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On the computation of stress fields on polygonal domains with

V-notches ∗

Johan Helsing† and Anders Jonsson‡

June 19, 2000, revised February 2, 2001

Abstract

The interior stress problem is solved numerically for a single edge notched specimen
under uniaxial load. The algorithm is based on a modification of a Fredholm second kind
integral equation with compact operators due to Muskhelishvili. Several singular basis
functions for each of the seven corners in the geometry enable high uniform resolution
of the stress field with a modest number of discretization points. As a consequence,
notch stress intensity factors can be computed directly from the solution. This is an
improvement over other procedures where the stress field is not resolved in the corners
and where notch stress intensity factors are computed in a roundabout way via a path-
independent integral. Numerical examples illustrate the superior stability and economy
of the new scheme.

Key words: Stress analysis, biharmonic equation, polygonal domain, notch stress intensity
factor, corner singularity, V-notch, boundary elements, complex potentials, Muskhelishvili
integral equation

1 Introduction

The computation of stress fields inside loaded elastic bodies with corners is a common task
in mechanical and civil engineering. A corner-type of particular importance is the notch –
a re-entrant corner where stresses diverge and oscillate. A basic geometry involving notches
and other corners is the single edge notched specimen used for fracture mechanics testing.
The etching of silicon wafers is another situation where sharp notches can arise [1]. The
simulation of crack propagation in perforated plates may also involve notches, since fatigue
crack initiation often takes place at notch tips. Accuracy control is essential in such a
simulation. The finite element method, which is the most versatile computational tool
today, often give mesh-dependent results in this and other difficult settings [2, 3, 4].
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The reduced task of computing so-called notch stress intensity factors is also important
and has relevance for strength calculations. Experiments show that simple failure criteria
based on critical values of such factors exist, at least for brittle fracture [5, 6, 7, 8]. This
problem is extremely well conditioned. A one per cent relative change in the notch opening
angle (input data) typically gives a relative change in the notch stress intensity factor
(output data) of less than one per cent [9]. It could therefore be expected that notch
stress intensity factors are easy to compute or that accurate benchmark results should be
available. A review of the literature, which is extensive, gives the opposite impression:
Authors consider the problem hard and the quality of some results can be questioned.

The main difficulty on polygonal domains, regardless of the numerical method used, is
the need to resolve the stress field in the corners. The asymptotic and rather complicated
behaviour of this biharmonic field has been known for almost 50 years [10]. So far no author
has fully succeeded in incorporating this information into an efficient and general numerical
scheme. This paper presents a way to go. Our scheme, which includes several asymptotically
correct basis functions for each corner and carefully implemented quadrature, has previously
been tested in work on the much simpler problem of solving Laplace’s equation on polygonal
domains [11].

The paper is organized as follows: Section 2 gives the classic Williams series solution for
the problem of a single traction-free notch. Section 3 gives an overview of previous work.
Emphasis is placed on equations and methods used. Previous numerical results for notch
stress intensity factors are summarized in Table 1. In this paper, for stability reasons, we
choose a Fredholm second kind integral equation with compact operators. This equation is
presented in Section 4 and our particular choice of basis functions for the solution in the
corners is derived in Section 5. Sections 6 and 7 concern the incorporation of these basis
functions into a Nyström scheme for the solution of the integral equation. It is necessary
to go into some detail here. We have tried to give enough detail so that the reader should
be able to reproduce our algorithm and calculations, yet we try to be concise. Convergence
plots for a notch stress intensity factor and a resolved picture of a stress field for a frequently
studied setup are produced in Section 8. The objective of this section is to demonstrate the
superior efficiency and stability of our scheme.

2 The Williams expansion

A finite, linearly elastic, specimen occupies a domain D. The boundary of the specimen
is denoted Γ and is given positive (counter-clockwise) orientation. Traction (tpr

x , t
pr
y ) is

prescribed on Γ. We would like to compute the stress field inside D.
Let U(x, y) denote the Airy stress function. Since U(x, y) satisfies the biharmonic equa-

tion inside D it can be represented as [12]

U(x, y) = ℜe {z̄φ(z) + χ(z)} , (1)

where the potentials φ(z) and χ(z) are single-valued analytic functions of the complex
variable z = x+ iy.

Let us now consider a domain D with a single traction-free notch, see Figure 1. The
origin of a cartesian coordinate system is placed at the notch tip. The notch opening angle
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Figure 1: A domain D with a traction-free notch. The notch opening angle is β. The notch

tip is at the origin. Traction is applied outside the notch.

is β. With the help of variable separation in polar coordinates r and θ, the Airy stress
function U(r, θ) in D can be written as a sum of terms Un(r, θ) of the form

Un(r, θ) = ℜe
{

rλn+1 [an cos ((λn + 1)θ) + bn cos ((λn − 1)θ)]

+rµn+1 [cn sin ((µn + 1)θ) + dn sin ((µn − 1)θ)]
}

. (2)

Here an, bn, cn, and dn are complex coefficients determined by the applied traction, and
λn and µn are symmetric and antisymmetric exponents given by the infinite number of
solutions to the trigonometric equations

λ sin (β) + sin (λβ) = 0 , (3)

µ sin (β) − sin (µβ) = 0 . (4)

The solution (2–4) is the famous Williams expansion [10], which constitutes the starting
point for almost every research paper on the computation of stress fields in corners. It is
worth pointing out that the solutions λ and µ to (3) and (4) in general appear in complex
conjugate pairs, which corresponds to oscillating stress fields, although some of the first λ
and µ may be real. For example, there is always one solution µ = 1. Furthermore, for
β > π, the leading solutions, λ1 and µ1, are always real and λ1 is less than one, which
corresponds to a diverging stress field.

