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Abstract

In this paper, we investigate the effects of cross-sectional disturbance correlation on a
previously suggested panel data stationarity test. We find that the previously suggested
test has a serious size distortion if the disturbances to different cross sections are corre-
lated. We suggest a new panel data test procedure that also tests the null hypothesis of
stationarity. However, the test procedure that we suggest is robust against the presence
of cross-sectional disturbance correlation, as well as serial correlation. Furthermore, the
test has an approximate normal distribution and which makes p-values and critical values
easy to obtain. By applying our test to investigate output convergence, we illustrate the
adverse effects that can occur when neglecting to account for cross-sectional correlation
when testing for stationarity in panel data models.

JEL Classification: C32; C33; C15
Keywords: Panel-Data Stationarity; Cross-Sectional Dependence; Output Convergence

1 Introduction

Ever since the seminal papers by Levin and Lin (1992, 1993), Quah (1994) and Im et al.
(1997) the application of, and research on, panel data unit root, stationarity and cointe-
gration have flourished. The introduction of panel data methods in traditional time-series
analysis enables more powerful inference about the economic and econometric hypotheses.
As with univariate time series, the panel data research has mainly focused on unit root
and cointegration testing. But recently the focus has has shifted somewhat. Hadri (2000)
suggests that the univariate stationarity test proposed by Kwiatkowski et al. (1992) can be
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extended to the panel data context. By appropriately standardizing the mean of station-
arity tests of the individual cross sections in the panel, a test statistic with a normal limit
can be constructed.

Besides the paper by Hadri (2000), Hadri and Larsson (2003), Hadri (2004), Shin and
Snell (1999, 2002) and Tiffin (1999) consider the panel data stationarity test under differ-
ent assumptions regarding the serial dependency of the different cross-sectional error terms.
But serial correlation is not the only important issue when testing for stationarity in panel
data. In many economic situations, e.g. when studying output convergence, it is unrea-
sonable to assume that cross-sectional disturbances are independent. On the contrary, the
notion of an international business cycle suggests that the disturbances that drive the time
series for different cross sections should be correlated. Since the panel data stationarity
tests mentioned above relies on the fact that disturbances to the time series of different cross
sections are independent, inference about output convergence could be adversely affected.
The problem regarding cross-sectional correlation has been recognized within the panel
data unit root literature, where several suggestions regarding how to treat cross-sectional
correlation have been proposed (see e.g. Bai and Ng, 2004; Chang, 2002, 2004; Jönsson,
2005; Moon and Perron, 2004; Pesaran, 2003; Phillips and Sul, 2003). In sprite of this fact,
no attempt has, to our knowledge, been made to incorporate cross-sectionally correlated
disturbances into the the panel data stationarity framework of Hadri (2000).1

In this paper, we propose a panel data stationarity test that is robust against cross-
sectional correlation as well as serial correlation. We show that the test has a normal limit
under the null hypothesis. Furthermore, we show by simulation that the tests works rather
well also in relatively small samples. Finally, we employ the suggested panel data stationar-
ity test to study how inferences regarding output convergence within the G7 countries can
be affected when not considering cross-sectional correlation in the panel data stationarity
framework.

The rest of the paper is organized as follows. In Section 2 we set out by introducing
the univariate stationarity test that is underpinning the panel data test used in this paper.
We then introduce the panel data stationarity test and discuss the previous contributions
made in the field. In Section 3 we investigate the effect of cross-sectional correlation on
the panel data stationarity test previously suggested. Finding that the existing test cannot
handle cross-sectional correlation, we suggest an extension to the current test procedure,
which renders a panel data stationarity test that can be used regardless of whether cross-
sectional disturbance correlation is present or not. Also in Section 3, we study the size
and power properties of the proposed test. In Section 4 we use the panel data stationarity
tests to illustrate how inference about output convergence can be affected by cross-sectional
correlation. Finally, Section 5 concludes.

In the rest of this paper, we adopt the following notation. Vectors and matrices are
denoted by bold-face symbols. An element appearing in the i:th row and the j:th column
of the matrix Σ is denoted (Σ)ij . Finally, the subindices i and t of the type yit is taken to
denote cross-sectional unit and time-series observation, respectively.

1It can be noted that alternative approaches can be taken to account for cases where errors are cross-sectionally
dependent. For example, Nyblom and Harvey (2000) and Bai and Ng (2001) deal with stationarity testing in
multivariate models. However these models falls outside the intuitive framework provided by the panel data test
of Hadri (2000).
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2 Stationarity testing

Before we present the panel data framework, we introduce a univariate stationarity test that
is fundamental to the panel data stationarity testing procedures that are to be investigated
in this paper. We then go on by discussing the extensions made in the univariate test when
using it to test for stationarity in panel data models. More specifically, we focus on the
assumption, regarding cross-sectional dependency of the error term, that has been made in
the previous panel-data stationarity tests.

2.1 Stationarity testing in univariate time series

The test that we use as point of departure in this paper is the test proposed by Kwiatkowski
et al. (1992), the so called KPSS test. In the KPSS test the null hypothesis of stationarity
is tested against the alternative hypothesis that the series under consideration contains a
unit root. To be precise, the econometric framework used is specified by (1)-(2) below.

yt = α + δt + ξt + εt (1)
ξt = ξt−1 + ηt (2)

In (1), yt is the series that is stationary under the null hypothesis. α denotes an intercept
in the series yt, while the term δt is a time trend.2 ξt in (1) is a random walk component,
while εt is a stochastic disturbance term. The expression in (2) describes the evolvement
of the random walk component. ηt in (2) is the random error that drives the random walk
under the alternative hypothesis.

To derive at a test that is able to discriminate between the null and the alternative, we
have to make some assumptions regarding the error processes εt and ηt. The assumptions
that we make are presented below.3

Assumption 1 The disturbance terms εt are iid N(0, σ2
ε).

Assumption 2 The disturbance terms ηt are iid N(0, σ2
η) and independent of εt.

The null hypothesis of stationarity, when considering the econometric model presented
in (1)-(2), is represented by a zero variance of the random error that drives the random
walk, i.e. H0: σ2

η = 0. The alternative hypothesis is that the series considered contains a
random walk component, that is H1: σ2

η > 0.
To derive the test statistic for testing the null of stationarity, let et denote the OLS

residuals obtained when running a regression of yt on a constant and, if trend stationarity
is considered under the null hypothesis, a time trend. Furthermore, let σ̂2

ε be the estimated
variance of εt. To test the null hypothesis that a time series is stationary, H0: σ2

η = 0,
against the one-sided alternative of non-stationarity, H1: σ2

η > 0, Kwiatkowski et al. (1992)
suggest that the LM-statistic, calculated as in (3)-(5), should be used.

2The intercept term, α, can be interpreted as the initial value of the random walk component, ξ0. (see
Kwiatkowski et al., 1992).

3Throughout this paper, we make the same assumptions regarding the normality of disturbances as Hadri
(2000). It can however be noted that the assumptions regarding normality of disturbances are not made by
Kwiatkowski et al. (1992).
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LM =
T−2

∑T
t=1 S2

t

σ̂2
ε

(3)

St =
t∑

i=1

ei (4)

σ̂2
ε = T−1

T∑

t=1

e2
t (5)

Under the null hypothesis of stationarity, the test statistic in (3) converges to a func-
tional of a Brownian bridge as in (6).

LM =
T−2

∑T
t=1 S2

t

σ̂2
ε

→ σ2
∫ 1
0 V (r)2dr

σ2
(6)

In (6), σ2 denotes the long-run variance of the error term εt, which is equal to σ2
ε if εt

is serially uncorrelated. V (r) is a standard Brownian bridge.4 If a consistent estimate of
σ2, such as σ̂2

ε in (5), is used in the denominator of (3), the LM statistic converges to the
expected value of the standard Brownian bridge (see Kwiatkowski et al., 1992).

If the error term εt follows an ARMA process, while ηt still is white noise, Assumption
1 is not fulfilled. However, the test statistic in (3) could still be applied if the regularity
conditions used by Phillips and Perron (1988) are fulfilled. A slight complications is that
the estimator of the disturbance variance mentioned above is no longer valid. Instead, a
consistent estimator of the long-run variance, in the presence of serial correlation, has to be
used in the denominator of (3). Kwiatkowski et al. (1992) suggest the use of the estimator
presented in (7) and (8).

s2(l) = T−1
T∑

t=1

e2
t + 2T−1

l∑

s=1

w(s, l)
T∑

t=s+1

etet−s (7)

w(s, l) = 1− s

l + 1
(8)

The weighting function in (8) is the Bartlett window used by e.g. Newey and West (1987).
As long as l → ∞ as T → ∞, while l/T 1/4 → 0, the consistency of s2(l), and hence the
Brownian bridge distribution of the test statistic in (6), is assured. Using the knowledge
about the test’s distribution under the null hypothesis, critical values for the stationarity
test can be extracted.

The test presented above is developed to test for stationarity using one time series at a
time. But if several time series were to be considered simultaneously we could increase the
power of the stationarity test and hence be in better a position when testing economic and
econometric hypotheses. This was recognized by Hadri (2000), who originally suggested
the panel data stationarity test discussed in the next subsection.

2.2 Stationarity testing in models with panel data

The stationarity testing procedure described in Section 2.1 can be extended to test for
stationarity in panel data models. One way to proceed, when dealing with panel data, was

4The Brownian bridge is either of the first or the second order depending on the detrending procedure used.
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suggested by Hadri (2000). By considering time series for several cross sections simultane-
ously more powerful inference about the null hypothesis is enabled. Moreover, by applying
the sequential limit theory, developed by Phillips and Moon (1999), a normal limit for the
panel data stationarity test can be reached. Since, normal normal distribution is easier to
work with than distributions of Brownian bridges, the framework of Hadri (2000) is very
attractive. In this subsection, we describe the panel data stationarity test and discuss one
of the main limitations of the test.

Suppose that we observe N different time series yit, where i ∈ {1, ..., N} and t ∈
{1, ..., T} as in (9) and (10), instead of just one time series as in Section 2.1.

yit = αi + δit + ξit + εit (9)
ξit = ξit−1 + ηit (10)

The parameters in (9) and (10) have the same interpretations as in the previous sub-
section. However, a subindex i has been added to illustrate the panel structure of the data.
Furthermore, suppose that we place some assumption on the disturbances of different time
series.

