1)

T ρ̃ =
(
T−2E12

)−1
T−1E22 = T +

(
T−2E12

)−1
T−1E13. (A2)

The estimated OLS regression (11) with no deterministic component may be
expressed as λ̂′izit = êit, where λ̂i = (1,−β̂i)′. Furthermore, by Theorem 2 of
Phillips (1986), we obtain the limit of λ̂i as

λ̂i ⇒ λi = (1,−ai21A
−1
i22)

′,

where

Ai =
∫ 1

0

BiB
′
i =

(
ai11 ai21

ai21 Ai22

)
.

Combining the results, it follows that

T−2Ei11 ⇒ λ′iAiλi = ω2
i1.2

∫ 1

0

Q2
i , (A3)

Moreover, by Theorem 2.6 of Phillips (1988), we obtain

T−1Ei23 = λ̂′i

(
T−1

T∑
t=2

vitzit−1

)
λ̂i ⇒ λ′i

(∫ 1

0

BidBi + Γi

)
λi. (A4)

From (A3) and (A4), we deduce

T−2Ei12 = T−2Ei11 + T−2Ei23 = T−2Ei11 + op(1) ⇒ λ′iAiλi, (A5)

T−1Ei13 = T−1Ei23 + T−1Ei11

= λ̂′i

(
T−1

T∑
t=2

vitzit−1 + T−1
T∑

t=2

vitv
′
it

)
λ̂i

⇒ λ′i

(∫ 1

0

BidBi + Σi + Γi

)
λi. (A6)
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Combining (A3) through (A6), since ω̂2
i1.2 is consistent for ω2

i1.2 under Assump-
tion 2 (see, e.g. Phillips and Ouliaris, 1990), we obtain the limit of T (ρ̂−1) and
T (ρ̃− 1) as follows

T (ρ̂− 1) ⇒
(

N∑

i=1

ω̂−2
i1.2λ

′
iAiλi

)−1 N∑

i=1

ω̂−2
i1.2λ

′
i

(∫ 1

0

BidBi + Γi

)
λi,

T (ρ̃− 1) ⇒
(

N∑

i=1

ω̂−2
i1.2λ

′
iAiλi

)−1 N∑

i=1

ω̂−2
i1.2λ

′
i

(∫ 1

0

BidBi + Σi + Γi

)
λi.

It follows that

T (ρ̃− ρ̂) =

(
T−2

N∑

i=1

ω̂−2
i1.2Ei12

)−1

T−1
N∑

i=1

ω̂−2
i1.2Ei13

−
(

T−2
N∑

i=1

ω̂−2
i1.2Ei22

)−1

T−1
N∑

i=1

ω̂−2
i1.2Ei23

⇒
(

N∑

i=1

ω−2
i1.2λ

′
iAiλi

)−1 N∑

i=1

ω−2
i1.2λ

′
iΣiλi

=

(
N∑

i=1

∫ 1

0

Q2
i

)−1 N∑

i=1

ω−2
i1.2λ

′
iΣiλi. (A7)

Next, consider γ̂0 and σ̂2. For simplicity, write R0 =
∑N

i=1 ω̂−2
i1.2γ̂i0 and R1 =∑N

i=1 ω̂−2
i1.2σ̂

2
i . From Lemma 2.2 of Phillips and Ouliaris (1990), we have λ′iΩiλi =

ω2
i1.2V

′
i Vi. Thus, using the same arguments as Choi (1994), it is possible to show

γ̂0 = N−1R0 ⇒ N−1
N∑

i=1

ω−2
i1.2λ

′
iΣiλi, (A8)

σ̂2 = N−1R1 ⇒ N−1
N∑

i=1

ω−2
i1.2λ

′
iΩiλi = N−1

N∑

i=1

V ′
i Vi. (A9)

Using the results in (A3), (A7) and (A8), we have

R2 ≡ (
N−1R0

)2
(T (ρ̃− ρ̂))−2

(
T−2

N∑

i=1

ω̂−2
i1.2Ei22

)−2

⇒ N−2
N∑

i=1

∫ 1

0

Q2
i . (A10)