Quantities of particular interest are the so-called notch stress intensity factors. The
most common of these is the dimensionless mode I notch stress intensity factor QI, defined
in a cartesian coordinate system, see Figure 1, as

QI ≡ lim
x→0+

√
2π
σyy

σref

( x

L

)1−λ1

, (5)

where L is a characteristic length scale, σref is a reference stress, and the limit is taken
along the x-axis. For the single edge notched specimen under uniaxial load, a common
choice is to take L as the width w of the specimen and σref as the prescribed traction tpr

y ,
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Figure 2: A generic single edge notched specimen of length 2h and width w. The notch depth

is a. The notch opening angle is β. Uniaxial traction tpr
y is prescribed.

see Figure 2. We shall return to the computation of QI in more detail in Sections 3 and 6.
Experiments [1, 5, 6, 7, 8] show that a simple failure criterion based on critical QI exists
when the assumption of a linear material model is sufficient. Other failure criteria, such
as point-stress and mean-stress criteria, have been proposed too. See Strandberg [8] and
references therein.

For completeness we give the dimensionless mode II notch stress intensity factor QII,
defined as

QII ≡ lim
x→0+

√
2π
σxy

σref

( x

L

)1−µ1

.

3 Review of earlier algorithms and results

Many methods have been applied to the problem of computing stress fields and mode I
notch stress intensity factors QI for 2D elastic bodies with re-entrant corners. Here follows
a brief review. Reference is made to the specimen of Figure 2, when applicable. Numerical
results of other authors, whenever available, are compared in Table 1 to those of the present
authors, computed in Section 8.

3.1 Spectral method calculations

Gross and Mendelson [9] expanded the Airy stress function U(x, y) for the setup in Figure 2
in a series of basis functions at the notch. Basis functions involving the 40 first solutions λ
and µ to (3,4) were used. Coefficients were determined by collocation. The boundary values
of U(r, θ) were satisfied in a least squares sense at 52 collocation points on Γ. Overdeter-
minacy was used to reduce the ill-conditioning of the formulation, which was observed for
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large opening angles β. Gross and Mendelson [9] achieved a relative error for QI of only
3 · 10−4, see Table 1. Few authors have reported results of better quality.

3.2 Finite element method calculations

A simple way to obtain QI with the finite element method is to use polynomial basis
functions, solve the equations of elasticity, and then compute the values of QI by projection
of the solution onto the first terms in the Williams expansion. This strategy may lead to
difficulties. The stress field will be poorly resolved by the finite elements in the corners.
The projection will be ill-conditioned, unless implemented with care.

Carpenter [13] used 3794 degrees of freedom on a domain involving eight corners. Up
to three Williams basis functions were used in the projection. The relative error for QI was
4 · 10−2. Dunn et al. [7] made a combined finite element method and experimental study
involving single and double edge notched specimens. One Williams basis function was used
in the projection. Numerical results for failure loads, based on 8032 degrees of freedom,
were in 2% to 5% agreement with experiments. It is hard to say if this discrepancy is due to
numerical errors, error in experimental measurements, or errors in the underlying physical
model. Stability and accuracy of numerical schemes is an issue also for simple problems.

The application of a path-independent integral is an alternative to projection on basis
functions. The idea goes back to Eshelby [14]. Carpenter [15, 16, 17] used the finite element
method with up to 6000 degrees of freedom in combination with such an integral for the
extraction of QI. The same combination of methods was used by Atkinson et al. [18], see
Table 1, and in a refined way by Sinclair et al. [19]. With 850 degrees of freedom, the
latter authors report values of QI with a relative error of 10−3 for a setup with an analytic
solution.

Yet an alternative is to seek a finite element solution away from the corners and a
solution based on singular functions in regions close to the corners. The solutions can be
connected with a Dirichlet-to-Neuman map. Givoli and Rivkin [20] tried this approach
for a variety of fracture mechanics problems. For the setup in Figure 2 they reported
only “partial success” and no results were presented. Another option is the use of tailor-
made finite elements. Lin and Tong [2] chose an assumed-stress hybrid formulation for the
setup in Figure 2. Up to sixteen Williams basis functions were used, at the notch only,
in combination with bilinear and quadratic basis functions. The results were reported to
be mesh-dependent. Nevertheless, estimates for QI with a relative error of 2 · 10−3 were
obtained using 58 degrees of freedom, see Table 1. A similar method used by Yosibash and
Schiff [21] gave slightly poorer results, see Table 1.

3.3 Integral equation method calculations

Methods for solving elastostatic problems based on integral equations can be characterized
by two criteria: the choice of the integral equation and the choice of the solution technique.

Barone and Robinson [22] chose a singular integral equation based on displacements,
quadratic basis functions, and up to 11 Williams basis functions for the stress-free corners
of a circular plate with a β = 3π/2 notch. The authors used 57 degrees of freedom and
presented pointwise values for stress with four digits. Theocaris and Ioakimidis [24] chose
a singular integral equation in a Nyström scheme and presented three digit results for QI
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Table 1: Numerical results for QI reported by different authors. The notch opening angle is

β = 3π/2. The relative notch depth is a/w = 0.4 or a/w = 0.5. The height to width ratio is

h/w = 1, h/w = 1.4 or h/w = 3. The numbers have been normalized for comparison.

QI Authors h/w a/w

2.882 Lin and Tong [2] (1980) 1 0.4
2.8106 Atkinson et al. [18] (1988) 1 0.4
2.858 Yosibash and Schiff [21] (1993) 1 0.4
2.858 Lim et al. [23] (2002) 1 0.4
2.887773534376 The present authors 1 0.4
2.888 Gross and Mendelson [9] (1972) 1.4 0.4
2.886784004297 The present authors 1.4 0.4
4.289 Lin and Tong [2] (1980) 1 0.5
4.294 Portela et al. [25] (1991) 1 0.5
4.2959 Strandberg [27] (1999) 1 0.5
4.295886967699 The present authors 1 0.5
4.297 Gross and Mendelson [9] (1972) 1.4 0.5
4.295930812312 The present authors 1.4 0.5
4.294 Chen [26] (1995) 3 0.5
4.29592686855 The present authors 3 0.5

at a notch in a semi-infinite strip. A single weight function was factored out to capture the
leading behaviour of the solution at the notch tip. Portela et al. [25] chose an approach
similar to that of Barone and Robinson [22] for a single edge notched specimen. Only the
first symmetric and antisymmetric Williams functions at the notch were incorporated. A
mesh of 16 boundary elements gave a relative error in QI of 4 · 10−4. Chen [26], with a
similar method and a total of 324 unknowns at each notch flank, also got a relative error
in QI of 4 · 10−4. See Table 1.

