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Abstract 

When designing flexible multi-sensor based robot sys- 
tems, one important problem is how to combine the mea- 
surements from disparate sensors such as cameras and 
force sensors. In this paper, we present a method for com- 
bining direct force control and visual servoing in the pres- 
ence of unknown planar surfaces. The control algorithm 
involves a force feedback control loop and a vision based 
reference trajectory as a feed-forward signal. The vision 
system is based on a constrained image-based visual ser- 
voing algorithm designed for surface following, where the 
location and orientation of the planar constraint surface 
is estimated online using position-, force- and visual data. 
We show how data from a simple and efficient camera cal- 
ibration method can be used in combination with force 
and position data to improve the estimation and reference 
trajectories. 

The method is validated through experiments involving 
force controlled drawing on an unknown surface. The 
robot will grasp a pen and use it to draw lines between 
a number of markers drawn on a white-board, while the 
contact force is kept constant. Despite its simplicity, the 
performance of the method is satisfactory. 

1 Introduction 

Many applications of robotics require the robots to oper- 
ate in environments that are complex, and where the ge- 
ometry is at least partially unknown. Designing a flexible 
robot system, capable of operating in such environments, 
requires the integration of a number of different sensors 
into the robot system. 

It has been realized for many years that force sensing ca- 
pabilities are crucial when robots are required to interact 
with their environment. Over the last decade there has 
also been a growing interest in vision based control, since 
a lot of information can be obtained from visual data. A 

background on visual servoing is given in 111. 

The nature and limited accuracy of vision based control 
makes it less suitable for controlling interaction with ob- 
jects in the environment. An interesting and obvious so- 
lution is to combine force control and visual servoing in a 
multi-sensor control system. Recently, some research on 
this subject has been presented [2, 3, 4, 5 ,  6 ) .  

Perhaps the most obvious approach to the problem is to 
combine the measurements from the cameras and force 
sensor using multi-sensor fusion methods. However, as 
several researchers have pointed out [3], the force- and vi- 
sual sensors are fundamentally different in that they mea- 
sure very different physical phenomena, while the goal of 
most multi-sensor fusion methods is to obtain a single 
piece of information from the sensor data. This makes 
such an approach less suitable in this case. 

In this work another approach is taken, based on the fol- 
lowing observations. Far away from any constraints, the 
robot can be controlled by unconstrained visual servoing 
only. When close to the constraint surface, one or sev- 
eral degrees of freedom should become force controlled in 
order to accurately control the interaction with the con- 
straint surface. The remaining degrees of freedom should 
then be controlled by a constrained visual servoing algo- 
rithm. The unknown constraint equations can be esti- 
mated recursively from the available sensor data. The 
estimated constraint can also be used to form a feed- 
forward signal in order to improve the behavior in the 
force controlled directions. 

This paper shows how these ideas can be used to imple- 
ment a system, where an industrial robot interacts with 
planar objects in its environment through a combination 
of force- and vision based control. Further, we show that 
data from the sensors can be used to accurately measure 
the position and orientation of the planar object, and 
show how this new information can be used to improve 
the control. 
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We also present a simple but efficient way to  calibrate 
the camera system, and discuss how the results from this 
calibration can be used for improving the control and the 
identification of the parameters describing the plane. 

In section 3 we present some experimental results for the 
described system. 

2 Methods 

2.1 Calibration of the camera system 
Many methods for camera calibration use a number of im- 
ages of a planar calibration object to estimate the intrin- 
sic and extrinsic camera parameters [7]. The images are 
taken from several different positions and orientations. 

In our case we use cameras that are fixed in the 
workspace, and we attach the calibration object to the 
robot end-effector itself. From the kinematics of the robot 
we can get accurate information on the movement of the 
end-effector between the images. Therefore, the extrinsic 
parameters are partially known, and this is used in the 
algorithm in order to increase the accuracy and decrease 
the number of parameters that need to  be estimated. 

Figure 1: The most important frames and transformations. 

The setup of the camera/robot system is shown in Fig. 1. 
The two k e d  cameras are observing a calibration object 
that is rigidly attached to the end-effector. The relative 
position of the calibration object with respect to the end- 
effector frame does not have to be known. The goal of the 
calibration is to be able to find the intrinsic parameters 
of the two cameras, as well as the rigid transformations 
Tg; and Tg' in Fig. 1. 

The calibration algorithm works in three steps: 

1. Estimation of intrinsic and extrinsic camera param- 
eters according to [7]. 

2. 

3. 

Calculation of Ti by hand-target calibration ac- 
cording to [8]. 

