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Abstract: This paper considers switching output
feedback control of linear systems and variable-
structure systems. Theory for stability analysis and
design for a class of observer-based feedback con-
trol systems is presented. A circle-criterion approach
can be used to design an observer-based state feed-
back control which yields a closed-loop system with
specified robustness characteristics. The approach is
relevant for variable structure system design with
preservation of stability when switching feedback
control or sliding mode control is introduced in the
feedback loop. It is shown that there exists a Lya-
punov function valid over the total operating range
and this Lyapunov function has also interpretation
as a storage function of passivity-based control. The
Lyapunov function can be found by solving a Lya-
punov equation, which also generates variable struc-
ture switching surfaces. Important applications are
to be found in variable structure systems with high
robustness requirements.

INTRODUCTION

For switching output feedback control in variable
structure systems [1], [2], the high-gain feedback
implies a challenge to stability and a variety of
techniques have been considered—e.g., high-gain ob-
servers [3], [4], state observer [2], [5], or other dy-
namic feedback [6], [7], [8], [9]. Some research on
static output feedback control with geometric condi-
tions on sliding mode and control design were pre-
sented by Żak and Hui [11], Yan and Dai [12] and
Edwards et al. [13], [14]. Dynamic output feedback
was employed in the contribution of Kwan et al. [15],
Yan et al. [16] who also pointed out limitations with
the static feedback approaches.

Outside the field of variable-structure systems, the
qualitative analysis of transfer-function properties
and its relationship to stability analysis has a long
history back to [17]. As for the absolute stability
problem of nonlinear feedback systems, the starting

The work was partly supported by the Swedish Research Council
under the grant No. VR 2009-3178.

point is the Lur’e problem described by [17], [18],
[19], [20], [21], [22]. Kalman demonstrated that linear-
quadratic regulators satisfy a certain frequency do-
main inequality with a certain degree of robustness
[20]. Molander and Willems introduced a synthesis of
state feedback control laws with a specified gain and
phase margin [23], later extended to dynamic output
feedback [24], [25]. In the context of hybrid control, a
related result was presented [26].

From a stability point of view, there are impor-
tant differences among static output feedback and
dynamic output feedback. A non-trivial problem in
variable structure system is to apply the inherently
high-gain feedback to systems without access to full
state measurement. A drawback of solutions based on
state estimation is that the separation principle is not
longer true for nonlinear systems [27]. Variable struc-
ture systems using sliding-mode control are prone to
stability problems related to the usage of high-gain
feedback and limitations of strictly positive realness.
A theoretical challenge is to single out classes of
systems for which the separation principle holds—
i.e., where substitution of state feedback by feedback
of estimated states can be done without impending
instability [27]. This paper deals with application and
extension of such observer-based control to variable
structure systems with high-gain feedback.

Problem Formulation
Consider a linear time-invariant finite-dimensional

system and a time-variant nonlinear feedback

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m (1)
z = Sx, u = −ψ (z, t), z ∈ R

m (2)
with (A, B) controllable. These authors showed that
the closed-loop system is stable for certain combi-
nations of the matrix S and a condition of a cone-
bounded function ψ (⋅, ⋅). Kokotović and Sussman [28]
introduced the notion of feedback positive real (FPR)
transfer functions with properties similar to those
of Molander and Willems [23] with a global stabi-
lizability condition formulated for (A, B) controllable
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Fig. 1. Sector-bounded nonlinearity and feedback interconnection
in Molander-Willems approach.

and ψ (⋅, ⋅) smooth. Molander and Willems provided
a design procedure for S—i.e., design for nonlinear
state-feedback control—with specified gain margin
[23]. They made a characterization of the conditions
for stability with a high gain margin of feedback
systems of the structure

ẋ = Ax + Bu, z = Sx, u = −ψ (Sx, t) (3)
with ψ (⋅, ⋅) enclosed in a sector [K1, K2]—see Fig. 1.
The following procedure was suggested to find a state-
feedback vector S such that the closed-loop system
will tolerate any ψ (⋅, ⋅) enclosed in a sector [K1,∞):

• Pick a matrix Q = QT > 0 such that (A, Q) is
observable;

• Solve the Riccati equation PA + AT P −
2K1PB BT P + Q = 0 for P. Take S = BT P and
formulate a Lyapunov function V (x) = xT Px.