Assumption 3 The disturbance terms εit are iid N(0, σ2
ε,i).

Assumption 4 The disturbance terms ηit are iid N(0, σ2
η,i) and independent of εjt for all

j ∈ {1, ..., N}.

The assumptions above correspond to the assumptions made in the univariate model of
Section 2.1. With these assumption, together with the independence assumption, presented
below in Assumption 5, it is possible to derive a panel data stationarity test that has a
normal limit as T and N pass to infinity sequentially. , Indeed, this was suggested by Hadri
(2000).

Assumption 5 The covariance, cov(εit, εjt) = 0 if i 6= j

With these assumptions, the panel data stationarity test is performed by calculating the
LM statistic in (3) for each and every one of the time series entering the panel. Let these
test statistics be denoted LMi. By applying the central limit theorem (CLT) of Lindberg-
Levy, the standardized test statistic LM (T,N→∞)seq

in (11) will converge to a standard
normal distribution as T →∞ followed by N →∞.

LM (T,N→∞)seq
=

(N−1
∑N

i=1 LMi)−E[LM ]√
V ar[LM ]/N

(11)

The moments used to standardize the panel data stationarity test statistic in (11) are
supplied by Hadri (2000) and Hadri and Larsson (2003).

Immediately when we study (11), the relevance of Assumption 5 becomes clear. If the
N × 1 disturbance vector εt = (ε1t, . . . , εNt)′ in (9) doesn’t have a diagonal covariance
matrix, the LM statistics of different cross-sectional units are not independent. If they are
not independent, one cannot use the Lindberg-Levy CLT to achieve asymptotic normality.
Instead, the asymptotic, as well as the small-sample, distribution of the panel data test
statistic will depend on nuisance parameters. More specifically, the panel data stationarity
test will depend on the degree of cross-sectional correlation between the disturbances of
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different cross-sectional units. In the next section, we investigate the effect that such a
violation of Assumption 5 will have on the panel data stationarity test. We will also
suggest an extension of the panel data stationarity test of Hadri (2000) that will handle
the presence of cross-sectional correlation.

3 Stationarity testing when disturbances are cor-

related across cross sections

3.1 Effects of cross-sectional correlation.

As mentioned above, the panel data stationarity test of Hadri (2000) is derived under the
assumption that the disturbances to different cross sections are independent. However,
in most empirical economic applications this is not likely to be the case. Regardless of
whether we consider cross sections consisting of individuals, firms, regions or countries, the
time series that we study are likely to be correlated across the cross sections. Hence, one
important question is what effect such a correlation will have on the panel data test of
Hadri (2000).

To investigate the effects of cross-sectional correlation, assume that the noise term in
(9) is correlated across cross sections, i.e. assume that the N × 1 disturbance vector εt has
the non-diagonal covariance matrix Σ. If this is the case, Assumption 5 will be violated. As
a consequence, we cannot apply a the Lindberg-Levy CLT to achieve a normal limit for the
panel data stationarity test. Furthermore, the distribution of the panel data stationarity
test may be affected by the presence of cross-sectional correlation.

Since cross-sectional correlation in the panel data unit root framework has been shown
to cause size distortions (see e.g. O’Connell, 1998), we investigate the size properties of the
panel data stationarity test. To this end, we generate data under the null hypothesis of
stationarity, with different degrees of cross-sectional correlation, and study the how often
the null hypothesis is incorrectly rejected. The data generating process that is used in this
investigation is described in (12)-(15).

Zt ∼ N(0N×1; IN ) (12)
P = Chol(Σ) (13)
εt = PZt (14)
yt = α + εt (15)

In (13), P is the lower triangular Cholesky decomposition of the variance/covariance
matrix Σ. The structure of the variance/covariance matrix Σ will determine the cross-
sectional correlation in the different time series. If Σ is diagonal, Assumption 5 will be
fulfilled. If Σ is non-diagonal, cross-sectional correlation will be present. εt in (14) and (15)
is a N ×1 vector with possibly cross-sectionally correlated error terms. yt is a N ×1 vector
with a times-series observations of the series under investigation. α and δ are N×1 vectors
with the coefficients for the deterministic components of the cross-section time series.5

The effect of different degrees cross-sectional correlation is investigated by altering the
elements of Σ. Four choices of Σ are considered. In all the simulations, we set the diagonal
elements of Σ to one while altering the off-diagonal elements. The off-diagonal elements are

5We allow for heterogeneity in the deterministic components. That is, αi is allowed to vary across i.
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set to 0.00, 0.25, 0.50 and 0.75, respectively. Since we set the variance of the error terms
to unity the four different covariance cases corresponds to a correlation structure between
the disturbances to different cross-sectional units of 0.00, 0.25, 0.50 and 0.75, respectively.
The structure of Σ is given in (16).

(Σ)ij ∈ {0.00, 0.25, 0.50, 0.75} if i 6= j, (Σ)ij = 1 if i = j (16)

The size of the panel data stationarity test of Section 2.2 is investigated by performing
5,000 replications of the test presented in (11). We set αi ∈ U [−1, 1] and δ = 0N×1.6 We
standardize the panel LM statistic using moments obtained from Monte Carlo simulations7.
By using simulated moments we can isolate the effects of cross-sectional correlation, not
having to pay attention to e.g. the overall finite-sample performance of the test. We then
calculate the size of the test using the asymptotic critical value at the 5% significance level
obtained from the normal distribution. The results from the size investigation are presented
in Table 1.

As we see in Table 1, the performance of the test is rather poor as soon as the assumption
of cross-sectional independency is abandoned. As expected, the test performs worse when
the the degree of cross-sectional correlation increases. Furthermore, the size distortion,
that arise as a consequence of cross-sectionally correlated disturbances, seems to persist in
all sample sizes.

6To save space, we only present results for the case where the deterministic component consists of an intercept
only.

7The moments are discussed and presented in Section 3.3
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Table 1: Size distortion of the panel LM test in the presence of CSD
k=24 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.056 0.052 0.054 0.055 - - - 0.072 0.076 0.092 0.111 - - -

50 0.063 0.067 0.057 0.058 0.059 - - 0.082 0.088 0.102 0.129 0.126 - -
75 0.061 0.055 0.051 0.050 0.046 0.042 - 0.076 0.084 0.089 0.106 0.125 0.149 -

100 0.063 0.061 0.057 0.050 0.055 0.049 - 0.079 0.091 0.110 0.124 0.119 0.148 -
150 0.063 0.056 0.063 0.057 0.051 0.049 0.048 0.081 0.093 0.103 0.118 0.120 0.154 0.181
200 0.063 0.060 0.064 0.060 0.059 0.058 0.058 0.079 0.087 0.105 0.111 0.122 0.163 0.196
250 0.063 0.066 0.064 0.060 0.063 0.067 0.060 0.091 0.095 0.110 0.124 0.130 0.163 0.183
500 0.067 0.070 0.069 0.068 0.058 0.057 0.055 0.081 0.099 0.108 0.114 0.129 0.146 0.177

1000 0.069 0.060 0.063 0.058 0.056 0.055 0.048 0.071 0.095 0.096 0.112 0.118 0.151 0.184
ρ=0.50 ρ=0.75

T=25 0.103 0.133 0.157 0.175 - - - 0.149 0.193 0.235 0.259 - - -
50 0.115 0.157 0.191 0.212 0.217 - - 0.186 0.231 0.256 0.269 0.295 - -
75 0.114 0.148 0.168 0.189 0.202 0.230 - 0.172 0.215 0.238 0.243 0.258 0.302 -

100 0.111 0.149 0.169 0.180 0.192 0.246 - 0.170 0.208 0.233 0.255 0.259 0.279 -
150 0.111 0.144 0.164 0.185 0.197 0.222 0.262 0.157 0.193 0.219 0.236 0.237 0.280 0.295
200 0.118 0.147 0.167 0.179 0.196 0.224 0.260 0.147 0.196 0.227 0.245 0.234 0.262 0.302
250 0.119 0.140 0.178 0.194 0.186 0.238 0.263 0.161 0.191 0.212 0.240 0.241 0.265 0.287
500 0.115 0.143 0.170 0.180 0.187 0.216 0.251 0.145 0.190 0.206 0.220 0.232 0.261 0.296

1000 0.105 0.136 0.158 0.166 0.187 0.213 0.255 0.138 0.182 0.206 0.210 0.224 0.243 0.285
k=12 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.060 0.053 0.054 0.049 - - - 0.079 0.089 0.108 0.121 - - -

50 0.068 0.057 0.065 0.064 0.056 - - 0.080 0.093 0.095 0.110 0.132 - -
75 0.061 0.066 0.063 0.059 0.055 0.051 - 0.086 0.098 0.102 0.113 0.122 0.150 -

100 0.070 0.066 0.057 0.062 0.060 0.057 - 0.078 0.090 0.111 0.114 0.122 0.157 -
150 0.066 0.062 0.056 0.060 0.054 0.050 0.058 0.081 0.090 0.108 0.114 0.118 0.158 0.193
200 0.067 0.059 0.059 0.065 0.062 0.054 0.056 0.082 0.098 0.115 0.117 0.121 0.155 0.187
250 0.071 0.058 0.060 0.055 0.067 0.060 0.060 0.083 0.090 0.107 0.116 0.124 0.156 0.176
500 0.071 0.063 0.063 0.060 0.057 0.059 0.061 0.086 0.096 0.107 0.119 0.118 0.163 0.175

1000 0.065 0.064 0.063 0.062 0.062 0.060 0.058 0.086 0.098 0.102 0.112 0.115 0.149 0.181
ρ=0.50 ρ=0.75

T=25 0.115 0.149 0.177 0.202 - - - 0.176 0.222 0.248 0.266 - - -
50 0.123 0.148 0.171 0.187 0.203 - - 0.162 0.208 0.225 0.255 0.264 - -
75 0.111 0.154 0.169 0.192 0.196 0.225 - 0.159 0.191 0.221 0.241 0.247 0.277 -