This, together with (A9), imply

DHR = σ̂2γ̂−2
0 (ρ̃− ρ̂)2

N∑

i=1

ω̂−2
i1.2Ei22
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= N−1R1R
−1
2

⇒
(

N−1
N∑

i=1

V ′
i Vi

)(
N−2

N∑

i=1

∫ 1

0

Q2
i

)−1

. (A11)

This shows that the limiting distribution of DHR is free of nuisance parameters
under the null. Therefore, because the limiting distributions passing T −→ ∞
is i.i.d. over the cross-section, we deduce that E(Ki) = Θ for all i. The variance
of Ki may be decomposed as

Σ =




Σ11 Σ12 Σ13

Σ12 Σ22 Σ23

Σ13 Σ23 Σ33


 and Σ̃ =

(
Σ11 Σ12

Σ12 Σ22

)
.

To derive the limiting distributions of the test statistic, we shall make use of
the Delta method, which provides the limiting distribution for continuously
differentiable transformations of i.i.d. vector sequences. In so doing, rewrite the
statistic as

N−1/2DHR −N1/2Θ1Θ−1
2 = N1/2

(
N−1R1 −Θ1

) (
N−1R2

)−1

+ N1/2Θ1

((
N−1R2

)−1 −Θ−1
2

)
. (A12)

The terms appearing in (A12) with normalizing order N−1 converge in prob-
ability to the means of the corresponding random variables by virtue of a law
of large numbers as T −→ ∞ and then N −→ ∞. Hence, N−1R1

p→ Θ1 and
N−1R2

p→ Θ2. Moreover, by direct application of the Lindberg-Lévy central
limit theorem, N1/2

(
N−1R1 −Θ1

) ⇒ N(0,Σ11) as T −→ ∞ prior to N . The
remaining expression involves a continuously differentiable transformation of
i.i.d. random variables. Thus, by the Delta method, as T −→∞ prior to N

N1/2
((

N−1R2

)−1 −Θ−1
2

)
⇒ N(0, Θ−4

2 Σ22). (A13)

This suggests that the limit of N−1/2DHR −N1/2Θ1Θ−1
2 may be written as

N−1/2DHR −N1/2Θ1Θ−1
2 ⇒ Θ−1

2 N(0, Σ11)−Θ1Θ−2
2 N(0, Σ22). (A14)

It follows that N−1/2DHR −N1/2Θ1Θ−1
2 is mean zero with the variance given

by Θ−2
2 Σ11 + Θ2

1Θ
−4
2 Σ22 − 2Θ1Θ−3

2 Σ12. This completes the first part of the
proof.

Consider next the limiting distribution of the DHU statistic. In this case,
ρi need not take on a common value in which case the OLS and pseudo IV
estimators may be rewritten as

T ρ̂i =
(
T−2Ei22

)−1
T−1Ei12 = T +

(
T−2Ei22

)−1
T−1Ei23, (A15)

T ρ̃i =
(
T−2Ei12

)−1
T−1Ei11 = T +

(
T−2Ei12

)−1
T−1Ei13. (A16)
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Using (A3) through (A6) it follows that

T (ρ̃i − ρ̂i) ⇒ λ′iΣiλi (λ′iAiλi)
−1

. (A17)

Moreover, from (A8) and (A9), we infer that γ̂i0 ⇒ λ′iΣiλi and σ̂2
i ⇒ λ′iΩiλi.

