LUND UNIVERSITY

OFDM channel estimation by singular value decomposition

Edfors, Ove; Sandell, Magnus; van de Beek, Jan-Jaap; Wilson, Sarah Kate; Bérjesson, Per
Ola

1996

Link to publication

Citation for published version (APA):

Edfors, O., Sandell, M., van de Beek, J.-J., Wilson, S. K., & Bérjesson, P. O. (1996). OFDM channel estimation
by singular value decomposition. (Div. of Signal Processing, Research Report; Vol. TULEA 1996:18). Lulea
University of Technology.

Total number of authors:
5

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/7c7f6572-a4e4-422d-8a74-ea53d5780d29

OFDM channel estimation by singular value
decomposition*

Ove Edfors! Magnus Sandell! Jan-Jaap van de Beek'

Sarah Kate Wilson? Per Ola Borjesson'
I Division of Signal Processing ! School of Electrical and Computer Engineering
Lule& University of Technology Purdue University
S-971 87 Lulea West Lafayette, IN 47907
SWEDEN U.S.A.

* This work has been presented in part at the 1996 Vehicular Technology Conference (VTC’96) in
Atlanta, Georgia, Apr 28-May 1, 1996, pp 923-927.






Abstract

In this paper we present and analyse low-rank channel estimators for orthogonal frequency-
division multiplexing (OFDM) using the frequency correlation of the channel. Low-rank ap-
proximations based on the discrete Fourier transform (DFT) have been proposed but they
suffer from poor performance when the channel is not sample-spaced. We apply the theory
of optimal rank-reduction to linear minimum mean-squared error (LMMSE) estimators and
show that these estimators, when using a fixed design, are robust to changes in channel cor-
relation and signal-to-noise ratio (SNR). The performance is presented in terms of uncoded
symbol-error rate (SER) for a system using 16-QAM.






Contents

Introduction

System description

2.1 Systemmodel . . . ...
2.2 Channel model . . . . . . .
2.3 Scenario . . . . ...

3 Linear channel estimation across tones
3.1 LMMSE estimation . . . . . . . . . . e e e
3.2 Optimal low-rank approximations . . . . . . . . . . .. .. ... ... .. ..
3.3 Estimator complexity . . . . . . .. ..o

4 Estimator performance and design
4.1 Rank reduction . . . . . . . . .. e
4.2 SER performance under mismatch . . . . . .. ... . o000

4.2.1 Incorrect channel correlation . . . . . . . . . . . .. ... ..
4.2.2 Incorrect SNR . . . . . . .

s o W

N O Ot G

6

Generic low-rank estimator

5.1 Performance gain . . . . .. ... ... L
5.2 Comparison to FIR-filters . . . . . . . .. ... .. ... ..
5.3 The use of time correlation . . . . . ... ... ... .....

Conclusions

A Optimal rank reduction

B Channel-correlation matrices

C Estimator mean-squared error

13
13
13
15

17

19

21

23






Chapter 1

Introduction

Wireless digital communication systems using multi-amplitude modulation schemes, such as
quadrature amplitude modulation (QAM), require estimation and tracking of the fading chan-
nel. In general, this means a more complex receiver than for differential modulation schemes,
such as differential phase-shift keying (DPSK), where the receivers operate without a channel
estimate [1].

In orthogonal frequency-division multiplexing (OFDM) systems, DPSK is appropriate for
relatively low data rates, such as in the European digital-audio broadcast (DAB) system [2].
However, for more spectrally-efficient OFDM systems, coherent modulation is more appropri-
ate.

The structure of OFDM signalling allows a channel estimator to use both time and fre-
quency correlation. Such a two-dimensional estimator structure is generally too complex for a
practical implementation. To reduce the complexity, separating the use of time and frequency
correlation has been proposed [3]|. This combined scheme uses two separate FIR-Wiener-filters,
one in the frequency direction and the other in the time direction.