Strandberg [27] chose a classic integral equation of Fredholm’s second kind called the
Sherman–Lauricella equation, see paragraph 56 of Mikhlin [28] and paragraph 19 of Parton
and Perlin [29]. Values of QI for single edge notched specimens were computed with relative
errors of the order of 10−6, see Table 1. The solution technique included a Nyström scheme,
a posteriori adaptive Gaussian quadrature, 1840 discretization points, and the GMRES iter-
ative solver [30]. The notch stress intensity factor QI was computed via a path-independent
integral.

3.4 Other methods

The difficulties traditionally associated with the numerical computation of notch stress
intensity factors QI have generated a development of approximate handbook-type formulas
based on interpolation between known results. See Hart [31], Ioakimidis and Theocaris [32],
Bangji et al. [33], and Strandberg [34] for examples. Photoelastic methods can be used to
obtain notch stress intensity factors, as demonstrated by Murthy and Rao [35]. These
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authors measured values for QI with a relative error of 7 · 10−2 for a single edge notched
specimen with relative notch depth a/w = 0.15 and a height to width ratio of h/w = 5.

4 A modified Muskhelishvili equation

Let us go back to the representation (1) for the Airy stress function and use it to find
an integral equation for the interior stress problem. The classic treatment leads to the
Sherman–Lauricella equation, see paragraph 56 of Mikhlin [28] and paragraph 19 of Parton
and Perlin [29]. Here we choose a recent modification [36] of the Muskhelishvili equation [12]
which we consider more efficient, see Remark 4.1 below. Starting with the representation
for Ψ(z) = χ′′(z) in terms of Φ(z) = φ′(z)

Ψ(z) = − 1

2πi

∫

Γ

Φ(τ) dτ̄

(τ − z)
− 1

2πi

∫

Γ

τ̄Φ(τ) dτ

(τ − z)2
− 1

2πi

∫

Γ

n̄t̄ dτ

(τ − z)
, z ∈ D , (6)

the following Fredholm second kind integral equation for the interior stress problem can be
derived, see Remark 4.2,

(I −M3 + iQ2)Φ(z) =
n̄t

2
+
n̄

n

1

2πi

∫

Γ

nt dτ̄

(τ̄ − z̄)
, z ∈ Γ . (7)

In (7) M3 is a compact integral operator, see Remark 4.3, given by

M3Φ(z) =
1

2πi

[

∫

Γ

Φ(τ) dτ

(τ − z)
+
n̄

n

∫

Γ

Φ(τ) dτ

(τ̄ − z̄)
+

∫

Γ

Φ(τ) dτ̄

(τ̄ − z̄)
+
n̄

n

∫

Γ

(τ − z)Φ(τ) dτ̄

(τ̄ − z̄)2

]

, z ∈ Γ ,

(8)
where n = nx + iny is the outward unit normal vector on Γ. The operator Q2 is a mapping
from Γ to R, defined by

Q2Φ = − 1

2V
ℜe

{
∫

Γ
Φ(τ)τ̄ dτ

}

, (9)

where V is the area of the specimen. The right hand side of (7) contains the load t = tpr
x +itpr

y

along Γ. For brevity we have omitted the arguments of n and t in (6–8). Whenever n and
t appear under an integral, they are functions of τ . Otherwise they are functions of z.

In this paper it is assumed that the solvability conditions
∫

Γ
t ds = 0 , (10)

where ds is an infinitesimal arc length (dz = in ds) and

Q2n̄t = 0 , (11)

which state that the resultant vector and moment of external forces are equal to zero, hold.
See Remark 4.4 for details on the existence and uniqueness of the solution to (7).

Once (7) is solved, the components of the stress tensor inside the specimen can be
computed [12] via

Φ(z) =
1

2πi

∫

Γ

Φ(τ) dτ

(τ − z)
, z ∈ D , (12)
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equation (6), and
σxx + σyy = 4ℜe{Φ(z)} , (13)

σyy − σxx + 2iσxy = 2(z̄Φ′(z) + Ψ(z)) . (14)

Remark 4.1 The Sherman–Lauricella equation has, in the past, been a popular choice for
stress problems [27, 37, 38]. This equation is considered simpler than the Muskhelishvili
equation for multply connected domains and for exterior problems, see p. 398 and 401 of
Muskhelishvili [12], p. 249 and p. 255 of Mikhlin [28], and p. 158 of Parton and Per-
lin [29]. We will now explain why we prefer our modified Muskhelishvili equation over the
Sherman–Lauricella equation (for interior problems). First we note that both the Muskhe-
lishvili equation and the Sherman–Lauricella equations are based on the potentials φ(z)
and ψ(z), that they require extra operators containing arbitrarily placed points in order to
have unique solutions, and that both equations are of Fredholm’s second kind with compact
operators. The major difference between the equations is that the unknown quantity in the
Muskhelishvili equation is the limit of the analytic function φ(z) on Γ, while the unknown
in the Sherman–Lauricella equation is a quantity related to φ(z) on Γ via a Cauchy in-
tegral. The Muskhelishvili equation thus allows for the use of a numerical scheme which
takes the (known) asymptotic properties of the solution into account in a simple fashion.
The Muskhelishvili equation, in addition, leads to more stable post-processing, should one
want to compute quantities related to φ(z) on Γ. Reasons that we use a modified Muskhe-
lishvili equation based on the potential Φ(z), rather than the original equation based on
the potential φ(z), are that quantities related to stress can be computed more accurately
from Φ(z) than from φ(z), and that we can replace the operator containing an arbitrarily
placed point with the operator Q2. This gives a more stable numerical scheme [36]. Fi-
nally it could be mentioned that Fredholm equations based on the representation (6) for
Ψ(z), used in the modified Muskhelishvili equation, have successfully been applied to stress
problems on infinite domains involving cracks and inclusions [39], interface cracks [40], and
contact problems [41]. A unified approach in terms of potential representations may lead
to simplifications as codes for large-scale computations, involving complicated topologies,
are constructed.

