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Preface

The time has come, the Walrus said,
To talk of many things . . .

Lewis Carroll, “Through the Looking Glass”

The time has come, indeed, and we shall talk of the many different things that make
up the contents of my PhD thesis produced during the (nearly) four years spent at
the Division of Solid State Theory of the Lund University.

The main topic of the thesis is the physics of interacting two-dimensional electrons
moving in a perpendicular magnetic field combined with a lateral periodic potential.
The two ingredients of the physical problem – the magnetic field and the bidirectionally
modulated periodic potential – strongly disagree with each other and their quarrel
leads to an admirable jewel of beautiful physics and the underlying mathematics. To
make a long story short, the magnetic field tends to define a periodicity of its own
with a lattice constant that does not necessarily agree well with that of the periodic
modulation. This (dis)agreement is often referred to as (in)commensurability and
results in an intricate internal structure of the electron energy spectrum which is
known as the “butterfly”. You will find a high-resolution picture of it somewhere in
Chapter 3. The butterfly is not just a theorist’s dream; in the recent years, a number
of experimental groups have managed to overcome the involved difficulties and have
captured some manifestations of the complicated spectrum. First it was done in the
measurements of the lateral transport and, what I was particularly delighted to learn,
only last year the butterfly was spotted in the integer quantum Hall effect data.

The present thesis consists of two parts. First, there comes a series of three
introductory – or rather Background, as I like to call them – Chapters. They briefly
run through the key issues leading us into the field of the thesis: two-dimensional
electrons in strong magnetic fields, magnetic translations, suitable basis function sets,
commensurability, and so on. The second part is a collection of original papers, listed
here in the order they appear in the thesis:

1. E. Anisimovas and P. Johansson, Butterfly-like Spectra and Collective Modes of
Antidot Superlattices in Magnetic Fields, Phys. Rev. B 60, 7744 (1999).
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2. E. Anisimovas and P. Johansson, Electronic Structure of Antidot Superlattices
in Commensurate Magnetic Fields, J. Phys.: Condens. Matter 13, 3365 (2001).

3. E. Anisimovas, Tunneling Spectroscopy of Modulated Two-Dimensional Electron
Systems.

4. E. Anisimovas, Hydrodynamics of Antidot Superlattices.

5. E. Anisimovas and P. Johansson, Tip Geometry Effects in Circularly Polarized
Light Emission from a Scanning Tunneling Microscope, Phys. Rev. B 59, 5126
(1999).

All the results presented in the papers are obtained by me personally, and therefore,
I am to be held responsible for all of their contents. The last paper is devoted to the
light emission from an operating scanning tunneling microscope (STM) and lies some-
what outside the main stream. It does deal with tunneling and collective electronic
excitations, however, in a different physical system. Nevertheless, I decided to include
it in the thesis as representing a part of my general physical background. There was
one more paper written by me which I do not include:

0. E. Anisimovas and A. Matulis, Energy Spectra of Few-electron Quantum Dots,
J. Phys.: Condens. Matter 10, 601 (1998).

Most of this work was done before I came to Lund.
Numerous thanks go, first of all, to my advisors Dr. Peter Johansson and Prof.

Koung-An Chao, as well as other members of the group. While it is certainly difficult
to list everybody with whom I have enjoyed enlightening conversations, I would like to
particularly mention Prof. Yuri M. Galperin, Prof. Algirdas Matulis, Prof. Eivind-Hiis
Hauge, Prof. Allan H. MacDonald, and Dr. Carlo M. Canali.

I think it was a fortune to carry out my PhD work at this Division, a part of whose
members work on quite a different set of problems – the many-body theory – and talk
a different language. From them I certainly picked up much inspiration and wisdom,
for example, writing my own bandstructure code for commensurate magnetic fields.
It is always healthy to keep one’s mind open to ideas from outside. The people who
deserve the credit are: Prof. Lars Hedin, Dr. Carl-Olof Almbladh, Dr. Ulf von Barth,
Dr. Ferdi Aryasetiawan, Dr. Robert van Leeuwen, Dr. Stefan Kurth and Nils-Erik
Dahlen. Nils has also kindly agreed to read the introductory Chapters and corrected
a few misprints.

The financial support from the Swedish Natural Sciences Research Council (NFR),
the Nordic Academy for Advanced Studies (NORFA), the National Science Council
(NSC) of Taiwan, and the Swedish Royal Academy of Sciences (KVA) was appreciated.
I would like to thank Prof. Yuri M. Galperin of the University of Oslo and the Advanced
Study Center (Oslo, Norway) for their warm hospitality during the total of 1.5 months
that I have spent in Oslo. Likewise, thanks go to Prof. Tsin-Fu Jiang of the National
Chiao Tung University (Hsinchu, Taiwan) for everything that has taken place during
the exciting month in Taiwan in spring 2000.

Lund, April 2001
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CHAPTER 1

Electron Motion in Magnetic Field

1.1 Formalisms

The motion of a particle of mass m and charge −e (an electron) in the presence
of an external electromagnetic field, given in terms of its scalar and vector
potentials φ and A, respectively, is described by the Lagrangian

L =
mv2

2
+ eφ− e

c
v ·A. (1.1)

This expression is most easily understood by noting that the first two terms
on the left-hand side of (1.1) represent the usual difference of the kinetic and
potential energies, and the last term supplements the contribution of the scalar
potential by that of the vector potential in an explicitly covariant form. The
presence of the term involving the vector potential A will supply an extra term
to the action

S[r(τ)] =
∫ t

0

L
(

r,
dr
dτ

)
dτ = S0[r(τ)]− e

c

∫
dr ·A, (1.2)

here S0 denotes the action in the absence of the magnetic field (A = 0). The
semiclassical propagator G = exp(iS/h̄) will correspondingly be modified by a
phase factor

G = G0 exp
(
− ie
ch̄

∫
dr ·A

)
(1.3)

with G0 being the zero-field propagator. While the expression (1.3) is manifestly
gauge-dependent, the physically meaningful quantity is the phase accumulated
by an electron traversing a closed path or, equivalently, a difference of two phases
corresponding to two distinct paths sharing the same origin and the destination.

1



2 Chapter 1

The closed-contour integral of A equals the magnetic flux Φ penetrating the
enclosed area, therefore, the exponential in (1.3) can be written as

exp
(
− ie
ch̄

∮
dr ·A

)
= exp

(
−2πi

Φ
Φ0

)
with Φ0 =

ch

e
, (1.4)

here we introduced the magnetic flux quantum Φ0 = 4.13570 · 10−7G cm2, a
quantity of fundamental importance to the subject. The magnetic flux sensi-
tive phase (1.4) can be measured in an experimental setup of the Aharonov-
Bohm type. It is exactly this phase that is responsible for bringing about
the commensurability-related phenomena in antidot superlattices as well as the
crystal momentum shifts in tunneling perpendicular to magnetic field, two main
issues considered in the present thesis.

Carrying out the transformation to the Hamiltonian formalism starting with
Eq. (1.1) we find the distinction between the canonical (p) and kinetic (pkin)
momenta in finite magnetic fields

p =
∂L

∂v
= mv − e

c
A, thus pkin ≡ mv = p +

e

c
A, (1.5)

and arrive at the following Hamiltonian describing the motion of a free particle
in a magnetic field

H =
1

2m
p2

kin =
1

2m

(
p +

e

c
A
)2

. (1.6)

1.2 Landau Gauge

The two commonly used gauges for the vector potential A are the so-called
symmetric gauge given by A = B × r/2, and the Landau gauge Ay = Bx (or
alternatively Ax = −By).

Before proceeding to the consideration of the solutions to the Hamiltonian
(1.6) in either gauge, it is advisable to simplify the expressions by introducing
the natural dimensionless units of the length and energy. These are the magnetic
length lc and the cyclotron energy h̄ωc, respectively, and are given by

lc =

√
h̄c

eB
, h̄ωc =

h̄eB

mc
. (1.7)

In these units, the Hamiltonian (1.6) in the Landau gauge is written as

H =
1
2
p2
x +

1
2

(py + x)2, (1.8)
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and obviously commutes with py. Therefore, we look for solutions of the form

ψk(x, y) =
1√
2π

eikyϕ(x), (1.9)

consisting of a plane wave propagating in the y direction and some function ϕ
of x. Making a substitution x→ x−k we arrive at the following equation for ϕ(

−1
2
d2

dx2
+

1
2
x2 − E

)
ϕ(x− k) = 0, (1.10)

which coincides with the harmonic oscillator equation. Thus, we identify the
solutions to (1.10) ϕn(x− k) with the harmonic oscillator functions χn(x) and
write the total wave function as

ψnk(x, y) =
1√
2π

eikyχn(x+ k),

χn(x) =
[√
πn! 2n

]−1/2 e−x
2/2Hn(x), (1.11)

where Hn denotes the n-th Hermite polynomial. The energy of the state ψnk
is En = (n+ 1/2) and does not depend on k. Thus, the resulting energy levels,
enumerated by the quantum number n and commonly known as the Landau
levels, are highly (extensively) degenerate.

1.3 Symmetric gauge

The problem of a single electron moving in a uniform magnetic field can also
be approached in the symmetric-gauge formulation leading to a different set of
solutions. Of course, since the physical problem is the same the members of one
set of solutions are always expressible as linear combinations of the other set.
Let us take a brief look at the solution of the problem in the symmetric gauge.
The Hamiltonian now reads

H =
1
2

(px − y/2)2 +
1
2

(py + x/2)2, (1.12)

and written in the polar coordinates (ρ, φ) becomes

H = −1
2
∇2 +

1
8
ρ2 +

1
2
lz, lz = −i ∂

∂φ
. (1.13)

Here we introduced the angular momentum operator lz which, owing to the an-
gular symmetry, commutes with the Hamiltonian (1.13). Therefore, we look for
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the solutions whose angular dependence is described by the angular momentum
eigenfunctions

ψm(ρ, φ) =
1√
2π

eimφR(ρ). (1.14)

Using

∇2 =
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂

∂φ2
=

1
ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+

1
ρ2

∂

∂φ2

we arrive at the equation for the radial function R(ρ)

1
ρ

d

dρ

(
ρ
dR(ρ)
dρ

)
+
[
(2E −m)− m2

ρ2
− ρ2

4

]
R(ρ) = 0. (1.15)

Making the substitution ρ2 = 2x we transform the equation into

xR′′(x) +R′(x) +
[
−x

4
+

2E −m
2

− m2

4x

]
R(x) = 0 (1.16)

which is solved by the (unnormalized) Laguerre functions

Rnr,k = e−x/2xk/2Lknr (x).

The radial quantum number nr and the order of the Laguerre polynomial k are
related to the parameters entering Eq. (1.16) by 2E − m = 2nr + k + 1 and
m2 = k2. Thus we express

En = n+
1
2

with n = nr +
m+ |m|

2
,

ψnm(ρ, φ) =

√
nr!

2π2|m|(nr + |m|)!
e−ρ

2/4ρ|m|eimφL|m|nr

(
ρ2

2

)
, (1.17)

here we also evaluated the normalization prefactor. The electron states can
be uniquely identified by specifying the angular momentum quantum number
m = 0,±1,±2, . . . and either the radial nr = 0, 1, 2, . . . or the Landau level
n = 0, 1, 2, . . . quantum number. The relation between the two alternative sets
is schematically shown in Fig. 1.1. The dashed lines join the states that belong
to the same Landau level. We observe that in each Landau level the possible
values of the angular momentum m run from −∞ to the maximum possible
value m = n. The states possessing the maximum possible value of the angular
momentum in each Landau level are encircled by a dotted line.
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nr

n = 0

n = 1

n = 2

n = 4

n = 3

m

Figure 1.1: Schematic diagram of electron states in a uniform magnetic field.

Let us briefly discuss the states with nr = 0 lying on the m-axis in Fig.
1.1. For the negative values of the angular momentum m these states span the
lowest Landau level and can be written in a particularly simple way using the
complex number notation

ψm(ρ, φ) =
1√

2π2|m||m|!
e−ρ

2/4(x− iy)|m|, (1.18)

whereas for the positive angular momenta m we obtain the above mentioned
states of the maximum possible angular momentum

Fn(ρ, φ) =
1√

2π2nn!
e−ρ

2/4(x+ iy)n. (1.19)

These states play an important role in the construction of localized basis func-
tion sets spanning the respective Landau levels, and will be further discussed
in Sec. 1.6.

1.4 Canonical transformation

In this Section, we will discuss the solution of the problem of electron motion
in a uniform magnetic field using a canonical coordinate transformation. To
be specific, we work in the symmetric gauge, while the corresponding analysis
in the Landau gauge is identical in spirit. We start with the symmetric-gauge
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Hamiltonian
H =

1
2

(px − y/2)2 +
1
2

(py + x/2)2, (1.20)

and also define the magnetic translation operators

TM (R) = exp
{
−iRx

(
px +

y

2

)
− iRy

(
py −

x

2

)}
. (1.21)

They perform gauge-preserving translations by a distance R in the presence
of a uniform magnetic field. The properties of the operators (1.21) are thor-
oughly discussed in the following Chapter 2. For the present purposes it suffices
to observe that they are constructed so as to commute with the free-particle
Hamiltonian (1.20) and thus can be used to classify its states.

The new coordinates and their respective momenta are introduced according
to

ξ = py + x/2, pξ = px − y/2,
η = −py + x/2, pη = px + y/2, (1.22)

with the inverse transformation given by

x = ξ + η, px = pη − pξ,
y = (pξ + pη)/2, py = (ξ − η)/2. (1.23)

One can easily see that the definitions of the new variables directly follow the
terms in Eqs. (1.20) and (1.21) at the same time obeying the usual canonical
commutation relations

[ξ, pξ] = [η, pη] = i, [ξ, η] = [pξ, pη] = [ξ, pη] = [η, pξ] = 0. (1.24)

A straightforward calculation leads to the following expressions of the trans-
formed operators

H0 = (p2
ξ + ξ2)/2,

TM (R) = exp[−iRxpη + iRyη], (1.25)

and explains the point of using them. The ξ degree of freedom corresponds to
the effectively one-dimensional motion quantized into the Landau levels. Thus,
the transformed Hamiltonian (1.25) has turned into the harmonic oscillator
Hamiltonian in ξ and is solved by the corresponding oscillator functions χn(ξ).
The dependence on η enters only the expression of TM (R). Therefore, the
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η coordinate can be interpreted as describing the placement of the centroid
of the harmonic oscillator wave-function, and thus accounts for the extensive
(proportional to the system area) degeneracy of the Landau levels.

Working in the canonical coordinates ξ and η, the electronic states in the
n-th Landau level are given by a product of the n-th harmonic oscillator wave-
function of ξ and any function of η. On the other hand, looking for a complete
set of the solutions one has to construct a complete basis function set for the η
degree of freedom. This is the topic of the two following Sections 1.5 and 1.6.

The conversion of a state |ψ〉 between the xy- and ξη-representations is
accomplished by using

〈xy|ψ〉 =
∫
dξ

∫
dη 〈xy|ξη〉〈ξη|ψ〉 (1.26)

with the transformation kernel

〈xy|ξη〉 =
1√
2π

eiy(ξ−η)/2δ(x− ξ − η), (1.27)

determined from the eigenvalue equations

(ξ̂ − ξ)|ξη〉 = 0,
(
x

2
− i ∂

∂y
− ξ
)
〈xy|ξη〉 = 0,

(η̂ − η)|ξη〉 = 0,
(
x

2
+ i

∂

∂y
− η
)
〈xy|ξη〉 = 0. (1.28)

1.5 Sample η basis sets

In order to become more comfortable with the strange coordinates ξ and η let
us try constructing some simple basis function sets for the η degree of freedom
and transforming them into the usual x and y coordinates.

If we choose, for example, a complete orthonormal set of η-dependent func-
tions ϕk(η) = δ(η + k), the complete set of solutions to the Hamiltonian (1.25)
will be given by the functions

ψnk(ξη) = χn(ξ)δ(η + k). (1.29)

Transforming (1.29) into the xy-dependence by means of Eq. (1.27) we obtain

ψnk(xy) = eixy/2 · 1√
2π

eikyχn(x+ k). (1.30)
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The answer is just the usual solution to the problem in the Landau gauge (1.11)
transformed into the symmetric gauge be the exponential prefactor exp(ixy/2).

Alternatively, one could introduce the plane wave basis and write

ψnk(ξη) =
1√
2π

eikηχn(ξ). (1.31)

Then the transformation into the real space using (1.27) yields (up to an in-
significant overall phase)

ψnk(xy) = e−ixy/2 · 1√
2π

eikxχn(k − y), (1.32)

which is exactly the same as (1.30) written in the coordinate frame rotated by
π/2, i. e. the coordinate axes relabelled according to x→ −y, y → x.

What if we tried to use the harmonic oscillator functions as the complete
orthonormal basis for both ξ and η thus writing the solutions as

ψst(ξη) = χs(ξ)χt(η). (1.33)

To answer this question one simply has to note that the angular momentum
operator

lz = −i∂/∂φ = xpy − ypx (1.34)

translated into the ξη-language turns into a difference of the harmonic-oscillator
Hamiltonians for the two degrees of freedom

lz =
1
2

(p2
ξ + ξ2)− 1

2
(p2
η + η2). (1.35)

Therefore, the function (1.33) evidently is an eigenfunction to the Hamiltonian
(1.25) with the Landau level number n = s and the angular momentum operator
with the quantum number m = s− t. Relabelling the indices, we argue that

ψnm(ξη) = χn(ξ)χn−m(η) (1.36)

is an eigenfunction of both the Hamiltonian (1.25) and the angular momentum
operator (1.34), and consequently, when transformed into the xy dependence
should coincide (up to a phase factor) with the usual symmetric-gauge solution
with the Landau level index n and the angular momentum m (1.17).

Evaluating the transformation integral (1.26) for this choice of electron state
we obtain a valuable formula which is used for the analytic evaluation of the
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overlap integrals involving two displaced harmonic oscillator functions and a
plane wave

e−ixy/2
∫
dξ χn(ξ) eiξyχn−m(ξ − x) =

∫
dξ χn(ξ + x/2) eiξyχn−m(ξ − x/2)

=

√
(n−m)!

2mn!
e−(x2+y2)/4(x+ iy)mLmn

(
x2 + y2

2

)
.(1.37)

Still another complete orthonormal basis of η-dependent functions describ-
ing delocalized electronic states is given by the eigenfunctions of the magnetic
translation operators. These functions were used for the most of the thesis work,
and reviewed in the following Chapter 2. This approach to the bandstructure
problem basing on this basis essentially parallels that of plane-wave basis ap-
proach to the ordinary bandstructure problem with the necessary modifications
introduced to account for the influence of strong magnetic fields.

The construction of a localized basis is the topic of the next Section 1.6.

1.6 Coherent states

The idea to use the coherent-state wave-functions to describe the η degree of
freedom deserves a special attention.

Let us start by defining the usual lowering and raising operators

â =
1√
2

(η + ipη), â† =
1√
2

(η − ipη). (1.38)

These operators, acting on the harmonic-oscillator functions χs(η), produce the
(unnormalized) states of index s ± 1. As it is well known, the operator â† has
no eigenfunctions at all, while the eigenvalue problem of the operator â

â|α〉 = α|α〉 (1.39)

has a solution for any complex number α which we use to label the corresponding
eigenstates |α〉. These states are commonly known as the coherent states and
have been extensively used in many branches of quantum physics. A convenient
way to generate the coherent state |α〉 of arbitrary index α is provided by the
displacement (also known as shift) operator

D̂(α) = exp[αâ† − α∗â],
|α〉 = D̂(α)|0〉. (1.40)
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We note that the ‘central’ coherent state |0〉 used in (1.40) to produce all the
others is nothing else but the ground state of the harmonic oscillator 〈η|0〉 =
χ0(η).

The set of all states |α〉 is enormously overcomplete, however, the overcom-
pleteness problem can be solved by restricting the allowed values of α to a
discrete set defined on a lattice in the complex-plane

αµν =
1√
2

(
µb+ iν

2π
b

)
, (1.41)

here µ and ν are integer indices and b is a real number setting the lattice spacing
along the real axis. The spacing along the imaginary axis equals 2π/b so that
the unit cell area is 2π. The defined basis |αµν〉 is still slightly overcomplete,
and in order to get rid of this problem one has to exclude one them from the
set, However, we will not enter the discussion of this intriguing issue here.

Thus, we suggest to consider the following set of solutions to the Hamiltonian
(1.25)

ψn,µν(ξη) = χn(ξ)〈η|αµν〉 = D̂(αµν)χn(ξ)χ0(η), (1.42)

here we use the displacement operator to generate the states |αµν〉. A straight-
forward calculation using (1.38) and (1.40) gives the following η-representation
of the displacement operator

D̂(αµν) = exp
[
−iµbpη + iν

2π
b
η

]
. (1.43)

Comparing this result to the definition of the magnetic translation operator
(1.25) we conclude that

D̂(αµν) ≡ TM (Rµν), Rµν = µbêx + ν
2π
b
êy, (1.44)

and the basis (1.42) becomes

ψn,µν(ξη) = TM (Rµν)χn(ξ)χ0(η). (1.45)

The transformation of (1.45) from ξ, η into the x, y (or rather the polar ρ, φ)
coordinates gives the result

ψn,µν(ρ, φ) = TM (Rµν)Fn(ρ, φ), (1.46)

which is evident from the fact that χn(ξ)χ0(η) is the state of the n-th Landau
level with the angular momentum m = n. Here Fn is the maximum-angular-
momentum function introduced in Eq. (1.19) Section 1.3.
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Thus we succeeded in constructing a complete set of localized basis func-
tions. It is obtained by magnetotranslating the symmetric gauge solutions with
angular momentum m = n (there will be one representative function for each
Landau level) onto a two-dimensional lattice spanned by the vectors (1.44). The
condition that the unit-cell area equal 2π (in our dimensionless units) actually
means that the flux penetrating it is exactly one flux quantum.

The constructed basis functions (1.46) are nicely localized; remember that
the coherent states are in fact the minimum uncertainty wave-packets. How-
ever, they are not mutually orthogonal. The underlying reason is rather deep
– localization and orthogonality are incompatible in magnetic fields. Thus, any
attempt to orthogonalize the functions (1.46) would result in poor localization
properties, namely the 1/r asymptotic behaviour in one of the two lateral di-
rections.



CHAPTER 2

Magnetic Translations

2.1 Translational symmetry

One of the possible approaches to symmetry transformations in physics – the one
that we use in the following discussion – relies on the so-called “active” point
of view. According to this convention, the transformations are visualized as
affecting the actual physical system. For example, an application of a translation
by a given distance vector R means that an electron whose wave function was
centered around a certain point in space r0, after the translation has ended up
in the vicinity of the point r0 + R. Introducing the corresponding translation
operator T (R) acting in the Hilbert space of electronic states we arrive at the
following relation for the transformation of the states induced by the translation

ψ′(r) ≡ T (R)ψ(r) = ψ(r−R). (2.1)

Using this result and the formal representation of the Taylor expansion

f(x0 + ∆x) =
∞∑
n=0

(∆x)n

n!
∂n

∂xn
f(x)

∣∣∣∣
x=x0

= exp
(

∆x
∂

∂x

)
f(x0) (2.2)

we easily construct the explicit form of the translation operator

T (R) = exp
(
−R

∂

∂r

)
= exp

(
− i
h̄

R · p
)
, (2.3)

here p denotes the canonical momentum operator.
The conventional solid state theory relies on the use of the group of the opera-

tors (2.3) to classify the electronic states in a perfect (usually three-dimensional)
crystal lattice spanned by the vectors R = n1a1 + n2a2 + n3a3, with ni being

12
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integer indices and ai denoting the three elementary lattice vectors. The trans-
lation operators (2.3) mutually commute thus defining an Abelian group. Its
irreducible representations

Dq(R) = e−iq·R (2.4)

are labelled by a vector q, the crystal momentum, whose allowed values are
restricted to a unit cell of the reciprocal lattice spanned by the vectors G such
that G ·R = 2π × integer. A common approach to the problem of calculation
of the electronic states in a crystal uses the planes waves as the basis functions.
Clearly, the functions

ψG(q|r) = exp[i(q + G) · r] (2.5)

with a given q and all possible vectors G have identical transformation proper-
ties under the discrete translations by any lattice vector R. It is said that they
all belong to the same irreducible representation q. Any potential periodic on
the lattice R can mix the functions (2.5) between themselves but not with the
functions belonging to different irreducible representations. The acknowledge-
ment of this fact greatly reduces the effort needed to calculate the energies and
wave-functions of electronic states in a complicated crystal potential.