In this paper we present and analyse a class of block-oriented channel estimators for OFDM,
where only the frequency correlation of the channel is used in the estimation. Whatever their
level of performance, it may be improved with the addition of a second filter using the time
correlation [3, 4].

Though a linear minimum mean-squared error (LMMSE) estimator using only frequency
correlation has lower complexity than one using both time and frequency correlation, it still
requires a large number of operations. We introduce a low-complexity approximation to a
frequency-based LMMSE estimator that uses the theory of optimal rank reduction. Other
types of low-rank approximations, based on the discrete-time Fourier transform (DFT), have
been proposed for OFDM systems before [5, 6, 7]. The work presented in this paper was inspired
by the observations in [7], where it is shown that DFT-based low-rank channel estimators have
limited performance for non-sample-spaced channels and high SNRs.

After presenting the OFDM system model and our scenario in Section 2, we introduce the
estimators and derive their complexities in Section 3. We analyse the symbol-error rate (SER)
performance in Section 4 where we also discuss design considerations. The proposed low-rank
estimator is compared to other estimators in Section 5 and a summary and concluding remarks
appear in Section 6.






Chapter 2

System description

2.1 System model

Figure 2.1 displays the OFDM base-band model used in this paper. We assume that the use
of a cyclic prefix (CP) [8] both preserves the orthogonality of the tones and eliminates inter-
symbol interference (ISI) between consecutive OFDM symbols. Further, the channel g(¢, 7) is
assumed to be slowly fading, so it is considered to be constant during one OFDM symbol. The
number of tones in the system is IV, and the length of the cyclic prefix is L samples.
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Figure 2.1: Base band model of an OFDM system. 'CP’ denotes the cyclic prefix.

Under these assumptions we can describe the system as a set of parallel Gaussian channels,
shown in Figure 2.2, with correlated attenuations h,. The attenuations on each tone are given
by

h, =G i k=0...N—-1
o) kmov
where G (-) is the frequency response of the channel g (¢, 7) during the OFDM symbol, and T
is the sampling period of the system. In matrix notation we describe the OFDM system as

y = Xh + n, (2.1)

where y is the received vector, X is a matrix containing the transmitted signalling points on
its diagonal, h is a channel attenuation vector, and n is a vector of i.i.d. complex, zero-mean,
Gaussian noise with variance o2

n*
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Figure 2.2: The OFDM system, described as a set of parallel Gaussian channels with correlated
attenuations.

2.2 Channel model

We are using a fading multi-path channel model [1], consisting of M impulses

M-1

g(1)=> b (r —7Ts), (2.2)

k=0

where oy, are zero-mean, complex Gaussian, random variables, with a power-delay profile 6 (73).
In this paper we have used M = 5 impulses and two versions of this channel model:

e Synchronized channel. This is a model of a perfectly time-synchronized OFDM sys-
tem, where the first fading impulse always has a zero-delay, 7 = 0, and other fading
impulses have delays that are uniformly and independently distributed over the length
of the cyclic prefix. The impulse power-delay profile, # (1) = Ce™™/Tms_ decays expo-
nentially [9].

e Uniform channel. All impulses have the same average power and their delays are
uniformly and independently distributed over the length of the cyclic prefix.

2.3 Scenario

Our scenario consists of a wireless 16-QAM OFDM system, designed for an outdoor environ-
ment, that is capable of carrying digital video. The system operates at 500 kHz bandwidth and
is divided into 64 tones with a total symbol period of 136 us, of which 8 us is the cyclic prefix.
One OFDM symbol thus consists of 68 samples (N + L = 68), four of which are contained in
the cyclic prefix (L = 4). The uncoded data rate of the system is 1.9 MBit/sec. We assume
that 7,.,,s = 1 sample for the synchronized channel.



Chapter 3

Linear channel estimation across tones

In the following we present the LMMSE estimate of the channel attenuations h from the
received vector y and the transmitted data X. We assume that the received OFDM symbol
contains data known to the estimator — either training data or receiver decisions.