100 0.122 0.149 0.169 0.173 0.199 0.227 - 0.158 0.200 0.225 0.220 0.236 0.281 -
150 0.112 0.137 0.164 0.170 0.182 0.224 0.247 0.153 0.186 0.206 0.223 0.238 0.271 0.283
200 0.108 0.141 0.162 0.172 0.184 0.225 0.257 0.142 0.186 0.198 0.222 0.236 0.256 0.290
250 0.115 0.137 0.153 0.179 0.192 0.215 0.253 0.145 0.184 0.198 0.226 0.222 0.260 0.284
500 0.110 0.140 0.158 0.165 0.180 0.231 0.251 0.146 0.174 0.199 0.211 0.211 0.253 0.276

1000 0.108 0.136 0.158 0.177 0.179 0.208 0.237 0.132 0.174 0.195 0.214 0.232 0.248 0.281
k=4 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.061 0.065 0.059 0.057 - - - 0.076 0.102 0.104 0.118 - - -

50 0.072 0.059 0.060 0.066 0.058 - - 0.082 0.096 0.104 0.107 0.129 - -
75 0.066 0.063 0.062 0.062 0.052 0.056 - 0.081 0.097 0.111 0.114 0.125 0.146 -

100 0.068 0.067 0.059 0.054 0.060 0.059 - 0.079 0.087 0.107 0.102 0.121 0.150 -
150 0.065 0.065 0.062 0.062 0.058 0.058 0.055 0.083 0.093 0.102 0.115 0.126 0.149 0.178
200 0.061 0.061 0.066 0.066 0.068 0.055 0.051 0.087 0.095 0.104 0.114 0.122 0.156 0.178
250 0.066 0.064 0.061 0.061 0.062 0.059 0.058 0.084 0.098 0.104 0.117 0.126 0.153 0.171
500 0.070 0.056 0.063 0.065 0.058 0.055 0.052 0.083 0.087 0.107 0.114 0.119 0.150 0.195

1000 0.068 0.068 0.067 0.063 0.059 0.062 0.055 0.079 0.096 0.102 0.114 0.132 0.155 0.174
ρ=0.50 ρ=0.75

T=25 0.111 0.156 0.171 0.191 - - - 0.152 0.194 0.214 0.230 - - -
50 0.110 0.144 0.167 0.189 0.187 - - 0.151 0.184 0.204 0.222 0.223 - -
75 0.106 0.140 0.154 0.173 0.182 0.214 - 0.146 0.181 0.198 0.217 0.226 0.275 -

100 0.110 0.135 0.154 0.174 0.184 0.220 - 0.145 0.170 0.204 0.211 0.225 0.253 -
150 0.107 0.139 0.164 0.171 0.170 0.214 0.242 0.142 0.176 0.197 0.206 0.226 0.251 0.284
200 0.116 0.139 0.159 0.165 0.175 0.205 0.237 0.150 0.171 0.197 0.215 0.228 0.251 0.271
250 0.118 0.141 0.158 0.171 0.184 0.206 0.240 0.139 0.183 0.192 0.205 0.228 0.250 0.280
500 0.109 0.140 0.160 0.178 0.170 0.215 0.233 0.137 0.170 0.194 0.212 0.216 0.247 0.270

1000 0.108 0.140 0.153 0.162 0.180 0.213 0.246 0.126 0.176 0.187 0.205 0.213 0.243 0.276
No lag, k=0 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.065 0.066 0.067 0.066 - - - 0.087 0.091 0.104 0.118 - - -

50 0.070 0.060 0.062 0.064 0.053 - - 0.078 0.093 0.106 0.118 0.119 - -
75 0.068 0.061 0.063 0.057 0.066 0.062 - 0.079 0.092 0.111 0.113 0.119 0.145 -

100 0.071 0.064 0.065 0.063 0.062 0.060 - 0.079 0.095 0.105 0.108 0.112 0.147 -
150 0.072 0.061 0.058 0.064 0.063 0.063 0.055 0.082 0.092 0.107 0.110 0.119 0.147 0.188
200 0.069 0.064 0.067 0.060 0.058 0.058 0.053 0.076 0.089 0.104 0.114 0.114 0.152 0.185
250 0.066 0.060 0.069 0.060 0.066 0.062 0.054 0.079 0.095 0.103 0.115 0.129 0.153 0.182
500 0.069 0.062 0.063 0.055 0.062 0.060 0.060 0.082 0.098 0.112 0.111 0.120 0.149 0.180

1000 0.064 0.063 0.067 0.065 0.059 0.057 0.054 0.080 0.087 0.112 0.118 0.122 0.149 0.187
ρ=0.50 ρ=0.75

T=25 0.101 0.141 0.169 0.169 - - - 0.141 0.182 0.189 0.213 - - -
50 0.098 0.145 0.153 0.165 0.180 - - 0.137 0.173 0.195 0.223 0.216 - -
75 0.109 0.143 0.151 0.169 0.172 0.217 - 0.130 0.169 0.187 0.206 0.225 0.246 -

100 0.110 0.136 0.157 0.175 0.181 0.209 - 0.128 0.177 0.202 0.199 0.211 0.256 -
150 0.107 0.130 0.149 0.165 0.182 0.222 0.236 0.134 0.168 0.195 0.217 0.214 0.250 0.274
200 0.107 0.129 0.153 0.163 0.182 0.209 0.239 0.129 0.167 0.190 0.189 0.216 0.252 0.271
250 0.106 0.128 0.156 0.161 0.183 0.208 0.234 0.131 0.161 0.190 0.205 0.225 0.249 0.267
500 0.111 0.131 0.157 0.171 0.178 0.211 0.253 0.134 0.170 0.193 0.214 0.205 0.242 0.269

1000 0.105 0.138 0.151 0.168 0.179 0.215 0.244 0.136 0.175 0.182 0.201 0.212 0.234 0.269
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Given that we have panel data that is cross-sectionally correlated, we have to perform
some sort of correction if we are to come to terms with the size distortions that occur.
In the panel data unit root context, Im et al. (1997) and Levin et al. (2002) suggested
that the problem regarding cross-sectional correlation could be reduced by subtracting the
cross-sectional average form each time series observation. The same solution to the problem
with cross-sectional correlation was proposed by Shin and Snell (1999) in the panel data
stationarity testing framework. However, such a solution will only be viable if the cross-
sectional covariation can be modelled by a time-specific factor that is common across the
different cross-sectional units. Recent research (see e.g. Strauss and Yigit, 2003) has shown
that the de-meaning solution cannot completely solve the problem with cross-sectionally
correlated residuals.

Instead, we suggest a procedure that works under a completely general covariation
structure and does not depend on the assumption that the cross-sectional correlation can be
modelled by a factor model. In the next subsection we present our procedure for eliminating
the size distortions that occur in the panel data stationarity test when the disturbances are
correlated over cross sections.

3.2 The cross-sectionally corrected LM test

In this subsection we propose a method for correcting the size distortions that occur in the
panel data stationarity test of Hadri (2000) when disturbances to different cross sections
are correlated. We begin by considering the baseline case where the disturbance terms
that are present under the null hypothesis are serially uncorrelated. We then go on by
considering the case where the disturbances of different cross-section are serially correlated
and follow a seemingly unrelated autoregressive moving-average (ARMA) process.

The intuition behind the correction that we suggest in this paper is that the correlated
multivariate normal disturbances in (9) can be transformed into an independent multivari-
ate normal disturbances under the null hypothesis. Furthermore, the transformation is
valid under the null since it does not affect the stationarity properties of the series that are
investigated by the stationarity test.

Consider once again the panel data model in (9) and (10). As discussed above, the
panel data stationarity test of Hadri (2000) is developed for the where the noise terms of
different cross sections are uncorrelated. To be able to apply the test under a wider range of
conditions, we now extend the panel data model of Section 2.2 to allow for contemporaneous
cross-sectional correlation in the noise terms. Our extended model is presented below in
Model 1.

Model 1 Suppose that the panel data model is given by

yit = αi + δit + ξit + εit

ξit = ξit−1 + ηit

where i ∈ {1, ..., N} and t ∈ {1, ..., T} and ξi0 is fixed.
The vector of noise terms in Model 1, εt = (ε1t, ..., εNt)′, follows a normal distribution

with mean zero and covariance matrix Σ. The covariance matrix is not necessarily diagonal.
The error terms that drives the random walk components under the alternative hypothesis
are independent of the noise terms and normally distributed with zero mean and full-rank
covariance matrix Ω.
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As shown in the previous subsection, the panel data stationarity test of Hadri (2000) has
a serious size distortion under the null hypothesis if Model 1 is correct. The size distortions
arise as a consequence of the LM statistics of different cross-sectional units being correlated.
In order to obtain independent LM statistics, one could apply some sort of orthogonaliza-
tion of the different LM statistics. In this paper, we propose that the orthogonalization
procedure of Doornik and Hansen (1994) should be applied.8 The orthogonalization per-
formed, to obtain a cross-sectionally corrected LM (CSCLM) panel data stationarity test,
is described below.

The Cross-Sectionally Corrected LM (CSCLM) test. The CSCLM test is performed
by implementing the following steps in the environment described in Model 1:

1. Detrend the individual panel data series, y′i = (yi1, . . . , yiT ), by regressing the series
either on a constant or on a constant and a trend. The residual series that are obtained
are N different T × 1 vectors e′i = (ei1, . . . , eiT ).

2. Calculate the correlation matrix, Ĉ, of the residuals. To obtain the correlation ma-
trix, let ei = T−1

∑T
t=1 eit and ě′t = (e1t − e1, . . . , eNt − eN ). Furthermore, let the

variance/covariance matrix with the residuals be denoted by Ŝ, i.e. (Ŝ)ij = T−1ě′iěj ,
where ě′i = (ěi1, . . . , ěiT ) for i ∈ {1, . . . , N}, and let V̂ = diag((Ŝ)−1/2

11 , . . . , (Ŝ)−1/2
NN )

be a diagonal matrix with the inverses of the residual standard deviations in the main
diagonal. From these matrices, the correlation matrix is given by Ĉ = V̂ŜV̂.

3. With the correlation matrix, Ĉ, at hand, perform the spectral decomposition of Ĉ.
Let the eigenvalues and the corresponding (N × 1) eigenvectors of Ĉ be denoted λ̂i

and Ĥi. Arrange the eigenvalues into a diagonal matrix, Λ̂ = diag(λ̂1, . . . , λ̂N ), where
the N eigenvalues of Ĉ appears in the main diagonal. Furthermore, sort the N × 1
eigenvectors, Ĥi, into matrix Ĥ = (Ĥ1, . . . , ĤN ) such that the eigenvectors appearing
in the columns of Ĥ corresponds to the eigenvalues appearing in the main diagonal
of Λ̂.