The algorithm provides a robustness result which
fulfills an FPR condition—i.e., the stability condition
will be that of an SPR condition on S(sI − A +
K1 BS)−1 B, the design procedure being based on a
circle-criterion proof and involving a solution of a
Riccati equation. The Molander-Willems equations
may be summarized as a Yakubovich-Kalman-Popov
matrix equation

P =
[

P 0
0 Im

]
, A =

[
A− K1 BS B

−S 0

]
, P > 0

Q =
[

Q 0
0 0

]
, Q > 0, −Q = PA +A TP , (4)

dV
dt =

[
x

u+ Sx

]T [
PA +A TP

] [
x

u+ Sx

]
(5)

=−
[

x
u+ Sx

]T
Q

[
x

u+ Sx

]
< 0, �x� �= 0

which is actually a special Lyapunov equation with
properties described elsewhere [24], [25]. In the con-
text of observer-based state feedback control, however,
the controllability condition presents a problem of
application, prompting extension of strictly positive
realness to cases including state estimation [25], [29],
[30].

The purpose of this paper is to generalize the appli-
cation of SPR/FPR design with application to circle

ψ(    )

z

κ
z, t G(s)

.  , tψ(    )

yu

z

Observer

-

Fig. 2. Sector-bounded nonlinearity and feedback interconnection
after loop transformation to sector [0,κ ] and with observer feed-
back included.

criterion to the case of switching output feedback
control using observer-based state feedback control.

PROBLEM FORMULATION

Assume a problem formulation with a linear system
and nonlinear feedback of cone-bounded nonlinear
variation described by the function ψ (⋅, t)

ẋ = Ax + Bu, x ∈ R
n, u,σ ∈ R

m (6)
σ = Sx, u = −ψ (σ , t), (7)
0 ≥ ψ T(σ , t)(ψ (σ , t) − κσ ), 0 < κ ∈ R

m�m (8)
As a Lyapunov function candidate, the circle criterion
applies the Lyapunov function candidate

V (x) = xT Px (9)
which for P = PT > 0 satisfies requirements on
‘positivity’, ‘radial growth’, ‘continuity’ and ‘differen-
tiability’. Suppose that ẋ = Ax+ Bu, y= Cx and P =
PT > 0 and AT P+PA = −ST S−εP, PB = CTκ−ST R
and define V (x) = xT Px. Then, if u = −ψ (σ , t) where
ψ (⋅, ⋅) fulfills the cone condition

ψ T(σ , t)(ψ (σ , t) − κσ ) ≤ 0 (10)
we have for V (x) = xT Px that for �x� �= 0

dV
dt = xT Pẋ + ẋT Px (11)

≤ xT(AT P+ PA)x + 2xT PBu
− 2ψ T(σ , t)(ψ (σ , t) − κσ )
≤ −(W1x − W2ψ (σ , t))T(W1x − W2ψ (σ , t))
− εxT Px ≤ −εxT Px < 0

The circle criterion predicts asymptotic stability of the
closed-loop system if the derivative dV/dt along the
system trajectories

dV
dt = ẋT Px + xT Pẋ ≤ −

[
x

ψ (σ , t)
]T

W
[

x
ψ (σ , t)

]
(12)

with

W =
[

WT
1

WT
2

] [
W1 W2

]

=
[−(AT P+ PA) PB − CTκ T

BT P− κ C 2Im

]
(13)
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It is sufficient to make the matrix W positive definite
so that stability can be guaranteed by making the
derivative dV/dt negative definite—i.e.,

dV
dt = −

[
x

ψ (σ , t)
]T

W
[

x
ψ (σ , t)

]
< 0, �x� �= 0 (14)