The above description applies to the case when there is no magnetic field
or, at least, its influence can be safely ignored from the beginning and taken
into account later as a perturbation. Such an approach is perfectly justified in
the electronic structure calculations of ordinary solids. The typical energies of
magnetic interactions are negligible on the scale of atomic energy levels, and
the typical magnetic fluxes penetrating a unit cell are never comparable to the
magnetic flux quantum. However, in artificially created lateral superlattices the
lattice constants can be sufficiently large thus bringing us into the regime where
the applied magnetic fields will essentially modify the mathematical description
of the symmetry with respect to discrete translations by a lattice vector. This
is the topic of the following Sections.

2.2 Magnetic translation operators

We will consider a two-dimensional lattice spanned by the set of vectors R =
n1a1 + n2a2, where a1,2 again denote the unit vectors, and n1,2 are integer
indices. However, our lattice is placed into a perpendicular (to begin with)
magnetic field whose effects can not be neglected. The Hamiltonian to be con-
sidered is given by

H =
1

2m

(
p +

e

c
A
)2

+ v(r), v(r) = v(r + R). (2.6)
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While the physical system described by (2.6) is invariant with respect to discrete
translations by a lattice vector R, the Hamiltonian itself apparently is not. The
vector potential in the kinetic energy term introduces an additional localizing
potential well through the term ∝ A2. What went wrong?

The answer is that the Hamiltonian (2.6) is still translationally invariant,
however, only up to a gauge transformation. Obviously, an attempt to apply the
usual translation operator (2.3) to (2.6) would shift not only the scalar potential
term v(r) but also the vector potential A(r). The shifted vector potential has
the same curl as the original one and, therefore, describes the same magnetic
field B, however, the invariance of the mathematical form is gone.

The situation is rectified by replacing the usual translations (2.3) with the
magnetic translation operators TM (R) which actually consist of an ordinary
translation (2.3) followed by the necessary gauge transformation needed to re-
store the required invariance of the kinetic energy term. From another point of
view, the magnetic translators can by defined by demanding that they commute
with the kinetic energy operator.

Maintaining a certain degree of similarity to the ordinary translations we
write the magnetic translation operator in the form

T (R) = exp
(
− i
h̄

R · pgen

)
, pgen = p +

e

c
f , (2.7)

where pgen is the generator of translations in a magnetic field. We present it as
a sum of the canonical momentum (the generator of ordinary translations) and
a complementary field (e/c)f(r) responsible for the additional gauge transfor-
mation. The function f has to be determined from the commutation relations

[pkin,pgen] =
[
p +

e

c
A,p +

e

c
f
]
. (2.8)

Note that this equation is a tensorial one – we have to consider the commuta-
tion of all components of the involved vectors; thus, in this sense the kinetic
momentum pkin does not commute with itself. The equation (2.8) directly im-
plies that div f = 0 and curl f = −B, thus the vector field −f qualifies as a
vector potential of the magnetic field B in some gauge. The actual components
of f are dependent on the chosen gauge and in each particular case have to be
deduced from Eq. (2.8). In the symmetric gauge we find f = −A, while the use
of the Landau gauge with Ay = Bx will lead to fx = −By. Most of the time we
work in the symmetric gauge which is convenient for its particular notational
simplicity.

When the magnetic field also has an in-plane component B‖, we find it con-
venient to describe it in a Landau gauge using z-dependent x and y components
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of the corresponding vector potential A‖y = −B‖xz and A‖x = B
‖
yz. Following this

choice, we are able to maintain the in-plane components of the f field unmodi-
fied, and isolate the effects of the parallel field B‖ on the magnetic translations
into the z-component fz = −B‖xy + B

‖
yx. This modification will manifest it-

self as the momentum shift of an electron tunneling out of the two-dimensional
plane.

2.3 Properties of magnetic translations

Concentrating to the symmetric gauge we write the magnetic translations as

TM (R) = exp
[
− i
h̄

R ·
(
p− e

c
A
)]
, (2.9)

and determine the effect on a given wave-function

TM (R)ψ(r) = exp
[
ie

2h̄c
r · (R×B)

]
ψ(r−R), (2.10)

which is indeed a simple translation followed by a gauge-transformation. Using
the property of exponentiated operators

eAeBe−[A,B]/2 = eA+B = eBeAe[A,B]/2

provided [A, [A,B]] = [B, [A,B]] = 0

we calculate the product of two magnetic translators and find

TM (R1)TM (R2) = exp
[
− ie

2h̄c
B · (R1 ×R2)

]
TM (R1 + R2)

= exp
[
− ie
h̄c

B · (R1 ×R2)
]
TM (R2)TM (R1). (2.11)

We see that a product of two such operators generally equals another operator
only up to a phase. Therefore, the group of magnetic translation operators is
a ray group rather than a conventional vector group. Moreover, the operators
(2.9), unlike the ordinary translations, generally do not commute. It is easy
to see that the triple product B · (R1 × R2) entering Eq. (2.11) equals the
magnetic flux penetrating the cell built on the vectors R1 and R2. Recalling the
expression for the flux quantum Φ0 = ch/e, we arrive at the conclusion that the
magnetotranslation group is Abelian only when the magnetic flux penetrating
a unit cell is an integer multiple of Φ0.
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2.4 Group theory

Despite the fact that we deal with a ray group the conventional apparatus of
the group theory remains to be applicable. Closely following the analogous
developments for ordinary vector groups, one can prove the possibility to work
with a unitary representation and the Shur lemmas. These results open the path
to the orthogonality relations and the construction of the projection operators
which can be used to derive the symmetry-adapted basis consisting of functions
transforming according to the irreducible representations of the group. Since
this line of thought is developed in the papers in sufficient detail we do not
continue it here.

It is appropriate to mention, however, that as anticipated, the irreducible
representations and the constructed symmetry-adapted basis functions are sen-
sitive to the ratio of the magnetic flux penetrating a unit lattice cell to the
magnetic flux quantum

Φ
Φ0

=
L

N
, L,N ∈ Z, (2.12)

which has to be a rational number. The irreducible representations are labelled
by a magnetic crystal momentum q restricted to a single magnetic Brillouin
zone (MBZ), or to a 1/N × 1/N part of it if N 6= 1. The q-th irreducible
representation is still related to the ‘central’ q = 0 one by a familiar relation

Dq(R) = D0(R) e−iq·R. (2.13)

However, at this point the close similarity to the group of ordinary translations
ends. The irreducible representation matrices are N -dimensional, thus implying
the existence of N partner functions. Moreover, there exist L distinct functions
transforming according to the same row of the same irreducible representation.
These facts indicate that at the dimensionless magnetic flux value L/N the Lan-
dau bands will split into L subbands, each of them being N times degenerate.
In view of the fact that the size of MBZ also shrinks N2 times we conclude
that the total number of states in a Landau level or a Landau band follows
the variations of the magnetic field strength as ∼ L × N × 1/N2 ∼ L/N , i. e.
proportionally to the magnetic field strength, as expected.

2.5 Special case: the kq-function

In order to get acquainted with the properties of the basis functions of the group
of magnetic translations, we will consider now a special case of L = N = 1, i. e.
when there is exactly one flux quantum penetrating a unit lattice cell. In this
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way, we will be able to concentrate on the properties of the basis functions
and distance ourselves from the complications introduced by commensurability
which is the topic of the following Chapter 3. Quite interestingly, in just a few
pages we will be able to touch the fundamentals of quantum mechanics and
rediscover the quantum Hall effect.

In the dimensionless units, the condition Φ = Φ0 translates into the require-
ment that the unit cell area equal 2π. In accordance with this, we consider a
rectangular lattice of period a in the x-direction and 2π/a along y. The group of
magnetic translations is now Abelian and thus we need to find the simultaneous
eigenfunctions of the two elementary translations along the two axes. Working
in the canonical coordinates ξ and η (1.22), we deduce from Eq. (1.25) that

TM (ax) = exp (−iapη) ,

TM (ay) = exp
(
i
2π
a
η

)
. (2.14)

The first of the operators (2.14) is an ordinary translation in η, while the second
one can be interpreted as a translation in the momentum space. Indeed, in the
momentum representation η → i∂/∂pη, and thus

TM (ay) = exp
(
−2π
a

∂

∂pη

)
. (2.15)

The common eigenfunction of the two operators (2.14) is known under the
name of the kq-function. Let us see how this function is constructed. Consider
a complete basis set for the η degree of freedom given by ψη0 = δ(η− η0). Each
of these functions describes a localized state centered at some given η0 assuming
its values from −∞ to ∞. Let us divide the η axis into cells of length a and
agree to specify the position η0 by naming the number of the cell n and the
location within this cell (0 ≤ q < a) so that

η0 = na− q. (2.16)

Then the basis function of the complete set will be labelled by two indices, a
discrete and a continuous one,

ψnq(η) = δ(η + q − na), (2.17)

At the next step, in a fashion similar to the construction of a Bloch wave from
atomic orbitals, we perform a unitary transformation from the discrete ‘atomic
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site’ number n to a continuous Bloch index k restricted to 0 ≤ k < 2π/a, and
obtain the normalized kq-function as

ψkq(η) =
√

a

2π

∞∑
n=−∞

eiknaδ(η + q − na). (2.18)

It is easy to check that the function (2.18) is an eigenfunction of the operators
(2.14)

TM (ax)ψkq(η) = e−ikaψkq(η),

TM (ay)ψkq(η) = e−i(2π/a)qψkq(η). (2.19)

The two-dimensional vector with the components k and q actually plays the
role of the magnetic crystal momentum, and the area covered by the allowed
values 0 ≤ k < 2π/a, 0 ≤ q < a defines the magnetic Brillouin zone for this
special case.

2.6 kq-representation

As we all know from the elementary quantum mechanics, for a one-dimensional
problem it is sufficient to have one operator in order to define a representation.
Two common choices of such an operator are the momentum p and the coor-
dinate x operators. Both of them can be used to classify the electronic states
uniquely, while the simultaneous specification of both the coordinate and the
momentum is impossible.

The momentum operator is the generator of translations in the real space;
it commutes with the Hamiltonian of a free particle and thus makes a suitable
choice for the classification of its eigenstates. The eigenvalues of the momen-
tum operator assume all real values from −∞ to ∞. Now, let us suppose that
we introduce a periodic potential of a lattice constant a. The correspondingly
modified Hamiltonian will not commute with the momentum operator p any
longer, however, it will still commute with the exponentiated momentum op-
erator exp(−iap) which is nothing else but a discrete translation by a lattice
constant a. This commutation expresses the surviving invariance with respect
to a set of discrete translations, therefore, the exponentiated momentum oper-
ator can still be used to classify the eigenstates. The corresponding quantum
number k introduced by

exp(−iap)ψ(x) = exp(−iak)ψ(x) (2.20)
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is usually referred to as quasimomentum, and assumes all real values restricted
to an interval of the length 2π/a. However, the specification of the quasimo-
mentum quantum number alone does not determine the quantum mechanical
state completely. An additional index is needed, and the role of this extra index
is usually played by the band number. Alternatively, if we choose to present
the energy bands in the extended scheme by drawing each band in a different
Brillouin zone, the Brillouin zone number will become this extra index. In other
words, by specifying the quasimomentum quantum number alone we determine
the exact location of an electronic state within a Brillouin zone only up to a
discrete translation into another Brillouin zone.

Exploiting the duality of coordinates and momenta, we can introduce the
quasicoordinate quantum number q in a very similar fashion by specifying the
exact location of a quantum mechanical state within a unit lattice cell in the
real space. Then an extra integer index, namely the cell number, would still
be needed for the complete description. This is what we actually did in the
previous Section 2.5 arriving at Eq. (2.16).

As a matter of fact, the quantum numbers q and k introduced in the con-
struction of the kq-function (2.18) in Sec. 2.5 play the role of the quasicoordinate
and the quasimomentum, respectively, in the one-dimensional η space. More-
over, by constructing the kq-function we proved that besides the commonplace
coordinate and momentum representations it is possible to define an alterna-
tive representation – for the absence of a better name – the kq-representation.
This means that it is possible to define quantum-mechanical states that have
both the coordinate and the momentum quantum numbers specified simulta-
neously, however, only up to a discrete translation in the real and reciprocal
space, respectively.

The description of an electron motion in a perpendicular magnetic field
is an example of a practical application of the kq-representation. The two
components of magnetic crystal momentum q are the quasicoordinate and the
quasimomentum corresponding to the one-dimensional space of the generalized
coordinate η.

2.7 Topology of MBZ

In the previous Sections, we defined the magnetic translation operators as the
proper generalization of the ordinary translations for the case of strong magnetic
fields, and introduced the magnetic Brillouin zone (MBZ) as the corresponding
generalization of the ordinary one. The wave-functions defined in MBZ have
some interesting topological properties which we will now consider.
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It is well known from the ordinary (non-magnetic) solid state theory that the
electronic states are perfectly periodic in the reciprocal space. This means that
a state defined on a point on one boundary of the BZ is completely identical
to the state belonging to the point on the opposite boundary differing from the
first one by a reciprocal lattice vector.

The corresponding situation in the case of MBZ is essentially different. From
the expression of the kq-function (2.18), which describes the states in MBZ for
the special case Φ = Φ0, we deduce that

k → k +
2π
a

leads to ψkq → ψkq,

q → q + a leads to ψkq → eikaψkq. (2.21)

Thus, the states on the opposite edges of MBZ in the k direction are identical,
while the states located on the opposite edges along the q directions differ by a
k-dependent phase factor. Traveling around the boundary of MBZ and keeping
track of the phase of the wave-function one will find a winding number equal to
one, i. e. the phase makes one complete cycle from 0 to 2π. Of course, the phases
of the wave-functions can be modified by a gauge transformation at each point
of MBZ individually, however, the winding number is a topological quantity
and will persist. In other words, this means that MBZ, which is topologically
a torus, must contain a cut with the phases of the wave-functions changing
discontinuously when crossing the cut. By necessity, the total change of the
phase accumulated while traveling around the cut and returning to the original
point can only equal an integer multiple of 2π.

As a matter of fact, this integer can be proven to be the quantum Hall con-
ductance integer. The above considered electronic states in MBZ represent the
states in a Landau level perturbed by a periodic potential whose unit lattice
cell is penetrated by a single flux quantum. On the other hand, the electronic
states defined in MBZ can also represent the states in an unperturbed Landau
level classified by their translational properties with respect to an empty lat-
tice. Therefore, the foregoing analysis and the conclusion that the quantum
Hall integer equals unity actually applies to Landau levels. Indeed, each filled
Landau level contributes one conductance quantum to the total Hall conduc-
tance of a two-dimensional electron system. On the other hand, the quantum
Hall conductance an ordinary Bloch band living in the ordinary (non-magnetic)
Brillouin zone is, obviously, zero.

By applying an actual periodic potential modulation on a lattice whose unit
cell is penetrated by an arbitrary rational flux, the Landau level is split into an
intricate pattern of subbands. Each individual subband may be characterized
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by an arbitrary (integer) winding number and thus carry an arbitrary quantized
quantum Hall current. However, the net contribution of all subbands within any
Landau band will still add up to 1.



CHAPTER 3

Commensurability

Moving in parallel to the general approach of the solid state theory to the
electronic structure problem, we discuss the two complementary limiting cases
pertaining to the motion of a two-dimensional electron in a periodic potential
and a perpendicular magnetic field. The two complementary limits are, of
course, the tight-binding approximation and a nearly-free electron modl. Both
physical approaches lead to a very similar (actually the same) mathematical
description which in a transparent way introduces us to the key concept of
commensurability. In the present case, by this word we refer to the sensitivity
of the energy spectrum of the electron to the ratio of the magnetic flux quantum
penetrating a unit lattice cell and the fundamental magnetic flux quantum.

3.1 Tight-binding model

We consider a two-dimensional square lattice (see Figure 3.1) of atomic sites
labelled by a set of two integers m and n, in the x and y directions, respec-
tively. Placing a single atomic orbital |m,n〉 of energy ε0 on each lattice site,
and introducing identical nearest-neighbour hopping matrix elements t > 0 we
construct the following tight-binding Hamiltonian

H = ε0

∑
mn

c†m,ncm,n − t
∑
mn

{
c†m+1,ncm,n

+ c†m−1,ncm,n + c†m,n+1cm,n + c†m,n−1cm,n

}
. (3.1)

Here c†m,n and cm,n, respectively, are the creation and destruction operators
associated with the state |m,n〉. In the following we use t as the energy unit
and adjust the origin of the energy scale origin so that ε0 = 0. In the absence
of a perpendicular magnetic field, the solution of the Hamiltonian (3.1) leads
the usual cosine band whose width equals to 4.

22
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Figure 3.1: A two-dimen-
sional lattice. The nearest-
neighbour sites are connec-
ted by hopping matrix ele-
ments t. In the presence of
a magnetic field the “verti-
cal” transitions will be mo-
dified by an m-dependent
phase.

We include the effects of the perpendicular magnetic field only insofar as
the modification of the phase of the hopping matrix elements is concerned, and
neglect its localizing effects which would lead to the band narrowing. Thus,
working in the Landau gauge we introduce the vector potential according to
Ay = Bx, and multiply the matrix element describing the hopping in the pos-
itive direction of the n axis by an m-dependent phase factor exp(−i2πϕm).
Tunneling in the opposite direction is, naturally, modified by a phase of the
opposite sign, while the hopping in the perpendicular direction is not affected
at all. The meaning of the parameter ϕ is clear from the consideration of the
phase acquired by an electron moving along around the unit lattice cell in the
counter-clockwise direction. This phase is −2πϕ, therefore, ϕ can be identified
with the dimensionless magnetic flux penetrating an elementary cell ϕ = Φ/Φ0.

Thus the Hamiltonian under consideration becomes

H = −
∑
mn

{
c†m+1,ncm,n + c†m−1,ncm,n

+ e−i2πϕmc†m,n+1cm,n + ei2πϕmc†m,n−1cm,n

}
. (3.2)

We expand the electronic states in the atomic orbitals

|ψ〉 =
∑
mn

ψmn|m,n〉, (3.3)

then the eigenvalue equationH|ψ〉 = ε|ψ〉 leads to the following relation between
the expansion coefficients

εψmn = −
[
ψm+1,n + ψm−1,n + ei2πϕmψm,n+1 + e−i2πϕmψm,n−1

]
. (3.4)
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Since the numerical coefficients in (3.4) depend only on m but not on n we can
use an Ansatz based on the plane-wave solutions along the n direction

ψmn = ei2πknψm, 0 ≤ k < 1. (3.5)

Substituting (3.5) into the difference equation (3.4) we arrive at the relation for
the expansion coefficients ψm

εψm = − [ψm+1 + ψm−1 + 2 cos(2πk + 2πϕm)ψm] . (3.6)

As a matter of fact, Eq. (3.6) describes a one-dimensional tight-binding lattice
model with unit nearest-neighbour hopping matrix elements and periodically
modulated site energies

ε0(m) = −2 cos(2πk + 2πϕm). (3.7)

The period of this modulation is

∆m =
1
ϕ

=
Φ0

Φ
=
N

L
, (3.8)

here we introduced the rationality condition by expressing the magnetic flux
penetrating a unit cell as a rational multiple L/N of the magnetic flux quantum.
The integers L and N are mutual primes.

The above analysis shows that the simplest tight-binding model of a two-
dimensional electron moving in competing perpendicular magnetic field and a
periodic potential can be mapped onto a one-dimensional tight-binding model
with two competing periods — the unit spacing of the lattice sites and the
modulation period ∆m = N/L. This is the simplest possible model which
demonstrates the manifestation of the commensurability related phenomena.
The least common integer multiple of 1 and N/L is N , thus, we can join N
adjacent lattice cells into larger physically identical supercells which will act as
the unit cells of a strictly periodic system. Thus it suffices to solve the difference
equation (3.6) in a supercell of N adjacent lattice sites introducing a periodic
boundary condition

ψm+N = ei2πqψm, 0 ≤ q < 1. (3.9)

The two introduced parameters 0 ≤ k, q < 1 play the role of the components
of the magnetic crystal momentum confined to a single MBZ. Using (3.9) the
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eigenvalue problem can be represented by a finite N ×N matrix
ε0(1) −1 · · · · · · −e−i2πq

−1 ε0(2) −1 · · · 0
...

. . .
...

−ei2πq 0 · · · −1 ε0(N)

 (3.10)

whose eigenvalues specify the energies of the electronic states. Evidently, the
resulting energy band originating from a single atomic orbital present in our
model and influenced by the commensurate magnetic field will be split into N
subbands given by the eigenvalues of the matrix (3.10). We hasten to warn
that in this limit of a tight-binding lattice perturbed by the magnetic field the
roles of the integers L and N are reversed with respect to those featured in the
opposite limit of a Landau level perturbed by a weak periodic potential to be
considered in the following Section 3.2.

The spectrum of the eigenvalues of the matrix (3.10) as a function of L/N
is displayed in Fig. 3.2. Each black dots corresponds to the energy value of an
allowed state, while white areas signify forbidden gaps. The structure of the
subbands is rather complicated. At each given rational value of the flux L/N
we observe N subbands. When the magnetic flux changes, the denominator N
follows a rapidly varying sequence of values, and so does the number of existing
subbands. The physical requirement that the subbands evolve continuously as
a function of the magnetic flux leads to the clustering of subbands into well
defined groups. In panel (b), we display the interval L/N ∈ 1/3 . . . 2/5 at a
larger scale. There are three subbands at L/N = 1/3. When the flux value
deviates from this simple fraction the subbands proliferate but stay packaged
into three clusters. Approaching the flux value L/N = 2/5, another simple
fraction, we observe the formation of 5 distinct subbands.

3.2 Weakly perturbed Landau level

Let us start with perfectly flat Landau levels and write their electronic wave-
functions in the canonical ξ, η coordinates introduced in Eq. (1.22). We choose
to work in the basis (1.29)

ψnk̃(ξη) = 〈ξη|nk̃〉 = χn(ξ)δ(η + k̃), (3.11)

and perturb the system with a weak cosine-like potential of a perfect square
symmetry

v = v0[cos(αx) + cos(αy)] =
v0

2
(
eiαx + e−iαx + eiαy + e−iαy

)
. (3.12)
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Figure 3.2: The spectrum of an electron in a periodic potential and a com-
mensurate magnetic field L/N . Panel (a) shows the entire spectrum obtained
including all values of N up to 20 in combination with all possible L’s. Panel (b)
displays the fragment of the spectrum 1/3 ≤ L/N ≤ 2/5 at a higher resolution
obtained by including all possible combinations of L and N ≤ 50.