The results can be improved by simultaneous cal- 
culation of all system parameters using nonlinear 
least squares optimization. This step is not nec- 
essary, but we have found that it will improve the 
accuracy of the calibration. 

If we choose to perform the optimization in step 3 above, 
steps 1 and 2 will be used mainly for obtaining suitable 
starting values. 

In step 2, a hand-eye calibration method [8] can be used 
if we note that for two different end-effector positions, 
denoted by numbers p and q, and camera Ck, there holds 
a relationship 

which can be solved for the unknown constant Ti .  

The final optimization is used to minimize, for both cam- 
eras, the errors between the m measured and reprojected 
image points in each of the n images 

n m. 2 .. - 

( x i j k  - kijk(K1, K'2, T i ,  T:: 7 Ti1 1)' 
i=l j=1  k = l  

where k is the camera number, and kijk is given by the 
projection equations 

x l ~ i j , l  = K ~ T ; ' T ~ ( ~ ) - ~ ( T ; ) - ~ X ~  
x2ii2ij,z = K~ (T:; ) - ~ g l  T; (q- ( ~ t , ) - l  xj (2) 

where Xj are the model points of the calibration object. 
K1 and K2 are matrices of intrinsic camera parameters, 
see [7]. The minimization is performed with respect to  
K1, K2, T;', TE; and TL. Multiplying Eq. (2) with the 
inverses of K1 and Kz we get projection equations on the 
form 

(;)=;( ? ) >  
for the point ( X  Y Z)T in camera coordinates. 

(3) 

2.2 Visual servoing 
Visual servoing methods can roughly be divided into two 
main groups [I]. In position-based visual servoing, the 
measured output to be controlled is the Cartesian posi- 
tion and orientation of an object. In the fixed-camera 
case, we control the pose of the robot end-effector. The 
pose has to be reconstructed from the available image 
data. The other group of methods is image-based visual 
servoing, where the quantities to be controlled are defined 
directly as features in image space. Because of this, it is 
not necessary to perform a complete 3D-reconstruction 
of the scene. There also exist methods that combine ele- 
ments from image-based and position-based servoing, of- 
ten called 2 1/2 D visual servoing [9]. 
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Any of these methods could have been used in this work, 
but the image-based servoing method was chosen since it 
is known to be very robust to calibration errors [l]. 

In an image-based visual servo, the control error e is de- 
fined as 

e=Yr-Y 
where y,. and y are vectors of image space feature pa- 
rameters, y,. is the desired (end) position of the feature 
locations, and y is the measured position. A simple con- 
trol law that would drive the error e to zero is 

+ + 
r = k ,  [J$'(r)] e = k ,  [J$'(r)] (y,. - y) (4) 

where r are the Cartesian coordinates and r is the veloc- 
ity screw of the end-effector, measured in the robot base 
frame, k ,  is a constant gain, and Jb'(r) is the so ca!led 
image Jacobian, which relates image space velocities f of 
the features to the corresponding end-effector velocity in 
Cartesian space by . 

f = J$'(r)r ( 5 )  

Note that the image Jacobian is in general a function of 
the Cartesian coordinates r, which means that we need 
some Cartesian information to calculate it exactly, usu- 
ally the depth of the imaged points in the cameras. In 
this work, approximate depth information is calculated 
by using the data from the calibration of the camera sys- 
tem and the robot kinematics, but the depth information 
could also be obtained from the stereo images. 

When using stereo cameras, the correct combined Jaco- 
bian for the stereo system is obtained by stacking the 
Jacobians for the individual cameras [lo] 

where Mf, and ME are the transformation matrices for 
the screw, from the robot base frame to the left and right 
cameras respectively, and Jl(r) and J;(r) are the Jaco- 
bians for the left and right cameras. The exact form of 
these Jacobians for point features can be found for in- 
stance in [l]. The screw transformation matrix €or the 
left camera is given by 

where Rk and tk describe the relative position of the left 
camera with respect to the robot base frame. Equivalent 
expressions hold for the right camera. 

2.3 Constrained motion 
The constraint on the reference trajectories is that the 
motion should be in the plane p in Cartesian space de- 
fined by 

pTi. = 0 (8) 

where p = (PI p2 -1 . p4 )T  and f = ( X  Y 2 l)T. 
Differentiating this expression leads to an equation 

p T r  = 0 (9) 

for the constrained velocity r = X Y Z 

effector, with p = (p1 p2 - l)T. 