The complexity reduction of the LMMSE estimator consists of two separate steps. In the
first step we modify the LMMSE by averaging over the transmitted data, obtaining a simplified
estimator. In the second step we reduce the number of multiplications required by applying
the theory of optimal rank-reduction [10].

3.1 LMMSE estimation

The LMMSE estimate of the channel attenuations h, in (2.1), given the received data y and
the transmitted symbols X is [11]

~ 1\ 1
himmse = R <th + O-Z (XXH) 1> h;, (31)
where .
by, =X 'y = l@ L2 le] (3.2)
Ty T1 TN-1

2

is the least-squares (LS) estimate of h, o is the variance of the additive channel noise and

n
Ry, = FE {hhH } is the channel autocorrelation. The superscript (-) denotes Hermitian
transpose. In the following we assume, without loss of generality, that the variances of the
channel attenuations in h are normalized to unity, i.e. E {]hk\Q} = 1.

The LMMSE estimator (3.1) is of considerable complexity, since a matrix inversion is
needed every time the training data in X changes. We reduce the complexity of this estimator
by averaging over the transmitted data [1], i.e. we replace the term (XX*)~1 in (3.1) with

its expectation F {(XXH )_1}. Assuming the same signal constellation on all tones and equal

probability on all constellation points, we have F {(XXH )_1} = E{|1/xx|*} I, where I is the

identity matrix. Defining the average signal-to-noise ratio as SNR = E {|zx|*} /o2, we obtain
a simplified estimator

. 3 \ -
h =Ry, (th +orl) e (3.3)



where
B =E{|al*} B {1/2:*}

is a constant depending on the signal constellation. In the case of 16-QAM transmission,
B = 17/9. Because X is no longer a factor in the matrix calculation, the inversion of Ry, + S%{I
does not need to be calculated each time the transmitted data in X changes. Furthermore, if
R, and SNR are known beforehand or are set to fixed nominal values, the matrix Ry, (R, +
glf\%I)*l needs to be calculated only once. Under these conditions the estimation requires N
multiplications per tone. To further reduce the complexity of the estimator, we proceed with

low-rank approximations below.

3.2 Optimal low-rank approximations

Optimal rank reduction is achieved by using the singular value decomposition (SVD) [10]. The
SVD of the channel autocovariance matrix is

Ry, = UAU", (3.4)

where U is a unitary matrix containing the eigenvectors and A is a diagonal matrix, containing
the singular values A\g > A\; > ... > A\y_1 on its diagonal'. In Appendix A it is shown that the
optimal rank-p estimator is R R

h, = UA_,U"h (3.5)

where A, is a diagonal matrix with the values

At SR (3.6)

5 _ — e k=0,1,...,p—1
" 0 k=p,... . N—1

Viewing the orthonormal matrix U as a transform?, the singular value A\, of Ry, is the
channel power (variance) contained in the k' transform coefficient after transforming the LS
estimate EZS. Since U is unitary, this transformation can be viewed as rotating the vector Els
so that all its components are uncorrelated [10]. The dimension of the space of essentially
time- and band-limited signals leads us to the rank needed in the low-rank estimator. In [12]
it is shown that this dimension is about 2BT + 1 where B is the one-sided bandwidth and 7T’
is the time interval of the signal. Accordingly, the magnitude of the singular values of Ry,
should drop rapidly after about L + 1 large values, where L is the length of the cyclic prefix
2B=1/T,, T =LT; and 2BT +1=L+1).

We present the channel power contained in the first 15 coefficients in Figure 3.1. The
calculations are based on our scenario and the two channel models: the synchronized and
the uniform. The magnitude of the channel power drops rapidly after about k = 4, i.e. 5
coefficients, which is consistent with the observation that the dimension of the space spanned
by Ry, is approximately L + 1, that is, 4 +1 = 5 in this case.