The parameter α sets the lattice constant to a = 2π/α. In view of the fact that
in the dimensional units the unit cell area equals 2π times the dimensionless
flux we identify

α2 =
2πN
L

. (3.13)

We evaluate the matrix elements of the perturbing potential (3.12) between
our basis functions assuming that v0 is sufficiently weak so that the different
Landau levels will not be coupled

〈nk̃|e±iαx|nk̃′〉 = e−α
2/4Ln

(
α2

2

)
e∓iαk̃δ(k̃ − k̃′), (3.14)
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〈nk̃|e±iαy|nk̃′〉 = e−α
2/4Ln

(
α2

2

)
δ(k̃ − k̃′ ∓ α),

where Ln is n-th Laguerre polynomial. In evaluating (3.14) we expressed x and
y in terms of canonical coordinates (1.22) and used the formula (1.37) derived
in Section 1.5. We see, that the periodic perturbation couples only the states
whose k̃’s differ by an integer multiple of α. Thus, representing k̃ as

k̃ = (k +m)α, 0 ≤ k < 1, m ∈ Z (3.15)

we express the matrix elements of the perturbation (3.12) as

〈nkm|v|nkm′〉 =
v0

2
e−α

2/4Ln

(
α2

2

)
×
{
δm,m′+1 + δm,m′−1 + δm,m′2 cos[α2(k +m)]

}
. (3.16)

The expression in the curly braces hints again at a one-dimensional tight-binding
model with the site energies modulated harmonically with the period

∆m =
2π
α2

=
L

N
. (3.17)

Comparing this result to that obtained in the previous Section 3.1, Eq. (3.8) we
convince ourselves that the roles of the integers N and L in the formation of
the energy spectrum have been reversed. We do not continue the discussion of
the internal structure of the Landau levels in the present case for it would very
closely parallel that described in the previous Section 3.1. Each Landau band
is split into L subbands following the same intricate scheme as that depicted in
Fig. 3.2. Instead, we concentrate on the prefactor

e−α
2/4Ln

(
α2

2

)
= exp

(
−πN

2L

)
Ln

(
πN

L

)
(3.18)

appearing in Eq. (3.16) which introduces an element of novelty. We see, that
due to this prefactor the overall band widths will oscillate in a characteristic
manner. In particular, at the zeros of the involved Laguerre polynomial the
total band width will be zero. This fact is a manifestation of another type of
commensurability. To be more specific, we deal here with the commensurability
of the spatial extent of an electronic orbital and the potential modulation pe-
riod. Obviously, the effect of the perturbing periodic potential on the energy of
an electronic state will be determined by its average strength over the extent of
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the wave-function. Under the so-called ‘flat-band conditions’ given by the zeros
of the Laguerre polynomial this average is exactly equal to zero. This result,
however, is exact only when the periodic potential is of a simple cosine from and
we do not take the coupling between different Landau levels into account. The
band-width oscillations discussed above manifest themselves in the magnetore-
sistance measurements where they give rise to the so-called Weiss oscillations
in the dependence of the conductance on the magnetic field strength.
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Butterfly-like spectra and collective modes of antidot
superlattices in magnetic fields
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We calculate the energy band structure for electrons in an
external periodic potential combined with a perpendicular mag-
netic field. Electron-electron interactions are included within a
Hartree approximation. The calculated energy spectra display
a considerable degree of self-similarity, just as the “Hofstadter
butterfly.” However, screening affects the butterfly, most impor-
tantly the bandwidths oscillate with magnetic field in a charac-
teristic way. We also investigate the dynamic response of the
electron system in the far-infrared (FIR) regime. Some of the
peaks in the FIR absorption spectra can be interpreted mainly
in semiclassical terms, while others originate from inter(sub)band
transitions.

PACS numbers: 73.20.Dx, 73.20.Mf

Recent years have witnessed a considerable amount of research effort di-
rected towards understanding of the physics of two-dimensional electron sys-
tems (2DES) whose dimensionality is further restricted by man-made periodic
potentials and perpendicular magnetic fields. These include quantum dot arrays
and antidot superlattices. Concentrating on the latter ones, one distinguishes
two principal directions of experimental work: transport studies and far in-
frared (FIR) spectroscopy. Some of the transport measurements1,2 have been
performed in search of evidence for a self-similar energy spectrum, the so called
Hofstadter butterfly.3 A main theme in the FIR absorption experiments has
been to detect and classify the rich variety of collective modes that occur in
these systems.4–6

Along with the experimental work, theorists have addressed the same
issues.7–13 The main difficulty lies in the fact that while the superlattice is
periodic, the Hamiltonian (including a vector potential) is not. Most recent cal-
culations of superlattice electronic structure have used the Ferrari basis to deal
with this matter.14 We will instead apply ray-group-theoretical techniques15–18

to effectively reduce the calculational complexity.
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With this approach, we are able to go beyond earlier calculations. We find
the band structure for interacting electrons in general “rational” magnetic fields
[i.e., the flux through a unit cell is (L/N)Φ0, where Φ0 is a flux quantum and
L,N ∈ Z]. Consequently, we are able to trace even fine-scale features of the
butterfly and at the same time study the effects screening has on it. We also
explore the FIR response. The resulting spectra are rather rich. Along with
absorption peaks caused by collective modes, and known from experiments,4,5

we find additional ones of mostly quantum-mechanical origin.
The antidot superlattice considered here is of simple square symmetry R =

n1a1 + n2a2, with lattice parameter a. The effective one-particle Hamiltonian
is

H =
1

2m

(
p +

e

c
A
)2

+
∑
G

v(G)eiG·r, (1)

where the vector potential A = B × r/2 (symmetric gauge) describes the per-
pendicular magnetic field B and G = g1b1 +g2b2, denotes the reciprocal lattice
vectors. We use GaAs parameters and work with short-period superlattices with
a = 1000 Å and electron density ns = 1.2 · 1011 cm−2. A typical magnetic field
B = 1.65 T gives four flux quanta per unit cell, filling factor ν = 1.5, and the
cyclotron energy h̄ωc = 2.86 meV, where ωc = eB/mc. The last term in Eq.
(1) is a sum of the external superlattice potential, described by a few principal
Fourier components,19 and the Hartree potential. As for electron spin, we keep
the twofold degeneracy in mind when counting states, but neglect other effects
such as Zeeman splitting and exchange interaction.

The electronic states we set out to solve for will satisfy the modified Bloch
conditions

T̂M (a1(2))ψq = e−ia1(2)·qψq (2)

when the magnetic flux through a unit cell equals an integer number of flux
quanta Φ0. Here

T̂M (R) = exp
[
− i
h̄

R ·
(
p− e

c
A
)]

(3)

are magnetic translation operators forming a ray group,20 and the eigen-
states can still be classified by different values of the crystal momentum
q = q1b1 + q2b2, in the first Brillouin zone.15 Actually, one finds sets of L
linearly independent functions each transforming according to the same irre-
ducible representation. This manifests itself as the splitting of the Landau
band into L subbands. For rational fields with flux (L/N)Φ0 per unit cell, the
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irreducible representations of the group (3) are N -dimensional and the states
N -fold degenerate. This calls for a generalized treatment15,17,21 which we have
implemented but do not further describe here.

The next important step towards a solution is a canonical coordinate trans-
formation.17 We switch to dimensionless units22 to be used hereafter, and in-
troduce

ξ(η) = ±py + x/2, pξ(η) = px ∓ y/2. (4)

This preserves the canonical commutators, maps the kinetic energy of the Hamil-
tonian in the symmetric gauge onto a harmonic oscillator in ξ, and makes the
magnetotranslations act only on η,

H0 =
1
2
(
ξ2 + p2

ξ

)
, T̂M (R) = exp (−iRxpη + iRyη) . (5)

The periodic potential mixes the ξ and η degrees of freedom (in these coordinates
it behaves like a magnetic translation operator)

H1 =
∑
G

v(G)X̂(G|ξ)Ŷ (G|η),

X̂(G|ξ) = exp(iGxξ − iGypξ), (6)

Ŷ (G|η) = exp(iGxη + iGypη).

Using projection-operator techniques we find the symmetry-adapted η-depen-
dent functions

ϕ(q, l|η) =
∞∑

m=−∞
e2πimq1δ

(
η +

aq2

L
− al

L
− am

)
, (7)

labeled by the magnetic crystal momentum q in the first magnetic Brillouin
zone (i.e., 0 ≤ q1, q2 < 1) and the subband index l = 0, . . . , L − 1. Now the
Ansatz

ψ(q, l|ξ, η) =
L−1∑
l=0

ϕ(q, l|η)
∞∑
n=0

anlχn(ξ) (8)

for the eigenstates allows for subband mixing, and the ξ-dependence is ac-
counted for by an expansion in harmonic oscillator eigenfunctions χn. Inserted
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into the Schrödinger equation, the Ansatz yields the eigenvalue problem deter-
mining the electron states∑

n′l′

{
δnn′δll′

(
n+

1
2

)
+
∑
G

v(G)All′(G)Bnn′(G)
}
an′l′ = Eanl. (9)

The subband and Landau-level mixing coefficients are

All′(G) = e2πi[g1g2/2+g1l+(q1g2−q2g1)+q1(l−l′)]/Lδ(modL)
l′,l+g2

,

Bnn′(G) =
∫ ∞
−∞

χn(ξ)X̂(G|ξ)χn′(ξ)dξ. (10)

Equation (9) must be iterated together with the Poisson equation updating the
Hartree potential until self-consistency is reached.

Figure 1 shows the splitting of the first four Landau levels as a function of the
dimensionless inverse flux Φ0/(Ba2) = N/L. With a reasonable computational
effort we could treat rational fields with L ≤ 14 and all possible N ’s. This is
enough to clearly resolve the intricate subband clustering.3

It is easy to see that the bandwidths in Fig. 1 decrease with increasing mag-
netic flux; however, the decrease is not monotonous. Instead they have maxima
for flux values 6, 3, and 2, (see the inset) when there are 1, 2, and 3 completely
filled Landau levels, respectively. Then the 2DES cannot screen the external
potential very effectively, and the Fourier coefficients v(G) are larger than for
other flux values. Thus, since the bandwidth is set by a competition between
the band-narrowing effects of the magnetic field and the band broadening ten-
dencies of the potential, this leads to a cusped behavior of the band top and
bottom at integer filling factors. For the filling factors ν ≤ 1 we also observe the
same qualitative behavior while quantitative predictions of the Hartree theory
in this region may be inaccurate. We note that there exist other (unrelated
to electron-electron interaction) mechanisms which also lead to nonmonotonous
bandwidths.13

Electron-electron interaction also contributes to diminishing the symmetry of
the butterfly as strong coupling between different bands does.11,13 The second
and third bands in Fig. 1 which are traversed by the chemical potential µ show
reduced regularity if compared to well-separated noninteracting bands in Fig. 3
(a) of Ref. 13, whereas our fourth band, well above µ, would exhibit a consid-
erable resemblance to Hofstadter’s one-band picture when properly rescaled.

Turning to the dynamic response of the 2DES, we calculate the density-
density response function RGG′(k, ω) within the random-phase approximation
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FIG. 1: The width of the four lowest Landau bands (in units h̄ωc) plotted ver-
sus inverse magnetic flux. The four principal Fourier components of the potential
[vext(0,±1) and vext(±1, 0)] are set to 1.43 meV, a = 1000 Å, and ns = 1.2 · 1011

cm−2. The bands are centered around the limiting Landau level values n+1/2 and get
broader as the magnetic field decreases. The commensurability phenomena manifest
themselves in the intricate splitting of the bands. To underscore the nonmonotonous
dependence of broadening on the magnetic field, we also display the overall band
widths in the inset of the left upper graph.

(RPA) by solving the set of equations

RGG′ = PGG′ +
∑
G′′

PGG′′Vee(k + G′′)RG′′G′ . (11)

Here PGG′ is the independent particle response function which we can evalu-
ate knowing the electron eigenstates already calculated. The FIR absorption
of the long wavelength (k in the first Brillouin zone) light is proportional to
−ωImR00(ω).23

The so calculated spectra typically exhibit several conspicuous peaks. In Fig.
2 (a), we display spectra calculated for electron densities ns = 1.2 · 1011 cm−2

and 1.4 · 1011 cm−2, respectively, and wave vector k = (π/10)a−1x̂. Following
the suggestion of Ref. 10 to classify the different peaks by studying the corre-
sponding charge fluctuations; we also trace their development in time to pick
out the ones that are stable with respect to changing electron density. Here
we try to concentrate on a few of these plots and give a thorough discussion of
them. To this end we calculate the time-dependent, induced charge density at
the absorption-peak frequencies in four adjacent unit cells, and plot snapshots
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thereof in Fig. 2 (b) and (c). The antidots are situated at the intersections of
the thick lines and the “+”(“-”) signs mark the locations of the charge density
maxima (minima).

The two spectra shown in Fig. 2 (a) calculated for different electron densities
are very similar. At the same time, however, the induced charge densities at the
different peaks can in general change quite a lot with changing electron density.
There are a few exceptions to this, most notably the peaks marked (H) and
(L) and indicated by arrows. As we will see, one can give a clear, semiclassical
interpretation to these modes.

Thus, Fig. 2 (b) shows the charge density corresponding to the (H) peak in
Fig. 2 (a). One sees a dipole which, looking at a sequence of snapshots, rotates
around the center of each lattice cell (i.e., between four antidots) in the direction
of cyclotron motion. This mode, which can be anticipated on general grounds,
emerges in simple theoretical models7 and has been detected experimentally.4,5

In the low frequency region we find a more complicated collective mode [peak
(L) in Fig. 2 (a)] depicted in Fig. 2 (c). A dipolar charge distribution is rotating
around each antidot in the direction of cyclotron motion, and a “ring” of three
charge density maxima and three minima between the antidots is rotating in
the opposite direction. During each period one sees some small charge transfer
between the two structures. We interpret this mode as a pair of coupled (in-
ter)edge magnetoplasmons with angular momenta l = +1 and l = −3 around
an antidot and the center of a cell, respectively. The dynamics of this mode
is mainly determined by an equilibrium between the Lorentz force and restor-
ing electrostatic forces. From this follows that the magnetoplasmon propagates
in opposite directions around a charge density maximum (a cell center) and a
minimum (an antidot).24 Note also that this mode is an example of mixing of
states with angular momenta differing by a multiple of four in a square lattice.

Both peaks, (H) and (L), show absorption of light polarized in the direction
of the cyclotron resonance in agreement with experiment.5 The existing theoret-
ical explanation,7 however, is based on a model with circularly symmetric unit
cells and cannot describe the interplay of modes centered at different places of
the unit cell. Besides the modes discussed until now the 2DES absorbs energy
at a number of other frequencies. The corresponding induced charge distribu-
tions are more complex than the ones displayed in Figs. 2 (b) and (c). These
excitations are to a large extent of a quantum-mechanical nature, i.e., the re-
sult of intersubband and inter-Landau-level transitions (see also Ref. 9). In this
context, it is also clear that our spectra obtained for short-period superlattices
are not completely comparable to the ones found experimentally. There are two
main reasons for this, the potential has a stronger influence on electron motion,
and we have not treated disorder broadening.
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FIG. 2: Absorption spectra (panel a) and the oscillating charge-density distributions
associated with the peaks indicated by arrows (H ↔ panel b) and (L ↔ panel c),
respectively. The upper curve in (a) is offset by 10. The external potential has
Fourier components vext(0,±1) = vext(±1, 0) = h̄ωc = 2.86 meV and vext(0,±2) =
vext(±2, 0) = h̄ωc/4. For the high-frequency mode one sees in (b) a dipole rotating
around the center of each lattice cell. For the low-frequency mode one can in (c)
observe a dipole centered on each of the antidots and a hexagonal pattern between
the antidots. One structure of each kind is marked with signs.

In conclusion, we have developed a theory that makes it possible to study
the electronic structure of a 2DES in a combined periodic potential and strong
magnetic field in a detailed fashion treating electron-electron interactions at the
mean-field level. The so calculated energy spectra show clear traces of a self-
similar structure like the Hofstadter butterfly, however, considerably modified
by screening effects. The dielectric response of the 2DES in the FIR regime
reveals a rich spectrum of excitations. Some of the peaks in these spectra
can be interpreted in terms of semiclassical collective excitations, while others
mainly are of a quantum-mechanical origin.
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Research Council (NFR).

REFERENCES

∗ Electronic address: egidijus@teorfys.lu.se
† Electronic address: epj@teorfys.lu.se
1 R. R. Gerhardts, D. Weiss, and U. Wulf, Phys. Rev. B 43, 5192 (1991).
2 K. Ensslin and P. M. Petroff, Phys. Rev. B 41, 12 307 (1990); A. Lorke, J. P. Kot-

thaus, and K. Ploog, ibid. 44, 3447 (1991); D. Weiss, M. L. Roukes, A. Menschig,



40

P. Grambow, K. von Klitzing, and G. Weimann Phys. Rev. Lett. 66, 2790 (1991);
R. Fleischmann, T. Geisel, and R. Ketzmerick, ibid. 68, 1367 (1992).

3 D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976); M. Ya. Azbel’, Zh. Eksp. Teor.
Fiz. 46, 929 (1964) [Sov. Phys. JETP 19, 634 (1964)].

4 K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, and K. Ploog, Phys. Rev. Lett.
66, 1618 (1991).

5 K. Bollweg, T. Kurth, D. Heitmann, E. Vasiliadou, K. Eberl, and H. Brugger,
Phys. Rev. B 52, 8379 (1995).

6 A. Lorke, I. Jejina, and J. P. Kotthaus, Phys. Rev. B 46, 12 845 (1992).
7 G. Y. Wu and Y. Zhao, Phys. Rev. Lett. 71, 2114 (1993).
8 D. Huang and G. Gumbs, Phys. Rev. B 47, 9597 (1993).
9 V. Gudmundsson and R. R. Gerhardts, Phys. Rev. B 54, 5223 (1996).

10 V. Gudmundsson, Phys. Rev. B 57, 3989 (1998).
11 G. Petschel and T. Geisel, Phys. Rev. Lett. 71, 239 (1993).
12 V. Gudmundsson and R. R. Gerhardts, Phys. Rev. B 52, 16 744 (1995).
13 D. Springsguth, R. Ketzmerik, and T. Geisel, Phys. Rev. B 56, 2036 (1997).
14 R. Ferrari, Phys. Rev. B 42, 4598 (1990).
15 E. Brown, Phys. Rev. 133, A1038 (1964).
16 J. Zak, Phys. Rev. 136, A1647 (1964).
17 H.-J. Schellnhuber, Phys. Rev. B 25, 2358 (1982).
18 H.-J. Schellnhuber and G. Obermair, Phys. Rev. Lett. 45, 276 (1980); G. M. Ober-

mair and H.-J. Schellnhuber, Phys. Rev. B 23, 5185 (1981); H.-J. Schellnhuber, G.
M. Obermair, and A. Rauh, ibid. 23, 5191 (1981).

19 In the FIR calculations we use vext(0,±1) = vext(±1, 0) = h̄ωc and make the
potential profile steeper and, most likely, more realistic by setting vext(0,±2) =
vext(±2, 0) = h̄ωc/4, with h̄ωc = 2.86 meV. Plotting the butterfly we reduce the
potential to vext(0,±1) = vext(±1, 0) = 1.43 meV in order to prevent the bands
from overlapping since this is known to reduce the self similarity.11

20 M. Hamermesh, Group Theory and its Application to Physical Problems, (Dover,
New York, 1989), Chap. 12.

21 Rational fields increase the analytic but not the numerical complexity of the prob-
lem.

22 Distances are measured in terms of the magnetic length lc =
√
h̄c/eB, momenta

in h̄l−1
c , and energies in h̄ωc.

23 C. Dahl, Phys. Rev. B 41, 5763 (1990).
24 P. K. H. Sommerfeld, P. P. Steijaert, P. J. M. Peters, and R. W. van der Heijden,

Phys. Rev. Lett. 74, 2559 (1995).



Electronic structure of antidot superlattices in
commensurate magnetic fields

Egidijus Anisimovas1, ∗ and Peter Johansson1, 2

1Division of Solid State Theory, Department of Physics,
University of Lund, Sölvegatan 14 A, S-223 62 Lund, Sweden

2Department of Natural Sciences,
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We present a treatment of an interacting two-dimensional elec-
tron system moving in a bidirectionally periodic potential and
a perpendicular magnetic field. Employing symmetry consider-
ations based on the ray-group of magnetotranslation operators
and a canonical coordinate transformation, we derive an efficient
scheme for calculating energy levels and states in arbitrary “ra-
tional” magnetic fields. Applying this scheme to a superlattice of
strongly localized antidots we reveal the possibility to split off an
isolated and sufficiently broad cluster of subbands from a Lan-
dau band. The implications of existence of such subbands to the
experimental detection of the subband structure and in partic-
ular quantum Hall effect measurements in periodic superlattices
are discussed.

PACS numbers: 73.20.Dx, 03.65.-w

I. INTRODUCTION

Inspired by advances in submicron technology, recently there has been a
considerable amount of both theoretical and experimental work aimed at un-
derstanding of the physics which governs the behaviour of realistic quasi-two-
dimensional electron systems (2DES) subjected to perpendicular magnetic fields
and man-made lateral periodic confinements. Such systems have been prepared
and investigated covering a wide range of periodic modulation strength. In
weakly perturbed 2DES, a main pursuit was the commensurability-related mag-
netoresistance oscillations1 explained by the broadening of Landau levels into
bands. When the superlattice potential is applied in both lateral directions,2–4

an additional aspect, namely the splitting of a Landau band into a complicated
system of subbands5,6 arises. Posing a real challenge for experimentalists, only
recently some indications of such splitting were observed in magnetoresistance
oscillations of small-period lateral superlattices.7
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The splitting of a Landau band into a number of subbands also leads to the
redistribution of the quantum Hall (QH) current among them. While the total
current in a band is conserved, and the QH conductance associated with each
subband is still an integer (in units e2/h), this integer need not equal unity.8,9

The detection of nontrivial, that is different from 0 or 1, QH conductances is
of great experimental interest, however, the complexity of such a measurement
(at least, in smooth periodic potentials) is even greater than that of the de-
tection of subbands themselves. The reason for this lies in the fact that the
subbands tend to arrange themselves into a hierarchical structure5,6 by forming
clusters separated by large gaps, while inside each cluster smaller sub-clusters
separated by smaller subgaps are formed. Having resolved the cluster structure
at the coarsest level one would find that one cluster is carrying the total band’s
current while the others do not contribute at all. Thus, trying to access higher
integers in the QH current distribution one is facing an immensely difficult task
of resolving at least the second order sub-splittings. A recent experiment10 con-
sidered the situation where the partial contributions of three subbands to the
total QH current follow the pattern 1, −1, 1, so that the net conductance would
show oscillations between 0 and 1. Due to the smallness of the minigaps the QH
conductances did not fully attain the expected values, however, the indicative
nonmonotonicity was clearly visible. In the present paper, we show that if the
periodic potential is not smooth but rather composed of steep antidots, the dis-
tribution of band-widths among the subbands can be made very different thus
increasing the feasibility of experimental access to the subbands carrying non-
trivial QH currents. Moreover, we find that sufficiently steep potential profiles
are not smoothened away by the screening charge of electrons.

Attempts to address the complicated topic of electron motion in a periodic
potential and a competing magnetic field theoretically date back to the 1950’s.
The simplest descriptive model, known as Harper’s equation,11 was derived in
two limiting cases: (i) that of a weak perturbative periodic potential imposed
upon otherwise flat Landau levels,12,13 and (ii) that of a single tight-binding
band subjected to a weak magnetic field.11,12 The efforts culminated in Hofs-
tadter’s calculation6 of splitting and clustering of subbands into a complicated
pattern depending on the ratio of the magnetic flux through a unit cell to the
magnetic flux quantum. This treatment was based on the so-called Peierls
substitution14 and had a fairly limited range of validity,15 however it gave a
qualitatively correct visualization of the phenomenon.

Later on, the technological advances have renewed the theoretical interest
in the field calling for a more realistic treatment. Harper’s equation was
generalized16 to include interband coupling and thus properly accounted for
predominant chaotic trajectories17 in the near-classical regime. The electron-
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electron interaction was still not addressed. Its study was initiated18 by in-
troducing a self-consistency procedure using the Ferrari basis19 into the band
structure calculations. In this method one explicitly constructs translationally
invariant states thus taking the crystal symmetry into account. In practice,
however, the method turned out to be computationally demanding and pro-
vided answers only for a set of special (integer) magnetic fields and unusually
low electron densities.18 Thus, a new effort to address a dense set of (rational)
magnetic fields and Coulomb repulsion between electrons was clearly needed.