Remark 4.2 The potential Φ(z) is analytic inside D, but its limiting value on Γ, which
is the unknown quantity in (7), may not be differentiable (along Γ in the corners) and
may not even be finite (in the corners), see Sections 2 and 5. The right hand side of (7)
may have similar properties, depending on the applied load. Even though (7) is originally
derived under the assumption of a smooth Γ and for the more regular potential φ(z), the
equation, interpreted in a suitably generalized sense, also holds for domains with corners,
see paragraphs 99 and 100 of Muskhelishvili [12]. More precisely, the corner points should
be excluded from the domain of validity and integrals for which bounded primitive functions
exist should be interpreted as generalized Riemann integrals.

Remark 4.3 Each of the four integrals appearing in (8) are singular and should be inter-
preted in Cauchy principal value sense. Note, however, that no Cauchy principal values
need to be computed in the evaluation of M3Φ(z). This is so since the sum of the kernels
in the first and in the second integral of M3 have the same (finite) left- and right limits

8



as τ → z, at least for twice differentiable curves. Similarly, the sum of the kernels in the
third and in the fourth integral of M3 have the same (finite) left- and right limits as τ → z.
Therefore the kernel of the operator M3 can be regarded as continuous.

Remark 4.4 The potential Φ(z) for the interior stress problem is only determined to within
a purely imaginary constant, and φ(z) is consequently determined to within a term con-
taining one complex and one imaginary constant, see p. 179 of Mikhlin [28]. In (7) this
indeterminacy is removed, and the solution is made unique, by our operator Q2 [36]. It
can be noted that while the interior stress problem in general is not solvable unless the
conditions (10) and (11) hold, our equation (7) is solvable whatever the load t may be.
Uniqueness implies existence for Fredholm second kind equations.

5 The nature of Φ(z) in a traction-free corner

This section shows how to convert the Williams expansion of Section 2 into basis functions
for the unknown potential Φ(z) of (7) in a corner. Using the notation z = reiθ we can
rewrite (2) as

Un(x, y) = ℜe
{

z̄(bnz
λn + b̄nz

λ̄n) − iz̄(dnz
µn + d̄nz

µ̄n)

+(anz
λn+1 + ānz

λ̄n+1) − i(cnz
µn+1 + c̄nz

µ̄n+1)
}

/2 . (15)

Identification of (15) with (1) and the relation Φ(z) = φ′(z) leads us to the conclusion that
Φ(z) in a traction-free corner can be represented by a linear combination of symmetric basis
functions of the form

Φn(z)symm = fnz
λn−1 + f̄nz

λ̄n−1 , (16)

and antisymmetric basis functions of the form

Φn(z)antisymm = gnz
µn−1 − ḡnz

µ̄n−1 , (17)

where fn and gn are new complex coefficients. The special case of real λn and µn renders
fn real and gn purely imaginary. The symmetry properties of Φn(z)symm and Φn(z)antisymm

with respect to the corner legs in Figure 3, right image, are the following: Φn(z)symm

has a symmetric real part and an antisymmetric imaginary part. Φn(z)antisymm has an
antisymmetric real part and a symmetric imaginary part.

6 Two representations for Φ(τ) on corner panels

In Section 8 we shall solve (7) for the unknown Φ(τ) and for the setup in Figure 2. The
variable τ is preferred as argument for Φ when we refer to its limit of on Γ in the context
of integration. We shall use a Nyström scheme and eight-point composite quadrature.
Quadrature panels which contain corners are called corner panels. Quadrature panels which
do not contain corners are called regular panels. See Figure 3 for an illustration of how we
place the eight quadrature points on corner panels and on regular panels. A Nyström
scheme means that Φ(τ) is represented by pointwise values on Γ and that (7) should be
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Figure 3: Left, a regular quadrature panel. Right, a corner quadrature panel with two legs. The

dots symbolize points where the solution Φ(τ) has support.

satisfied at those same points. We adopt the term source points for the points τ where
Φ(τ) has support, and the term target points for the points z where (7) should be satisfied.
Obviously, source points and target points are the same in a Nyström scheme. Still, it helps
to distinguish between the two uses of the points when we discuss quadrature techniques
below.

A delicate question is what quadrature rule to use for the action of the operator M3

of (8) on Φ(τ) for source points lying on corner panels. Clearly, standard Gauss–Legendre
quadrature will not be a good choice on corner panels since Φ(τ) is poorly approximated
by a polynomial there. We saw in Section 5 that Φ(τ) may contain both diverging and
oscillatory components. Neither is it possible to represent Φ(τ) on corner panels as a
product of a single weight function and a smooth remainder, an approach which works well
for internal crack problems.

The basic idea of this paper is to introduce a second, simultaneous, representation for
Φ(τ) on corner panels. In addition to the pointwise representation for Φ(τ) required by
the Nyström scheme we will use a representation in terms of local basis functions of the
type (16) and (17). The relation between the two representations is given by

Φ(τj) =

4+m1
∑

n=1

ℜe{fn}(τλn−1
∗j + τ λ̄n−1

∗j ) +

4+m2−m1
∑

n=1+m2

iℑm{fn}(τλn−1
∗j − τ λ̄n−1

∗j )

+

4+m4−m3
∑

n=1+m4

ℜe{gn}(τµn−1
∗j −τ µ̄n−1

∗j )+

4+m3
∑

n=1

iℑm{gn}(τµn−1
∗j +τ µ̄n−1

∗j ) , j = 1, 2, . . . , 8 , (18)

where τj are global coordinates, τ∗j are local coordinates for the eight quadrature points
on a corner panel, see Figure 3, and m2 and m4 denote the number of exponents λn and
µn which are real. The numbers m1 and m3 are chosen so that 4 +m1 ≈ 4 +m2 −m1 and
4+m3 ≈ 4+m4 −m3, that is, so that the series for real and imaginary parts of f and g are
truncated after approximately the same number of terms. Equation (18) defines a mapping
from eight complex pointwise values of Φ(τ), on a corner panel, to sixteen real numbers
ℜe{fn}, ℑm{fn}, ℜe{gn}, and ℑm{gn}. We denote this mapping A. Once the mapping A
is known it is possible to perform product integration for the convolution of the kernel M3
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with the function Φ(τ), expressed of the form of (18), when source points of Φ(τ) are on a
corner panel.