A block diagram of the rank—p estimator in (3.5) is shown in Figure 3.2, where the LS-
estimate is calculated from y by multiplying by X 1.

1Since we are dealing with Hermitian matrices the \xs are also eigenvalues. However, we use the terminology
of the SVD since it is more general and can be used in optimal rank reduction of non-Hermitian matrices.

2The transform in this special case of low-rank approximation is the Karhunen-Loeve (a.k.a. Hotelling)
transform of h.
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Figure 3.2: Block diagram of the rank—p channel estimator.

3.3 Estimator complexity

The limiting factor of the rank—p estimators is an error floor, see Section 4. To eliminate
this error floor up to a given SNR we need to make sure our estimator rank is large enough.
This prompts an analysis of the computational complexity of the rank—p estimator. The
implementation we have chosen is based on writing (3.5) as a sum of rank-1 matrices, which
gives us the expression

~ p—1 R p—1 R
h, = (Z ‘SkukukH) hyo =3 a <11k, hls> (3.7)
k=0 k=0

where q = dpu and <uk, ﬂls> = ukH ﬂls is the Euclidian inner product. The linear combination
of p vectors of length N also requires p/N multiplications. The estimation thus requires 2p N
multiplications and the total number of multiplications per tone becomes 2p. In comparison
with the full estimator (3.3), we have managed to reduce the number of multiplications from
N to 2p per tone. The smaller p is, the lower the computational complexity, but the larger

7



the approximation error becomes. Following the analysis in Section 3.2, we can expect a good
approximation when p is in the range of samples in the cyclic prefix, which is usually much
smaller than the number of tones, N.

A legitimate question at this point is what happens for a system with many tones and
many samples in the cyclic prefix. The number of calculations per tone can be considerable if
a rank—p estimator is used directly on all tones in the system. One solution to this problem
is a partitioning of the tones into reasonable sized blocks and, at a certain performance loss,
perform the estimation independently in these blocks. By dividing the channel attenuations
into K equally sized blocks, the bandwidth in each block is reduced by a factor K. Referring
again to the dimension of the space of essentially time- and bandlimited signals [12], the
expected number of essential base vectors is reduced from L + 1 to L/K + 1. Hence the
complexity of the estimator decreases accordingly.

To illustrate the idea, let us assume we have a system with N = 1024 tones and a L = 64
sample cyclic prefix. The uniform channel correlation between the attenuations h,, and h,, in
this system is, see Appendix B,

1 if m=n
/rmyn = 178_].2‘”1/ mlgn

porRa=: if m#n

This only depends on the distance between the tones, m — n, and the ratio between the length
of the cyclic prefix and the number of tones, L/N. The 1024 tone system can be described by

y(@ X h® n®
| = I I
y(16) X6 | | o) n(16)

that is, as 16 parallel 64-tone systems,
y® = XER® L n® k=12 .. .16.

We have the same channel correlation in each subsystem as we have in the 64-tone scenario
in this paper (L/N = 4/64 = 64/1024). By estimating the channel attenuations h®) in each
sub-system independently, we neglect the correlation between tones in different sub-systems,
but obtain the same MSE performance as in our 64-tone scenario.



Chapter 4

Estimator performance and design

We propose a generic low-rank frequency-based channel estimator, i.e. the estimator is designed
for fixed, nominal values of SNR and channel correlation. Hence, we need to analyse how the
rank, channel correlation and SNR should be chosen for this estimator so that it is robust to
variations in the channel statistics, 7.e. mismatch. As a performance measure, we use uncoded
symbol-error rate (SER) for 16-QAM signalling. The SER in this case can be calculated from
the mean-squared error (MSE) with the formulae in [13].