In the present paper, we put forward a computational scheme capable of
dealing with both integer and rational magnetic fluxes at the same level of com-
plexity. We base on the treatment of crystal symmetry in magnetic fields,20 and
its application by Schellnhuber and co-workers21,22 to calculations of diamag-
netic band structure in three-dimensional solids. In a previous publication23

we treated the energy spectra of 2DES in the case of integer fluxes and smooth
potentials.

After the original investigation by Thouless et al.,8 the problem of the dis-
tribution of QH currents among subbands in a single band approximation was
recently discussed by Chang and Niu24 from the point of view of semiclassical
electron dynamics. The changes induced by coupling between several Landau
bands were addressed in Ref. 25. In the present paper we extend the previous
investigations by (i) showing that superlattices composed of steep antidots pro-
vide a systematic way of increasing the widths of interesting (from the point of
view of QH measurement) subgaps and (ii) including and discussing the role of
the electron-electron interactions.

The paper has the following structure. In Sec. II the model is formulated
and in Sec. III the symmetry-based analytical scheme is derived. In Sec. IV we
discuss some limiting cases and carry out a calculation of the band structure of
antidot superlattices paying particular attention to the appearance of an isolated
cluster of subbands that splits off from a Landau band. Such subbands (we refer
to them as “levitating”), being considerably broad and isolated from the other
ones by large gaps, increase our hopes that they (or even their internal structure)
can be more easily resolved in an experiment and reveal some nontrivial QH
numbers. We conclude with a summarizing Section V, while some of matters
are relegated to the Appendices.

II. MODEL

We consider a 2D antidot superlattice and its reciprocal counterpart spanned
by the respective vectors R = n1a1 + n2a2 and G = g1b1 + g2b2 with
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n1(2), g1(2) ∈ Z and ai · bj = 2πδij . While no special restrictions on the point
symmetry are imposed, it is convenient to choose a2 ‖ y so that b1 ‖ x. In a
non-orthogonal lattice, a1 will also have a component along y, so we introduce
the lattice “skewness” parameter s = a1y/a2y for this case. The independent-
particle Hamiltonian of an electron moving in the crystal potential of such a
lattice and a perpendicular magnetic field reads

H =
1

2m

(
p +

e

c
A
)2

+
∑
G

v(G)eiG·r. (1)

Here, the periodic potential is given in terms of its Fourier components v(G)
and the magnetic field is expressed via its symmetric-gauge vector potential
A(r) = 1

2 [B × r]. Our method can treat all so-called rational fields, i.e. such
that the magnetic flux per unit cell equals a rational number of magnetic flux
quanta Φ0 = ch/e:

Φ/Φ0 = L/N, L,N ∈ Z. (2)

Concentrating on the physics that is not crucially influenced by the electron
spin, we neglect the exchange interaction and Zeeman splitting but do take the
degeneracy due to spin into account.

The electrons are described in the effective-mass approximation using m =
0.067m0 moving in a medium of dielectric constant κ = 12.4. We concentrate on
short-period superlattices. In the calculation we set the lattice constant to a =
1000 Å; then a moderate magnetic field B = 1.65 T produces a commensurate
flux equal to 4 flux quanta per unit cell. The Coulomb repulsion is included at
the mean-field level. Thus, the periodic potential entering (1) is a sum of the
“external” antidot potential and the Hartree term

v(G) = vext(G) +
2π
|G|

e2

κ
ns(G)(1− δG,0), (3)

where ns(G) is the Fourier transformed electron density constructed from the
eigenfunctions of the Hamiltonian in Eq. (1), and the Kronecker delta indi-
cates that the G = 0 contribution is cancelled by the positive background
charge. Thus, the energy spectrum of Hamiltonian (1) has to be calculated
self-consistently by convergent iterations together with equation (3).

In order to make use of the symmetry with respect to discrete translations in a
uniform magnetic field we introduce the group of magnetotranslation operators.
Their generator is defined so as to commute with the kinetic momentum pkin =
p + e

cA, and in the symmetric gauge reads pgen = p− e
cA. Therefore, we have

TM (R)ψ(r) = exp
[
− i
h̄

R ·
(
p− e

c
A
)]
ψ(r)
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= exp
(
ie

2h̄c
r · [R×B]

)
ψ(r−R). (4)

The operators TM appearing in Eq. (4) commute with the Hamiltonian (1) thus
allowing for a classification of its eigenstates by their translational symmetry
properties. Note, however, that a product of two magnetotranslations equals
another member of the group only up to a phase

TM (R1)TM (R2) = TM (R1 + R2)e−(ie/2h̄c)B·[R1×R2] (5)

indicating that one deals here with a ray group26 rather than a conventional
vector group. Nevertheless, the conventional framework of group-theoretical
treatment remains applicable.20

III. THEORY

Having spelled out all the definitions in full in the preceding Sec. II, we now
switch to natural dimensionless units. We use the cyclotron frequency and the
magnetic length

ωc =
eB

mc
, lc =

√
h̄c

eB
(6)

as the defining quantities, and from now on measure all lengths in lc, momenta
in h̄l−1

c , and energies in h̄ωc. The rationality condition (2) is cast into a relation
for the unit-cell area

Ω = a1xa2y = 2πL/N (7)

to be extensively used in algebraic manipulations hereafter.
Further, we perform a canonical coordinate transformation22 to a new set of

variables ξ and η

ξ = py + x/2, pξ = px − y/2,
η = −py + x/2, pη = px + y/2, (8)

which maps the kinetic-energy part of the Hamiltonian (denoted H0) onto that
of a harmonic oscillator in ξ

H0 =
1
2
(
p2
ξ + ξ2

)
. (9)
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Moreover, the translations (4) are now found to act only on the η coordinate

TM (R) = exp(−iRxpη + iRyη). (10)

Thus, the complexity has been isolated into the periodic potential term which
has become a function of both the new coordinates and momenta. Its Fourier
components behave like magnetic translation operators

H1 =
∑
G

v(G)X̂(G|ξ)Ŷ (G|η),

X̂(G|ξ) = exp(iGxξ − iGypξ), (11)

Ŷ (G|η) = exp(iGxη + iGypη)

and will mix the ξ and η degrees of freedom.
The transformation of states between (x, y) and (ξ, η) representations is given

by

〈xy|ψ〉 =
∫ ∞
−∞
dξ

∫ ∞
−∞
dη 〈xy|ξη〉〈ξη|ψ〉 (12)

with the kernel 〈xy|ξη〉 obtained by solving the eigenvalue equations for ξ and
η (

x

2
− i ∂

∂y
− ξ
)
〈xy|ξη〉 = 0,(

x

2
+ i

∂

∂y
− η
)
〈xy|ξη〉 = 0 (13)

with the result

〈xy|ξη〉 =
1√
2π
eiy(ξ−η)/2δ(x− ξ − η). (14)

A. Symmetry adapted basis

In order to take full advantage of the symmetry properties of the system, the
next step towards a solution is the decomposition of the functional space F(ξ, η)
of all functions of ξ and η into invariant subspaces of the symmetry group. Since
the different subspaces are not coupled by the Hamiltonian, the effort needed
to diagonalize it is reduced. Moreover, thanks to the canonical transformation
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the magnetotranslations now act only on the η degree of freedom, so the task
narrows to a construction of a symmetry-adapted basis that spans F(η). As
we will see, the dimensionality of the invariant subspaces equals L, therefore
the Ansatz for the states will involve a linear combination of L η-dependent
functions multiplied by a suitable expansion of the ξ-dependent part.

The construction of the symmetry-adapted basis for the η degree of freedom
proceeds by employing the projection-operators technique. We use the irre-
ducible representations of the magnetotranslation group given in Ref. 20. They
are labelled by the magnetic crystal momentum vector q = q1b1 + q2b2 and
relate to the “central” (q = 0) one as

Dq(R) = e−iq·RD0(R) = e−2πi(n1q1+n2q2)D0(R). (15)

The N × N matrix D0 for any translation vector R is generated from those
corresponding to the primitive lattice vectors20,27

D0
jk(a1) = δjke

2πi(j−1)L/N , D0
jk(a2) = δ mod N

j,k−1 (16)

and the ray-group multiplication law (5) yielding

D0
jk(R) = δ mod N

j,k−n2
exp

{
iπ
L

N
n1[n2 + 2(j − 1)]

}
. (17)

Note that increasing any of q1 or q2 by 1/N produces an equivalent representa-
tion. Thus the values of q have to be restricted to a single magnetic Brillouin
zone (MBZ) which we choose as 0 ≤ q1, q2 < 1/N . The rank of the matrices
implies the existence of N partner functions (indexed by t = 1, . . . , N) trans-
forming according to different rows of the same irreducible representation Dq.
However, in the subsequent analysis we concentrate only on one (t = 1) of the
partners for the others can be easily obtained from it by means of a transla-
tion parallel to a2. This and other transformation properties of the states are
discussed in Appendix A.

In order to construct the principal partner function we introduce the projec-
tion operator projecting onto the first row of the q-th representation

Pq
11 =

∑
R

[Dq
11(R)]∗TM (R). (18)

After a number of straightforward algebraic steps (see Appendix B for some
details and comments) we arrive at the following expressions for the normalized
basis functions labelled by a new subband index (l = 0, 1, . . . , L−1) introduced
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to account for the presence of L linearly independent basis functions of the same
symmetry

ϕl(q|η) =

√
2π
a2y

∞∑
m=−∞

exp
[
2πim (q1 − sq2) + iπs

m2L+ 2ml
N

]
× δ

(
η +Nq2

a1x

L
− a1x

l + Lm

L

)
. (19)

These functions together with the other partner functions constitute a complete
orthonormal set in F(η). By construction, the Hamiltonian is diagonal with
respect to the quantum numbers q1, q2 and t but can mix different subbands l.

B. Eigenvalue problem

Turning to the ξ-dependent part of the wave-function, we see that it can be
expanded in any suitable basis independent of the symmetry. Working in the
strong magnetic field limit, the harmonic oscillator eigenfunctions χn(ξ) are an
appropriate choice. In this case the kinetic energy H0 is immediately diagonal
and the task is to diagonalize H1. In simple terms, this means that one deals
with perturbed Landau levels.

Specializing to this approach, we formulate the following Ansatz for the states

ψ(q|ξ, η) =
∞∑
n=0

χn(ξ)
L−1∑
l=0

anlϕl(q|η), (20)

which allows for mixing of different Landau levels and subbands. Upon insertion
into the Hamiltonian, one sees that the effect of the operator Ŷ (G|η) can be
expressed as

Ŷ (G|η)ϕl′(q|η) =
L−1∑
l=0

All′(q; G)ϕl(q|η), (21)

where All′ is a phase factor whose calculation is straightforward and yields

All′(q; G) = exp
(
iπg1g2

N

L

)
exp

(
2πig1

l

L

)
exp

[
2πi

N

L
(q1g2 − q2g1)

]
× exp

[
2πi (q1 − sq2)

l − l′

L

]
exp

(
iπs

l2 − l′2

NL

)
δ mod L
l′,l+Ng2

. (22)
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Similarly, the effect of X̂(G|ξ) on a harmonic oscillator function can be writ-
ten

X̂(G|ξ)χn′(ξ) =
∞∑
n=0

Bnn′(G)χn(ξ), (23)

thus mixing Landau levels. Using the defining Eq. (11) we express the ξ-
dependent matrix element (23) as

Bnn′(G) = e−iGxGy/2
∫ ∞
−∞

χn(ξ)χn′(ξ −Gy)eiGxξdξ (24)

=

√
2n′n′!
2nn!

e−(G2
x+G2

y)/4(Gy + iGx)n−n
′
Ln−n

′

n

(
G2
x +G2

y

2

)
= B∗n′n(−G)

for n ≥ n′.
The result of the above manipulations is the following eigenvalue problem

∞∑
n′=0

L−1∑
l′=0

Mnl;n′l′an′l′ = εanl,

Mnl;n′l′ = δnn′δll′

(
n+

1
2

)
+
∑
G

v(G)All′(q; G)Bnn′(G), (25)

whose solutions specify the single particle states and energies. Transforming
the symmetry-adapted basis functions ψnl(q|ξη) = χn(ξ)ϕl(q|η) into the x and
y coordinates according to (14) and we obtain

ψnl(q|xy) =
1
√
a2y

eixy/2
∞∑

m=−∞
e2πim(q1−sq2)

× eiπs(m
2+2ml)/Ne−iκlmyχn(x− κlm),

κlm = a1x

(
−Nq2

L
+
l +mL

L

)
. (26)

The chosen normalization∫ ∞
−∞
dx

∫ ∞
−∞
dy ψ∗n′l′(q

′|xy)ψnl(q|xy) = δ(q1 − q′1)δ(q2 − q′2)δnn′δll′ (27)

implies that the states are normalized to N over N adjacent cells along a2.
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We express the eigenstates in real space as

ψ(ν)(q|xy) =
∞∑
n=0

L−1∑
l=0

a
(ν)
nl ψln(q|xy), (28)

where ν numbers the different solutions of Eq. (25). The Fourier components
of electron charge density are obtained by Fourier transforming

ns(r) = 2
∑
q,ν,t

|ψ(ν)(q, t|r)|2f [εν(q)− µ], (29)

where 2 is for spin, f(ε−µ) denotes the Fermi distribution function and µ is the
chemical potential determined by equating the integral of (29) over a unit cell
to the average number of electrons per cell. In order to improve the numerical
stability, we perform the calculations at several small but finite values of the
temperature and then extrapolate to T = 0.28

It has been shown that the quantized value of QH current carried by a given
subband is determined by the total vorticity of the wave-function in MBZ.8,29

Therefore, the knowledge of energy levels and eigenstates will also specify the
QH conductances obtained whenever the chemical potential lies in a gap thus
separating the completely filled subbands from the empty ones. A practical
way of computing the QH integers σH in a gap is given by the thermodynamic
Středa formula9

e2

h
σH = ec

[
∂N(E)
∂B

]
, σH ∈ Z (30)

which expresses the conductance in terms of the dependence of the number
of electronic states below the gap on the magnetic field strength. Being able
to handle a dense set of rational fields, we obtain σH directly from the band-
structure calculations at two sufficiently close values of magnetic flux that share
the gap.

IV. RESULTS

Let us now turn to the results obtained applying the above formalism to an-
tidot superlattices. We begin our presentation by contrasting the essential fea-
tures of the energy spectra of non-interacting electrons for two distinct choices
of the periodic potential: (i) smooth potentials described by a few lowest Fourier
components and (ii) potentials created by very narrow and steep antidots whose
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Fourier spectrum includes many high-G components. In the extreme limits of
the two cases we deal with a cosine-like modulation and a lattice of δ-functions,
respectively, and obtain some analytical results. In the second case, we record
the property of the energy spectrum to contain split-off levitating subbands and
proceed to consider realistic antidots of finite radius and include the effects of
electron-electron interaction.

A. Weak cosine modulation

We now concentrate on the lattices of perfect square symmetry and describe
the potential modulation by setting the four lowest Fourier components to equal
strength v(0,±1) = v(±1, 0) ≡ v. When the potential is also weak, the differ-
ent Landau levels are not coupled (Bnn′ ∝ δnn′) and all four non-vanishing
coefficients Bnn(G) are equal and evaluate to

bn ≡ Bnn(0,±1) = Bnn(±1, 0) = e−πN/(2L)Ln

(
πN

L

)
. (31)

Consequently, bn can be moved outside the sum over G in the potential-
energy term of Eq. (25) as a prefactor, and thus it will influence only the
overall band widths. The internal subband structure within each band will
be given by the rest of the summation which we carry out explicitly. For the
sake of convenience, we redefine the phases of the wave functions according
to ϕl(q) → ϕl(q) exp(2πiq1l/L). Then the potential energy term reduces to
vbnδnn′Ξll′ , the matrix Ξ containing the following non-zero matrix elements

Ξll = 2 cos
[

2π
L

(l −Nq2)
]
,

Ξlm = Ξ∗ml = exp
(

2πi
N

L
q1

)
δ mod L
l+N,m . (32)

Renumbering the rows and columns of this matrix according to30 l = Nλ mod L
it can be cast into the form

Ξλλ = 2 cos
[
2π
N

L
(λ− q2)

]
Ξλµ = Ξ∗µλ = exp

(
2πi

N

L
q1

)
δ mod L
λ+1,µ (33)

allowing for the following interpretation. As depicted in Fig. 1, one deals with
a 1D chain of lattice sites whose energies are modulated by a cosine function
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of period L/N . Neighbouring sites are coupled by hopping matrix elements of
unit absolute magnitude and incorporating a phase ∆ = 2πNq1/L.

The matrix Ξ embodies the simplest model describing commensurability-
related phenomena equivalently to the Harper’s equation. In the present case
we encounter the commensurability between the unit lattice site spacing and
L/N site energy modulation period which leads to the splitting of each Landau
band into L subbands. This observation completes the demonstration of how
our model reduces to previously known simple models.6 For the sake of refer-
ence, we also need to quote some results. Thus, in Fig. 2 we show the relative
widths of the subbands together with the QH currents carried by each of them
for a few flux values close to L/N = 3. The important point to note is that
the physical requirement for the bands to evolve continuously as a function of
magnetic field leads to the clustering of the subbands into closely packed groups
denoted by ‘A’, ‘B’ and ‘C’ whose net QH conductances equal 0, 1 and 0, re-
spectively. When the commensurate flux deviates from the value L/N = 3/1,
the three clusters develop a fine structure of subbands carrying QH currents
different from 0 or 1. We note that these subbands and subgaps separating
them are narrow and thus difficult to resolve. However, the subband structure
can be quite different in a periodic lattice whose potential is steep and thus
possesses a broad Fourier spectrum.

B. δ-function antidot lattice

We start by considering integer fluxes L (i. e. N = 1), while the discussion of
the general case of rational fluxes follows later. The periodic lattice is composed
of antidots modelled by δ-functions, thus

v(r) = v0Ω
∑
R

δ(r−R), v(G) ≡ v0 (34)

in the real and reciprocal space, respectively. Here v0 is the strength of an
antidot and Ω is the unit-cell area. Calculating the matrix elements of potential
(34) in the symmetry-adapted basis (26) we find∫ ∞

−∞
dx

∫ ∞
−∞

dy ψ∗nl(q|r)v(r)ψn′l′(q′|r)

= v0Ωδ(q1 − q′1)δ(q2 − q′2)ψ∗nl(q|0)ψn′l′(q|0). (35)

Thus we see that at each point in MBZ the matrix of the potential energy
factorizes into an outer product of a vector with itself. Such a matrix has only
one non-zero eigenvalue.
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FIG. 1: A 1D chain of L lattice sites with periodic boundary conditions. The site
energies are modulated according to the law ελ = 2 cos[2πN(λ − q2)/L] so that one
has an integer number (N) of full periods per L sites. The hopping matrix elements
include a phase ∆ = 2πNq1/L.

In the limit of weak potentials v0 the coupling between different Landau
levels can be neglected. Then we find the energies of the states with respect
to the common energy n + 1/2 in the n-th level31 by diagonalizing just the
L×L potential energy matrix vll′ = v0Ωψ∗nl(q|0)ψnl′(q|0). In view of its special
structure all but one of its eigenvalues equal zero and the only nonvanishing one
is obtained as the trace

εn(q) = v0Ω
L−1∑
l=0

|ψnl(q|0)|2. (36)

Thus we conclude that in the perturbative regime the lattice of δ-antidots will
split off exactly one subband from each Landau band containing L subbands
in total. This in turn implies that the degenerate subband wave-functions re-
arrange themselves in such a way that L − 1 of them have their zeros at the
locations of antidots so that they are not affected by the zero-range antidot
potential. Therefore, even beyond the perturbative regime one will still observe
only one split-off subband, however, its energy will not scale linearly with the
potential strength but rather level off. We display both the linear dispersion
in the perturbative regime and the cross-over to the “saturation” region of the
band energies in the panel (a) of Fig. 3 for a magnetic flux L = 4.

Another interesting feature shown in Fig. 3 (a) is that the lower edge of the
levitating subband in the third (n = 3) Landau band stays pinned exactly at
the value ε = 3.5 regardless of the potential strength. This is a consequence
of the fact that in the present case at the centre of MBZ (which corresponds
to the band minimum) all four subband functions have their zeros at the ex-
act locations of the antidots and thus are not affected by the potential at all.
On the contrary, at the corner of MBZ (q1 = q2 = 1/2, top of the band) all
four unperturbed functions place their maxima at the locations of the antidots.
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FIG. 2: The structure of the en-
ergy spectrum and distribution of
quantum Hall currents among the
subbands for several magnetic flux
values close to L/N = 3. The con-
tinuity of the subbands leads to
the “hiding” of nontrivial QH inte-
gers in deep levels of the recursive
subband structure.

Therefore, the resulting energy (36) is large, and the band is broad.
However, panel (b) displays the behaviour of the same bands when the po-

tential strength and the magnetic flux penetrating a unit cell are kept fixed at
the respective values v0 = 0.15 and L = 4, but the shape of the lattice is varied
by continuously distorting it into a rectangular (rather than square) one. We
observe that at some given ratio of the two lattice constants the width of the
third band shrinks down to zero. On the contrary, the width of the levitating
subband originating from the lowest Landau level increases quite substantially
starting from what was a very narrow band in a square lattice. In conclusion,
the subband wave-functions exhibit a certain rigidity and thus the effect of a
periodic δ-function lattice on the energy spectrum depends on the relative dis-
tribution of the lattice sites, on one hand, and maxima and nodes of the states,
on the other.

The levitating subbands contain a magnetic field independent number of
states and therefore carry no net QH current. However, for rational fluxes
(N 6= 1) each of these bands splits into N smaller subbands. Being able to re-
solve such splittings inside a levitating band one would detect some interesting
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FIG. 3: The structure of the energy spectrum in a δ-antidot lattice. Panel (a) shows
the evolution of the split-off levitating subbands at a fixed integer magnetic flux Φ =
4Φ0 as a function of potential strength. The energies are measured in units h̄ωc = 2.86
meV. The rest 3 subbands in each Landau band have zero widths and are positioned
at the unperturbed energies n + 1/2 denoted by dashed lines. In (b) we display the
band-widths as a function of the ratio of two lattice constants (logarithmic scale) at
fixed values of v0 = 0.15 and L = 4. (c) shows the dispersion against the magnetic
field of the levitating subband belonging to the n = 1 Landau level for a fixed value
of the potential v0 = 0.125 in a square lattice. We look at the vicinity of L/N = 3/1
and correspondingly measure energies in units h̄ωc = 2.14 meV.

QH currents. In Fig. 3 (c), we show the fine structure of a levitating subband
in the vicinity of commensurate flux L/N = 3. The three most conspicuous
clusters separated by large gaps (denoted by dashed lines) carry QH currents
equal to −1, 2,−1.

Comparing the discussed structure of the spectrum to that found in the limit
of smooth potentials we can describe it as the magnification of the energy scale
of the topmost cluster of subbands denoted by ‘A’ in Fig. 2 while the widths of
clusters ‘B’ and ‘C’ shrink down to zero. This redistribution of band-widths can
be used as a way to systematically increase the widths of certain subbands and
gaps in the “butterfly”-like bandstructure when trying to detect them experi-
mentally, in particular, in a QH measurement. We suggest that broad levitating
subbands could be most easily detected in moderate (L/N ≈ 3 − 6) magnetic
fields. In weaker fields, the electronic states are poorly localized and thus they
are averaging the potential landscape over a large area of a unit cell. Therefore,
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even very narrow antidots will fail to differentiate between various degenerate
subband states in a Landau level. On the other hand, in stronger magnetic
fields the states in a levitating subband become too strongly localized and have
vanishingly small overlaps with their neighbours in adjacent cells which results
in very small band-widths. Moreover, as we discussed above, the widths and
positions of the levitating subbands may be very sensitive to the geometry of
the lattice.

C. Realistic antidot superlattices

With the discussion of limiting cases in the background, we proceed to the
consideration of superlattices of finite-radius antidots and also include the
electron-electron interaction. We set the electron density to ns = 1011cm−2.
The lattice is chosen to be of perfect square symmetry, and the antidots are
modelled by gaussians of effective radius b. Thus, in the real and reciprocal
space, respectively,

v(r) =
∑
R

v0 e
−(r−R)2/b2 , v(G) = v0αe

−απg2
, (37)

here g = (g2
1 +g2

2)1/2 and α = πb2/a2 denotes the fraction of a cell area occupied
by an antidot.