The motion on the surface of the plane is now given by 

of the end- ( .  '>' 

f = JL'(r) ( ! ) ( ) = 

Pl P2 

= J$yc(r) ( $ ) 
It is obvious that if J$'(r) has full rank, so does the 
reduced image Jacobian J$(r). The constrained vision 
based control law becomes simply 

Pl P2 

As the constraint itself, described by Eq. (8) ,  is in general 
unknown, a method for its determination is required. A 
method based on- local estimation of the constraint using 
measurements of forces and torques is suggested in [2]. In 
our case the low signal-to noise ratio of the force sensor, in 
combination with large friction forces, makes this method 
less suitable. Instead we estimate the parameter vector p 
using a recursive least-squares method and the equations 

where Xm, Y, and Zm are the measured Cartesian co- 
ordinates for the end-effector obtained from the robot 
kinematics. Eq. (12) is derived from Eq. (8), where the 
z-coordinate is calculated from the measured force F, 
and the stiffness k, of the spring-mounted tool in the 
z-direction, the direction in which the tool is pointing. 
Eq. (13) is derived from Eq. (9) and the fact that in 
an accurately calibrated stereo system, the unconstrained 
Cartesian velocities r obtained from the control law will 
produce trajectories that are straight lines. If the sys- 
tem is moving between two points that both lie in the 
constraint plane, then all the velocity vectors f ( t )  will 
be approximately parallel to the plane. The purpose of 
Eq. (13) is to use the predictive capability of the visual 
information in the estimation of the slope, which can be 
expected to speed up the convergence. Note that Eq. (13) 
requires the calculation of the pseudo-inverse of J$"(r). 
In our case, this is a 3 x 3 matrix, and the time to compute 
the inverse can be considered to be negligible. 

Note that in Eq. (12) it is required that the stiffness k ,  is 
known. However, it is possible to use just a rough estima- 
tion, since the force control will keep F, approximately 
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constant. Because of this the slope of the plane should 
still be estimated correctly. 

2.4 Hybrid force/vision control 
We use a proportional motion rate controller 

where F, is the reference for the force F in the z-direction. 
If we combine this with the vision based reference trajec- 
tory of Eq. (ll),  the hybrid control law becomes 

3.1 Experimental setup 
We have set up an experimental system in the Robotics 
Lab at the department of Automatic Control at Lund In- 
stitute of Technology. The system consists of a &degree- 
of-freedom ABB Industrial Robot 2000 equipped with 
a 6DOF J R 3  force/torque sensor, and two Sony DFW- 
V300 digital cameras working at a frame rate of 30 im- 
ages/second. The cameras send image data through a 400 
Mbps IEEE1394 connection to a standard 450 Mhz Win- 
dowsNT PC where the image processing is performed. 
The extracted feature point locations are then sent to  a 
Sun Ultra60 computer running a Matlab/Simulink ver- 
sion of the vision/force controller. The sampling period 
of the controller is 67 ms. The low level joint position 
control is performed by an open robot control system de- 
veloped at our department [ l l]. 

In the experiments we assume that the relative positions 
between the cameras and the robot are unknown, but 
that both cameras are viewing the robot. Further we as- 
sume that the intrinsic camera parameters are completely 
unknown. 

A simple and illustrative task is chosen to test the perfor- 
mance of the presented methods. Two objects are placed 
in the view of both cameras, a pen and a white-board. 
The exact position and orientation of the objects is un- 
known, but the pen is standing in the vertical position. 
On the white-board, a number of dots are drawn in ran- 
dom positions. The system should be able to align the 
end-effector with the pen and grasp it, and use it to  con- 
nect the dots on the white-board with lines. The control 
should keep the contact force constant during the draw- 
ing phase. The exact location of the board should be 
estimated accurately using available sensor data. 

Figure 2: Measured force F and reference F,. = 2 N. 

3.2 Experimental methodology 
The experiment is divided into an off-line and an online 
phase. Off-line, the robot with the attached calibration 
object moves into 7 different positions, the locations of 48 
coplanar features on the object are measured in each im- 
age and the camera system is calibrated. Experiments 
with real and simulated data show that Ti1 and TE; 
can be estimated with an error in translation of approxi- 
mately 2 cm, and an orientation error of 1' in the Euler 
angles, using only a small (10cmx15cm) calibration ob- 
ject. Then, the positions in the cameras of the pen and 
the dots on the white-board are found and stored. 

Online, the robot end-effector is aligned with the stored 
pen position using visual servoing. Once the pen is 
grasped, we use visual servoing to guide the pen to the 
board, and once contact with the board is established, the 
force/vision control makes the robot connect the dots. 