The circle criterion assures an asymptotically stable
solution for the time-varying case under the assump-
tion that ψ (⋅, t) belongs to the cone [0,∞) and that
infω Re G( jω ) > 0. As guaranteed by the Yakubovich-
Kalman-Popov (YKP) lemma, the existence of W > 0
leading to the stability condition V̇ ≤ 0 holds under
the fairly restrictive strictly positive real (SPR) [18],
[19], [20]. Then, the system will be asymptotically
stable and L2−stable as

0 ≤
∫ T

0
εxT Px ≤

∫ T

0
−V̇ (x, t)dt (15)

= V (x(0), 0) − V (x(T), T) (16)
When SPR (relative degree) and measurement con-
ditions of some output y = Cx prevent realization
of u = −Sx, approximate control can be made with
u = −Sx̂ for some state estimate x̂. As x̂ �= x, it is
necessary to investigate whether some degradation in
performance and stability may occur. To that purpose,
introduce a full-order observer for the state vector x
so that

dx̂
dt = Ax̂ + Bu+ K (y− Cx̂) (17)

where K ∈ R
n�m is an observer-gain matrix that

multiplies the estimation error. By substitution of
actual, unmeasured states x by estimated states x̂
in the feedback, the system dynamics will be

d
dt

[
x
x̂

]
=

[
A 0

K C A− K C

] [
x
x̂

]
+

[
B
B

]
u (18)

y = Cx, σ̂ = Sx̂, (19)
u = −ψ (σ̂ , t) = −ψ (Sx̂, t) (20)

As the augmented system of control object and ob-
server of Eqs. (18-20) will not be controllable—i.e.,
the estimation error x̃ = x̂− x will not be controllable
from u. Thus, attempts of application of the Molander-
Willems result to the observer-supported system (18–
20) will fail due to violation of the controllability
condition.

We will show that there exist Lyapunov functions
that assure asymptotic stability for the closed-loop
system of Eqs. (18–20).
Lyapunov Design for Nonlinear Observer Feedback

To the purpose of stability analysis, equip the state-
space system with a new output z formed by means
of a full-order observer.

Proposition 1 (Dynamic Feedback Circle Theorem):
For a nonlinear function ψ (⋅, ⋅) fulfilling the sector

condition ψ T(σ , t)(ψ (σ , t) − κσ ) ≤ 0, κ > 0 and a
linear time-invariant system ẋ = Ax + Bu, y = Cx
such that (A, B) is controllable and (A, C) is
observable, there exist a full-order observer with
observer gain K and an observer state feedback
σ̂ = Sx̂ with gain S such that the closed-loop system

d
dt

[
x
x̂

]
=

[
A 0

K C A− K C

] [
x
x̂

]
+

[
B
B

]
u (21)

y = Cx, σ̂ = Sx̂, (22)
u = −ψ (σ̂ , t) = −ψ (Sx̂, t) (23)

is asymptotically stable. For this system, there exist
matrices P = PT > 0, Q = QT > 0 and a Lyapunov
function

V (ξ ) = ξ T P0ξ , ξ =
[

x
x̂ − x

]
(24)

dV
dt = −

[
ξ

Sx̂ −ψ (σ̂ , t)
]T

Q0

[
ξ

Sx̂ −ψ (σ̂ , t)
]

< 0, �x� �= 0 (25)
Proof: —See [25]

Recently, it was shown that for Q0 > 0 there ex-
ist solution P0 > 0 and a constructive procedure
was provided [25]. Actually, a solution satisfying the
Yakubovich-Kalman-Popov may be obtained [31]. If P
is a solution to the Molander-Willems equation and
PK is a weighting matrix for the Lyapunov function
of the observer error dynamics ˙̃x = (A− K C)x̃ , then
P0 may be composed as

P0 =
[

P P
P μ PK

]
, (26)

Q0 =
[

Q + ST RS Q + PK C + ST RS
Q + CT K T P+ ST RS μQK

]

for μ > 0 and sufficiently large in magnitude where

−QK = PK (A− K C) + (A− K C)T PK (27)
Moreover, P0 satisfies Eq. (5) with the Yakubovich-
Kalman-Popov equations