There are two problems associated with the mapping A of (18). First, the mapping A
can be very ill-conditioned for corners with a small opening angle β. The exponents λn and
µn form a rapidly growing sequence. Second, it is assumed that the corner is stress-free
for the representation (18) to be valid. This assumption does not hold on corners where
external stress is applied. To overcome both these problems we add to the sequence of
exponents λn and µn given by (3) and (4) a sequence of positive integers. We adopt the
rule of including, in the series in (18), values of λn and µn up to a magnitude of ten. Then
we complete this series with the integers 1, 2, 3, . . . until we get a system involving sixteen
real numbers ℜe{fn}, ℑm{fn}, ℜe{gn}, and ℑm{gn}. In this way the condition number of
A was at most of the order of 103.

With the help of the quantities defined in this section we can give a more operational
definition of the mode I notch stress intensity factor QI. For the single edge notched
specimen of Figure 2 we have

QI =
f1

tpr
y

2
√

2π(λ1 + 1)

(

lcp
w

)1−λ1
[

1 − cos ((λ1 − 1)β/2)

cos ((λ1 + 1)β/2)

]

, (19)

where lcp is the length of one leg of the corner panel in Figure 3, right image. Under
unsymmetric conditions we obtain a mode II notch stress intensity factor QII 6= 0 as

QII =
ℑm{g1}
tpr
y

2
√

2π

(

lcp
w

)1−µ1
[

µ1 − 1 − (µ1 + 1)
sin ((µ1 − 1)β/2)

sin ((µ1 + 1)β/2)

]

.

7 The evaluation of M3Φ(z)

This section discusses, in detail, how the action of the operator M3 on Φ(τ) is calculated.
We have already noted that the potential Φ(τ) is not smooth in the corners. Neither is the
kernel of M3 smooth. This calls for special care in the choice of quadrature. We believe
that the single most important factor controlling the stability of an integral equation based
numerical scheme for stress problems inside polygonal domains is the care with which the
quadratures are performed. This is even more important than the particular choice of the
integral equation. Below we show how our quadratures are chosen for various locations of
source points of Φ(τ) and target points of M3.

7.1 Regular interaction

Straight-forward evaluation takes place when the source points of Φ(τ) are situated on
regular quadrature panels. Here Φ(τ) is smooth. Eight-point Gauss–Legendre quadrature
gives 15th order accurate evaluation of the convolution M3Φ(z). For most situations this
quadrature can give any desired accuracy, provided the mesh is sufficiently refined. There
is, however, one important exception which arises on meshes where all quadrature panels
have approximately the same length. Assume that, on such a uniform mesh, the source
points of Φ(τ) are situated on a regular panel neighbouring to, say, the first leg of a corner
panel, and that the target points of M3 are situated on the second leg of that same corner
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panel. Now 15th order quadrature may never be enough, if high accuracy is required, no
matter how much the mesh is refined. This is so because of two reasons. First, Φ(τ) on the
regular panel closest to a corner panel may never be well resolved. Upon uniform refinement
of the mesh, the neighbouring panel moves closer to the corner tip and Φ(τ) assumes a more
singular-like behaviour. Second, the kernel of M3, which is known analytically, may not be
well resolved. Neither here will increased uniform resolution of the entire mesh help. The
kernel of M3 is invariant under scaling in a corner (assuming a wedge-shaped corner). This
situation, which can never happen on a smooth boundary, can be taken care of by letting
the regular panels closest to a corner panel be smaller than the corner panel.

7.2 Implementation of the mapping A

The most difficult situations occur when the source points of Φ(τ) are situated on a corner
panel. Before we go into detail we review the implementation of the mapping A, which maps
eight complex pointwise values of Φ(τ) on a corner panel to sixteen real coefficients ℜe{fn},
ℑm{fn}, ℜe{gn}, and ℑm{gn}. The mapping A is in part computed prior to running the
main program. First a corner panel with two legs of unit length is considered. A mapping
from eight symmetric coefficients ℜe{fn} and ℑm{fn} to four complex pointwise values
on the first leg of the corner panel is computed as a real valued eight by eight matrix.
This matrix is inverted. A similar matrix mapping from eight antisymmetric coefficients
ℜe{gn} and ℑm{gn} to four complex pointwise values on the first leg is also computed and
inverted. Then a mapping from eight complex pointwise values on the entire corner panel
to four symmetric complex pointwise values and to four antisymmetric complex pointwise
values on the first leg is implemented. A composition of these matrices gives the mapping
A. See Section 5 for the meaning of symmetric and antisymmetric in this context.

7.3 Self-interaction on corner panels

We now consider the case of source points of Φ(τ) and target points of M3 both located on
the same corner panel. The potential Φ(τ) is represented in terms of local basis functions
τλn−1
∗ , τ λ̄n−1

∗ , τµn−1
∗ , and τ µ̄n−1

∗ , and coefficients fn, and gn, computed from pointwise values
via the mapping A.

First we observe that each corner panel has two legs of equal length, see Figure 3. We
introduce a parameterization t for the local coordinate τ∗ and s for the local coordinate
z∗ in the coordinate system of Figure 3. Now τ∗ and z∗ range from eiβ/2 to e−iβ/2 as t
and s range from −1 to 1. Note that M3Φ(z) is invariant under scalings, translations, and
rotations of the coordinate system. For this reason we can replace the global coordinates
τ and z with local coordinates τ∗ and z∗ during the computation of M3Φ(z) on a corner
panel. A simple calculation shows that for local basis functions and target points on the
same leg, the contribution to M3Φ(z) is zero.