3.3 Results 
In Fig. 2 we see the measured force in the force controlled 
direction. The force control is switched on at t = 5.3 s 
and contact is achieved at t = 5.5 s. Note the large initial 
influence of the inertial forces during the acceleration at 
t = 0. 

The final estimation of the lane parameters is p = 
(-0.0461 0.0128 - 1 1.235) , compared to the true 
values p, = (-0.0478 0.0155 -1 1.237)T obtained 
from an accurate measurement using the robot. The re- 
cursively estimated parameters can be seen in Fig. 3. The 
estimation is started at t = 6.7 s. In Fig. 4 a), c) and d) we 
see the residuals for Eq. (12), their autocorrelation, and 
the histogram of the residuals. The residuals for Eq. (13) 
can be seen in Fig. 4 b). Note that t = 0 in Fig. 4 a) and 
b) corresponds to t = 6.7 s in Fig. 2. 

The trajectory of the tip of the pen in Cartesian space 
can be seen in Fig. 5, and the corresponding image-space 
trajectories can be seen in Fig. 6-7. 

l? 
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Figure 3: Plane parameters PI, p2 and p4. 
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Figure 4: a) Residuals in Eq. (12). b) Residuals in Eq. (13). 
c) Autocorrelation of the residuals in Eq. (12). d) 
Histogram of the residuals in Eq. (12). 

4 Discussion 

We see from Fig. 2 that the force overshoots slightly at 
the beginning of the first line at t 7s. The reason 
is that the estimate of the plane parameters p has not 
yet converged, and the accuracy of the reference trajec- 
tories from the vision system is therefore limited by the 
relatively low accuracy of the cameras. The combined 
stiffness of the environment and the spring-mounted pen 
is estimated to 400 N/m, which means that the overshoot 
corresponds to an error of approximately 1.5 mm in the 
reference trajectory. Fig. 2 also shows the stick-slip effect 
due to friction at t x 16 s. 

. 

Another source of error is the noise resulting from er- 
rors in the image feature extraction, most clearly seen in 
Fig. 6. This will result in noise in the reference trajecto- 
ries and the resulting contact forces, see Fig. 2. 

The estimation of the plane parameters changes stepwise, 

rrm 

Figure 5: Trajectory of the pen, Cartesian space. 

M 

Figure 6: Pen trajectory, camera 1. 

with fast convergence to the final value at time t = 13.3 
s, the start time for the drawing of the second line. The 
estimated values at t < 13.3 s reflects the slope of the 
plane along the first line. The small error in the estima- 
tion is caused by the noisy data from the force sensor, 
errors in the estimation of the stiffness of the spring, and 
calibration errors. Another reason is that the board is 
flexible, and is therefore deformed slightly by the contact 
forces. 

In Fig. 4 c) and d) wee see that the residuals of Eq. (12) 
are approximately uncorrelated, Gaussian white noise. 
The residuals of Eq. (13) seen in Fig. 4 b) are of course 
not white noise, since they are affected not only by ran- 
dom image-space errors, but also by the constant errors in 
the Cartesian data estimated in the calibration. In gen- 
eral, the maximum error in i decrease to a value around 
2 . m/s at a velocity in the x-y plane of 0.15 m/s, 
roughly corresponding to an error in the slope of the plane 
of around lo. This agrees well with the estimated cali- 
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Figure 7: Pen trajectory, camera 2. 

bration accuracy. 

We have used hybrid force/position control but 
impedance control would apply in the same way. Elab- 
orate specification of robot skills will require hybrid dy- 
namic systems descriptions both for analysis and design. 

5 Conclusion 

In this paper, we have developed a method for combin- 
ing visual servoing methods with force control, based on 
explicit estimation of the position of an unknown pla- 
nar constraint surface. The method differs from previous 
work 121 in that it does not rely on assumptions of negligi- 
ble friction, or the possibility to recover the normal of the 
plane from accurate measurements of contact forces and 
torques. Instead, we use data from a calibrated robot and 
camera system to estimate the constraint location. The 
main drawbacks of this approach are that it requires the 
constraints to be (piecewise) planar surfaces, and that 
calibration is required. 

Our approach involves an image based visual servoing 
system with an explicit planar constraint on the possible 
velocity screws i,, used to generate reference trajectories 
for the force control. The method is shown to work in 
practise in experiments involving force controlled, vision 
guided drawing on a planar surface. The system is run 
at a sampling frequency of 15 Hz, which could easily be 
increased to the the video rate of 30 Hz. 
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