4. Construct the cross-sectionally corrected (CSC) residual series ẽt = ĤΛ̂−1/2Ĥ′V̂ět,
where Λ̂−1/2 is diagonal matrix with the inverse of the square root of the eigenvalues
appearing in the main diagonal.

5. Perform the LM test in (3) on each of the cross-sectionally corrected residual series.
Calculate the the panel LM statistic for the null of stationarity as in (11), using the
appropriate moments.9

The null hypothesis tested by the CSCLM test is that all cross-section time series are
stationary, i.e. H0:σ2

i = 0 ∀ i ∈ {1, . . . , N}. The alternative hypothesis is formulated as
H1:σ2

i > 0 ∀ i ∈ {1, . . . , N}, which means that all time series in the panel contains a unit
root.

With the CSCLM test procedure, we are able to construct a test that is valid even
if the noise terms of different cross-sectional units are correlated. More specifically, if

8We apply this orthogonalization procedure because it is scale-invariant and invariant to the ordering of the
variables (see Doornik and Hansen, 1994). However, preliminary simulations show that the Cholesky decompo-
sition of the estimated variance/covaraince matrix can be applied without changing the results.

9Just as in the univariate case, the variance estimator in the denominator of (3) has to be replaced by a
consistent long-run variance estimator, like the one in (7) and (8), if the noise terms are serially correlated.
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Model 1 is correct, the statistic of the cross-sectionally corrected LM test presented above
can be approximated by a standard normal variate under the null hypothesis as T → ∞
while keeping N fixed, i.e. as (T → ∞, Nfixed). The normal approximation is valid
since, if the null hypothesis if true, then the detrended series will be unbiased estimates of
the true disturbances. If we let T pass to infinity while fixing N , the variance/covariance
matrix of the disturbance terms can be consistently estimated. Hence, the orthogonalization
procedure described in the CSCLM test will render independent residual series. This will
imply that the individual LM statistics, calculated as in(3), will render LM test statistics
that consists of independent Brownian bridges and, hence, don’t depend on the nuisance
parameters introduced by cross-sectional correlation. By standardizing the mean of these
Brownian bridges using their expected value and the standard deviation of the expected
value, the panel LM statistic will converge to a standard normal distribution if N is large
enough. Normality will follow as a consequence of the central limit theorem of Lindberg-
Levy.

However, the CSCLM test presented above relies on the assumption that the distur-
bances to the different series are serially uncorrelated. Under certain circumstances, this
can be a rather strict assumption. Hence, the next step is to relax this assumption and let
the noise processes by both cross-sectionally and serially correlated.

Assumption 6 The vector of noise terms in Model 1, εt = (ε1t, ..., εNt)′, is generated by
a stationary and invertible seemingly unrelated ARMA process of finite order:

Θ(L)εt = Φ(L)νt

The disturbances to the seemingly unrelated ARMA process, νt = (ν1t, ..., νNt)′, are as-
sumed to be independent over time and normally distributed with zero mean and vari-
ance/covariance matrix Σ.

The implication of the ARMA process being seemingly unrelated is that the finite-order
lag polynomial matrices Θ(L) and Φ(L) are diagonal. Also, since the seemingly unrelated
ARMA process is invertible it has an infinite moving average representation as in (17).

εt = Ψ(L)νt, (17)

In (17), Ψ(L) is an infinite order lag polynomial matrix. Since both the polynomial
lag matrices that governs the autoregressive and the moving average part of the seemingly
unrelated ARMA process are diagonal, so will Ψ(L) be. However, to make the error
processes workable we have to place some restrictions on the coefficients of the infinite
moving average representation of the noise terms. This assumption is presented below in
Assumption 7.

Assumption 7 Let ψi
k be the i:th diagonal element in the lag polynomial matrix of order k.

The following condition is placed upon the coefficients of the infinite order moving average
representation:

∞∑

k=0

(ψi
kψ

j
k)

2 < ∞ for i, j ∈ {1, ..., N}

The condition placed on the coefficients of the infinite moving average representation
of the seemingly unrelated ARMA process is necessary for the existence of the long-run
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variances and covariances of the disturbance processes to exit. If they exist, they can be
consistently estimated for fixed N given that T is large.

We have now made all the assumptions necessary to present the central result for the
CSCLM test with serially correlated errors. However, before we go on by studying the
CSCLM test in the presence of cross-sectional and serial correlation, we first note that the
orthogonalized residual series will retain the stationarity properties of the original seemingly
unrelated ARMA process. That is, if the N residual series appearing as elements of the
vector et are stationary, so is the N orthogonalized residual series of the ẽt. This follows
from the fact that any linear combination of stationary ARMA processes is stationary as
well. This observation will ensure that the stationarity properties that apply to the residual
series under the null hypothesis is kept intact under the linear transformation performed
in the orthogonalization procedure. Furthermore, since the orthogonalization process per
definition yields cross-sectionally uncorrelated residual series, we can now apply the CSCLM
test to the orthogonalized series even when disturbances are serially correlated.

Hence, in the case of serially correlated disturbances, we can note that if Model 1,
Assumption 6 and Assumption 7 are correct, the statistic of the cross-sectionally corrected
LM test will have an approximate standard normal distribution under the null hypothesis
as T →∞ while N is fixed, i.e. as (T →∞, Nfixed).

For the test statistic of the CSCLM test to have a normal limit, it must be the case that
the individual test statistics are independent. If this is true, we can utilize a CLT as above
to establish that the CSCLM test statistic will have an approximate normal distribution.
To this end, consider the the expected value E[ětě′t]. From the infinite moving average
representation of the seemingly unrelated ARMA process we can write this expected value
as E[ětě′t] =

∑∞
k=0 ΨkΣΨk. The condition placed on the infinite moving average coeffi-

cients in Assumption 7 assures that the elements of this matrix exist and are finite. As T
goes to infinity, the elements of

∑∞
k=0 ΨkΣΨk are consistently estimated by replacing the

population moment by the estimator for the sample moment. The spectral decomposition
of the estimated varaince/covariance matrix will then imply that the orthogonalized series
are independent. That is, E[ẽtẽ′t] = ĤΛ̂−1/2Ĥ′E[V̂ětě′tV̂]ĤΛ̂−1/2Ĥ′ = IN . This follows
from the fact that the expected value can be rewritten as E[ẽtẽ′t] = ĤΛ̂−1/2Λ̂Λ̂−1/2Ĥ′

since E[V̂ětě′tV̂] = Ĉ and Ĥ′ĈĤ = Λ̂. The latter equality follows from the fact that
Ĥ contains the eigenvectors of Ĉ in its columns. We can now make the simplifications
E[ẽtẽ′t] = ĤINĤ′ = IN , which follows from the fact that H is orthogonal. Hence, the or-
thogonalization process has generated independent series. As a consequence, the individual
LM test statistics in the CSCLM test will be independent and the limit (T →∞, Nfixed),
together with the Lindberg-Levy CLT, will induce an approximate normal distribution for
the panel test statistic. Finally, using appropriate moments for standardization will assure
an approximate standard normal distribution.

The results above suggest that the CSCLM test for panel data stationarity is normally
distributed under the null hypothesis. However, the way that the test is described above
says nothing about how we should go around when we are to apply the test in an empirical
situation. For example, we don’t know what moments that should be used to standardize
the test statistic. Since we have introduced an orthogonalization process in the CSCLM
test, we cannot apply the moments of Hadri (2000) or Hadri and Larsson (2003). In the
next subsection, we will make the CSCLM test implementable by supplying the appropriate
standardizing moments. As the results of this section is asymptotic, we will also study the
finite-sample performance of the CSCLM test through a Monte Carlo simulation.
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3.3 Implementing the CSCLM test

In this section we describe how the CSCLM test is implemented in empirical applications.
More precisely, we present the moments that are to be used in the CSCLM test procedure
to standardize the test statistic in (11). We also investigate the finite-sample performance
of the CSCLM test.

When we are to implement the CSCLM test, we have to make a choice regarding the
estimator that is to be used when calculating the long-run variance. This choice can be
divided into two separate decisions. First and foremost, we have to decide whether or
not serial correlation in the noise terms is an issue or not. Second, if we decide that
serial correlation should be corrected for, we must choose what lag window to apply in
the estimation of the long-run variance. While the first choice can be based on theoretical
considerations, the choice of lag window is somewhat arbitrary and should be guided by
the believed degree of serial correlation in the residual series together with robustness
considerations.10 In this paper, we consider three different choices of lag window in (7),
namely l = int[k(T/100)0.25] where k ∈ {4, 12, 24}. We also consider the case where
σ̂2

ε = T−1
∑T

t=1 e2
t can be used to estimate the variance of the error term. This case

assumes that there is no serial correlation in the noise series and is referred to as the ’no
lag’ case.

As mentioned above, we have to find the moments that are to be used when we stan-
dardize the mean of the individual test statistics, else the CSCLM test would not be
implementable. These moments depend on the specification of deterministic trends in the
model, the time-series dimension chosen and on the choice of lag window. As the moments
are very hard, if at all possible, to find analytically, we use numerical methods to obtain the
appropriate standardizing moments. To this end, we generate data according to (12)-(15)
and generate the errors following the expression in (16). In the simulations where we are
concerned with an intercept only, we let αi ∈ U [−1, 1], while δi ∈ U [0.1, 0.3] is used for the
time trend. Using the different samples with generated data, we can apply the CSCLM
test a number large of times for each choice of deterministic specification, sample size and
lag window and then calculate the mean and the variance of the resulting test statistics.