The panels (a) and (b) of Fig. 4 show the subband structure in the first (n = 1)
Landau band for the magnetic flux L/N = 3. We plot the allowed energy values
in the three resulting subbands as a function of the effective electron-electron
interaction strength λ which is “turned on” from 0 (free electrons) to 1 (actual
value). The two panels compare the spectra obtained for two different sizes of
antidots: α = 0.1 and 0.2 in the panels (a) and (b), respectively.

We see that the bands become narrower as the interaction strength increases.
The reason for this lies in the fact that the band-widths are set by a competition
between the band-narrowing effect due to the magnetic field and the broadening
of the bands by the periodic potential. The electronic screening effectively
reduces the strength of the periodic potential and consequently leads to narrower
bands. The importance of the screening can be judged upon from the fact that
the band-widths change ≈ 4 times.

However, in a lattice composed of narrow antidots (α ≤ 0.1) the strong screen-
ing effects fail to introduce qualitative changes into the structure of the energy
spectrum since the Coulomb potential in reciprocal space behaves as ∝ |G|−1

and becomes inefficient at high G’s. Thus, in Fig. 4 (a) we see that even in
the presence of electron-electron interaction the nature of the spectrum retains
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FIG. 4: The energy spectra of interacting electrons in units h̄ωc = 2.14 meV. The
panels (a) and (b) show the behaviour of the subbands in the first Landau band as
a function of effective interelectron interaction strength λ for two different choices
of periodic potential (see parameter values in the figure). The panel (c) shows the
subband structure versus magnetic flux for fully interacting electrons and α = 0.1,
v0 = 6.67.

features characteristic of a narrow-antidot lattice. At λ ≈ 0.15 we find a closing
and reopening of the gap separating the levitating subband from the other two.
However, it does not lead to redistribution of QH currents; the net current in
the topmost band always equals 0. In panel (c), we plot the energy bands versus
the commensurate magnetic flux for the interacting electrons (λ = 1). Here the
value of v0 is 4 times larger than that in panel (a) in order to maintain the
overall width of the bands. As in Fig. 3, the three most conspicuous clusters
of subbands (delimited by dashed lines) within the levitating band carry QH
currents equal to −1, 2,−1 and are still separated by sufficiently broad gaps.

When the size of the antidots is increased to α = 0.2 [panel (b)] the electronic
screening becomes capable of transforming the steep bare periodic potential into
a rather smooth self-consistent potential. Thus, we see that at the effective in-
teraction around λ ≈ 0.3 the nature of the subband structure cross-over to that
characteristic of smooth potentials, i. e. the wide gap separating a levitating
subband disappears.
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The inclusion of exchange and correlation effects beyond the mean-field level
would introduce certain quantitative modifications into the details of the self-
consistent potential and the exact positions of the calculated bands, however,
the essential conclusions regarding the nature of the energy spectrum and its
stability with respect to strong electron-electron interactions follow from the
inefficiency of screening of high Fourier components of the external potential
and would remain unaltered.

V. SUMMARY

In summary, we developed a theory to describe electrons moving in competing
periodic potentials and magnetic fields which enabled us to treat interacting
electrons at a dense set of magnetic field values. Considering the electron spectra
in superlattices composed of steep antidots we identified a cluster of sufficiently
broad and well isolated subbands. Such subbands can be more easily resolved in
a measurement, moreover, their internal structure may reveal a rich spectrum
of QH integers.
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APPENDIX A: SYMMETRY PROPERTIES OF THE STATES

The transformation properties of the states with respect to translations are
derived by commuting the magnetic-translation operators (4) and a general
projection operator

Pq
jk =

∑
R

[D0
jk(R)e−iq·R]∗TM (R), (A1)

which projects out the component belonging to the k-th row of the representa-
tion q and then generates the partner belonging to the j-th row. After some
straightforward algebra we obtain

TM (−a1)Pq
jk = e2πi[q1−(L/N)(j−1)]Pq

jk,

TM (−a2)Pq
jk = e2πiq2Pq

j+1,k. (A2)
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The first line in Eq. (A2) defines the equivalent of the usual Bloch condition,
while the second one equips us with a rule for generation of all partner functions
from the first one

ψj(q) = e−2πiq2(j−1)TM [−(j − 1)a2]ψ1(q). (A3)

Joining N adjacent cells along the a2 direction one constructs a supercell en-
closing an integer flux and recovers a Bloch-like relation

TM (Na2)ψj(q) = e−2πiNq2ψj(q). (A4)

APPENDIX B: ON THE PROJECTION OPERATORS

We start by inserting the expression of irreducible representation (17) and the
magnetotranslation operator (10) into the definition of the projection operator
(18). In the resulting sum over lattice sites, the summations over the indices n1

and n2 decouple. The latter one can be carried out explicitly thus transforming
a sum of exponentials into a series of δ-functions. The answer reads

Pq
11 =

a1x

L

∞∑
m=−∞

δ
[
η + (Nq2 −m)

a1x

L

]
×

∞∑
n=−∞

e2πinq1e−ia1xa1yn
2/2eia1ynηTη(na1x). (B1)

Consider first the case L = 1. Acting on a given seed function the translation
operator Tη will produce its shifted replicas of period a1x which will be subse-
quently filtered through a series of δ-functions of the same spacing. Thus, in
order to be able to project out nonvanishing components for any subspace it
suffices to choose a seed function that is non-zero (we set it equal to a constant)
only in an interval of length a1x. Consequently, the final expression for the
states (19) contains just a single sum and not double series.

In the case L 6= 1 the spacing between δ-functions in (B1) becomes L times
finer and leads to the appearance of L distinct basis functions of the same
symmetry.

Our procedure of constructing the symmetry-adapted basis bears some re-
semblance to that due to Ferrari.19 The “double series” in Ferrari’s Eq. (45)
is the equivalent of our projection operator. However, the corresponding ex-
pression for the states given in Eq. (46) of Ref. 19 still involves a double sum.
Moreover, our approach based on group theory handles the cases L 6= 1, N 6= 1
in a uniform way without any need for introduction of a finer paving inside a
lattice cell or explicit construction of supercells.
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Tunneling spectroscopy of modulated two-dimensional
electron systems
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We calculate the tunneling current between two parallel modu-
lated two-dimensional electron systems in tilted magnetic fields.
Magnetic crystal momentum is used to enumerate the electronic
states in the layers, and the effect of the in-plane component of
the magnetic field is described in terms of a magnetic crystal
momentum shift during the tunneling transition. The results in-
dicate a possibility to perform a spectroscopic investigation of
the electronic states by means of electron tunneling. In particu-
lar, we discuss the measurement of the miniband dispersions, the
shape of the Fermi area and the density of states in the layers.

I. INTRODUCTION

The study of the physics of two-dimensional electron gases and laterally struc-
tured two-dimensional electron systems (2DES), often placed into strong mag-
netic fields, has now evolved into a broad subfield of condensed matter physics.1
During the last few decades the research on effectively two-dimensional systems,
both at the theoretical and the experimental level, has diversified into many sub-
branches and led to a number of major discoveries. Among them, the study of
quantum transport2 resulted in the observation of conductance quantization3

and the integer quantum Hall effect.4
In particular, much attention has been devoted to extended 2DES whose po-

tential landscape is periodically modulated in one or both lateral directions.
Such systems set an example of an artificial solid possessing an artificial band-
structure. In the presence of a commensurate perpendicular magnetic field,
the structure of the energy spectrum of an electron moving in a bidirectionally
periodic potential displays a highly intricate self-similar pattern of subbands
resembling a butterfly which has long intrigued theorists’ mind.5,6 Only a few
years ago, transport experiments have succeeded in delivering the evidence of
the formation of the butterfly-like subband structure. Schlösser and co-workers7

observed a splitting of the Shubnikov-de Haas maximum in the longitudinal
magnetoresistance oscillations revealing the underlying splitting of a Landau
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band into a number of subbands. More recently, the subband structure was
identified in the integer quantum Hall effect measurement.8

Another encounter of novel physics discovered in modulated 2DES is the
Weiss oscillations resulting from the commensurability of the electron cyclotron
radius and the potential modulation period.9 The widths of the broadened Lan-
dau bands depend on the average potential seen by an electron over the ex-
tension of its wave-function. This fact results in 1/B-periodic oscillations of
the magnetoresistance thus directly reflecting the bandstructure features in a
measurement.

Unfortunately, a direct observation of the bandstructure in an optical exper-
iment, paralleling the usual means of investigation in conventional solid state
physics, is not feasible. Most of the optical experiments have been performed
closer to the semiclassical regime10 and concentrated on the collective modes
rather than the electronic structure measurements.

However, a possible way of accessing the bandstructure properties of 2DES is
offered by a 2D-2D tunneling between two parallel two-dimensional electronic
layers. Since a number of involved technological complications have been suc-
cessfully overcome more than a decade ago,11 the tunneling between parallel
layers has become a handy tool of investigation of electronic properties of 2D
electron systems. It has been shown12 that the tunneling current directly probes
the spectral function of a 2D electron, and the electronic life-times have been
investigated.12,13 The data obtained by this technique is often complementary
to that available from measurements of in-plane transport properties. In par-
ticular, it delivers valuable information on the electron-electron collision rate
which is very difficult to extract from the in-plane transport data due to the
total momentum conservation during such collisions.13

The electronic layers used in the experimental work usually possess a high
degree of uniformity; therefore, the tunneling events can be described in the mo-
mentum space. The presence of an in-plane magnetic field component provides
a means of tuning the relative momenta of the final and initial states connected
by the transition.

Recent theoretical work considered tunneling between two unmagnetized14

and magnetized15 uniform two-dimensional electron gases. The latter work was
based on the description of the electronic states in terms of the usual Landau-
gauge solutions and the effect of the in-plane magnetic field was interpreted in
terms of shifts of the centroid of the electronic wave-function. The obtained re-
sults revealed quantum oscillations in the tunneling conductance. In the present
paper, we introduce the description of the electron states and tunneling process
in terms of the magnetic crystal momentum defined in a magnetic Brillouin
zone (MBZ). This allows us to treat both uniform and modulated in one or two
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lateral directions 2DES using a unified approach. In particular, we concentrate
on the possibilities to use the data provided by a tunneling conductance mea-
surement to reveal the information about the underlying electronic structure of
a modulated electron system.

The paper is organized in the following way. In Sec. II, we present a review of
the description of the electron states in a periodic potential an a perpendicular
magnetic field in terms of the magnetic crystal momentum. Sec. III discusses
the modifications of the electronic states due to the presence of an in-plane
component of the magnetic field, and Section IV deals with the description of
electron tunneling in this language. The two following Sections, V and VI,
present the results obtained for the tunneling between two parallel electronic
layers modulated in one and two lateral directions, respectively. We conclude
with a summarizing Sec. VII.

II. ELECTRONIC STATES IN THE LAYERS

We describe the individual electronic layers as systems of interacting two-
dimensional electrons moving in a periodic superlattice potential v(r) and a
perpendicular uniform magnetic field B given in terms of its symmetric-gauge
vector potential A = B × r/2. It is convenient to work in the dimensionless
units set by the magnetic field strength. Thus, we use the cyclotron energy and
the magnetic length

h̄ωc =
h̄eB

mc
, lc =

√
h̄c

eB
(1)

as the energy and length units, respectively. The single-particle Hamiltonian in
these units reads

H =
1
2

[(
px −

y

2

)2

+
(
py +

x

2

)2
]

+ v(r), v(r) = v(r + R), (2)

here the potential v(r) stands for the self-consistent effective single-particle
potential which we calculate in the Hartree approximation. The periodic lattice
is spanned by the vectors R = n1a1 + n2a2, and its reciprocal counterpart by
G = g1b1 + g2b2. The vectors a1,2 and b1,2 are related in the usual fashion
ai · bj = 2πδij , and n1,2 and g1,2 are integer indices. We represent the periodic
potential in terms of its Fourier decomposition

v(r) =
∑
G

v(G)eiG·r. (3)
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The scope of the present paper is restricted to rectangular lattices so that a1

and b1 are parallel to the x-axis, while a2 and b2 point along the y direction.
We also confine our attention to integer magnetic fields, i. e. such that the
magnetic flux penetrating a unit cell is an integer multiple of the magnetic flux
quantum Φ0 = ch/e. In the dimensionless units, this condition translates into
the following relation for the unit-cell area

a1a2 = 2πL, L ∈ Z. (4)

The above description is tailored to the needs of bidirectionally modulated
2DES; when the potential modulation is applied only in one (say, x) direc-
tion we artificially introduce an empty lattice in the other direction with the
period a2 chosen so that the unit cell encloses exactly one flux quantum, thus
setting L = 1 in Eq. (4).

Since the Hamiltonian (2) is invariant with respect to discrete translations by
a lattice vector R, we classify its states according to their symmetry properties.
The magnetic translation operator in the symmetric gauge is given by20,21

TM (R) = exp
[
−in1a1

(
px +

y

2

)
+ in2a2

(
py −

x

2

)]
,

for R = n1a1 + n2a2. (5)

The electronic states satisfy the magnetic Bloch condition

TM (a1(2))ψq = e−ia1(2)·qψq (6)

with the values of the magnetic crystal momentum q = q1b1 + q2b2 restricted
to the first magnetic Brillouin zone (MBZ) chosen as 0 ≤ q1, q2 < 1.

It is convenient to perform a canonical coordinate transformation20–22 to a
new set of degrees of freedom – the generalized coordinates ξ and η, and the
respective conjugate momenta

ξ = py + x/2, pξ = px − y/2,
η = −py + x/2, pη = px + y/2. (7)

In the new variables the Hamiltonian and the magnetic translation operator
become

H0 =
1
2
(
p2
ξ + ξ2

)
+
∑
G

v(G)ei(Gxξ−Gypξ)ei(Gxη+Gypη), (8)

TM (R) = exp(−iRxpη + iRyη), (9)
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thus making the role of the new degrees of freedom apparent. The kinetic energy
part is transformed into a harmonic oscillator in ξ corresponding to the “fast”
motion quantized into the Landau levels, while the magnetic translations now
act only on η. The periodic potential mixes the two degrees of freedom thus
leading to the broadening of Landau levels into bands.

We solve the Hamiltonian by expanding electronic states ψ(q|ξη) in terms of
the symmetry-adapted basis functions20–22

ψ(q|ξ, η) =
∞∑
n=0

L−1∑
l=0

anlψnl(q|ξ, η), (10)

ψnl(q|ξ, η) = χn(ξ)ϕl(q|η), (11)

constructed as a product of the n-th harmonic oscillator function in ξ and a
basis function of the q-th irreducible representation of the magnetotranslation
group in η

ϕl(q|η) =
√

2π
a2

∞∑
m=−∞

e2πimq1δ

(
η −ma1 + a1

q2 − l
L

)
. (12)

The subband index l = 0, . . . , L − 1 accounts for the presence of L linearly
independent basis functions of the same symmetry. This fact manifests itself as
the splitting of a Landau band into L subbands.

In the basis (11) the Schrödinger equation is transformed into an eigenvalue
problem for each q

∞∑
n′=0

L−1∑
l′=0

Mnl;n′l′an′l′ = εanl,

Mnl;n′l′ = δnn′δll′

(
n+

1
2

)
+
∑
G

v(G)Bnn′(G)All′(q; G), (13)

whose solutions specify the state energies and the expansion coefficients anl.
The product Bnn′All′ denotes the matrix element of the product of exponential
operators in (8). We find it convenient to separate the ξ- and η-dependent
contributions. The expression for Bnn′ reads (for n ≥ n′)

Bnn′(G) = B∗n′n(−G) =
∫ ∞
−∞

χn(ξ)X̂(G|ξ)χn′(ξ) dξ

= e−iGxGy/2
∫ ∞
−∞

χn(ξ)χn′(ξ −Gy)eiGxξ dξ (14)
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=

√
2n′n′!
2nn!

e−(G2
x+G2

y)/4(Gy + iGx)n−n
′
Ln−n

′

n

(
G2
x +G2

y

2

)
,

while All′ is just a phase factor

All′(q; G) = e(2πi/L)[g1g2/2+g1l+(q1g2−q2g1)+q1(l−l′)]δ mod L
l′,l+g2

. (15)

III. IN-PLANE MAGNETIC FIELD

The above description of the electronic states in the layers is developed as-
suming that the magnetic field B is applied perpendicularly to the 2DES plane.
We now consider the modifications arising from the presence of an additional
in-plane component B‖. Still working in the same dimensionless units set by
the strength of the perpendicular component, we describe the effects of the par-
allel component of the field by introducing an extra contribution to the vector
potential A‖. We choose to write it in a Landau gauge chosen in such a way
that the vector A‖ lies in the xy-plane, that is, A‖x = −B‖yz and A

‖
y = B

‖
xz.

By virtue of this choice, the presence of the parallel magnetic field component
does not affect the in-plane magnetic translations, and leads to the following
modification of the single-particle Hamiltonian

H =
1
2

(pξ+βyz)2+
1
2

(ξ−βxz)2+v(ξ, η)+
1
2
p2
z+V (z) with βx,y =

B
‖
x,y

B
. (16)

Here we make an explicit reference to the motion along the z direction leading to
the formation of subbands. From Eq. (16) we see that, in view of its dependence
on the z coordinate, the parallel magnetic field will couple the in-plane electronic
motion to the z degree of freedom. The strength of this coupling is given by
the matrix elements of the term βx,yz between the subband wave functions.
As we will see later, in order to cover the whole area of MBZ in a tunneling
measurement the maximum values of B‖ have to be a few times larger than
B. The matrix elements of z typically equal a fraction of the electron-layer
thickness (of order 100 Å), let us remind it again, measured in the magnetic
lengths lc ≈ 250 Å for B ∼ 1 T. Thus we see that only for the highest values of
the in-plane magnetic fields of interest the perturbation strength is threatening
to reach values of order of unity, that is, comparable to the energy scale of
the in-plane motion. Moreover, if the quantum well is symmetric the diagonal
matrix elements of z will vanish due to symmetry and thus βz will have no effect
in the first-order perturbation. Thus we conclude that the in-plane magnetic
fields in the symmetric quantum wells can be assumed to have no effect on the
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electronic states in the layers for most cases of interest. Therefore, we take B‖

into account only to the extent of the modification of the tunneling process.
Mathematically speaking, our approximation amounts to the assumption that

the electronic layers are infinitesimally thin. Therefore, in the kinetic energy
term of the Hamiltonian (16), it is legitimate to replace the variable z with its
constant value z0 at the exact location of the electronic layer. In the following,
we will assume that the two electronic layers involved in the tunneling setup
are placed at z0 = 0 (‘left’) and z0 = ∆z (‘right’), respectively. Thus, the
Hamiltonian of the left 2DES is not affected by the in-plane magnetic field at
all, while the right one is modified by a constant vector potential A‖(∆z). Thus
the effect of the in-plane magnetic field on the electronic states in the right layer
amounts to a gauge transformation

ψ(r)
∣∣∣
B‖

= ψ(r)
∣∣∣
0
e−i∆k·r, ∆k =

e

ch̄
A‖(∆z). (17)

IV. TUNNELING

We describe the electron tunneling between two parallel modulated 2DES
using the usual stationary Hamiltonian approach.16–18 The electron states in the
two subsystems that are weakly coupled by a tunneling link are first calculated
neglecting the presence of the link. Thus one introduces two sets of eigenstates
– one for the ‘left’ Hamiltonian HL = K + VL, and another for the ‘right’
one HR = K + VR; here K is the kinetic energy operator, and VL,R denote the
potential energies in the respective subsystems. The introduction of a tunneling
link allows an electron to move in the potential of both subsystems. The full
Hamiltonian H = K+VL+VR is now not diagonal in the set of original ‘left’ and
‘right’ unperturbed states. It is common to represent the resulting non-diagonal
Hamiltonian in the form16

H =
∑
r

εrLc
†
rLcrL +

∑
s

εsRc
†
sRcsR +

{∑
rs

tsR,rLc
†
sRcrL + H. c.

}
, (18)

where the indices r and s enumerate the states in the two subsystems. Assum-
ing the approximate orthogonality17 of the ‘left’ and ‘right’ states, it is custom-
ary to express the off-diagonal matrix elements in terms of the kinetic energy,
subsequently converting them into matrix elements of the current operator.18

However, we choose to work in terms of the potential energy matrix elements,
thus evaluating the hopping terms in the tunneling Hamiltonian (18) as

tsR,rL = 〈sR|VR|rL〉 ≡ 〈sR|VL|rL〉. (19)
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The standard linear response calculation19 leads to the following expression
for the tunneling conductance at zero temperature

G =
e2

πh̄3

∑
rs

|trL,sR|2ArL(µ)AsR(µ). (20)

Here A denotes the single-particle spectral function and µ is the chemical po-
tential. In this paper, we approximate A with a Lorentzian of a certain phe-
nomenological width ∆, and postpone a microscopic calculation of the spectral
properties of the 2DEG to a subsequent publication.

As discussed in the previous Section III, we assume that the electronic layers
are infinitesimally thin on the scale of the relevant lengths. Therefore, the hop-
ping matrix elements in the presence of an in-plane component of the magnetic
field are given by

tsR,rL(∆k) = 〈sR|VR ei∆k·r|rL〉 ≡ 〈sR|VL ei∆k·r|rL〉, (21)

The extra gauge-transformation exponent in Eq. (21) depends only on x, y coor-
dinates, while the quantum well potentials VL,R are functions of z. Thus, writing
our states in the layers as a product of an in-plane part and a z-dependent form
factor we arrive to the conclusion that the ∆k-dependence of the tunneling
matrix element is of the form

tsR,rL(∆k) = t0 〈ψνR(q)|ei∆k·r|ψν
′

L (q′)〉, (22)

here t0 is a constant resulting from the overlap of z-dependent form factors and
the well potential; in our approximation, it does not depend on the parallel
magnetic field. The notation ψνL,R(q) describes the lateral part of the electronic
wave-function in terms of its magnetic crystal momentum q, band number ν
and the layer index L,R. As we will see later, the allowed values of momenta
q and q′ and the shift ∆k are constrained by a selection rule.

The evaluation of the matrix element (22) is most easily carried out in the ξ, η
coordinates. We use the expansion of the electronic states in the basis functions
(11) and obtain

tsR,rL(∆k) = t0
∑
nn′

∑
ll′

aν∗nl,Ra
ν′

n′l′,L〈ψnl,R(q)|ei∆k·r|ψn′l′,L(q′)〉. (23)

Expressing

∆k · r = ∆kxx+ ∆kyy = ∆kx(ξ + η) + ∆ky(pη − pξ) (24)
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the evaluation of the tunneling matrix element between the basis functions (11)
closely parallels the calculation of the matrix elements All′ and Bnn′ in (15)
and (14). We separate the ξ- and η-dependent parts. The former introduces
quantum-mechanical oscillations in ∆k, while the latter leads to a selection rule

q′ + ∆k = q + Γ, Γ = γ1b1 + γ2b2, (25)

showing that the tunneling event takes place between two states in MBZ whose
crystal momenta differ (up to a reciprocal lattice vector Γ) by ∆k, the mo-
mentum shift due to the in-plane magnetic field. Collecting all the different
contributions together we get

〈ψnl,R(q)|ei∆k·r|ψn′l′,L(q′)〉 = Bnn′(∆k)

× ei∆kx∆ky/2e−i∆kxa1q2/Lei∆kxa1l/Le−2πiκq1

× δ mod L
l,l′+γ2

δ
(
q′1 +

a1

2π
∆kx − q1 − γ1

)
δ
(
q′2 +

a2

2π
∆kx − q2 − γ2

)
, (26)

where the coefficient Bnn′(∆k) is identical to that given in (14) under the
replacement G → ∆k. The two δ-functions express the conservation of the
crystal momentum, and the modulo-Kronecker δ gives the selection rule for the
subband indices. We see that the umklapp processes introduce shifts in l, and
since the values of l are defined in an interval of length L this selection rule is
also given up to a shift by a multiple of L. When such a shift is present it is
also reflected in the last exponential on the second line of (26); here the integer
κ is defined by l′ + γ2 = l + κL. The last two exponential factors reflect the
properties of the subband functions in MBZ, while the first two are inessential
and can be dropped. When substituted into Eq. (23) they will not depend on
the summation indices and give an overall phase which has no effect on the
physical current.