We now look at contributions to M3Φ(z) from local basis functions to target points on
opposite legs. Let us study the function τλn−1

∗ . Contributions from other basis functions
are computed in a similar manner. For basis functions on the second leg and target points
on the first leg we have the relations z∗ = isnz and τ∗ = itnτ , where nz = ieiβ/2 and
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nτ = −ie−iβ/2. Insertion into (8) gives

M3τ
λn−1
∗ (z) = e−iβ(λn−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλn dt

(t2 + s2 − 2ℜe{n̄znτ}ts)

]

+eiβ(λ̄n−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλ̄n dt

(t2 + s2 − 2n̄znτ ts)

]

, −1 ≤ s ≤ 0 . (20)

Similarly, for basis functions on the first leg and target points on the second leg we get

M3τ
λn−1
∗ (z) = −eiβ(λn−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλn dt

(t2 + s2 + 2ℜe{n̄znτ}ts)

]

−e−iβ(λ̄n−1)/2

[

(1 − n̄2
zn

2
τ )

2πi

∫ 1

0

tλ̄n dt

(t2 + s2 + 2n̄znτ ts)

]

, 0 ≤ s ≤ 1 , (21)

where now nz = −ie−iβ/2 and nτ = ieiβ/2.
Finally, integrals of the type in (20) and (21), for all involved basis functions τλn−1

∗ ,
τ λ̄n−1
∗ , τµn−1

∗ , and τ µ̄n−1
∗ , and target points are precomputed adaptively to a high accuracy

and stored as complex matrices. The composition of these matrices with the mapping A
and the pointwise values of Φ(τ) gives M3Φ(z).

7.4 Interaction between corner panels and other panels

The problems connected with self-interaction of M3Φ(z) on a corner panel were carefully
taken care of in Subsection 7.3. New problems occur when the source points of Φ(τ) are on
a corner panel and the target points are on some other panel.

First we consider target points situated on regular panels not more than a distance
of 2lcp away from the tips of a corner panel. We call these panels neighbouring panels.
The action of M3Φ(z) for points on neighbouring panels is calculated in the same fashion
as the self-interaction in Subsection 7.3. The only difference is that s is now a number
−3 ≤ s ≤ −1 or 1 ≤ s ≤ 3.

When target points are situated further away from the corner panel we run into prob-
lems. The computational task is to convolute the smooth kernel of M3 with the singular
basis functions of Φ(τ). Adaptive precomputation, as for self-interaction, is of course again
an option, but this procedure gets increasingly costly and complicated when we extend it
too far beyond the neighbouring panels. If we were to construct a naive product integration
rule for the convolution it would be, roughly speaking, only third-order accurate. This is so
since the quadrature would be based on sixteen real coefficients ℜe{fn}, ℑm{fn}, ℜe{gn},
and ℑm{gn}, but only on four complex pointwise values of the kernel M3 on each corner
panel leg, see Figure 3. While the resolution of the unknown potential Φ(τ) is sufficient, the
resolution of the analytically known kernel M3 is too poor. Fortunately, the fix is easy. We
simply use temporary interpolation: The mapping A gives accurate and rapidly decaying
coefficients ℜe{fn}, ℑm{fn}, ℜe{gn}, and ℑm{gn}. Each basis function is interpolated at
16 temporary points on each leg of the corner panel. The kernel M3 is evaluated at the

13



temporary source points and integration is performed on the temporary mesh. For this,
weights wm are precomputed using relations of the type

∫ 1

0
tλf(t, s) dt ≈

16
∑

m=1

f(tm, s)

∫ 1

0
tλ

16
∏

k=1

k 6=m

(t− tk)

(tm − tk)
dt =

16
∑

m=1

f(tm, s)wm , (22)

where f(t, s) is a smooth function of its arguments, tm are parameter values of the temporary
points, and the integration is performed by a combination of analytic and algebraic methods.

8 Numerical results

In this section we implement a Nyström scheme for (7), as outlined in Sections 6 and 7.
We use the GMRES iterative solver [30] for the resulting system of linear equations. Com-
pensated summation [42, 43] is used for the computation of matrix–vector multiplications
and inner products in the GMRES iterative solver. The GMRES iterations are terminated
when the norm of the residual (divided with the norm of the right hand side) is as small as
it can get, which typically means 2 ·10−16. We apply the algorithm to the setup in Figure 2
with notch opening angle β = 3π/2, relative notch depth a/w = 0.4 and a/w = 0.5, and
height to width ratio ranging from h/w = 1 to h/w = 3. We present numerical results
for the notch stress intensity factor QI computed according to (19) and show a plot of the
stress field inside the material for the case a/w = 0.5 and h/w = 1.
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Convergence under increased uniform resolution

Figure 4: Convergence of the mode I notch stress intensity factor QI for the single edge

notched specimen of Figure 2 under uniform refinement of the mesh. The notch opening angle

is β = 3π/2. The height to width ratio is h/w = 1. The relative notch depth is a/w = 0.5. The

applied traction tpr
y is unity. Open circles refer to a mesh where all panels have approximately

the same length. Stars refer to a mesh where the panels neighbouring to corner panels have

been subdivided twice. The reference value for the open circles is taken as QI = 4.2958869646.
The reference value for the stars is taken as QI = 4.295886967698799.
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There are quite a number of choices that can be made in the implementation process.
The most important include how to construct the mesh, what order to use for the quadrature
on different panels, and how many Williams basis functions to incorporate for the different
corners. Certainly, there exist optimal choices, which may depend on requested accuracy,
storage capacity, the actual geometry, and speed requirements. Here we will focus on
demonstrating stability and generality. To this end we use corner panels of equal length
for all the seven corners of the specimen in Figure 2 and we use the same number of basis
functions on all corner panels. More selective choices would, of course, reduce the degrees of
freedom needed to achieve a given accuracy. In particular, fewer basis functions are needed
on the panels in the four perpendicular corners A, B, C and G of Figure 2, than on the
panel in the notch corner E.