P0 A0 + AT
0 P0 = −Q0, P0 B0 = CT

0 (28)
for the system matrices

A0 =
[

A− BS −BS
0 A− K C

]
, B0 =

[
B
0

]
(29)

C0 = [
C C

] (30)
Note that there exist solutions P0 > 0 also for (A0, B0)
not controllable. Thus, assume

V (ξ ) = ξ T P0ξ (31)
dV
dt = 	V

	ξ ξ̇ = 2ξ T P0(A0ξ + B0u) (32)

u = −R−1sgn(	V
	ξ ) = −R−1sgn(σ̂ ) (33)

σ̂ = Sx̂ = BT Px̂ (34)
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Fig. 3. Lyapunov function trajectories from switching output
feedback control of double integrator dynamics.

for P solving the Riccati equation
PA+ AT P+ Q − PBR−1 BT P = 0 (35)

The closed-loop system will satisfy
dV
dt = 2ξ T P0(A0ξ + B0u) (36)

= ξ T(P0 A0 + A0P0)ξ T (37)
− 2ξ T P0 B0R−1sgn(BT

0 P0ξ ) (38)
which permits asymptotically stable switching output
feedback control.

EXAMPLE 1
Consider observer-based feedback control of a sys-

tem with the double integrator dynamics

ẋ =
[
0 0
1 0

]
x +

[
1
0

]
u (39)

˙̂x =
[
0 0
1 0

]
x̂ +

[
1
0

]
u+ K (y− Cx̂), K =

[
1
1

]
(40)

y = Cx = [
0 2

]
x (41)

u = −sgn(Sx̂), S = [
1.7321 1.000

] (42)
where S = BT P has been calculated based on the
weighting matrices

Q = QK = I2, R = 1, μ = 100 (43)
P =

[
1.732 1.000
1.000 1.732

]
, PK =

[
0.875 −0.500
−0.500 0.750

]

P0 =

⎡
⎢⎢⎣

1.732 1.000 1.732 1.000
1.000 1.732 1.000 1.732
1.732 1.000 87.5 −50.0
1.000 1.732 −50.0 75.0

⎤
⎥⎥⎦ (44)

Q0 =

⎡
⎢⎢⎣

4.000 1.732 4.000 7.196
1.732 2.000 1.732 7.464
4.000 1.732 106.00 3.464
7.196 7.464 3.464 102.0

⎤
⎥⎥⎦ (45)

V (ξ ) = ξ T Pξ (46)
P0 B0 =

[
ST

ST

]
, P0 A0 + AT

0 P0 = −Q0, (47)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x1

x 2

Fig. 4. Phase portrait of states x1 and x2 in Example 1 under
closed-loop control using state estimation. The switching surface
σ = Sx is indicated (dash-dot red). As the state-space dimension
is greater than two, the trajectories may exhibit intersections.

Figures 3-5 demonstrate the asymptotic stability
achieved for observer-supported high-gain feedback.

DISSIPATIVITY AND PASSIVITY

Following [32] and [33], a dynamical system is said
to be dissipative if there exists a nonnegative function
V : R

n → R
+, called a storage function such that for

all t0, t1, x ∈ R
n and u ∈ U, y ∈ Y, t1 ≥ t0 satisfying

the inequality

V (x(t0)) +
∫ t1

t0

w(u, y)dt ≥ V (x(t1)) (48)

where w(u, y) is a real-valued function called the
supply rate—i.e., w : U � Y → R. Strict dissipativity
holds if the inequality (48) is a strict inequality. For
V (x) = xT Px, P = PT > 0 and

w(u, z) =
[

z
u

]T [
Q11 Q12
QT

12 Q22

] [
z
u

]
(49)

with derivative
dV (x)

dt =
[

x
u

]T [
PA+ AT P PB

BT P 0

] [
x
u

]
(50)

the system is dissipative with respect to the supply
rate w(u, z) if

dV
dt ≤ −w(u, z) = −

[
z
u

]T [
Q11 Q12
QT

12 Q22

] [
z
u

]
∫ t1

t0

w(u, z)dt ≥ V (x(t1)) − V (x(t0)) (51)

Moreover, the system is said to be passive if there is
storage function V and coefficients ε ≥ 0,δ ≥ 0, ρ ≥ 0
and supply rate w = uT z satifying

uT z ≥ 	V
	x

dx
dt + εu

Tu+ δ zT z+ ρxT x, (52)
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Fig. 5. Nyquist diagram of Example 1 depicting G0(s) = C(sI −
(A − BS))−1 B) (dashed line) and loop transfer function H0(s) =
S(sI−(A− BS))−1 B) (solid line) of observer-based feedback with
SPR property.