Since our procedure is robust against cross-sectional correlation, it suffices to consider
the case where the disturbance correlation is set to zero. For each of the sample sizes
T ∈ {25, 50, 75, 100, 150, 200, 250, 500, 1000}, we generate 50,000 test statistics and extract
the mean and the variance from this sample. We then perform 50 replications for each
sample size and fit response surface regressions to the series with simulated moments.11

In the response surface regressions, we include an intercept and the terms T−0.5, T−1 and
T−1.5. Using these terms provides a good regression fit while still keeping the response

10Schwert (1989) gives some guidance toward the choice of lag window in the unit root context, which possibly
can point out some direction towards a choice of lag window in the current context. An alternative to choosing
a fixed lag window could be to base the choice of l on data-dependent methods as suggested by for example
Newey and West (1994). However, since the moments of the individual test statistics depend on the choice
of l see Jönsson (2004), this implies an infeasible amount of simulations to obtain moments to implement the
CSCLM test. Hence, we consider only the three different choices of l and leave the choice of lag window open for
consideration.

11To our knowledge, this is the first time response surface regressions are used to obtain moments in the panel
data unit root, cointegration or stationarity framework. The use of response surface regressions makes small-
sample moments easy to calculate, without having to rely on tabulated moments and interpolations based on such
moments. Furthermore, under some circumstances asymptotic moments are readily available from the response
surface regressions, where they are represented by the intercept.
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surface regressions easy to handle.
In Table 2 we present the response surface estimates for the different choices of model

and for different choices of lag window, k.
As seen in Table 2, the fit of the response surface models is good for all regressions.

From Table 2, we can spot one extraordinary event however. When when k = 24 and a
linear trend is present in the model, the response surface regression for the variance is badly
behaved if fitted to the sample containing all the response surface observations. To resolve
this problem, we run two separate response surface regressions for this case. We run one
response surface regression for the case where T < 100 and one for the case where T ≥ 100.
When we make this division, we get an excellent fit for the response surface regression as
seen in Table 2. Using the estimated coefficients, that are presented in the Table 2, the
appropriate standardizing moments, that are to be used for a specific model and under a
specific choice of k, can be calculated.

Next, we want to study the size properties of the CSCLM test when using the response
surface regressions in Table 2. Even though we know that the CSCLM test is asymptotically
normal, it is interesting to study the performance of the test for different small-sample
situations. To do this, we generate 5,000 data sets according to the procedure described in
(12)-(15) with the errors being governed by (16). We generate data according to the model
where αi 6= 0, δi = 0, i.e. where we have an intercept but not time trend.12 To assess
the size of the CSCLM test, we then use the generated data sets to calculate 5,000 test
statistics for the various sample sizes, choices of k and degrees of cross-sectional correlation
and study the percentage of times the null is incorrectly rejected using the 5% critical value
from the normal distribution.

In Table 3 we present the size properties of the CSCLM test. As seen in the table, the
CSCLM test has good size properties in the cases where T is relatively large compared to
N . This is what we expect to find since the results in the current paper relies on T tending
to infinity while N is fixed, which is applicable in cases where T is much larger then N . As
expected, we also see from from Table 3 that the CSCLM test works well regardless of the
degree of cross-sectional correlation.

Now let us consider the case where the noise term, εit, is serially correlated. If the noise
term is serially correlated we cannot use σ̂2

ε = T−1
∑T

t=1 e2
it as an estimator of the error

variance. Instead, we have to choose the consistent estimator in (7) and let k ∈ {4, 12, 24}.
To investigate the size properties for this case, we let the noise term εit be generated
according to the autoregressive process εit = θiεit−1 + νit, where θi ∈ U [0.0, 0.4] and the
variance/covariance matrix of νt is equal to Σ. The structure of Σ is the same as the one
described in (16).

According to the results above, the CSCLM test statistic can be approximated by a
normal limit even if the noise terms εit are serially correlated. However, it can be interesting
to study how fast the test statistic converges to the limiting distribution and what choice
of k that is appropriate.

In Table 4 we present the size properties of the CSCLM test for the case where the
noise terms are serially correlated. The first thing that we note is that the test the uses
σ̂2

ε = T−1
∑T

t=1 e2
it as an estimator of the error variance performs utterly bad. Also, there

is a serious size distortion to the test that uses k = 4 in the estimation of the variance
in (7). This is due to the fact that the choice k = 4 is insufficient to estimate the long-
run variance in the CSCLM test when the autocorrelation coefficient is distributed as

12Results for the model with an intercept and a time trend is available upon request. However, we don’t present
it in the current paper to save space.
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θi ∈ U [0.0, 0.4]. However, the size of the CSCLM test when we use k = 12 or k = 24 looks
good. The strong autocorrelation in the disturbance term seems to be captured by the
variance estimators when we use a wider Bartlett window, whereas k = 4 is insufficient
for the variance estimation. From Table 4 we also see that the CSCLM test that can
incorporate the serial correlation also works good regardless of the degree of cross-sectional
correlation.

Finally, we want to study the power properties of the CSCLM test to see how well the
CSCLM test can discriminate between a true and a false null hypothesis. Data is one again
generated as in (12)-(15) above, with the disturbance vector described by (16). However,
to generate data under the alternative hypothesis, we construct a N × 1 time-series vector
with random walks. These random walks are added to the stationary series. We set the
variance/covaraince matrix of the random walks to the identity matrix and generate T +100
random walk observations, letting ξi0 = 0 and σ2

η = 1. We then discard the first 100 of
these observations to reduce the influence of the initial observation. We then generate 5,000
data sets and calculate the CSCLM test statistics using these data sets.

In Table 5 and Table 6, we present the size-adjusted power of the CSCLM test for
different choices of sample size, lag window and deterministic trends.13 More specifically,
in Table 5, we present the power of the CSCLM test when only an intercept is included in
the model, while we present the power of the test when both an intercept and a trend is
present in Table 6.

As seen from Table 5, the power of the test is good across all parameter combinations
considered. However, when we consider the panel data model with both an intercept and a
trend we get a somewhat different result. From Table 6 we see that the size-adjusted power
of the CSCLM test falls below the significance level when k is large and T is small, i.e.
we observe a small-sample bias in the test. These results are in line with what we would
expect from the results previously obtained by Lee (1996) and Caner and Kilian (2001) in
the univariate stationarity testing environment, and by Jönsson (2004) in the panel data
stationarity context.14 These authors have documented a fall in power of the stationarity
test in the presence of a trend, while allowing for a large degree of serial correlation. Hence,
there is no reason to believe that the small-sample bias of the CSCLM test is caused by the
orthogonalization procedure. Instead it seems as if the bias is a general problem arising
in the stationarity testing framework. An important implication is that the CSCLM test
is applicable in all the situations where the panel data stationarity testing procedure is
applicable.

13Although the size properties of the CSCLM test are good, we want to eliminate every size effect from power
properties. Hence, we size-adjust the CSCLM test by extracting 5% critical values from the empirical distribution
of 5,000 test statistics of the CSCLM test. We then use these critical values instead of critical values from the
normal distribution.

14In addition, it can be noted that Moon et al. (2003) documented a similar problem, regarding power and
deterministic trends, in the panel data unit root context.
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Table 3: Size of the CSCLM test in the presence of CSD
k=24 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.043 0.027 0.018 0.007 - - - 0.045 0.032 0.017 0.005 - - -

50 0.054 0.047 0.047 0.028 0.024 - - 0.053 0.046 0.036 0.032 0.027 - -
75 0.051 0.044 0.040 0.033 0.024 0.007 - 0.046 0.051 0.042 0.033 0.026 0.005 -

100 0.062 0.055 0.047 0.041 0.036 0.015 - 0.061 0.061 0.045 0.045 0.035 0.016 -
150 0.066 0.059 0.047 0.049 0.038 0.031 0.006 0.058 0.050 0.050 0.048 0.041 0.025 0.006
200 0.063 0.054 0.052 0.049 0.050 0.034 0.017 0.067 0.056 0.050 0.051 0.050 0.034 0.014
250 0.067 0.064 0.056 0.058 0.051 0.043 0.023 0.066 0.064 0.060 0.058 0.051 0.044 0.030
500 0.068 0.067 0.056 0.054 0.052 0.046 0.043 0.066 0.063 0.059 0.059 0.057 0.049 0.043

1000 0.065 0.061 0.059 0.054 0.059 0.049 0.043 0.071 0.062 0.063 0.058 0.055 0.048 0.042
ρ=0.50 ρ=0.75

T=25 0.051 0.032 0.019 0.009 - - - 0.049 0.031 0.015 0.007 - - -
50 0.053 0.047 0.039 0.033 0.027 - - 0.048 0.044 0.043 0.030 0.027 - -
75 0.050 0.048 0.037 0.032 0.024 0.006 - 0.053 0.048 0.037 0.030 0.028 0.007 -

100 0.058 0.047 0.046 0.037 0.040 0.016 - 0.053 0.051 0.047 0.039 0.029 0.016 -
150 0.059 0.060 0.054 0.046 0.047 0.027 0.006 0.063 0.048 0.054 0.046 0.044 0.029 0.005
200 0.065 0.053 0.055 0.053 0.049 0.042 0.015 0.065 0.062 0.053 0.051 0.042 0.035 0.015
250 0.067 0.057 0.057 0.057 0.052 0.042 0.025 0.064 0.064 0.058 0.055 0.057 0.043 0.027
500 0.066 0.055 0.058 0.064 0.055 0.052 0.046 0.071 0.063 0.062 0.059 0.053 0.049 0.050

1000 0.073 0.063 0.059 0.052 0.055 0.045 0.042 0.067 0.064 0.055 0.061 0.054 0.052 0.041
k=12 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.043 0.027 0.012 0.003 - - - 0.041 0.029 0.009 0.004 - - -

50 0.056 0.048 0.035 0.026 0.019 - - 0.055 0.046 0.030 0.026 0.017 - -
75 0.057 0.051 0.041 0.030 0.024 0.004 - 0.062 0.051 0.045 0.032 0.031 0.003 -

100 0.057 0.055 0.050 0.039 0.041 0.014 - 0.061 0.054 0.045 0.038 0.035 0.013 -
150 0.064 0.058 0.056 0.055 0.044 0.030 0.005 0.070 0.056 0.052 0.048 0.045 0.028 0.004
200 0.067 0.057 0.052 0.046 0.049 0.033 0.012 0.070 0.059 0.056 0.056 0.048 0.035 0.014
250 0.062 0.058 0.059 0.053 0.046 0.038 0.019 0.067 0.069 0.060 0.056 0.052 0.045 0.022
500 0.073 0.059 0.060 0.061 0.058 0.045 0.038 0.076 0.059 0.061 0.060 0.064 0.046 0.036