4.1 Rank reduction

The mean-squared error, relative to the channel power F {|hk|2}, of the rank—p estimator is
mainly determined by the channel power contained in the transform coefficients and can be
expressed, see Appendix C,

B 1 p—1 ) 5 ) 1 V-1
mse (p) = 1= > (M (1= 0)" + b | + 37 22 M (4.1)
k=0 k:p

where A\, and ¢y are given by (3.4) and (3.6) respectively. The MSE (4.1) is a monotonically
decreasing function of SNR and can be bounded from below by the last term,

mse(p) = 1 3 Ak < mse (7). (42)

k=p

which is the sum of the channel power in the transform coefficients not used in the estimate.
This MSE-floor, mse(p), will give rise to a error floor in the symbol-error rates.

The error floor is the main limitation on the complexity reduction achieved by optimal
rank reduction. As an illustration, Figure 4.1 displays the SER relative to the channel variance,
for three different ranks, as a function of the SNR. The ranks chosen are p =5, 6 and 7, and
the channel used in the example is the synchronized channel. The corresponding SER-floors
are shown as horizontal lines. For p = 7, the SER-floor is relatively small, and the SER of the
rank—7 estimator is comparable to the original, full-rank estimator (3.3) in the range 0 to 30
dB in SNR. By choosing the appropriate rank on the estimator, we can essentially avoid the
impact from the SER-floor up to a given SNR. When we have full rank, p = N, no SER-floor
exists.
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Figure 4.1: Low-rank estimator symbol-error rate as a function of SNR, with ranks p = 5, 6
and 7. Corresponding SER-floors shown as horizontal lines. (Synchronized channel)

Based on the channel powers presented in Figure 3.1, we show the corresponding SER-floors,
relative to the channel variance, in Figure 4.2. After about rank—4 the SER-floor decreases
rapidly. We are therefore able to obtain a good estimator approximation with a relatively low
rank.
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Figure 4.2: Estimator SER-floor as a function of estimator rank. Circles show the SER-floors
appearing in Figure 4.1.

10



4.2 SER performance under mismatch

In practice, the true channel correlation and SNR are not known. To get a general expression
for the estimator SER, we derive it under the assumption that the estimator is designed
for correlation Ry, and signal-to-noise ratio SNR, but the true values are R;- and SNR,
respectively, where h denotes a channel with different statistics than h. This allows us to
analyse this estimator’s sensitivity to design errors. Under these assumptions, the relative
MSE of the rank—p estimate (3.5) becomes, see Appendix C,

p—1 9 ﬁ ) 1 N-1
mse (p) = N kZ:O [,uk (1 — 6k) + ﬁ6k‘| -+ N % M (43)

where 1, is the k* diagonal element of U# R;>U, cf. (3.4). Tt can be interpreted as the variance
of the transformed channel, U”h under correlation mismatch since

E {(UHE) (UHE)H} ~ UR_U

It should be noted that the elements of U¥h are no longer uncorrelated. However due to
the fact that the power-delay profile is short compared to the OFDM symbol, the first p
elements can be expected to contain most of the power. This property will ensure only a small
performance loss when the estimator is design for wrong channel statistics.

If rank—p estimators are used in a real system, the sensitivity to mismatch in both channel
correlation and SNR are important. We will show that a rank—p estimator based on the
uniform channel model and a nominal SNR can be used as fixed generic estimator with only
a small loss in average performance. We divide the mismatch analysis into two parts: first we
analyse the SER when we have a mismatch in channel correlation and later we analyse the
SER when we have a mismatch in SNR.

4.2.1 Incorrect channel correlation

From (4.3), with no SNR mismatch (SNR = SNR), but incorrect channel correlation, (Ry, #
R;7), we obtain the performance for the correlation mismatch cases. We compared the per-
formance of our channel estimator in two mismatch situations: i) using the a uniform channel
when the true channel model was the synchronous channel and ii) using the synchronous chan-
nel when the true channel model was the uniform channel. The resulting channel estimates
that were used in the detection of the data produced no noticable difference in symbol error
rates — less than 0.1 dB change in effective SNR for an average SNR up to 20 dB. However,
when both the channel SNR and the channel correlation matrix are mismatched, the nominal
design SNR becomes more important. This can be seen in Figure 8, where we present the
resulting symbol error rate for rank-8 estimators. For the mismatched cases, marked with o,
the uniform design is more robust, i.e. the error in case of mismatch is lower. With the restric-
tion that the true channel has a power-delay profile shorter than the cyclic prefix, designing
for a uniform power-delay profile can be seen as a minimax design.