The system is input strictly passive if ε > 0, output
strictly passive if δ > 0 and state strictly passive if
ρ > 0. For V (x) = xT Px and the system

d
dt

[
x
x̂

]
=

[
A 0

K C A− K C

] [
x
x̂

]
+

[
B
B

]
u (53)

y = Cx, σ̂ = Sx̂, u = −ψ (σ̂ , t) (54)
we have for the input-output map from u to σ that

2uTσ̂ − 	V
	x

dx
dt = −

[
x
u

]T [
PA +A TP

] [
x
u

]
(55)

=
[

x
u

]T
Q

[
x
u

]
≥ 0 for Q > 0

and∫ t1

t0

2uT zdt =
∫ t1

t0

V̇ (x(t))dt+
∫ t1

t0

[
x
u

]T
Q

[
x
u

]
dt

Thus, the dissipative properties of the observer-based
systems appear to be formally similar to those of
state-feedback control.

DISCUSSION

Doyle and Stein [34] have pointed out the brittle
robustness of a state-feedback control design modified
by replacement of state feedback by observer feed-
back. Here, the stability and robustness results have
been extended to class of variable structure control
based on state estimation. The algorithmic approach
is a sequential design of weighting matrices for Lya-
punov functions for the SPR/FPR feedback control
and for the observer design. The stability analysis
and Lyapunov designs apply with or without the Lur’e
term added as required in the Popov criterion and the
circle criterion, respectively. Moreover, the nominal
pole assignment for control and for observer dynamics
can be made independently—a property similar to
that of the separation principle.

The approach to modification of the relative-degree
and SPR properties is related to the ‘parallel feedfor-
ward’ as proposed in the context of adaptive control
[35]. Another related idea is passification by means
of shunting introduced by Fradkov [36]. All these
approaches represent derivation of a loop-transfer
function with SPR properties for a control object with-
out SPR properties by means of dynamic extensions
or observers. Arcak and Kokotović made observer
design for systems with monotone sector nonlinear-
ities in the unmeasured states [37]. Interconnection
of a multivariable sector nonlinearity and a linear
system was made so that observer matrices could be
calculated to satisfy the circle criterion. Subsequent
control design was made by backstepping design.

Apart from its relevance to observer-based feed-
back control, we expect that the method will have
application to hybrid systems with switching feedback
control and to high-gain feedback systems controlled
by logic-based switching devices. The circle criterion
design provides implicit choices of switching surfaces

σ̂ (x̂) = Sx̂ (56)
In many cases, by ‘inverse optimality’ it is also possi-
ble to choose other switching surfaces corresponding
to the solution of some Riccati equation provided that
the SPR condition be satisfied in the transfer function
from u to Sx̂ (though without SPR requirement on the
transfer function from u to y). An example is given in
Fig. 6 where observer-based VSS control trajectories
are shown for a switching surface σ̂ (x̂) = Sx̂.

CONCLUSIONS

In this paper, some results on asymptotic stability
of variable structure systems using dynamic output
feedback and state estimation were established. The
results extend previous results on dynamic output
feedback for variable structure systems [6], [4], [7],
[8], [15], [9], [16], [13]. Moreover, separation-like prop-
erties hold. The stability and robustness results of
[23], [25] and [28] have been extended to a case with
observer-based feedback control with resulting non-
minimal loop transfer functions. A design procedure
to find full-state observers and Lyapunov functions is
provided. A new feature for switching output feedback
is that one Lyapunov function serves for stability
analysis for all switching modes.
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