1000 0.070 0.052 0.060 0.065 0.063 0.052 0.042 0.077 0.066 0.067 0.060 0.058 0.056 0.050
ρ=0.50 ρ=0.75

T=25 0.040 0.024 0.010 0.003 - - - 0.040 0.026 0.012 0.003 - - -
50 0.057 0.046 0.037 0.027 0.017 - - 0.055 0.040 0.035 0.027 0.014 - -
75 0.061 0.045 0.043 0.038 0.025 0.006 - 0.056 0.051 0.041 0.036 0.025 0.004 -

100 0.062 0.056 0.048 0.041 0.038 0.012 - 0.061 0.057 0.046 0.042 0.037 0.014 -
150 0.070 0.060 0.053 0.051 0.043 0.025 0.004 0.065 0.052 0.049 0.045 0.041 0.028 0.003
200 0.068 0.058 0.052 0.046 0.050 0.035 0.011 0.064 0.061 0.059 0.051 0.048 0.033 0.014
250 0.069 0.068 0.054 0.052 0.050 0.039 0.023 0.070 0.061 0.057 0.057 0.053 0.045 0.021
500 0.065 0.061 0.060 0.056 0.061 0.044 0.042 0.071 0.063 0.058 0.060 0.056 0.048 0.043

1000 0.070 0.060 0.061 0.059 0.061 0.048 0.048 0.068 0.066 0.065 0.063 0.057 0.051 0.043
k=4 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.049 0.021 0.003 0.000 - - - 0.045 0.025 0.003 0.000 - - -

50 0.063 0.052 0.030 0.020 0.010 - - 0.061 0.044 0.034 0.023 0.010 - -
75 0.066 0.049 0.040 0.031 0.029 0.002 - 0.065 0.058 0.042 0.037 0.029 0.000 -

100 0.065 0.062 0.048 0.039 0.038 0.013 - 0.070 0.058 0.049 0.037 0.037 0.012 -
150 0.069 0.069 0.054 0.051 0.041 0.024 0.001 0.061 0.060 0.054 0.050 0.043 0.026 0.001
200 0.068 0.063 0.054 0.050 0.050 0.033 0.012 0.069 0.062 0.057 0.052 0.048 0.036 0.010
250 0.066 0.060 0.057 0.052 0.058 0.040 0.018 0.066 0.064 0.045 0.049 0.057 0.037 0.018
500 0.067 0.076 0.061 0.066 0.054 0.050 0.034 0.071 0.066 0.062 0.060 0.058 0.054 0.036

1000 0.066 0.063 0.061 0.059 0.060 0.053 0.049 0.067 0.068 0.058 0.060 0.057 0.053 0.046
ρ=0.50 ρ=0.75

T=25 0.049 0.020 0.003 0.000 - - - 0.040 0.019 0.004 0.000 - - -
50 0.063 0.047 0.032 0.021 0.013 - - 0.058 0.040 0.032 0.021 0.013 - -
75 0.070 0.053 0.043 0.035 0.028 0.001 - 0.065 0.049 0.040 0.037 0.025 0.001 -

100 0.064 0.057 0.041 0.037 0.035 0.008 - 0.071 0.060 0.046 0.040 0.035 0.010 -
150 0.067 0.062 0.054 0.050 0.046 0.027 0.002 0.071 0.051 0.053 0.047 0.044 0.029 0.001
200 0.065 0.057 0.060 0.051 0.042 0.036 0.010 0.070 0.059 0.061 0.047 0.043 0.038 0.010
250 0.065 0.059 0.060 0.060 0.052 0.042 0.017 0.065 0.062 0.054 0.060 0.048 0.038 0.018
500 0.068 0.062 0.058 0.063 0.055 0.048 0.039 0.070 0.063 0.060 0.057 0.060 0.045 0.033

1000 0.069 0.062 0.067 0.063 0.056 0.051 0.049 0.067 0.071 0.061 0.064 0.062 0.053 0.043
No lag, k=0 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.052 0.025 0.000 0.000 - - - 0.056 0.016 0.000 0.000 - - -

50 0.060 0.048 0.032 0.020 0.008 - - 0.067 0.045 0.033 0.020 0.007 - -
75 0.065 0.057 0.044 0.035 0.027 0.001 - 0.067 0.054 0.048 0.037 0.023 0.000 -

100 0.070 0.052 0.046 0.046 0.037 0.010 - 0.065 0.065 0.050 0.047 0.043 0.009 -
150 0.071 0.066 0.061 0.047 0.048 0.031 0.001 0.070 0.054 0.058 0.049 0.045 0.025 0.001
200 0.070 0.058 0.059 0.052 0.053 0.038 0.010 0.064 0.056 0.061 0.050 0.047 0.033 0.012
250 0.067 0.064 0.063 0.057 0.050 0.039 0.017 0.066 0.058 0.056 0.056 0.052 0.040 0.019
500 0.064 0.069 0.063 0.059 0.054 0.049 0.038 0.068 0.068 0.054 0.057 0.060 0.046 0.039

1000 0.072 0.061 0.067 0.061 0.061 0.050 0.044 0.066 0.068 0.059 0.065 0.060 0.052 0.042
ρ=0.50 ρ=0.75

T=25 0.059 0.021 0.000 0.000 - - - 0.056 0.021 0.000 0.000 - - -
50 0.063 0.048 0.034 0.019 0.007 - - 0.057 0.045 0.026 0.021 0.007 - -
75 0.066 0.053 0.049 0.035 0.029 0.000 - 0.067 0.053 0.040 0.034 0.025 0.000 -

100 0.064 0.056 0.044 0.044 0.038 0.009 - 0.067 0.055 0.057 0.042 0.035 0.009 -
150 0.059 0.059 0.060 0.050 0.052 0.027 0.001 0.068 0.066 0.055 0.051 0.052 0.026 0.002
200 0.065 0.057 0.059 0.061 0.048 0.037 0.008 0.071 0.068 0.064 0.051 0.045 0.032 0.010
250 0.066 0.066 0.059 0.054 0.052 0.042 0.016 0.068 0.060 0.057 0.054 0.051 0.035 0.017
500 0.067 0.060 0.066 0.057 0.049 0.051 0.044 0.061 0.056 0.064 0.060 0.055 0.047 0.037

1000 0.065 0.063 0.066 0.055 0.059 0.057 0.045 0.069 0.065 0.060 0.065 0.062 0.054 0.044
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Table 4: Size of the CSCLM test in the presence of CSD and autocorrelation
k=24 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.044 0.027 0.012 0.005 - - - 0.041 0.023 0.014 0.005 - - -

50 0.056 0.038 0.033 0.024 0.018 - - 0.055 0.045 0.031 0.021 0.016 - -
75 0.056 0.039 0.033 0.025 0.016 0.002 - 0.055 0.038 0.030 0.021 0.019 0.003 -

100 0.065 0.051 0.040 0.035 0.028 0.011 - 0.056 0.048 0.045 0.038 0.030 0.009 -
150 0.066 0.050 0.047 0.042 0.038 0.019 0.001 0.060 0.057 0.045 0.039 0.039 0.019 0.002
200 0.070 0.057 0.057 0.052 0.049 0.030 0.008 0.073 0.058 0.056 0.054 0.046 0.031 0.009
250 0.072 0.066 0.064 0.057 0.055 0.036 0.015 0.073 0.058 0.056 0.062 0.060 0.040 0.017
500 0.072 0.073 0.065 0.058 0.058 0.056 0.037 0.073 0.072 0.069 0.069 0.057 0.053 0.041

1000 0.072 0.070 0.063 0.067 0.060 0.061 0.045 0.079 0.068 0.060 0.067 0.060 0.055 0.045
ρ=0.50 ρ=0.75

T=25 0.042 0.020 0.008 0.006 - - - 0.041 0.024 0.012 0.004 - - -
50 0.057 0.043 0.031 0.023 0.014 - - 0.061 0.042 0.029 0.021 0.016 - -
75 0.054 0.043 0.034 0.024 0.023 0.002 - 0.055 0.044 0.035 0.024 0.018 0.003 -

100 0.060 0.044 0.046 0.036 0.032 0.011 - 0.064 0.045 0.043 0.032 0.026 0.008 -
150 0.057 0.057 0.045 0.040 0.034 0.016 0.002 0.061 0.058 0.050 0.049 0.042 0.020 0.002
200 0.064 0.064 0.057 0.048 0.049 0.028 0.010 0.071 0.063 0.054 0.051 0.052 0.035 0.007
250 0.069 0.060 0.059 0.055 0.051 0.040 0.015 0.069 0.068 0.060 0.057 0.056 0.040 0.017
500 0.070 0.067 0.064 0.066 0.060 0.051 0.036 0.076 0.062 0.065 0.069 0.069 0.054 0.040

1000 0.069 0.068 0.070 0.067 0.059 0.052 0.046 0.068 0.061 0.067 0.062 0.066 0.056 0.047
k=12 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.040 0.016 0.007 0.001 - - - 0.040 0.019 0.004 0.001 - - -

50 0.059 0.043 0.032 0.016 0.011 - - 0.066 0.036 0.030 0.018 0.009 - -
75 0.066 0.056 0.040 0.029 0.023 0.002 - 0.072 0.052 0.042 0.034 0.022 0.001 -

100 0.074 0.068 0.051 0.042 0.036 0.007 - 0.075 0.067 0.052 0.040 0.041 0.008 -
150 0.073 0.064 0.062 0.050 0.046 0.022 0.002 0.073 0.068 0.065 0.053 0.048 0.026 0.001
200 0.077 0.072 0.067 0.063 0.057 0.036 0.006 0.076 0.074 0.064 0.065 0.057 0.036 0.004
250 0.077 0.072 0.065 0.065 0.065 0.046 0.012 0.075 0.070 0.066 0.065 0.063 0.045 0.014
500 0.077 0.077 0.073 0.073 0.071 0.063 0.044 0.081 0.074 0.071 0.070 0.072 0.064 0.039

1000 0.077 0.071 0.065 0.074 0.067 0.072 0.059 0.073 0.074 0.075 0.073 0.072 0.070 0.065
ρ=0.50 ρ=0.75