8.1 A uniform mesh

The first computation is done for h/w = 1 and a/w = 0.5 and on a uniform mesh, that is,
we use corner panels and regular panels of approximately equal length. The open circles of
Figure 4 show that with only 112 uniformly distributed quadrature points we get a relative
accuracy in QI of about 2 · 10−5. As the mesh is uniformly refined QI slowly converges
to about nine digits. This happens at 1000 discretization points. Very little happens as
the mesh is refined further. The reason for the slow and prematurely halted convergence
is that the contribution from Φ(τ) on a regular panel neighbouring to a corner panel will
not be accurately computed for target points on the corner panel. This was discussed in
Subsection 7.1.
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Convergence under increased uniform resolution

Figure 5: Convergence of the mode I notch stress intensity factor QI for the single edge

notched specimen of Figure 2 under uniform refinement of the mesh. The notch opening angle

is β = 3π/2. The height to width ratio is h/w = 3. The relative notch depth is a/w = 0.5.
The applied traction tpr

y is unity. The reference value is taken as QI = 4.2959268685532. The

straight line has the theoretically predicted asymptotic convergence rate O
(

N−5.647
)

.
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8.2 Neighbouring panels smaller than corner panels

Next we subdivide all regular panels neighbouring to corner panels into three smaller panels.
The interaction of Φ(τ) on neighbouring panels with target points on corner panels will be
more accurately computed and we get the convergence illustrated by the stars in Figure 4.
Note that the slope of this curve shows an asymptotic convergence rate of approximately
O

(

N−6
)

, where N is the total number of discretization points. This, we argue, is not a
coincidence. A study of the decay of the coefficients in expansions of Φ(τ) on various parts
of Γ indicates that, under uniform refinement, the least resolved part of Φ(τ) is on the
corner panel containing the notch. This implies that the number of basis functions for the
Williams series in the notch is the key factor determining the convergence rate of QI. In
the representation of (18) for Φ(τ) in the notch we used m1 = m2 = 1. The first omitted
symmetric basis function is the one associated with the coefficient ℑm{f5} and which has a
Williams exponent λ5 = 5.647111773660799 + 0.5136838120241800i. The magnitude of the
real part of this exponent is roughly consistent with sixth order convergence. The asymptotic
convergence rate is easier to determine from a convergence plot of QI for a height to width
ratio of h/w = 3, see Figure 5. The agreement with the theoretical prediction O

(

N−5.647
)

is good.
The computing cost, in our implementation, is proportional to N2. This is so since

we form the matrix corresponding to the operator M3 of (8) explicitly prior to solving
the discretized system of equations with the GMRES iterative solver. A matrix-free im-
plementation of the matrix–vector multiplications in the GMRES solver would reduce the
complexity to O(N). See Greenbaum et al. [37], Greengard et al. [38], and Greengard
and Helsing [45] for examples where the so-called fast multipole method has been used for
this purpose in the context of linear elasticity in 2D. As for particular timings with our
present code we report the following, measured on a SUN Ultra 10 workstation for a dis-
cretization with 1056 points: Precomputation of the seven mappings A of Subsection 7.2
and the quadrature weights of Subsection 7.4 – 5 seconds. Computation of parts of the
matrix M3 which correspond to self-interaction on corner panels and interaction of Φ(τ) at
source points on corner panels with target points on neighbouring panels as described in
Subsections 7.3 and 7.4 – 24 seconds. Computation of the remaining elements of the matrix
M3 according to Subsection 7.1 – 8 seconds. Performing 43 iterations with the GMRES
iterative solver – 73 seconds.

Remark 8.1 If only a crude estimate of QI for a single edge notched specimen is of inter-
est, it is possible that the method of Gross and Mendelson [9] is more efficient than our
algorithm. The implementation corresponding to open circles in Figure 4 gives a relative
error in QI of the order of 10−5 in less than ten seconds using a SUN Ultra 10 workstation
(including precomputations). No estimates of computational costs are made in Gross and
Mendelson [9], but stability problems are mentioned.

8.3 Some other geometries

The convergence study for QI in Figures 4 and 5 refers to a single edge notched specimen
with notch opening angle β = 3π/2, relative notch depth a/w = 0.5, and height to width
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Figure 6: Distribution of the von Mises effective stress for the single edge notched specimen

of Figure 2. Plane strain is assumed with Poisson’s ratio ν = 0.3. The notch opening angle is

β = 3π/2. The height to width ratio is h/w = 1. The relative notch depth is a/w = 0.5. The

applied traction tpr
y is unity.

ratio h/w = 1 and h/w = 3. Converged values of the notch stress intensity factor QI for
some other relative notch depths and height to width ratios are presented in Table 1. It is
interesting to note that, for the notch opening angle β = 3π/2 and the relative notch depth
a/w = 0.5, the variation of QI with the height to width ratio h/w exhibits small oscillations.
While the oscillations in QI decay rapidly in the interval 1 ≤ h/w ≤ 3 we observed a local
minimum at h/w ≈ 1.1, a local maximum at h/w ≈ 1.5, another minimum at h/w ≈ 2.5
and another maximum at h/w ≈ 2.9.

8.4 Stress fields

Notch stress intensity factors QI are not the only quantities of interest which can be ex-
tracted once the solution Φ(τ) to (7) is known. The entire stress field in the body can be
computed too. Pointwise values of the stress field are used in point-stress and mean-stress
failure criteria and they enter into the computation of the von Mises effective stress σe.
The von Mises effective stress is frequently used to predict the occurrence of yielding in a
material where the stress state is multiaxial. Yielding is assumed to take place when the
pointwise value of σe reaches the value of a material’s tensile yield strength.