11
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Figure 4.3: MSE for correct and mismatched design. The latter is marked with circles (O).

4.2.2 Incorrect SNR

Finally we evaluate the sensitivity to mismatch in design SNR for a rank-8 estimator. When
there is no mismatch in channel correlation, and nominal SNRs of 10, 20 and 30 dB are used
in the design, the sensitivity to SNR mismatch is not that large. However, in Figure 4.4, we
present the SER for the same rank-8 estimators, but with the difference that the true channel
correlation is mismatched with the design correlation. In this second case, there is a clear
difference between the two designs: the higher the nominal design SNR, the better the overall
performance of the estimator in the range 0 to 30 dB in SNR. It should be noted that a
LMMSE-estimator designed for a large SNR approaches the LS-estimator.
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o
5
3
!
g
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— Uniform design 30 dB
0 5 10 15 20 25 30

Average SNR  [dB]

Figure 4.4: Rank-8 estimator SER when SNRs of 10, 20 and 30 dB are used in the design. The
estimators are designed for incorrect channel correlation.
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Chapter 5

(GGeneric low-rank estimator

If we want a robust generic channel estimator design for OFDM systems, of the low-rank type,
the analysis in the previous section suggests the use of the uniform channel correlation and
a relatively high SNR as nominal design parameters. The design of such an estimator only
requires knowledge about the length of the cyclic prefix, the number of tones in the system and
the target range of SNRs for the application. If the receiver cannot afford an estimator that
includes tracking of channel correlation and SNR, this channel estimator works reasonably well
for fixed SNR and channel correlation.

5.1 Performance gain

For the scenario used in this paper, Sec. 2.3, we choose a rank-8 estimator with uniform design
and SNR = 30 dB. The performance of this estimator is presented in Fig. 5.1, where the SER
for the LS-estimate (3.2) and known channel are also shown. As can be seen, the low-rank
estimator is 3.5 dB better than the LS-estimator and less than 1 dB from the known channel.

5.2 Comparison to FIR-filters

An alternative to using low-rank estimators to smooth the channel estimates is to use a FIR-
filter instead. Hence we will compare our proposed low-rank estimators to FIR-filters of the
same complexity. The FIR-filters are 2p-taps Wiener filters [10], i.e. 2p multiplications per
tone that are designed for the same channel correlation and SNR as the low-rank estimators.
Figure 5.2 shows the SER for rank—p estimators in comparison with FIR-filters of the same
computational complexity. When the complexity is 16 multiplications per tone (A) the rank—p
estimator has about 0.2 dB advantage in SNR over the FIR-filter in the range of SNRs shown.
When the number of calculations goes down to 12 multiplications per tone (B) the SER-floor
of the rank—p estimator becomes visible and the FIR-filter performs better at SNRs above 20
dB.

However, it should be noted that the performance of the low-rank estimators depend heavily
of the size of the cyclic prefix. If the cyclic prefix were to be decreased (relative to the OFDM
symbol), the low-rank estimator would increase its performance. This is due to the fact that
the ”dimension” of the channel (whose duration is assumed to be shorter than the cyclic prefix)
decreases and can thus be represented with fewer coefficients. On the other hand, if the cyclic

13
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Figure 5.1: SER for 16-QAM training data and a synchronized channel. The generic rank—8
estimator, designed for a uniform channel and 30 dB in SNR, is compared to the LS estimator
and known channel at the receiver.
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Figure 5.2: SER comparison between the rank—p estimators and FIR Wiener-filters of the
same complexity. Both estimators are designed for the uniform channel and 30 dB SNR. A)
16 multiplications per tone and B) 12 multiplications per tone.