T=25 0.045 0.018 0.008 0.001 - - - 0.045 0.018 0.006 0.001 - - -
50 0.062 0.050 0.028 0.017 0.010 - - 0.059 0.043 0.032 0.019 0.009 - -
75 0.065 0.061 0.043 0.030 0.027 0.002 - 0.061 0.055 0.047 0.031 0.022 0.001 -

100 0.069 0.059 0.046 0.043 0.032 0.005 - 0.073 0.057 0.052 0.041 0.032 0.011 -
150 0.076 0.066 0.057 0.058 0.047 0.025 0.001 0.080 0.068 0.063 0.057 0.044 0.024 0.001
200 0.075 0.071 0.064 0.060 0.056 0.032 0.006 0.074 0.070 0.066 0.054 0.059 0.034 0.006
250 0.075 0.073 0.066 0.066 0.066 0.042 0.017 0.069 0.070 0.074 0.071 0.059 0.044 0.013
500 0.075 0.077 0.080 0.071 0.079 0.060 0.045 0.077 0.075 0.074 0.067 0.066 0.068 0.050

1000 0.074 0.076 0.071 0.070 0.065 0.065 0.062 0.076 0.069 0.074 0.067 0.074 0.070 0.060
k=4 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.083 0.025 0.001 0.000 - - - 0.081 0.024 0.003 0.000 - - -

50 0.092 0.074 0.049 0.027 0.007 - - 0.103 0.069 0.055 0.020 0.009 - -
75 0.112 0.105 0.084 0.072 0.045 0.001 - 0.108 0.108 0.080 0.072 0.047 0.001 -

100 0.103 0.092 0.086 0.072 0.067 0.011 - 0.102 0.088 0.085 0.076 0.065 0.010 -
150 0.107 0.105 0.106 0.098 0.098 0.052 0.001 0.101 0.098 0.105 0.088 0.085 0.051 0.000
200 0.108 0.115 0.108 0.112 0.109 0.089 0.017 0.107 0.116 0.110 0.107 0.111 0.092 0.017
250 0.098 0.097 0.095 0.108 0.092 0.096 0.038 0.103 0.097 0.104 0.098 0.105 0.087 0.039
500 0.096 0.112 0.112 0.126 0.110 0.139 0.130 0.095 0.106 0.105 0.120 0.118 0.124 0.134

1000 0.098 0.099 0.098 0.103 0.107 0.117 0.126 0.087 0.088 0.094 0.108 0.106 0.111 0.126
ρ=0.50 ρ=0.75

T=25 0.076 0.021 0.002 0.000 - - - 0.075 0.023 0.001 0.000 - - -
50 0.090 0.072 0.053 0.026 0.008 - - 0.094 0.076 0.050 0.019 0.009 - -
75 0.106 0.104 0.087 0.076 0.050 0.000 - 0.109 0.097 0.090 0.070 0.050 0.000 -

100 0.103 0.096 0.088 0.077 0.061 0.010 - 0.095 0.083 0.091 0.073 0.062 0.010 -
150 0.099 0.105 0.104 0.098 0.100 0.051 0.000 0.104 0.099 0.094 0.097 0.092 0.051 0.001
200 0.104 0.113 0.121 0.116 0.113 0.091 0.016 0.098 0.112 0.116 0.111 0.106 0.094 0.017
250 0.092 0.091 0.111 0.101 0.100 0.090 0.036 0.093 0.093 0.096 0.100 0.101 0.093 0.037
500 0.097 0.112 0.111 0.114 0.114 0.129 0.120 0.105 0.104 0.115 0.116 0.110 0.121 0.128

1000 0.089 0.095 0.099 0.100 0.109 0.116 0.126 0.083 0.092 0.098 0.109 0.108 0.116 0.127
No lag, k=0 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.244 0.181 0.013 0.000 - - - 0.235 0.188 0.014 0.000 - - -

50 0.307 0.383 0.414 0.367 0.271 - - 0.308 0.376 0.407 0.348 0.284 - -
75 0.319 0.439 0.486 0.538 0.541 0.121 - 0.320 0.439 0.497 0.535 0.547 0.123 -

100 0.328 0.464 0.547 0.589 0.634 0.599 - 0.329 0.455 0.543 0.606 0.632 0.586 -
150 0.347 0.484 0.590 0.661 0.708 0.830 0.515 0.351 0.472 0.570 0.657 0.710 0.839 0.521
200 0.352 0.485 0.589 0.672 0.739 0.891 0.916 0.339 0.498 0.587 0.671 0.736 0.887 0.919
250 0.348 0.494 0.613 0.683 0.755 0.915 0.971 0.344 0.497 0.596 0.691 0.763 0.905 0.968
500 0.351 0.506 0.628 0.708 0.779 0.947 0.995 0.353 0.515 0.634 0.712 0.785 0.945 0.995

1000 0.358 0.513 0.625 0.707 0.792 0.957 0.999 0.341 0.527 0.614 0.718 0.792 0.949 0.998
ρ=0.50 ρ=0.75

T=25 0.235 0.180 0.015 0.000 - - - 0.241 0.181 0.013 0.000 - - -
50 0.311 0.387 0.397 0.371 0.283 - - 0.307 0.373 0.397 0.358 0.282 - -
75 0.329 0.428 0.485 0.534 0.540 0.121 - 0.323 0.420 0.506 0.533 0.550 0.137 -

100 0.331 0.457 0.533 0.592 0.634 0.604 - 0.323 0.464 0.540 0.601 0.635 0.606 -
150 0.353 0.494 0.562 0.647 0.712 0.825 0.510 0.341 0.481 0.573 0.660 0.710 0.829 0.517
200 0.335 0.480 0.595 0.679 0.748 0.891 0.910 0.328 0.483 0.603 0.681 0.743 0.886 0.914
250 0.343 0.487 0.619 0.693 0.751 0.917 0.967 0.351 0.490 0.595 0.686 0.760 0.908 0.972
500 0.362 0.506 0.613 0.709 0.785 0.950 0.995 0.347 0.506 0.613 0.713 0.785 0.943 0.995

1000 0.350 0.519 0.633 0.720 0.792 0.956 0.998 0.347 0.510 0.619 0.726 0.790 0.958 0.999
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Table 5: Power of the CSCLM test, intercept only.
k=24 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.037 0.023 0.021 0.035 - - - 0.034 0.017 0.022 0.034 - - -

50 0.129 0.124 0.138 0.215 0.229 - - 0.136 0.116 0.140 0.182 0.214 - -
75 0.262 0.309 0.330 0.481 0.563 0.962 - 0.297 0.279 0.326 0.429 0.547 0.963 -

100 0.493 0.490 0.507 0.697 0.796 0.993 - 0.473 0.457 0.588 0.675 0.735 0.991 -
150 0.811 0.793 0.840 0.900 0.959 1.000 1.000 0.791 0.809 0.847 0.883 0.938 1.000 1.000
200 0.945 0.955 0.959 0.980 0.989 1.000 1.000 0.934 0.959 0.951 0.971 0.988 1.000 1.000
250 0.983 0.991 0.993 0.997 0.998 1.000 1.000 0.980 0.992 0.990 0.994 0.996 1.000 1.000
500 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.030 0.024 0.025 0.032 - - - 0.031 0.022 0.022 0.034 - - -
50 0.134 0.104 0.134 0.183 0.268 - - 0.113 0.087 0.115 0.178 0.252 - -
75 0.280 0.246 0.308 0.415 0.534 0.960 - 0.269 0.231 0.274 0.415 0.496 0.960 -

100 0.469 0.426 0.505 0.567 0.737 0.988 - 0.451 0.405 0.434 0.514 0.690 0.990 -
150 0.805 0.757 0.824 0.825 0.913 0.999 1.000 0.812 0.758 0.739 0.849 0.888 1.000 1.000
200 0.934 0.948 0.944 0.965 0.976 1.000 1.000 0.933 0.925 0.926 0.941 0.975 1.000 1.000
250 0.979 0.992 0.984 0.987 0.997 1.000 1.000 0.980 0.992 0.977 0.987 0.994 1.000 1.000
500 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k=12 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.205 0.178 0.226 0.280 - - - 0.200 0.166 0.204 0.277 - - -

50 0.636 0.678 0.702 0.768 0.836 - - 0.633 0.663 0.703 0.760 0.783 - -
75 0.917 0.935 0.955 0.968 0.985 1.000 - 0.899 0.940 0.936 0.967 0.972 1.000 -

100 0.978 0.989 0.993 0.998 0.999 1.000 - 0.968 0.990 0.994 0.996 0.996 1.000 -
150 0.997 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000
200 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.210 0.158 0.183 0.289 - - - 0.181 0.155 0.182 0.308 - - -
50 0.646 0.561 0.597 0.691 0.794 - - 0.638 0.518 0.537 0.638 0.796 - -
75 0.909 0.913 0.910 0.947 0.965 1.000 - 0.868 0.840 0.872 0.929 0.944 1.000 -

100 0.973 0.987 0.989 0.991 0.997 1.000 - 0.974 0.979 0.977 0.982 0.992 1.000 -
150 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000
200 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k=4 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.960 0.978 0.934 0.769 - - - 0.957 0.979 0.931 0.782 - - -

50 0.998 1.000 1.000 1.000 1.000 - - 0.997 1.000 1.000 1.000 1.000 - -
75 1.000 1.000 1.000 1.000 1.000 1.000 - 0.999 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.962 0.976 0.920 0.779 - - - 0.969 0.959 0.913 0.761 - - -
50 0.997 1.000 1.000 1.000 1.000 - - 0.997 1.000 1.000 1.000 1.000 - -
75 0.999 1.000 1.000 1.000 1.000 1.000 - 0.999 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 0.999 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
No lag, k=0 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.999 1.000 1.000 1.000 - - - 0.998 1.000 1.000 1.000 - - -

50 1.000 1.000 1.000 1.000 1.000 - - 1.000 1.000 1.000 1.000 1.000 - -
75 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.999 1.000 1.000 1.000 - - - 0.999 1.000 1.000 1.000 - - -
50 1.000 1.000 1.000 1.000 1.000 - - 1.000 1.000 1.000 1.000 1.000 - -
75 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 6: Power of the CSCLM test, intercept and trend.
k=24 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.008 0.005 0.006 0.010 - - - 0.014 0.008 0.006 0.010 - - -