V. UNIDIRECTIONALLY MODULATED SYSTEMS

Let us begin by discussing the tunneling conductance between two 2DES
modulated along the x direction only. The unidirectional modulation potential
is modeled by setting its Fourier components to v(g1, g2) = δg2,0v(g1). We
introduce an empty lattice in the y direction so that the unit cell encloses one
flux quantum, thus setting L = 1 and l = 0 in the equations of the previous
Sections. As a result, the only subband function (12) becomes23

ϕ(q|η) =
√

2π
a2

∞∑
m=−∞

e2πimq1δ(η −ma1 + a1q2), (27)
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and the subband mixing coefficient (15) now reads

A00(q; G) = exp
(
−2πiq2

g1

L

)
(28)

indicating that no dependence on q1 enters the bandstructure problem. There-
fore, the resulting bands will show dispersion only along q2, while the quantum
number q1 will serve to enumerate distinct degenerate states. The correspond-
ingly modified eigenvalue problem (13) will not show any dependence on l and
q1; its solution will provide us with the state expansion coefficients aνn(q2).
Consequently, the tunneling matrix element given by Eqs. (23) and (26) will be
modified to read

tsR,rL(∆k) = t0
∑
nn′

aν∗n,Ra
ν′

n′,L〈ψn,R(q)|ei∆k·r|ψn′,L(q′)〉,

〈ψn,R(q)|ei∆k·r|ψn′,L(q′)〉 = Bnn′(∆k) ei∆kx∆ky/2e−i∆kxa1q2e−2πiγ2q1

×δ
(
q′1 +

a1

2π
∆kx − q1 − γ1

)
δ
(
q′2 +

a2

2π
∆kx − q2 − γ2

)
. (29)

To illustrate the results, we first consider a double-layer system composed of
two identical layers. We set the superlattice period to a1 = 2 000 Å, the inter-
layer separation to ∆z = 250 Å, and the electron density in each of the layers to
ns = 1011 cm−2. Applying a perpendicular magnetic field of the strength 0.86 T
we set the magnetic length to lc = 276 Å and the cyclotron energy to 1.49 meV.
The commensurate lattice constant in the y direction equals a2 = 240 Å, and
the Landau-level filling factor is νL = 2.4. Then the in-plane magnetic field
strength needed to induce a crystal momentum shift by a half of the extension
of MBZ in the interesting q2 direction will equal B‖y = 3.43 T, that is βy = 4.

Since the energy bands show dispersion only in one, q2, direction, the resulting
Fermi area (the part of MBZ covered by the occupied electronic states in the
partially filled second Landau band) is a stripe parallel to the b1 direction. The
tunneling of electrons is constrained by the energy and momentum conservation
and thus can only occur between the states lying on the boundaries of the
Fermi area. Whenever the displacement of the Fermi areas of the two layers
relative to each other by the in-plane magnetic field is such that their boundaries
are brought into correspondence, one is expecting to observe a bandstructure-
related peak in the conductance.

Figure 1 shows the dependences of the tunneling current on the strength of
the in-plane magnetic field. Panel (a) presents the results obtained in the case
when the magnetic field is applied in the x direction and thus shifts the q1

component of the electron crystal momentum. The bands are dispersionless
in this direction, therefore, there are no bandstructure induced effects in the
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FIG. 1: The dependences of the tunneling conductance (in arbitrary units) as functions
of the in-plane magnetic field strength. Panels (a) and (b) correspond to the magnetic
field applied in the x and y direction, respectively. For the sake of clarity, the three
curves pertaining to different potential modulation strengths in panel (a) are displaced
relative to each other by 0.25 units. The full line in panel (b) shows the tunneling
conductance with the peaks originating from the bandstructure effects indicated by
arrows. Their observation is hampered by the presence of the oscillating prefactor
(30) whose behaviour is depicted by the dashed line.

plots. The three curves are offset by 0.25 units for clarity and correspond to
three different strengths of the externally applied potential modulation which
is assumed to be of a simple cosine shape. We model the potential by setting
the two principal Fourier components to equal strength

v(±1, 0) = v0 = 0.25, 0.50, and 1.00,

respectively, measured in the cyclotron energies. The electronic screening, taken
into account at the mean field level, reduces the amplitude of the potential
modulation approximately three times and also leads to the appearance of a
few higher non-vanishing Fourier components.

The lowermost curve in Fig. 1 (a) corresponds to a rather weak potential
which does not effectively mix different Landau levels. Thus, since the chemical



74

potential is located in the second Landau band, the most of the structure in the
G versus B‖x ∼ ∆kx dependence comes from the oscillating prefactor [see Eqs.
(14) and (26)]

B22(∆kx) = e−∆k2
x/4L2

(
∆k2

x

2

)
. (30)

Similar oscillations were previously predicted in the tunneling conductance of
uniform 2D electron gases.15 As the potential modulation increases so does
the coupling between different Landau levels. In Fig. 1 (a), we see that for
higher values of v0, the shape of the curve develops an additional oscillation
thus indicating an appreciably strong admixture of the third Landau level to
the states in the second Landau band.

In panel (b), we display the dependence of the tunneling conductance on the
in-plane magnetic field applied in the y direction for the case when the potential
modulation strength is set to v0 = 0.5. Since the filling factor equals νL = 2.4,
the Fermi area in the second band is a stripe along q1 covering 40% of MBZ.
Therefore, when the in-plane magnetic field displaces the two MBZ’s by 0.4
or 0.6 of their extension along q2 relative to each other we expect to observe
bandstructure-induced peaks in G. The full curve gives the calculated conduc-
tance as a function of B‖y with the two expected peaks denoted by arrows, while
the dashed line refers to the quantum oscillations (30) inevitably modulating
the obtained results. We see that the direct observation of the bandstructure
effects is made difficult by the presence of such oscillations since the typical
scale of the rapid oscillations of the Laguerre polynomial in Eq. (30) coincides
with the scale of momentum shifts of interest. For example, the second zero of
the Laguerre polynomial occurs very close to the first interesting peak in Fig. 1
(b) thus strongly suppressing its height. On the other hand, the tunneling con-
ductance shows a shallow maximum between 1 and 2 Tesla resulting from the
modulating prefactor (30) and not from the bandstructure effects. Therefore,
one concludes that the direct use of these conductance peaks as a probe of the
Fermi area is, in the general case, rather unjustified.

However, the situation can be salvaged by measuring the tunneling conduc-
tance not as a function of the parallel magnetic field strength but of its direction.
Most of the oscillatory contributions to the tunneling current unrelated to the
underlying bandstructure (26) depend on the absolute value of B‖, or ∆k, but
not on its direction. Therefore, their presence will only set the absolute scale
of the resulting tunneling currents but will not contribute any oscillations, and
thus one will be able to interpret all the peaks as originating from the coinci-
dence of certain boundaries of the Fermi areas.

In Figure 2, we schematically show the different transitions leading to the
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FIG. 2: Schematic diagram of electronic
transitions leading to the appearance of
peaks in the conductance vs. the mag-
netic field direction dependences. The
hatched area corresponds to the occu-
pied electronic states; the initial and fi-
nal states of a tunneling transition must
be situated on its boundaries. The peaks
will appear whenever the crystal momen-
tum of the tunneling electrons is shifted
by an amount needed to reach a bound-
ary of the Fermi area or its repetition in
a neighbouring MBZ.

peaks in the tunneling conductance. The hatched area corresponds to the Fermi
area, that is, the occupied electron states. As discussed above, the Fermi area is
a stripe extending uniformly in the b1 direction and repeating itself periodically
in the perpendicular b2 direction. The two dots in Fig. 2 denote two ‘initial’
electronic states located on the two opposite boundaries of the Fermi area. The
possible ‘final’ states for a tunneling transition are located on the two circles of
radius equal to the crystal momentum shift due to the in-plane magnetic field
and centered on the ‘initial’ states. Here we choose the momentum shift to
exceed slightly the length of the reciprocal lattice vector b2. Starting with the
magnetic field directed along the stripes, we will observe a peak “1” correspond-
ing to electrons jumping along the stripe borders. Later, rotating the direction
of the magnetic field clockwise we will encounter peak “2” attributed to the
electrons jumping across the stripe, and peak “3” due to those jumping across
the white area separating the stripes. If more than one half of the band is filled
the peaks “2” and “3” will show up in the opposite order. Finally, there comes
peak “4” associated with the electron transitions into a neighbouring MBZ.

In Figure 3, we show the calculated dependences of the tunneling conductance
G as a function of the y component of the rotated in-plane magnetic field.
The strength of the field is kept fixed at B = 7.62 T and only its direction is
varied. The peaks appearing in the plot correspond to those labelled by “1”,
“2”, “3” and “4” in the foregoing discussion. The four curves are obtained for
four different strengths of the modulation, and are offset by 5 units for clarity.
Comparing these curves we observe that the increasing strength of the external
potential leads to a redistribution of the peak strengths. Thus the height of
the second peak, close to By = 3 T, decreases with the increasing modulation
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strength and for v0 = 1.00 almost vanishes altogether. The reason for such
behaviour can be traced to the expression of the overlap integral Bnn′ (14)
connecting different Landau levels, n 6= n′. In this case, the expression of Bnn′
contains a factor

(∆ky + i∆kx)n−n
′

if n > n′

(−∆ky + i∆kx)n
′−n if n < n′ (31)

leading to an anisotropic contribution to the tunneling current whose impact is
increasing proportionally to the degree of mixing of the different Landau levels.
While this rather structureless dependence (31) of the tunneling matrix element
on the direction of the magnetic field can not lead to the appearance of any extra
peaks it can, nevertheless, hamper the observation of some of the present ones.

Figure 4 presents an investigation of the broadening effects. All the pre-
vious dependences were obtained assuming a phenomenological width of the
Lorentzian spectral function set to a few percent of the total miniband width,
that is to around ten percent of its filled part. In Fig. 4 we show how the curve
corresponding to v0 = 0.5 is affected by increasing ∆ two and four times. The
disorder present in any real system would make the observability of the bands
in the tunneling experiment more difficult.

Finally, in Figure 5 we present the typical dependence of the tunneling con-
ductance on the y component of the in-plane magnetic field of constant mag-
nitude involving a double-layer setup with non-identical layers. As before, we
apply an external potential modulated along the x direction of equal strength
v0 = 0.5 to both layers, however, we also apply a uniform bias so that the
electron density in one of the layers is reduced and the filling factor is lowered
to ν′L = 2.2. Thus, the electrons fill only 20% of the third Landau band in
this layer. We note in Fig. 5 that the central peak at By = 0 T disappears
since the two MBZ are no longer aligned. The two left peaks in the Figure 5
correspond to the relative displacement of the two Fermi areas by 0.1 and 0.3 of
the extension of MBZ in the dispersion direction, that is by the difference and
the sum of the half-widths of the two Fermi stripes. The two right peaks occur
at the displacements equal to 0.7 and 0.9 of the MBZ extension, i. e. when a
displaced Fermi stripe of one layer meets the repetition of the Fermi stripe of
the other layer in a neighbouring MBZ.

This example demonstrates the practical scheme of how one can measure
the bandstructures in unidirectionally modulated 2DES. The relative shift of
the peaks as a function of the constant bias voltage between the two layers
provides the complete information about the band dispersions, that is the energy
dependence on q2.



77

0 1 2 3 4 5 6 7

By (T)

0

5

10

15

20

25

G

0.25

0.50

0.75

v0 = 1.00

FIG. 3: Tunneling conductance (in arbi-
trary units) as a function of the y com-
ponent of the rotated in-plane magnetic
field. The four curves corresponding to
the different values of the potential mod-
ulation strength are offset by 5 units rel-
ative to each other. The four peaks oc-

cur at the B
‖
y values corresponding to the

shift of the q2 component of the crystal
momentum by 0, 0.4, 0.6 and 1.0 of the
extension of MBZ. The height of the sec-
ond peak reduces with increasing modu-
lation potential v0.
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FIG. 4: The influence of the spectral
function broadening on the tunneling
conductance. The three dependences are
offset by 2 units relative to each other.
The topmost curve corresponds to the
broadening ∆ = 0.004, used in obtain-
ing the results presented in the previ-
ous Fig. 3, while the other two are ob-
tained by increasing the broadening two
and four times, respectively.

VI. BIDIRECTIONAL MODULATION

When the periodic potential modulation is applied in both lateral directions
the resulting energy bands become dispersive in both directions in MBZ. Con-
sequently, the possible geometries of the Fermi areas are no longer restricted
to parallel stripes, and can assume arbitrarily complicated shapes. These facts
make the corresponding analysis of a tunneling conductance measurement aimed
at the determination of the underlying artificial bandstructure much more com-
plicated, but on the other hand, also more interesting. As before, scanning
the two dimensional phase space of crystal momentum shifts {∆kx,∆ky} along
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FIG. 5: The tunneling conductance be-
tween two non-identical two-dimensional
electron layers. The peak positions cor-
respond to the crystal momentum shifts
equal to the difference or the sum of
the half-widths of the two involved Fermi
stripes.

circular paths one would be able to identify peaks corresponding to the dis-
placements of the Fermi areas relative to each other that make their boundaries
intersect, thus allowing for a certain tunneling rate. Even larger tunneling rate
would result from the displacements that make certain fragments of the Fermi
area boundaries to be aligned nearly parallel to each other. However, the heights
of the resulting peaks in the tunneling conductance are strongly modulated by
the oscillatory factors that enter the expression of the tunneling matrix ele-
ment (26) and do not directly reflect the tunneling rate, thus obscuring the
bandstructure effects.

Further complications arise from the fact that in a commensurate magnetic
field the Landau bands will be split into a set of closely spaced subbands. Then,
the Fermi area may develop a complicated multilayered shape provided that
more than one of these subbands is partially filled.

Instead of pursuing these complications and trying to develop an analysis of
the tunneling data for some special cases, we concentrate on the possibility to
perform a simpler, and less informative measurement, of the density of states
(DOS). Such a measurement can be realized if the miniband widths in one of
the layers are much smaller than in their counterparts in the other layer and
the width of the spectral function. Then, trapping the chemical potential inside
the flat band one effectively transforms one of the layers into a controllable
probe. In this case, the tunneling events are equally likely to originate from any
point in MBZ of this layer and the net tunneling current is set by the available
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phase space in the other one, given mainly by DOS at the chemical potential
smeared by the width of the spectral function. Such a measurement would be
performed at a fixed value of the in-plane magnetic field tuning the displacement
of subband energies instead.

The key question to be answered is how one can realize such a double-layer
system that the minibands are sufficiently broad in order to be observable in
one of the layers while at the same time maintaining sufficiently small widths in
the other one. Any periodic potential modulation created in one of the layers
would inevitably affect the electron motion and broaden the energy bands in
both layers. A possible way to achieve the desired situation is to use the so-
called flat-band condition. As can be seen from Eq. (14) a cosine-like square-
symmetric external potential, sufficiently weak so as not to couple the different
Landau levels, will modulate the overall width of the Landau band evolving
from the n-th Landau level according to the factor

Bnn = exp
(
− π

2L

)
Ln

(π
L

)
. (32)

Here we used Eq. (4) to express the length of the shortest reciprocal lattice
vector of a square lattice. If the value π/L falls close to a zero of the Laguerre
polynomial of a certain index n, the resulting width of the n-th band will be
small.

A fortunate situation arises when L = 3. Then the value of π/3 is indeed
very close to the zero of the first Laguerre polynomial which occurs at the value
of its argument equal to 1. At the same time, the second Landau band will
be sufficiently broad since it stays fairly far away from the flat-band conditions
given by the zeros of the second Laguerre polynomial 2±

√
2.

We consider a square lattice of a lattice constant a1 = a2 = 1200 Å. Then
a perpendicular magnetic field of the same strength as before B = 0.86 T will
create a commensurate flux of L = 3 flux quanta per unit cell, and the electron
concentration ns = 0.833·1011 cm−2 or ns = 1.25·1011 cm−2 will fill two or three
Landau levels, respectively, thus making the tuning of the filling factor around
the interesting values feasible. We model the external potential by setting the
four lowest Fourier components to equal strength

v(±1, 0) = v(0,±1) = v0,

and perform calculations for two values of v0 = 0.33 and 0.83. The electronic
screening in this regime is capable of reducing the potential modulation ampli-
tude approximately 4.5 times.

Figure 6 shows the typical dependences of the tunneling conductances ob-
tained when the chemical potential is trapped in the middle of the first Landau
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FIG. 6: The spectroscopic density of states of a modulated 2DES in the second Landau
band centered at E0 = 2.5. Panel (a) shows the results obtained using a fairly weak
potential modulation v0 = 0.33, while in panel (b) the modulation strength is increased
to v0 = 0.83. The full, dashed, and dot-dashed lines belong to three different values
of spectral function width ∆.

band at µ = 1.5 in one of the layers, and scans the second Landau band (situated
around E0 = 2.5) in the other layer. Panel (a) corresponds to a relatively weak
modulation; in this case we are able to resolve the splitting of DOS into L = 3
peaks. The full curve is obtained by setting the spectral function broadening to
∆ = 0.02 roughly corresponding to the width of the narrow first Landau band,
thus smaller than the width of the broader second Landau band. The dashed
and dot-dashed curved are obtained by increasing ∆ to 0.033 and 0.05, respec-
tively. In these cases the DOS oscillations indicating the subband structure can
not be resolved any more. Panel (b) corresponds to a much stronger external
potential. The full line is obtained by setting the broadening to ∆ = 0.05 in
order to ensure a fairly uniform tunneling from the entire area of the MBZ in the
first Landau band; the dashed and dot-dashed lines correspond to ∆ = 0.10 and
0.20, respectively. In this case, we are not able to clearly resolve the expected
three peaks in the DOS of the second Landau band. The reason is that the
modulating potential is sufficiently strong to be able to couple different Lan-
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dau levels, thus rendering the realization of the flat-band condition inefficient
leading to inability to maintain the widths of the probing first Landau band
sufficiently narrower than the probed second.

VII. SUMMARY

In summary, we developed a description of tunneling between two parallel
electronic layers in tilted magnetic fields basing on the formalism of magneto-
translational symmetry group. The tunneling transitions of electrons are in-
terpreted as occurring between points in the magnetic Brillouin zone displaced
with respect to each other by a magnetic crystal momentum shift induced by
an in-plane magnetic field. This leads us to a possibility to investigate the ar-
tificially created magnetic bandstructure in the layers similarly to the optical
experiments in conventional 3D solids.
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We present a calculation of collective modes and absorption
spectra in lateral antidot superlattices based on a semiclassi-
cal “hydrodynamic” approach. An explicit Thomas-Fermi-von
Weizsäcker kinetic energy functional is introduced and used to
derive the equations describing the static and dynamical prop-
erties of antidot superlattices in terms of its charge density. We
discuss the formation of the collective excitation spectrum, the
magnetic-field dispersions and the nature of the collective modes.

PACS numbers: 73.21.Cd, 78.67.Hc

I. INTRODUCTION

During the last decade the study of laterally structured systems of two-
dimensional electrons has attracted much physicists’ attention. Besides confined
geometrical setups, such as quantum dots1 or dot arrays,1,2 systems in which a
periodic potential modulation allows an extended electronic motion have been
studied. Such artificial setups can be prepared using a variety of techniques,
such as carrier density modulation by the persistent photoconductivity effect,3
application of a voltage bias on patterned gates, inducing an internal lattice
strain or by etching holes4,5 through the layer of two-dimensional electrons,
thereby creating an ordered array of antidots.

Since these systems typically feature large lattice constants a ≈ 300−800 nm,
to be compared to the typical Fermi wavelength of order of 30 nm in GaAs, the
motion of electrons lies closer to the semiclassical regime. Thus, the magne-
toresistance measurements4 in antidot superlattices revealed low-magnetic-field
anomalies which were successfully explained in terms of classical electron pinball
trajectories.6

The optical experiments conducted on antidot superlattices have succeeded
in measuring the far infra-red transmission spectra and identifying a number
of characteristic absorption minima5 which indicate the presence of underly-
ing collective modes of the corresponding frequencies. The frequency disper-
sions versus the magnetic field strength have been measured5,7 and, besides
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the cyclotron resonance, revealed two other distinct branches showing a char-
acteristic anticrossing behaviour. At low frequencies, one observes the edge
magnetoplasmon8 excitation whose frequency decays as 1/B in strong magnetic
fields. The other – high frequency – mode starts from some finite frequency value
at the zero magnetic field and approaches the cyclotron-resonance line asymp-
totically from above in the high-field limit. Both modes are polarized in the cy-
clotron direction.7 More recent investigations succeeded in discovering collective
modes polarized in the anti-cyclotron direction as well as additional high-energy
modes.9 Experiments involving a double-layer setup with holes etched through
both layers reported a rearrangement of the modes of the individual layers into
coupled acoustic and optical branches.10

A number of theoretical approaches treating the collective excitations in an-
tidots from the classical point of view and dealing with the periodicity of the
system in one or another approximate way have been put forward. They in-
clude a variational calculation based on the Wigner-Seitz approach11 which
replaced the square unit lattice cell with a circular one. The geometry effects
and the electron-electron interaction were treated in an approximate fashion
still successfully predicting a few of the major trends in the dispersions of the
lowest-energy modes. A theory based on the classical electrodynamics has also
been proposed.12,13 In this approach, the electron density in an antidot super-
lattice was not calculated but assumed to be of a simple step-like shape, and
the superlattice potential was interpreted as a grating coupler. The various
collective modes of antidot superlattices were thus mapped onto those of the
bulk magnetoplasmon folded into a single unit cell of the reciprocal lattice. The
frequencies of the collective excitations in antidots were found to be close to
the bulk magnetoplasmon frequencies corresponding to the reciprocal lattice
vectors. A quantum-mechanical calculation14 based on the random-phase ap-
proximation has also been reported. This work has addressed superlattices of a
rather short period and besides the collective modes revealed a rich spectrum
of single-particle excitations.

In the present paper, we discuss the spectrum of the collective excitations
in large-period antidot superlattices from the point of view of a semiclassical
approximation based on an explicit representation of the total-energy functional.
The origins of the employed method lie in the early work of Thomas,15 Fermi16

and von Weizsäcker,17 and its extension to the dynamical regime by Bloch.18

Some of the recent applications include calculations of magnetoplasmons in
quantum wells,19 quantum rings20 and wires.21 While this approach is usually
introduced with no intent to maintain theoretical rigour, especially in describing
the time-dependent phenomena, a sufficient work has been done to insure its
justification. The kinetic energy correction proposed by von Weizsäcker17 has
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later been related to the construction of the gradient expansions for the kinetic
energy functional.22,23 From the point of view of the time-dependent density
functional theory,24 the dynamical regime of the present approach can be viewed
as the construction of an explicit functional25 governing the time evolution of
the current density,24 and has recently been successfully applied to describe the
optical response of small metallic clusters.26

The present paper is organized in the following way. In Section II, we outline
the theoretical formalism, and devote the following Section III to the main
results and conclusions. The paper ends with a summarizing Section IV.