prefix increases in size, more coefficients are needed to avoid large approximation errors. Hence,
whether or not the low-rank estimator is better than the FIR-filter depends on the relative size
of the cyclic prefix and the allowed complexity.
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5.3 The use of time correlation

The low-rank estimator presented in this paper is based on frequency correlation only but the
time-correlation of the channel can also be used. The two-dimensional LMMSE estimator can
be simplified using the same technique with rank reduction as described here. However, in [14]
it is shown that such an estimator gives an inferior performance for a fixed complexity. Hence,
it seems that separating the use of frequency- and time-correlation is the most efficient way of
estimating the channel.

Other approaches to use the time-correlation is e.g. to use a decision-directed scheme [13]
or FIRfilters [3, 15]. The former can be used in a slow-fading environment, where it offers good
performance for a minimal complexity and the latter is preferred in case of fast fading. It is
possible to use a bank of FIR-filters and choose the most appropriate according the estimated
Doppler frequency [16].
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Chapter 6

Conclusions

We have investigated low-complexity low-rank approximations of the LMMSE channel esti-
mator for non-sample-spaced channels. The investigation shows that an estimator error-floor,
inherent in the low-rank approximation, is the significant limitation to the achieved complexity
reduction. We showed that a generic low-rank estimator design, based on the uniform channel
correlation and a nominal SNR, can be used in our 64-tone scenario. Compared with the full
LMMSE (3.3), there is only a small loss in performance up to a SNR of 30 dB but a reduction
in complexity with a factor N/2p = 4. For systems with more subchannels this gain is even
larger. The generic estimator design only requires knowledge about the length of the cyclic
prefix, the number of tones in the system and the target range of SNRs for the application.

We also compared low-rank estimators to FIR-filters across the tones. The comparison
showed that at low complexities and high SNRs the FIR-filters is the preferable choice, due to
the error floor in the low-rank approximation. However, if we can allow up to 16 multiplications
per tone in our scenario, the low-rank estimator is more advantageous. Also, the low-rank
estimators improve their performance as the cyclic prefix decreases in size.
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Appendix A

Optimal rank reduction

The optimal rank reduction is found from the correlation matrices

i, = E {hhg } =R
oo ﬂ
/};ls/};ls E {hlShlS} - th + SNRI
and the SVD /
—1/2 H
Rh/};lsR/h\ls/les =QDQ; (A.1)

where Q; and Q- are unitary matrices and D is a diagonal matrix with the singular values
dy > dy > -+ > dy_1 on its diagonal. The best low-rank estimator [10] is then

~ D, 0
hp:Qll op 0

] QUR; R, (A.2)

where D, is the p x p upper left corner of D, i.e. we exclude all but the p largest singular
vectors. In this paper we have Rhﬁl = Ry, and Rﬁz = R, + %I and we note that they

share the same singular vectors, i.e. the ones of Ry, = UAU". Thus, we may express (A.1)
as

UAUY (U A+i1 u? 71/2:
SNR

3 -1/2
UA (A + %Q U7 = Q,DQY

3 —-1/2
= lengUandD:A<A+%I>

The rank-p estimator (A.2) now becomes

—-1/2
h, = Ule O}UH<U<A—|——6 I)UH> h;, =

0 O SNR

D, O I} iz A, O
_ D Hy., D H1
—Ulo 01<A+—S I) UhZS—UlO O]U h;,
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where A, is the p X p upper left corner of

—1
A:A(A+i1> :diag< Aoﬁ AN—lﬁ )
SNR Ao + )\N71+m

SNR

Note that Q; = Qs since we are estimating the same tones as we are observing (i.e. smoothing)
and an eigenvalue decomposition could be used to achieve optimal rank reduction. In the
general case when e.g. pilot-symbol assisted modulation [15] is used and there are known
symbols (pilots) on only a part of the subchannels, we have Q; # Q> since Rhﬁzs and Rﬁzsﬁzs
don’t share the same singular vectors (the matrices are not even of the same size). Hence, the

more general SVD must be used which motivates the nomenclature in this article.
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Appendix B