Uniform convergence of Φ(τ) is crucial for the accurate computation of stress fields close
to the boundary Γ. There are no path-independent integrals or other indirect ways for the
computation of stress fields, as was the case for the notch stress intensity factor QI. The
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Figure 7: Pointwise convergence of the von Mises effective stress σe for the single edge notched

specimen of Figure 2 at the two points z1 = (0.01a, 0) and z2 = (0.5a, 0) under uniform

refinement of the mesh. Plane strain is assumed with Poisson’s ratio ν = 0.3. The notch

opening angle is β = 3π/2. The height to width ratio is h/w = 1. The relative notch depth is

a/w = 0.5. The applied traction tpr
y is unity. The reference value of the stress at the two points

are taken as σe1 = 8.232225496337321 and σe2 = 0.4221120540554291.

distribution of the von Mises effective stress for the case of plane strain is shown in Figure 6
and the convergence of pointwise values for the stress at the points z1 = (0.01a, 0) and
z2 = (0.5a, 0) are shown in Figure 7. Plane strain is assumed in the whole specimen. This
implies that ǫzz = 0 and σzz = ν (σxx + σyy), where ν is the Poisson’s ratio. In Figures 6
and 7, ν = 0.3 was used, which is a typical value for metallic materials. The assumption of
plane strain is most realistic in an area close to the notch tip. An assumption of plane stress
there would give infinite displacements in the thickness direction of the specimen. The von
Mises effective stress, for plane strain conditions, can be expressed as

σe =
[

(1 − ν(1 − ν)) (σxx + σyy)
2 − 3

(

σxxσyy − σ2
xy

)

]1/2
. (23)

Figure 6 shows very high stress levels close to the notch tip, indicating that yielding
would first occur there. High stress levels close to the edge opposite the notch can also be
observed. This is due to the bending deformation of the specimen. It can be noted that
there are several areas with very low stress levels, shown as white in Figure 6.

9 Conclusions and discussion

We have demonstrated that interior stress problems on polygonal domains can be solved
in a stable way and at a reasonable computing cost. Key ingredients in our scheme are a
second kind Fredholm integral equation with compact operators presented in Section 4, the
use of sets of several asymptotically correct basis functions of the form derived in Section 5
for each corner, and a carefully implemented quadrature described in Section 7. This allows
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for the resolution of stress fields everywhere in the domain. Most previous authors have
used some sort of “brute force” or low order accurate approaches, reviewed in Section 3.
Such approaches lead to less stable and computationally more expensive schemes.

The rate of convergence and the achievable accuracy in our numerical examples are both
controlled by the number of basis functions included in the expansions of the potential Φ(z)
in the corners of the domain. More basis functions give a higher convergence rate but a
lower achievable accuracy. We decided to use eight points for the support of Φ(z) on corner
quadrature panels. This gave an asymptotic convergence rate under uniform refinement of
O(N−5.647). The condition number for the mapping between pointwise values of Φ(z) and
coefficients in the series expansion, on corner panels, was approximately 103. An achievable
relative error in the notch stress intensity factor QI of 103 · ǫmach ≈ 10−13 in IEEE Double
Precision arithmetic was observed. The condition number of the underlying mathematical
problem to determine QI is on the order of one.

One may argue that infinitely sharp corners are not physically realistic and that com-
putations on domains with sharp corners are not of interest. One may, further, argue that
it should be simpler to evaluate stress fields on domains with “rounded” corners than on
domains with sharp corners. Our answer to such a criticism is as follows: While it is true
that no physical corner is infinitely sharp, a sharp corner is often a good and widely used
approximation of a physical corner and therefore of interest. This paper shows that it is
comparatively cheap to accurately resolve stress fields on domains with sharp corners. Re-
solving a stress field in a domain with “rounded” corners would require more work. This is
so since in a “rounded” corner the mesh must be sufficiently refined to resolve the actual
rounding, while in a sharp corner the asymptotic form of the stress field is known, and the
corner panel can be taken rather large.

Numerous applications, improvements, and extensions of our algorithm are possible.
The application to asymmetric V-notches is straight-forward. Incorporation of the fast
multipole method for linear complexity was mentioned in Section 8. Implementation of a
more efficient post-processor for the evaluation of potential fields close to their sources [44,
45] is another option which would be economical should one want to work with failure
criteria based on pointwise stress very close to, but not on, the boundary. The technique
discussed in Ref. [44] can also be used in the solver to deal with boundaries that almost fold
back on themselves, such as the boundary of a V-notch where β → 2π. See Strandberg [27]
for an implementation in the context of the Sherman–Lauricella equation.

Another extension is to allow for cracks and inclusions in the interior of the domain.
Material discontinuities may give rise to stress singularities [46]. Difficult setups with large
number of cracks and smooth inclusions in infinite domains have already been successfully
treated with representations of Ψ(z) similar to the ones of the present paper [39, 45, 47].
Inclusions with cusps have been treated the context of Laplace’s equation [44]. The presence
of cracks and inclusions within a finite domain, however, may introduce extra difficulties
(if one wants to stick to a single representation of Ψ(z), require that the unknown quantity
in the integral equation to be the limit of an analytic function, and avoid the introduction
of integral operators containing arbitrarily placed points, see Remark 4.1.) Work on this
problem is in progress.

Yet two extensions pertain to anti-plane conditions, such as Saint-Venant torsion and
anti-plane shear, and to anisotropic materials. The problem here is reduced to solving
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Laplace’s equation with Dirichlet or Neumann boundary conditions [20, 48, 49]. The solu-
tion of Laplace’s equations on a polygonal domain requires a somewhat different potential
representation, but is generally easier to obtain than the solution of the biharmonic equa-
tion. Integral equations based on analytic functions theory can be derived also for linear
anisotropic elasticity. See pp. 34-37 of Mura [50] for an introduction and Ref. [51] for a
numerical treatment of an ortotropic matrix with smooth ortotropic inclusions. The series
expansion, analogous to the Williams expansion, for a notch in an ortotropic material can
be found in Bogy [52].
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