II. THEORY

We describe the two-dimensional electron fluid moving in an external poten-
tial w(r) by introducing its total energy functional

Ew[n] = Ts[n] +
∫
d2r w(r)n(r) +

1
2

∫
d2r

∫
d2r′

n(r)n(r′)
|r− r′|

+ Exc[n]. (1)

The two middle terms on the right-hand side of Eq. (1) represent the classical
contributions of the potential energy of the electrons in the external field and
their mutual Coulomb repulsion. The other two terms are the kinetic energy
of noninteracting electrons Ts[n] and the exchange-correlation energy Exc[n],
respectively. These terms are of a quantum mechanical origin, and are given
by universal (and not known explicitly) functionals of the electron density n(r)
alone. Note, that we use the “effective atomic” units defined by setting

h̄ = m∗ =
e2

κ
= 1. (2)

Here m∗ is the effective electron mass in the medium and κ is the static dielectric
constant. Using the values of GaAs, m∗ = 0.067me and κ = 12.4, we find that
the corresponding length unit (the effective Bohr radius) equals a0 ≈ 10 nm and
the energy unit (the effective Rydberg) is approximately 6 meV.

The chief virtue of the density functional theory23,27 related methods is the
ability to treat the largest contributions to the total energy exactly, while the
less important terms are approximated in a reasonably accurate and simple way.
In most applications, however, the kinetic energy term is among the largest and
the necessity of its accurate treatment leads to the solution of microscopic Kohn-
Sham equations.28 The artificially structured low-dimensional systems, such as
large-period lateral superlattices, often operate in a regime where the contribu-
tion of the kinetic energy is less significant and one can think of its reasonable
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approximation by an explicit functional, thus formulating equations directly in
terms of the electronic density. Following other authors,19–21 we choose to work
within the two-dimensional version of the local (Thomas-Fermi15,16) approxima-
tion supplemented by the leading gradient-expansion (von Weizsäcker17) term

Ts[n] = TTF[n] + λTW[n] =
π

2

∫
d2r n2(r) +

λ

8

∫
d2r
|∇n(r)|2

n(r)
, (3)

with the value of λ set to 0.25. The exchange-correlation energy is approximated
by a local exchange-only term

Ex = −4
3

√
2
π

∫
d2r [n(r)]3/2. (4)

According to the variational Hohenberg-Kohn principle27 the total energy is
stationary with respect to density fluctuations around the exact ground-state
density n0. This leads to the Euler equation

δEw[n]
δn(r)

∣∣∣∣
n0

= µ (5)

which has to be solved for the ground-state density. Evaluating the functional
derivatives of (1), (3) and (4) and expressing them in terms of the square root
of the density ψ(r) =

√
n(r) we arrive at the following equation for the function

ψ(r) [
−λ

2
∇2 + u(r)− µ

]
ψ(r) = 0. (6)

This equation resembles the Schrödinger equation for a particle of mass λ−1

moving in an effective potential

u(r) = w(r) +
∫
d2r′

ψ2(r′)
|r− r′|

+ πψ2(r)−
√

8
π
ψ(r) (7)

which consists of the usual terms representing the external and Hartree poten-
tials supplemented by the extra Thomas-Fermi and exchange contributions. We
note, that since the effective potential in Eq. (7) depends on ψ(r), the equations
(6) and (7) have to be solved self-consistently by convergent iterations. As a
matter of fact, the equation (6) for the square root of the density is in principle
exact,29 however, the explicit expression of u(r) is not known. Our formula (7)
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is the approximation corresponding to, and resulting from, the approximations
made for the kinetic and exchange-correlation energies in Eqs. (3) and (4).

The internal restoring force arising in an electron fluid when its density de-
viates from the exact ground-state density can be obtained by evaluating a
functional derivative similar to (5)

δEw[n]
δn(r)

∣∣∣∣
n0+n1

(8)

at the modified density value, which we choose to represent as n0 + n1, with
n0 being the correct ground state density for the external potential w(r) and
n1 expressing the small deviation. Indeed, assuming that the disturbed density
n0+n1 is v-representable, and thus is a ground state for some modified potential
w+w1, and taking into account the fact that the total-energy functional depends
on the external potential only through the potential energy term, we have

δEw[n]
δn(r)

∣∣∣∣
n0+n1

=
[
δ

δn

(
Ew+w1 [n]−

∫
d2r w1(r)n(r)

)]
n0+n1

= µ− w1(r) (9)

Since w1 is the additional external potential needed to keep the density n0 +n1

in the equilibrium, its gradient equals the internal restoring force, thus

Fint = ∇w1(r) = −∇
{

δ

δn(r)
Ew[n(r)]

}
n0+n1

= −∇Φ(r). (10)

Here we expressed the internal force Fint via its scalar potential Φ. Writing the
density fluctuation as n1 = 2ψ0ψ1 and carrying out the functional derivation
we obtain

Φ(r) = 2πψ0ψ1 −
λ

2
ψ−2

0 [ψ0∇2ψ1 − ψ1∇2ψ0]

+ 2
∫
d2r′

ψ0(r′)ψ1(r′)
|r− r′|

−
√

8
π
ψ1(r) (11)

to the linear order in ψ1.
The result (11) is used to describe the dynamics of a two-dimensional electron

fluid under the effect of external time-dependent forces Fext. In addition to
the density field, we introduce the velocity field v governed by the continuity
equation and the equation of motion

∂

∂t
n+∇ · (nv) = 0,(
∂

∂t
+ v · ∇

)
v = F− v × ~ωc − ηv. (12)
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Here F stands for the net force F(r) = Fext(r)−∇Φ(r), η is a phenomenological
damping parameter, and the vector ~ωc is given by

~ωc =
eB
mc

.

Its absolute value equals the cyclotron frequency, and its direction is perpen-
dicular to the layer of the two-dimensional electrons, consequently also to the
velocity field. Linearizing the hydrodynamic equations (12) around the equi-
librium density and assuming the harmonic temporal dependence e−iωt of the
dynamic quantities we obtain

−iωψ1 +
1
2
ψ0∇ · v + v · ∇ψ0 = 0,

−iω̃v = F− v × ~ωc. (13)

here ω̃ = ω + iη. The second equation in (13) is readily solved with the result

(ω̃2 − ~ω2
c )v = F× ~ωc + iω̃F, (14)

and when substituted into the first line of Eq. (13) yields

ω(ω̃2 − ~ω2
c )ψ1 +

1
2
ω̃ψ0∇2Φ− i~ωc · (∇ψ0 ×∇Φ) + ω̃(∇ψ0 · ∇Φ)

= −i~ωc · (∇ψ0 × Fext) + ω̃ (∇ψ0 · Fext). (15)

Note, that in Eq. (15) the scalar potential of internal forces Φ is a functional of
ψ0 and ψ1 given by (11). While the final equation describing the electron-fluid
dynamics (15) looks quite complicated algebraically it can be solved straight-
forwardly by expanding the unknown density fluctuation ψ1 in any suitable set
of basis functions. Working in the linear regime we will obtain a coupled set of
equations for the expansion coefficients. Following the suggestion of Ref. 19 we
used the complete set of solutions to (6) as the basis; an alternative choice is the
plane-wave basis. We obtain the power absorption in the system by numerically
calculating the Joule heat generated in a unit cell of the antidot lattice. The
positions of peaks in the absorption power dependences on the frequency will
indicate the presence of a collective excitation of the given frequency.

III. RESULTS

We consider a square antidot superlattice of a lattice constant a = 300 nm
in both lateral directions. The external potential is assumed to be of a simple
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cosine-like shape and is described by setting the four lowest Fourier components
to equal strength w0, thus

w(r) = 2w0

[
cos
(

2πx
a

)
+ cos

(
2πy
a

)]
.

The electron concentration is set to n = 1011 cm−2.

A. Evolution of plasmon modes

We begin by considering the evolution of the plasma modes of a nearly uniform
two-dimensional electron system in a zero magnetic field into those of an antidot
superlattice by gradually turning on the underlying superlattice potential. It
is well known that in a uniform 2D electron gas one observes a gapless plasma
mode30 whose classical frequency depends on length of the the wave-vector q as

ω2D =
√

2πnq, (16)

in the atomic units. At higher q’s this expression is modified by the contributions
from the quantum-mechanical terms in Eq. (1). In the presence of a weak
external potential, the plasmon dispersion curve (16) will be folded into the
central Brillouin zone of the reciprocal lattice. Concentrating on the long-
wavelength limit and considering only the modes that occur at q = 0, we should
observe a set of plasma oscillations at the frequencies corresponding to reciprocal
lattice vectors

ω2
k,l = 2πn

2π
a

√
k2 + l2, k, l ∈ Z. (17)

The results of a numerical calculation are presented in Figure 1. Indeed, as
the external potential strength increases we detect the power absorption peaks
at the expected frequency values starting from ω1,0 = 0.366. As a matter of
fact, the stars of the reciprocal lattice vectors lying on one of the axes or on
the diagonal, e. g. (k, l) = (1, 0), (1, 1) or (2, 0), contain four equivalent vectors,
however, in a square lattice at zero magnetic field the degeneracy is not lifted.
On the contrary, as can be seen in Fig. 1 (a) we find a splitting of the mode
(2, 1), whose star of equivalent vectors contains eight elements, into two peaks.

The oscillator strength of these modes, especially the higher-energy ones,
in weak potentials is rather low. As one can see in Fig. 1 (b), the strength
of the most conspicuous mode (1, 0) just barely reaches 2 % as the potential
modulation approaches w0 = 0.4. Most of the oscillator strength is contained
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FIG. 1: The evolution of the plasmon modes into the collective modes of an antidot
lattice. Panel (a) shows the frequencies of the seven lowest modes as a function of
the external potential strength w0; panels (b) and (c) display the dependences of
the oscillator strengths. The unit of frequency equals 9.12 · 1012 s−1, and that of the
potential strength is 6 meV. The oscillator strengths are given as the fraction of the
total strength contained in both possible light polarizations. The vertical dotted lines
delimit the three distinct regimes: the perturbative regime w0 ≤ 0.4, the formation
of antidots in the range 0.4 ≤ w0 ≤ 0.7, and the expansion of the depleted areas for
w0 ≥ 0.7.

in the zero-frequency mode. We hasten to add that total oscillator strength of
all modes observed in each of the two possible light polarizations adds up to
50 %.

The regime defined by w0 ≤ 0.4 can be classified as perturbative. In this range
of the potential modulations, the electron density is also modulated but stays
finite at the locations of the potential maxima. The modes (k, l) are relatively
dispersionless, and their frequencies stay close to the values given by (17). By
directly inspecting the shape of the fluctuating charge densities associated with
these modes we verified that the modes do not mix strongly between themselves.
The Fourier analysis of the shape of charge density fluctuations of a given mode
labelled by certain indices (k, l) shows that it is dominated by the corresponding
mode of a uniform system of the same indices with only minor admixtures of
the others.

The situation changes when we cross-over to the range of modulations
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0.4 ≤ w0 ≤ 0.7. In this regime the actual antidots are formed by depleting
the electron density at their locations to nearly zero values. Therefore, the
eigenfrequency spectrum and the nature of density oscillations is correspond-
ingly modified. The frequencies of the system modes tend to shift towards the
lower values. The oscillating charge densities tend to concentrate around the
locations of the antidots rather than be spread nearly uniformly over the entire
lattice cell. Naturally, the Fourier decomposition of the collective modes into
the modes of a uniform system typically contains a number of constituents of
appreciable strength. Therefore, while we still can trace the evolution of a cer-
tain density oscillation back to its predecessor of well-defined indices (k, l), the
modes themselves are substantially modified.

In the range of modulation strengths w0 ≥ 0.7 we find a third distinct regime
associated with the growth of the area where the electron density is depleted
by the antidots. We note, that the dispersion curves reverse their behaviour
and move towards the higher frequencies. It is interesting to observe, that the
modes with one of the indices equal to zero tend to end up below the other ones.
We find a number of crossings between the modes, and the oscillator strength
dependencies show a rich set of features. The strengths of the modes (1, 1) and
(2, 1) decline sharply having risen considerably at w0 ≤ 0.7. Instead, most of
the oscillator strength is concentrating in the three lowest modes (1, 0), (2, 0)
and (3, 0). The curves corresponding to these modes shoot up rapidly in Fig. 1
(b) and (c).

In conclusion, we can judge that neither the mode frequencies nor the nature
of density oscillations in a realistic antidot lattice are straightforwardly related
to the spectrum of pure modes of a uniform system folded into a single Brillouin
zone.

B. Spectra of antidot lattices

Having traced the evolution of the modes of antidot superlattices at zero
magnetic field, we now proceed to the analysis of the magnetic-field dispersions.
We set the external potential strength to w0 = 1.0 (the highest value considered
in the previous subsection) so that the diameter of the depleted charge density
area approximately equals 40 % of the lattice constant.

The magnetic-field dispersions of the lowest-energy modes are shown in Figure
2. In panel (a) we show the spectrum obtained in the cyclotron polarization;
the cyclotron resonance line (“CR”) is clearly visible at all magnetic fields. The
other modes either concentrate in the low-frequency part of the spectrum or
start from a finite ω value at zero magnetic field and asymptotically approach
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the “CR” line at high magnetic fields. We are able to resolve four distinct modes
in the low-frequency regime, however, one of them (denoted “1+”) carries most
of the oscillator strength. Likewise, mode “2+” is the strongest mode in the
upper part of the spectrum. We plot the oscillator strengths of these three
modes in the panel (a) of Figure 3. It is clearly seen that, as the magnetic field
strength increases, there is an oscillator strength transfer from the mode “1+”
to the mode “2+” indicating a strong coupling between these modes.5 On the
other hand, the oscillator strength contained in “CR” is nearly independent of
the magnetic field strength. The three modes discussed above nearly exhaust
the oscillator strength sum rule at magnetic fields B ≥ 0.1. The next few
excitations lying just above the “2+” line also carry an appreciable part (up to
0.7 – 2.0 % each) of the total absorption power and can be observed.9 Most of
the other collective oscillations of this polarization are almost inactive.

Panel (b) of Fig. 2 shows the modes active in the anti-cyclotron polarization.
The general structure of the spectrum resembles that of the cyclotron polariza-
tion. Naturally, the cyclotron resonance line is missing. The two modes in the
lower part of the high-frequency set show an interesting anticrossing behaviour.
The lower of these modes (see the right panel of Fig. 3) is active in a very narrow
range of magnetic fields close to zero and has been detected experimentally.9 In
the low-frequency regime we also find an active mode carrying a few percent of
the net oscillator strength.

In order to achieve a better understanding of the collective excitations in
antidot superlattices we also look at the fluctuating charge density distributions
corresponding to the three strongest modes of the cyclotron polarization. Panels
(a), (b) and (c) of Fig. 4 show the contour plots of the modes “1+”, “CR” and
“2+”, respectively, within a single unit cell. The antidots are situated at the
corners of the displayed area.

One can see that in all cases most of the oscillating density is concentrated
in the area surrounding the antidots and the oscillations have a clear (coupled)
dipole structure. It is interesting to compare these charge density plots to their
analogues obtained in a previous attempt to investigate the structure of exci-
tations closer to the quantum-mechanical regime.14 We conclude that all the
plots obtained in the present semiclassical simulation show a more clean cut
and well-defined pattern of motion of the charge density maxima and minima
relative to each other. On the contrary, the plots resulting from a microscopic
random-phase calculation involve a considerable contribution of single-particle
excitations and are typically more difficult to analyze. In that case the appear-
ance of a clearer density pattern can be used to tell a collective mode from the
electron-hole background.14

While the fluctuating density profiles depicted in the three panels of Fig. 4
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FIG. 2: The magnetic-field dispersions of the lowest-energy modes of the cyclotron
[(panel (a)] and anti-cyclotron [(b)] polarization. Frequencies are measured in the
units 9.12 · 1012 s−1, while the magnetic field strength unit equals 3.47 T. The label
“CR” denotes the cyclotron resonance, “1” and “2” label the strongest modes whose
oscillator strengths are depicted in a separate figure. The superscripts “+” and “−”
refer, respectively, to the cyclotron and anti-cyclotron polarizations.

possess a large degree of similarity, there are notable differences. We see that
the modes “1+” and “2+” involve an intricate pattern of coupled dipoles. The
strongest one is situated around the antidots while the area between the antidots
is occupied by a number of smaller charge density maxima and minima. In the
case of “CR” the inter-antidot oscillations are few and not strongly pronounced.
On the other hand, we note that in the low-frequency mode the maximum and
the minimum of the dipole oscillating around an antidot are split by the strong
interaction with the other oscillations into three near extrema.
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FIG. 3: The oscillator strengths of the most conspicuous modes presented in Figure 2
plotted versus the magnetic field strength.

IV. SUMMARY

In summary, we considered the dynamical properties of antidot superlattices
using a semiclassical formulation of a method derived from the density functional
theory. We analyzed the formation of the collective excitation spectra of the
antidot lattices and their dispersions versus the magnetic field strength. The
spectra display the presence of a large number of collective excitations in the
system, however, only a few of them have an appreciable oscillator strength and
can be detected experimentally.
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(a) (b) (c)

FIG. 4: The contour plots of the fluctuating charge densities of the three principal
modes polarized in the cyclotron direction. The panels (a), (b) and (c) correspond
to the modes “1+”, CR, and “2+”, respectively. One elementary lattice cell is shown
with the antidots occupying the corners.
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1 L. Jacak, P. Hawrylak, and A. Wójs, Quantum Dots, (Springer, Berlin, 1998).
2 T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64,

788 (1990); A. Lorke, J. P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 64,
2559 (1990).

3 D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Europhys. Lett. 8,
179 (1989).

4 D. Weiss, M. L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, and G.
Weimann, Phys. Rev. Lett. 66, 2790 (1991).

5 K. Kern, D. Heitmann, P. Grambow, Y. H. Zhang, and K. Ploog, Phys. Rev.
Lett. 66, 1618 (1991).

6 R. Fleischmann, T. Geisel, R. Ketzmerick, Phys. Rev. Lett. 68, 1367 (1992);
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Tip geometry effects in circularly polarized light emission
from a scanning tunneling microscope
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We present a calculation of the degree of circular polarization
ρ, of the light emitted from a scanning tunneling microscope due
to tip asymmetry. In order to take into account the essential ge-
ometrical features of an imperfect tip its shape is approximated
by a tilted spheroid. We work in the non-retarded limit and use
experimentally measured dielectric functions to describe the elec-
tromagnetic properties of the tip (W and Ir) and sample (noble
metals) materials. The results show that the polarization can
reach 20–30 % for what we think are moderately asymmetric
tips. This result, as well as the strong dependence of ρ on the
azimuthal observation angle, is in reasonable agreement with ex-
perimental findings [Vázquez de Parga and Alvarado, Europhys.
Lett. 36, 577 (1996)].

PACS numbers: 61.16.Ch, 73.20.Mf, 41.20.Cv

I. INTRODUCTION

Over the last decade, the scanning tunneling microscope (STM) as well
as other scanning probe techniques, for example the atomic force microscope
(AFM), have become standard experimental tools in surface science. The main
purpose of using these techniques is to gain information about the surface to-
pography and structure with high, often atomic, resolution. But the field of
scanning probe microscopy (SPM) has also diversified in many different direc-
tions. One of the new subfields is devoted to the study of interactions between
the tunneling electrons and the electromagnetic field.

In this paper, we will address experiments in which the STM is operated
at a relatively large bias voltage so that some of the tunneling electrons can
transfer part of their excess energy to the electromagnetic field, and in this way
cause photon emission from the STM. These experiments were first carried
out by Gimzewski, Berndt and co-workers,1 but later several other groups have
observed the same effect.2 Typically these experiments used noble metal samples
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(Au, Ag, or Cu) and standard tip materials (W or Ir).
The most conspicuous results of these experiments are (i) the enhancement

of the emitted light intensity as compared with inverse photoemission from an
isolated metal surface, and (ii) the spectral resonances in the light emission.
The quantum efficiency reached 10−4 or even 10−3 to be compared with the
typical inverse photoemission yield of 1 photon per 108 electrons impinging on
the surface.

A number of theories addressing these experiments have been brought
forward.3–8 The main features of the experimental results can be explained as
a result of the interaction between the tunneling electron and an interface plas-
mon resonance that is localized to the region between the tip and the sample.
The electron transfers energy to the interface plasmon, the plasmon will then
in turn decay. Most of the time this decay is due to dissipative losses to the tip
and the sample, but some plasmons decay into photons. As an alternative to
the two-step process outlined above, one can view the light emission process as
a one-step process in which the interaction between the tunneling electrons and
the electromagnetic field is enhanced because the photon states are modified
near the tip and sample. In other words, the rate of spontaneous emission is
enhanced.

In recent years, a few experiments have also aimed at understanding, and
possibly also using, the polarization properties of the emitted light. Much of the
motivation for this research comes from the fact that it could provide a technique
for probing surface magnetic structure with very good spatial resolution. The
optical properties of a magnetic surface are such that p-polarized light (E field
in the plane of incidence) and s-polarized light (E field orthogonal to the plane
of incidence) are coupled. As a consequence, the intensities of emitted left- and
right-circularly polarized light may differ. Vázquez de Parga and Alvarado9

studied a Co sample which was magnetized parallel to the surface and found
that the degree of circular polarization ρ = (Ileft − Iright)/(Ileft + Iright), could
reach about 10 % (note that 2ρ was plotted in their paper). This is indeed
a large number for a magneto-optic effect, and no good explanation of the
result exists. It should also be said that later experiments by Pierce et al.,10 in
which a magnetic Fe sample was used, gave a much smaller degree of circular
polarization.

Using a magnetic sample is, however, not the only way in which one can
get emission of circularly polarized light. Also various asymmetries of the tip-
sample geometry can give the same effect. (We hasten to add that such ef-
fects were compensated for in the experimental results obtained from magnetic
samples.9,10) This issue was studied in more detail by Vázquez de Parga and
Alvarado.11 They measured the degree of circular polarization for a number
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of tips, and found that ρ in some cases could reach values as high as 80 %.
Vázquez de Parga and Alvarado argue that this presumably happens when the
tip is asymmetric, having, for example, a knife-edge-like protrusion to one side
of the apex. This kind of protrusion can yield a high degree of coupling between
p and s polarization, and consequently a high degree of circular polarization of
the emitted light.

In this paper, we present a theoretical investigation of the effects tip asym-
metry has on the polarization properties of the emitted light. To this end, we
perform calculation of the emitted light intensity from an STM with a model
tip in the form of a tilted spheroid. While the ultimate goal in this research
field is to understand the relation between the polarization of the emitted light
and surface magnetism, there are several reasons for why it is valuable to under-
stand the tip asymmetry problem in its own right: (i) Are the values for ρ that
were found experimentally reasonable? (ii) Can this type of experiment be used
as a probe of tip quality? (iii) The formalism developed here can be useful in
treating the magnetic-surface problem. (iv) In spite of the fact that the exper-
iments on magnetic surfaces were done in such a way that the straightforward
consequences of any tip asymmetry are compensated for, it is not excluded that
some non-trivial coupling between the two mechanisms remains. The results
show that the values for ρ can reach 20–30 % and sometimes more for what we
think are moderately asymmetric tips. This finding is in reasonable agreement
with the experimental results.11

The paper is organized in the following way. In Sec. II we describe the model
used in our calculations. In Sec. III we develop the mathematical formalism
which leads to a set of coupled equations for the expansion coefficients of the
scalar potential in prolate spheroidal coordinates which are solved numerically
and related to the measurable quantities. Our main results are presented and
discussed in Sec. IV, and a brief summary is given in Sec. V.

II. THE MODEL

In order to have a model tip that is not cylindrically symmetric we start
from a spherical model tip used in most previous calculations,3,4,6,8,12 and then
stretch and tilt it to obtain a spheroid. Thus, cylindrical symmetry is lost and
only a vertical symmetry plane drawn through the tilted spheroid axis is left.
The geometric setup is sketched in Fig. 1 where we also show two Cartesian
coordinate systems. The first one has its z axis directed normal to the sample
surface, while the other (primed) one has its z′ axis pointing along the major
axis of the spheroid in order to facilitate the transition to the prolate spheroidal
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coordinates13 (ξ, η, φ). The distance between the foci of the spheroid is chosen
as the unit length a = 1. The tip surface is given by ξ = ξ0 = const where ξ
is the radial spheroidal coordinate. Its eccentricity equals ε = 1/ξ0. We define
the tilting angle β as the angle between the spheroid axis and vertical direction,
so that β = 0 corresponds to an upright, symmetric tip. Finally, the tip-sample
separation d, is the shortest distance between the tip and the sample surface.