Channel-correlation matrices

Using the channel model in (2.2), the attenuation on tone k£ becomes

M-1

_ionk
hy = Z e TN
i=0

and the correlation matrix for the attenuation vector, h,
Run = E {hh"} = 1]

can be expressed as (7;’s independent)

M-1 [Nl—l

Tmmn = / ' / H fr (1) Z 0 (7;) eﬂ””%] dro...dTy—1
k=0 i—0

M-1

= X [ ()0 (m) eI dr (B.1)
2=0

where 0(7) is the multi-path intensity profile and f;, () is the probability density function of
Tk
The correlation matrices of the three channels used in this paper are calculated below.

e Synchronized channel.

The probability distributions for the delays are

fro (1) = 6(m),
/L ifrel0,L] . _

fn‘ (Tz) = { 0 otherwise , 2, M

Y

and the power-delay profile is () = Cie™/7m. Substituting in (B.1), and normalizing
Tk to unity, gives us

L+ % <1 — e_L(ﬁ"'Qﬂijn))

j2rmon

Trms

Tm,n =

L+ (M —1) Trms (1 — e_frfns)
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e Uniform channel.

The probability distributions for the delays are

1/L if 7; € [0, L]

Frln) = { 0 otherwise i=12,..., M,

and the power-delay profile is constant 0 (7) = Cy. Substituted in (B.1), and normalizing

Tk to unity, gives us
1 if m=n
Tmn = 1-e P2"L5F"

o= if m#n
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Appendix C

Estimator mean-squared error

In this appendix we derive the MSE of the rank—p estimator in (3.5). We also present the
MSE-floor, which bounds the achievable MSE from below in low-rank approximations of the
LMMSE estimator. To get a general expression for the mean-squared error for the rank—p
approximation of the LMMSE estimator, we assume that the estimator has been designed
for channel correlation Ry, and signal-to-noise ratio SNR, but the real channel h has the
correlation Ry, and the real signal-to-noise ratio is SNR. From (2.1) and (3.2), we have

h;S =h+ n, where the noise term n = X 'n has the autocovariance matrix R = gﬁ—RI The

estimation error e, = h — h, of the rank—p estimator (3.5) is

ep:U<I—[AOP SDUHE—U[AOP glUHﬁ, (C.1)

and the mean-squared error is
1 H
mse (p) = N Trace £ {epep } , (C.2)
To simplify the expression we use that:

e h and 11 are uncorrelated, hence the cross terms are cancelled in the expectation.

o Trace (UAUH) = Trace A if U is a unitary matrix, and Trace (A + B) = Trace A +
Trace B [17].

e Trace (DAD) = Y, ajxd;i when D is a diagonal matrix with the elements dj on its
diagonal and A (not necessarily a diagonal matrix) has diagonal elements ay, .

Using (C.1) in (C.2), the mean-squared error becomes
ufr-| 2 %) uer u(1-| 4 0 HUH+
0 O hh 0 O

H
U[AP O]UHRHHU[AP O] UH}

1
mse (p) = NTrace

0 0 0 0
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1 (2t e ( Nzl 1 i
= — 1—6k + HE -
N k:O k=p N =
_ ip_l( (1 5)2+i5> Z (C.3)

where (i is the channel power in the kth transform coefficient, i.e., the kth diagonal element

of the matrix U¥R,,U. The MSE can be lower-bounded, mse (p) > mse (p) , by what we call
the MSE-floor

lNl

mse (p :_Zﬂk

If there is no mismatch in SNR or channel correlation, we have u; = diag (UH thU) = A
and SNR = SNR, and the MSE becomes

e () = 3= (Ml =80+ gt ) + 5 ZAk
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