Together, these results indicate

DHU =
N∑

i=1

σ̂2
i γ̂−2

i0 (ρ̃i − ρ̂i)2Ei22

=
N∑

i=1

σ̂2
i γ̂−2

i0 (T (ρ̃i − ρ̂i))2
(
T−2Ei22

)

⇒
N∑

i=1

λ′iΩiλi (λ′iAiλi)
−1 =

N∑

i=1

V ′
i Vi

(∫ 1

0

Q2
i

)−1

. (A18)

Next, let Ri = σ2
i γ̂−2

i0 (T (ρ̃i − ρ̂i))
2 (

T−2Ei22

)
and rewrite the statistic as follows

N−1/2DHU −N1/2Θ3 = N1/2

(
N−1

N∑

i=1

Ri −Θ33

)
. (A19)

Hence, by the Lindberg-Lévy central limit theorem, N−1/2DHU − N1/2Θ3 ⇒
N(0, Σ33) as T −→∞ prior to N . This establishes the second part of the proof.
¥
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Appendix B Tables

Table 1: Asymptotic moment approximations

Expected value

Test Model K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

DHR 1 7.6541 14.6057 22.5867 30.5144 38.7008 46.0467

2 12.1374 19.1595 26.8663 34.6582 42.2798 50.5897

3 21.2169 27.9798 35.2532 42.6188 50.7753 58.3518

DHU 1 13.6819 21.8477 29.8971 37.9786 46.0781 53.9190

2 18.1627 25.9633 34.0732 42.2808 49.9467 58.0038

3 27.4615 34.8246 42.4579 50.2396 58.2399 66.0355

Variance

Test Model K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

DHR 1 92.0879 232.1380 359.9850 409.8960 458.6499 576.3421

2 110.1665 201.8621 299.1754 398.8789 479.9372 515.9864

3 159.3223 241.3131 326.8050 432.0750 477.3330 569.7757

DHU 1 97.8256 170.6996 235.0440 288.2585 354.9217 420.6487

2 124.6938 190.4510 260.4231 336.0109 383.1646 448.2359

3 196.5500 255.9459 329.1439 399.9996 446.7113 519.6418

Notes:

(i) Model 1 refers to the regression with no deterministic terms, Model 2 refers to

the regression with a constant term, and Model 3 refers to the regression with

a constant and a linear time trend.

(ii) The value K refers to the number of regressors excluding any deterministic

constant or trend terms.
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Table 5: Individual unit root and cointegration tests

Interest rate Inflation Cointegration

Country tiT t̃iT tiT t̃iT DHS ADF

Austria −2.3207 −2.2968 −2.2928 −2.2699 32.0131 −3.5321

Belgium −2.3279 −2.3038 −1.7246 −1.7165 33.9159 −2.4800

Canada −2.8373 −2.7909 −2.9627 −2.9094 78.1132 −3.2401

Finland −1.7035 −1.6959 −2.3305 −2.3063 25.8597 −2.3874

France −2.6696 −2.6315 −2.1046 −2.0876 28.5929 −3.0958

Germany −1.8680 −1.8570 −1.9033 −1.8915 33.9345 −3.1960

Italy −2.7761 −2.7328 −2.1960 −2.1763 22.5989 −3.4771

Japan −2.8678 −2.8197 −2.9610 −2.9078 27.6394 −2.8370

Netherlands −2.3747 −2.3489 −2.2890 −2.2663 20.5187 −2.8238

Norway −2.3431 −2.3185 −2.5300 −2.4981 15.5121 −3.0000

Spain −2.6006 −2.5657 −2.2742 −2.2520 69.9687 −2.4561

Switzerland −1.8342 −1.8240 −2.0994 −2.0826 62.3207 −2.5097

United Kingdom −2.4575 −2.4285 −2.9422 −2.8900 31.3563 −3.3534

United States −2.3312 −2.3070 −3.1618 −3.0962 30.8219 −4.6986

Notes:

(i) The unit root tests includes a constant and a linear time trend. The cointegration

tests are based on a regression with a constant term.

(ii) The ten and five percent critical values for the tiT and t̃iT test statistics are −3.1476

and −3.4798, respectively. These have been obtained through Monte Carlo simulation.

(iii) The ten and five percent critical values for the DHS statistic are 33.68 and 41.10.

These appear in Choi (1994).

(iv) The ten and five percent critical values for the ADF statistic are −3.0657 and

−3.3654. These appear in Phillips and Ouliaris (1990).
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