Typical values for the tip radius are 100 – 400 Å and the tip-sample sepa-
ration is of order 5 – 10 Å. Comparing these numbers with λ (λ/2π) for the
emitted photons (typically λ ≈ 1000 Å) we see that it is possible to calculate
the electromagnetic fields around the tip in the non-retarded limit. A recent
calculation12 taking retardation into account showed that this approximation is
reasonable.

The general approach of our calculation follows Ref. 3. We use the reciprocity
theorem of electrodynamics14 which states that interchanging the source with
the point of measurement leaves the result unchanged. Thus, while we need to
know the electric field far from the tip resulting from a driving current situated
between the tip and the sample, we place the driving current far away from
the tip and ask what electric field we obtain between the tip and sample. As
a consequence, the amplitude of the linearly polarized electric field radiated in
the direction (ϑ, ψ) (polar and azimuthal angles, respectively) can be written3

Ep(s)(r, ω) =
iω

c2
eikr

r

∫
d3r′ j(r′, ω)Gp(s)(ϑ, ψ, r′, ω). (1)

Here j(r, ω) denotes the classical current corresponding to an inelastic transi-
tion in which the tunneling electron loses energy h̄ω. The prefactor gives the
amplitude of the E field of a plane wave coming from a δ function source of unit
strength a distance r far away in the (ϑ, ψ) direction. The function G(ϑ, ψ, r′, ω)
is an enhancement factor resulting from the response of tip and sample. It is de-
fined as the ratio between the vertical component of the electric field at r′ near
the tip and the electric field of the incoming plane wave. Equation (1) can be
simplified by setting G = G(ϑ, ψ, r′apex, ω), and taking this quantity outside the
integral, because the tunneling current is non-zero only within a small region
right below the tip apex (r′apex) where G is essentially independent of r′.

Once G and j(r′, ω) are known, the total radiated power and its angular
distribution can be calculated from Eq. (1). However, we will restrict ourselves
to calculating G, because j(r′, ω) is rather structureless as a function of ω, and
the quantity of primary interest to us, the degree of circular polarization ρ, can
be obtained directly from the enhancement factor as

ρ =
Ileft − Iright

Ileft + Iright
=
|Gleft|2 − |Gright|2

|Gleft|2 + |Gright|2
. (2)
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FIG. 1: The overall geometry used in our calculation.

Here the subscripts label the two circular polarization states of the radiated
light. A simple analysis shows that their respective enhancement factors are
related to the linear ones as G left

right
= (Gp ∓ iGs)/

√
2.

We use experimentally measured dielectric functions15 to describe the optical
properties of the tip and sample materials in the calculations. While this is
an approximation, for example, damping due to extra surface scattering and
electron-hole pair excitation is neglected, it is usually a rather good approxima-
tion. Reference 12 contains a more extensive discussion of this point.

III. THEORY

The calculation of the electric field enhancement factor G is done in two steps.
First the “external” field Eext, which we define as the electric field above the
sample surface in the absence of the spheroid, is computed. Then the spheroid
is introduced, and the near-field corrections due to its presence are calculated in
the second step. As a matter of fact Eext, being the electric field of a propagating
wave far away from the source, is transverse. Nevertheless, within the region
of interest which is smaller than λ, transverse and longitudinal fields cannot
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really be distinguished. Therefore, we treat the (nearly constant) field Eext as
a longitudinal one there, and express it as a gradient of a scalar potential.

The electric field created by a plane wave coming from a remote source of
radiation above a reflecting dielectric surface is straightforwardly obtained by
employing the Fresnel formulas. We denote the sample dielectric function ε1(ω),
the strength of the electric field of the incoming light E1, the ratio between
the vertical components of its wave-vectors in the sample and vacuum f =√

(ε1 − sin2 ϑ)/ cosϑ, and express the tilted frame Cartesian components of
Eext as

Eext
p = {E′x, E′y, E′z} =

2E1

ε1 + f

{
− f cosϑ cosψ cosβ − ε1 sinϑ sinβ,

− f cosϑ sinψ, −f cosϑ cosψ sinβ + ε1 sinϑ cosβ
}

(3)

and

Eext
s = {E′x, E′y, E′z} =

2E1

1 + f
{sinψ cosβ, − cosψ, sinψ sinβ} (4)

for the p and s polarizations, respectively. As a result, the external potential
equals φext = −E′xx′ − E′yy′ − E′zz′ and we transform this expression to the
spheroidal coordinate system (ξ, η, φ) employing(

x
y

)
= −a

2
P 1

1 (ξ)P 1
1 (η)

(
cosϕ
sinϕ

)
, z =

a

2
P 0

1 (ξ)P 0
1 (η), (5)

where a is the interfocal distance subsequently set equal to 1,16 and Pml denotes
an associated Legendre function.

Let us now introduce the tilted spheroid into this external field. The effect
on the scalar potential everywhere outside a body due to the (complicated)
charge distribution inside it can be expressed in terms of the boundary values
of the potential and its normal derivative on a surface surrounding the body.
The boundary values can be interpreted as those resulting from a surface-charge
density (1/4π)(∂φ/∂n) and a dipole layer (−φ/4π) and lead in the present case
to the following equation for the potential

φ(r) = φext(r) +
1

4π

∮
s

{
G(r|r′) ∂

∂n′
φ(r′)− φ(r′)

∂

∂n′
G(r|r′)

}
dS′. (6)

The integration surface S is placed just outside the spheroid (note that the
positive direction of the normal points into the spheroid). The Green’s function
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G takes into account both the direct Coulomb interaction and the presence of
the image charges that the spheroid induces in the sample

G(r|r′) =
1

|r− r′|
−
(
ε1 − 1
ε1 + 1

)
1

|r− r′′|
, (7)

where r is any point above the sample and outside the spheroid, and r′′ is the
image of r′ in the plane. For what follows, it is useful to express the Coulomb
potential in terms of functions that solve the Laplace equation in the spheroidal
coordinates. We have the multipole expansion

1
r

=
1

|r− r′|
=

2
a

∞∑
l=0

l∑
m=0

(2l + 1)(2− δm,0)(−1)m
[

(l −m)!
(l +m)!

]2

× Pml (η)Pml (η′)Qml (ξ>)Pml (ξ<) cos[m(ϕ− ϕ′)] (8)

where ξ> (ξ<) is the greater (lesser) of ξ and ξ′, and Qml is an associated
Legendre function of the second kind.

Inside the spheroid, the scalar potential can be expressed as a general solution
to ∇2φ = 0 that remains finite on the interfocal line ξ = 1:

φ(ξ, η, ϕ) =
∞∑
l=0

l∑
m=0

Pml (ξ)Pml (η)
{
Alm cos(mϕ)
Blm sin(mϕ)

}
. (9)

In fact, the modes varying as cos(mϕ) and sin(mϕ), respectively, do not mix
thanks to the presence of the symmetry plane, and the following calculations can
be carried out separately for both sets. Since in the end we are only interested
in obtaining the electric field component in the symmetry plane where ϕ = 0
or ϕ = π and thus sin(mϕ) = 0, we restrict the calculation to the cos-modes.

We obtain the values of φ(r′) and ∂φ(r′)/∂n′ outside the spheroid from Eq.
(9) and the boundary conditions

φ(r′)|in = φ(r′)|out,

ε2
∂

∂n′
φ(r′)|in =

∂

∂n′
φ(r′)|out, (10)

where ε2 = ε2(ω) denotes the tip dielectric function. Letting r → r′ (from the
outside of the spheroid) in Eq. (6), we arrive at an integral equation for the
potential on the spheroid surface.

The surface integrals occurring in Eq. (6) can be evaluated explicitly using the
expansions of potential and Green’s function in spheroidal coordinates. We look
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at the two terms in the Green’s function separately. The direct term (1/|r−r′|)
yields

1
4π

∮
s

{
1

|r− r′|
∂

∂n′
φ(r′)− φ(r′)

∂

∂n′
1

|r− r′|

}
dS′ = −(ε2 − 1) (11)

×
∞∑
l=0

l∑
m=0

Alm(−1)m
(l −m)!
(l +m)!

Pml (ξ0)Dm
l (ξ0)Qml (ξ0)Pml (η) cos(mϕ),

for which we have used the normalization conditions∫ 1

−1

Pml (η)Pml′ (η)dη = δll′
2

2l + 1
(l +m)!
(l −m)!

and∫ 2π

0

cos(mϕ) cos(m′ϕ)dϕ = δmm′
2π

2− δm,0
, (12)

and the shorthand notation

Dm
l (ξ) =

[
(ξ′2 − 1)

∂

∂ξ′
Pml (ξ′)

]
ξ′=ξ

. (13)

When evaluating the analogous integral with the reflection part of the Green’s
function (1/|r−r′′|) it is convenient to transfer the integration onto the image of
the spheroid by changing the integration variable from r′ to r′′, thus expressing
the potential in terms of the image charges. Then the result will resemble the one
in Eq. (11), but the last three factors Qml (ξ0)Pml (η) cos(mϕ) which describe the
lm mode on the spheroid surface have to be replaced by Qml (ξ̃)Pml (η̃) cos(mϕ̃)
where ξ̃, η̃, ϕ̃ are the coordinates of the point r in the frame associated with the
spheroid image.

Of course, in order to transform the integral equation (6) into a matrix equa-
tion for the expansion coefficients Alm, one has to expand the modes centered
on the spheroid image in terms of modes centered on the spheroid. This will
couple the different modes. We get

−
(

1− ε1
1 + ε1

)
(ε2 − 1)

∞∑
l′=0

l′∑
m′=0

Al′m′(−1)m
′ (l′ −m′)!
(l′ +m′)!

× Pm
′

l′ (ξ0)Dm′

l′ (ξ0)Qm
′

l′ (ξ̃)Pm
′

l′ (η̃) cos(m′ϕ̃) (14)

=
(

1− ε1
1 + ε1

)
(ε2 − 1)

∞∑
l=0

l∑
m=0

Mlm(ξ0)Pml (η) cos(mϕ),
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where the coefficients Mlm(ξ0) are obtained from the orthogonality conditions
for Plm(η) and cos(mϕ)

Mlm(ξ0) = −
∞∑
l′=0

l′∑
m′=0

2− δm,0
2π

2l + 1
2

(−1)m
′ (l −m)!
(l +m)!

× (l′ −m′)!
(l′ +m′)!

Pm
′

l′ (ξ0)Dm′

l′ (ξ0)J lml′m′Al′m′ (15)

and the overlap integral

J lml′m′ = 2
∫ 1

−1

dη

∫ π

0

dϕQm
′

l′ (ξ̃)Pm
′

l′ (η̃)Pml (η) cos(m′ϕ̃) cos(mϕ) (16)

is the projection of the mode l′m′ centered on the image spheroid onto the mode
lm centered on the spheroid.

Substituting Eq. (11), its reflected counterpart Eq. (14), and φext expressed
as

φext(ξ, η, ϕ) =
∞∑
l=0

l∑
m=0

Pml (ξ)Pml (η)
{
flm cos(mϕ)
glm sin(mϕ)

}
(17)

(note that in view of Eqs. (3), (4), and (5) only f10, f11, and g11 have non-
zero values) into the integral equation (6) and collecting the contributions to
each mode Pml (η) cos(mϕ), we arrive at the following matrix equation for the
expansion coefficients Alm

∞∑
l′=0

l′∑
m′=0

T lml′m′Al′m′ = flmP
m
l (ξ0). (18)

The matrix elements T lml′m′ are given by

T lml′m′ = (ε2 − 1)
{
J lml′m′

(
1− ε1
1 + ε1

)
2− δm,0

2π
2l + 1

2
(l −m)!
(l +m)!

+Qml (ξ0)δll′δmm′
}

× (−1)m
′ (l′ −m′)!
(l′ +m′)!

Pm
′

l′ (ξ0)Dm′

l′ (ξ0) + Pml (ξ0)δll′δmm′ . (19)

Solving Eq. (18) we obtain the expansion coefficients Alm from which the
potential and the electric field in the symmetry plane can be determined. The
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electric field enhancement factor at the tip apex is found by letting E1 = 1 and
evaluating the normal derivative of the potential which yields

G = 2ε2

√
ξ2
0 − 1

ξ2
0 − η2

0

∞∑
l=0

l∑
m=0

AlmP
m
l (η0)

[
∂

∂ξ
Pml (ξ)

]
ξ=ξ0

. (20)

The expressions for ξ0 and η0, together with those for the principal radii of
curvature, are given in the Appendix.

The calculation of the overlap integrals and matrix inversion is carried out
numerically. We include a sufficient number of modes in order to get a converged
solution, and truncate the rest of the matrix. The maximum l that has to be
included to calculate the field enhancement factors can be estimated to be R0/d.
However, the degree of polarization, which is expressed through the ratio of two
different enhancement factors, converges considerably faster.

IV. RESULTS AND DISCUSSION

We have used the expressions derived in Sec. III to calculate frequency and
directional dependencies of the enhancement factors |G| and the degree of polar-
ization ρ for a number of different geometric setups. In most of our calculations
we used a W tip and a Au sample, occasionally switching to an Ir tip and a Ag
sample.

We varied the spheroid stretching factor Λ = r2/r1 between the limits
√

3/2 ≈
1.2247 and 2 and the tilting angle between 15◦ and 75◦. The constraints on
possible geometries are set by the validity of our approximation. To be able to
work correctly in the non-retarded limit one cannot go to too large Λ values.
Moreover, extending the model tip too much leads not only to changes of the
shape of the bottom of the tip, but also to a distortion of overall geometric
setup. As a measure of such a distortion one can consider the ratio of the two
principal radii of curvature at the tip apex. It can be seen from Eqs. (24) and
(25) that its difference from unity is given by

1− R1

R0
= (ε sinβ)2 (21)

and that this difference stays below 1/6 (a reasonably small quantity) as long
as e. g. Λ ≤

√
3 and β ≤ 30◦.

When changing from one geometry to another we choose to keep the ratio
R0/d (where d is the tip-sample separation) fixed. Previous calculations using
spherical model tips showed that this quantity is the essential one in determining
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the characteristics of the electromagnetic response. In fact, in the spherical
geometry all the characteristic lengths (the radius of curvature at the apex,
the total horizontal size of the cavity and the vertical extension of the tip)
are determined by its radius. Introducing more degrees of freedom decouples
different characteristic lengths from each other and makes the choice of the
“essential” ones more involved. As we will see, the resonance frequencies are
mostly determined by horizontal dimensions of the cavity while the magnitude
of the response is mainly determined (in a non-retarded calculation) by the
vertical size of the tip. The degree of polarization, however, is not particularly
sensitive to these quantities (see below).

In Fig. 2, we show how the light polarization varies with the azimuthal ob-
servation angle ψ. One sees that the maximum of the degree of polarization
occurs at ψ = π/2 and ψ = 3π/2 as one may expect since the tip-shape distor-
tion is maximally exposed when seen from the direction perpendicular to the
symmetry plane. (Consequently, we present the other dependencies as observed
in the direction ψ = 3π/2 where ρ assumes the largest positive values.) The
light radiated along the symmetry plane, on the other hand, is not circularly
polarized. It can be seen, however, that the maxima of the enhancement factors
are not necessarily observed in the direction of largest polarization.

Another easily noticeable feature is the very nearly sinusoidal shape of the cal-
culated degree of polarization which resembles that measured experimentally.11

In fact, a closer inspection would reveal an admixture of a few percent of higher
modes (i. e. ∝ sin 2ψ, sin 3ψ, . . .) whose magnitude grows with the nonspheric-
ity of the tip. Obviously, the presence and relative magnitudes of these modes
are very much geometry dependent both in the theoretical model and in the
experimental situation. This means that if it becomes possible to measure the
contribution of the second and higher modes experimentally (which is clearly
beyond the experimental accuracy at present) information about the actual
shape of the tip could be revealed. Also it is worth mentioning that, as our
results indicate, the higher harmonics become more easily detectable at smaller
observation angles ϑ.

In Fig. 3 we show a typical polar observation angle dependency of the degree
of polarization which develops a very high peak at ϑ ≈ 0.1 rad. Its presence is
easy to understand recalling that for such a small observation angle the E fields
of both s- and p-polarized light are nearly horizontal. However, in the case of
s-polarization the field vector lies in the symmetry plane and thus the tip shape
distortion is maximally exposed to it but not to the p-polarized light. One sees
in Fig. 3 that in this limit the enhancement factor |Gp| goes to zero while |Gs|
approaches a rather small but finite value. The maximum in ρ occurs when |Gp|
and |Gs| have approximately equal values.
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FIG. 3: The polar-angle dependency of
enhancement factors for linearly polar-
ized light and the resulting degree of po-
larization for a W/Au tip-sample com-
bination at the frequency 2.1 eV. The
other parameter values are Λ =

√
2, β =

π/6 and the azimuthal observation angle
ψ = 3π/2. Note the two different vertical
scales.

It would be interesting if such an angular distribution of the light polariza-
tion could be detected experimentally. However, one should keep in mind that
measurements near the vertical direction (ϑ ≈ 0.1 rad) are complicated or even
impossible because the light is shadowed by the tip. Also it can be seen from
Fig. 3 that most of the radiated intensity goes into the p-channel and is con-
centrated in a rather narrow region centered at ϑ ≈ 1 rad. Inside this region,
one should be able to detect a steady growth of the degree of polarization with
decreasing polar observation angle ϑ.

Now let us turn to the frequency dependency of the radiated light concentrat-
ing on its polarization. In Figs. 4 and 5 the different enhancement factors and
the degrees of polarization versus frequency are plotted. One sees that |Gp| is
essentially the same as in a spherical-tip model3 while the maximum of the |Gs|
response is shifted towards higher frequencies. As a consequence of this, the
degree of polarization (which is elsewhere a smooth function of photon energy)
develops a characteristic peak at frequencies slightly higher than the spherical-
tip resonances, i.e. in the frequency range where |Gp| drops rather abruptly.
The possibility to observe the peak in practice is very much dependent on the
light intensity which is determined by the materials in use. In the case of our
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presented here are those obtained for a W
tip scanning a Au sample with Λ =

√
3

and β = π/6. The observation direction
is ψ = 3π/2, ϑ = π/4.
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FIG. 5: The frequency dependencies of
the enhancement factors and the result-
ing degree of polarization. The results
presented here are those obtained for an
Ir tip scanning a Ag sample. The rest of
the parameter values are the same as in
Fig. 4.

model calculation performed for a W tip and a Au sample, the resonance is
found to be rather broad and the light intensities remain quite large after it
occurs. This would imply that the above mentioned peak should be possible to
observe.

The numerical values of the degree of polarization are directly dependent on
the tip asymmetry. In Table I we show the numbers for various geometries.
One can see that their typical values are of the order of several tens of percent,
thus comparable to the experimental results.11 It is also easy to trace their
growth with increasing spheroid stretching factor and tilting (note that when β
approaches π/2 the polarization decreases because then the tip again becomes
more symmetric). On the other hand, it is worth noticing that the degree
of polarization in contrast to other characteristic features (the magnitude and
resonant frequencies) of the response is not sensitive to the relative size of the
tip radius compared to the tip-sample separation. All our calculations are done
for R0/d = 20 except for those presented in parentheses in Table I which are
obtained for R0/d = 40.

The frequency at which the maximum of ρ(ω) occurs was also found to be
stable at 2.4 eV for a W tip and a Au sample independently of the geometry.
When the asymmetry increases and the two principal radii of curvature start
to differ considerably [see Eq. (21)] one expects a blue shift of the maximum in
the polarization since the size of the resonant cavity becomes effectively smaller.
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Λ

β
√

3/2
√

2
√

3 2
15◦ 10.1 15.3 (15.8) 20.3 (20.7) 22.7
30◦ 18.5 28.9 (29.8) 39.1 (40.2) 44.3
45◦ 23.3 37.6 53.7 62.1
60◦ 22.1 38.1 58.4 69.9
75◦ 13.8 25.5 43.1 55.0

TABLE I: The maximum degree of polar-
ization for a W tip and a Au sample at
the photon energy h̄ω = 2.4 eV measured
in the direction ϑ = π/4 and ψ = 3π/2.
All values were obtained with R0/d = 20,
except those within parenthesis for which
R0/d = 40.

We noticed this for an Ir tip and a Ag sample where one has sharper resonances,
but it was almost not discernible for a W tip and a Au sample.

Our model geometry can also be used to provide some insight into the cal-
culations of electromagnetic response in the case of a symmetric tip. Leaving
aside other details, one can argue that the spectra are characterized by the
peak positions and peak heights. Earlier investigations (see, for example Refs.
3,8,18) have already addressed the question of dependency of these quantities
on the radius of curvature of the spherical tip compared to the tip-sample sep-
aration. Having introduced more degrees of freedom into the model geometry
we present in Fig. 6 a calculation of the enhancement factor |Gp| for an upright
prolate (Λ =

√
2) spheroid (curve 2) and compare it with the results obtained

from two spherical-tip calculations: (curve 1) the one of the same radius of
curvature at the bottom and the one of the same height (curve 3) as depicted in
the inset. These results show that the magnitude of the response in this model
is mainly determined by the vertical extension of the tip while the resonant
frequency is more sensitive to the shape of the resonant cavity formed between
the tip and the sample. Of course, in a fully retarded treatment the growth of
the magnitude of the response with increasing vertical extension will eventually
be cut off once the tip “height” becomes larger than λ or so.

V. SUMMARY

We have investigated the effects of tip asymmetry on the polarization prop-
erties of light emitted from a scanning tunneling microscope. We find a number
of characteristic features in the directional and frequency dependencies of the
degree of circular polarization ρ: (i) It has a nearly sinusoidal dependence on
the azimuthal observation angle. Moreover, (ii) ρ grows with decreasing polar
observation angle and (iii) as a function of photon energy its maximum is blue-
shifted compared with the maximum of the total light emission intensity. The
resulting numerical values of the degree of polarization are rather large (up to
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FIG. 6: The cylindrically sym-
metric tip response functions:
Curves 1 and 3 show results for
spherical tips with R = 100
Å and R = 200 Å, respec-
tively; curve 2 shows results for a
spheroidal tip whose total height
is that of the curve-3 sphere, and
the radius of curvature at the
bottom is that of the curve-1
sphere. The tip sample separa-
tion is 5 Å.

50 %) even for moderately distorted tips and are comparable to those measured
experimentally.11

Some of these results, such as the relative blue-shift of the circular polar-
ization, indicate that, at least for the geometries we have considered, polariza-
tion and enhancement of the emitted light are somewhat separate effects, even
though they both originate from the presence of the tip near the sample. Fur-
thermore, in the numerical calculations a larger number of basis functions are
needed to accurately describe the enhancement of the light intensity than to get
a correct value for the polarization. These results can qualitatively be under-
stood in the following way: The enhancement is determined by the tip-sample
geometry in the part of space where the tip and sample are in close proximity
to each other; this is where the interface-plasmon mode is formed. The po-
larization, on the other hand, mainly results from the interaction between the
outgoing electromagnetic waves and the tip as a whole.
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APPENDIX

For practical purposes it is convenient to work in terms of the stretching factor
of the spheroid, defined as the ratio of its major and minor axes, Λ = r2/r1 and
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the tilting angle β as shown in Fig. 1. Straightforward geometric considerations
lead to the following expressions for the spheroidal coordinates of the apex
(lowest point) of the tip in terms of Λ and β

ξ0 =
1
ε

=
Λ√

Λ2 − 1
, η0 =

1 + ξ0 cos γ0

ξ0 + cos γ0
, (22)

where

γ0 = π/2 + β + arccos(ε sinβ). (23)

For the radius of curvature in the symmetry plane we get

R0 =
a

2
ξ2
0(ξ2

0 − 1)
(ξ2

0 − sin2 β)3/2
. (24)

It can be shown that this is one of the two principal radii of curvature while the
other one equals

R1 =
a

2
ξ2
0 − 1√

ξ2
0 − sin2 β

. (25)
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