50 0.007 0.002 0.001 0.001 0.000 - - 0.006 0.001 0.001 0.002 0.000 - -
75 0.004 0.003 0.001 0.001 0.000 0.000 - 0.006 0.002 0.001 0.000 0.000 0.000 -

100 0.013 0.004 0.001 0.000 0.001 0.001 - 0.010 0.003 0.002 0.001 0.000 0.001 -
150 0.299 0.191 0.118 0.086 0.094 0.225 0.886 0.289 0.171 0.080 0.079 0.106 0.184 0.884
200 0.678 0.620 0.527 0.503 0.498 0.801 1.000 0.701 0.606 0.502 0.508 0.521 0.749 0.999
250 0.852 0.891 0.857 0.879 0.884 0.987 1.000 0.864 0.899 0.869 0.855 0.860 0.967 1.000
500 0.998 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.013 0.005 0.008 0.010 - - - 0.009 0.005 0.006 0.010 - - -
50 0.006 0.002 0.001 0.000 0.000 - - 0.007 0.002 0.001 0.002 0.001 - -
75 0.006 0.002 0.001 0.000 0.001 0.000 - 0.006 0.002 0.002 0.001 0.000 0.001 -

100 0.014 0.003 0.001 0.002 0.000 0.001 - 0.011 0.003 0.001 0.001 0.001 0.000 -
150 0.293 0.130 0.085 0.049 0.074 0.231 0.903 0.278 0.131 0.043 0.048 0.045 0.187 0.924
200 0.660 0.615 0.422 0.452 0.399 0.767 0.999 0.686 0.542 0.412 0.302 0.352 0.678 0.999
250 0.882 0.869 0.825 0.850 0.750 0.959 1.000 0.844 0.891 0.823 0.737 0.709 0.926 1.000
500 0.997 1.000 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k=12 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.007 0.004 0.003 0.007 - - - 0.005 0.001 0.005 0.008 - - -

50 0.076 0.031 0.015 0.011 0.010 - - 0.088 0.021 0.013 0.013 0.010 - -
75 0.538 0.488 0.445 0.342 0.332 0.592 - 0.528 0.478 0.385 0.296 0.307 0.579 -

100 0.838 0.864 0.868 0.851 0.843 0.935 - 0.843 0.886 0.843 0.845 0.835 0.932 -
150 0.977 0.999 0.999 1.000 1.000 1.000 1.000 0.981 0.998 0.999 1.000 1.000 1.000 1.000
200 0.997 1.000 1.000 1.000 1.000 1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000 1.000
250 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.007 0.003 0.005 0.005 - - - 0.005 0.003 0.005 0.007 - - -
50 0.076 0.016 0.013 0.009 0.011 - - 0.058 0.013 0.007 0.008 0.006 - -
75 0.577 0.453 0.319 0.254 0.272 0.554 - 0.487 0.376 0.224 0.235 0.254 0.602 -

100 0.821 0.862 0.810 0.800 0.752 0.900 - 0.826 0.832 0.727 0.683 0.635 0.895 -
150 0.977 1.000 0.999 1.000 0.999 1.000 1.000 0.978 0.998 0.999 0.998 0.998 1.000 1.000
200 0.994 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000
250 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
k=4 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.729 0.773 0.554 0.283 - - - 0.748 0.758 0.535 0.275 - - -

50 0.985 1.000 1.000 1.000 1.000 - - 0.988 1.000 1.000 1.000 1.000 - -
75 0.999 1.000 1.000 1.000 1.000 1.000 - 0.999 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.759 0.743 0.545 0.287 - - - 0.768 0.706 0.493 0.313 - - -
50 0.988 1.000 1.000 1.000 1.000 - - 0.984 0.999 1.000 1.000 0.999 - -
75 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
No lag, k=0 N=5 10 15 20 25 50 100 N=5 10 15 20 25 50 100

ρ=0.00 ρ=0.25
T=25 0.983 1.000 1.000 0.961 - - - 0.983 0.999 0.999 0.980 - - -

50 1.000 1.000 1.000 1.000 1.000 - - 1.000 1.000 1.000 1.000 1.000 - -
75 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
ρ=0.50 ρ=0.75

T=25 0.987 1.000 1.000 0.993 - - - 0.993 1.000 1.000 0.999 - - -
50 1.000 1.000 1.000 1.000 1.000 - - 1.000 1.000 1.000 1.000 1.000 - -
75 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -

100 1.000 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 -
150 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
250 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

20



The main results from this section is that the panel data unit root test of Hadri (2000)
has serious size distortion when disturbances are correlated across cross sections. How-
ever, we have also suggested an orthogonalization procedure that is able to restore the
size properties of the panel data unit root test. Although established asymptotically, the
orthogonalization procedure works well also in cases where samples are of limited size.

Next, we want to illustrate the adverse effects of neglecting cross-sectional correlation
in empirical applications. This task is pursued in the next section.

4 Empirical application

In this section we illustrate the adverse effects that cross-sectional correlation can cause
in the panel data stationarity framework by employing the panel data LM test of Hadri
(2000) and the CSCLM test to test for output convergence.

Recently, Cheung and Pascual (2004) tested the output convergence hypothesis for the
G7 countries. We follow this line of research and apply the stationarity tests discussed in
the previous sections to test for convergence in real GDP per capita for six of the seven G7
countries.15

When testing for convergence, many hypotheses can be formulated. One hypothesis
that is often adopted is the hypothesis of deterministic convergence. Deterministic con-
vergence means that we test whether the relative GDP of a set of countries is stationary,
possibly around a non-zero mean.16 In our panel data stationarity framework, determinis-
tic convergence implies that the demeaned relative output series should be stationary. The
test presented in the previous sections can hence be employed to test the null hypothesis
of deterministic convergence.

The null hypothesis of convergence amongst all countries is stated in (18). The alterna-
tive hypothesis, stated in (19), is that there is no convergence amongst any of the countries
investigated.

H0 : xit = (Yit − Y∗t) = I(0) ∀ i = 1, . . . , N (18)
H1 : xit = (Yit − Y∗t) = I(1) ∀ i = 1, . . . , N (19)

In (18) and (19), Yit is the log of real output per capita in period t for country i. Y∗t
is the log of real output per capita of the benchmark country. Hence, xit is the log of the
relative output per capita when comparing country i to the benchmark country. Since we
are to compare N countries to a benchmark country, we have all in all N + 1 countries in
the sample.

The data series used to investigate the convergence hypothesis are the relative real GDP
per capita for Canada, France, Italy, Japan and United Kingdom relative to USA.17 The
data series are plotted in Figure 1.

As seen in Figure 1, there seems to some convergence among the series. However, it
also seems to be a structural break in the series about 1970. Up until 1970 the relative
real GDP per capita seems to follow a trend stationary path, while the relative GDP seems
to to level stationary from 1970 and on. Hence, when testing the notion of deterministic

15Germany is excluded due to measurement problems related to the unification.
16Li and Papell (1999) discuss different types of convergence in greater detail.
17The data series are collected from Heston et al. (2002).
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Figure 1: Relative real GDP per capita compared to USA
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convergence, the sample should be considered both over the period 1950-2000 and over
1970-2000. By considering both the entire sample and the latter subsample, the influence
of structural change can be assessed.

The first step in the CSCLM test is to detrend the data. When testing deterministic
convergence, as defined by Li and Papell (1999), the data series are detrended using an
intercept. The estimated intercepts are presented in Table 7 for both of the different samples
considered. Since it is important to know the degree of serial dependence when choosing
lag window, we also give the estimated first-order autoregressive coefficient in Table 7.

As seen in Table 7, the degree of autocorrelation is strong. This implies that a large k is
necessary. We choose to use k = 24 when we perform the stationarity tests. In Table 8 we
present the test results for the LM test of Hadri (2000) and the cross-sectionally corrected
LM test of Section 3.2.

From Table 8 it is evident that there is a rather large difference between the two test
statistics. Moreover, if we compare the tests statistics to the 5% critical value, which is 1.64,
we see that the tests give different conclusions regarding the null hypothesis of stationarity.
The LM test of Hadri (2000) generates the conclusion that the null of stationarity, and hence
deterministic convergence among the set of countries, should be rejected. The CSCLM test
on the other hand cannot reject the same null hypothesis. Since the CSCLM test is robust
against cross-sectional correlation while the LM test is not, it seems reasonable to further
investigate if it indeed is the case that the reversed conclusion regarding the rejection of
the null hypothesis is caused by cross-sectional correlation. To do this we calculate the
cross-sectional covariance between the different countries.18 In Table 9 we present the
cross-sectional correlation of the different countries for the different samples.

The main impression when studying the covariances in Table 9 is that the issue of cross-

18The covariance os calculated using the residuals obtained after fitting an AR(1) model to the detrended data.
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Table 7: Estimated intercept and serial correlation.

Sample: 1950-2000
Country Intercept AR(1) coefficient
Canada 4.43 0.87
France 4.22 0.92

UK 4.25 0.87
Italy 4.12 0.91
Japan 4.05 0.94

Sample: 1970-2000
Country Intercept AR(1) coefficient
Canada 4.44 0.91
France 4.30 0.94

UK 4.23 0.45
Italy 4.23 0.84
Japan 4.34 0.91

Table 8: Test results for the LM and the CSCLM tests
Sample: 1950-2000 Sample: 1970-2000

LMa 1.90 2.00
CSCLMb 0.66 -0.59

Notes: aLM denotes the test of Hadri (2000).
bCSCLM denotes the test of Section 3.2.

sectional correlation must be considered when applying the panel data stationarity test on
this data material.

To investigate the effects of disregarding the cross-sectional correlation we set up a
Monte Carlo study using the information about cross-sectional as well as serial corre-
lation obtained from Table 7 and Table 9.We generate 50,000 data sets using the vari-
ance/covariance matrix of the residuals obtained after estimating the AR(1) process for
the detrended series. The data series are generated as in (20)-(22) below.

yt = α + εt (20)
εt = ρεt−1 + νt (21)
νt ∼ N(0N×1,Σ) (22)

As the Monte Carlo simulation is intended to capture the performance of the tests in
a situation similar to the one in the empirical application, we set N = 5 and investigate
the cases where T = 51 and T = 31. The parameters needed to generate the data series in
(20)-(22) are gathered from Table 7 and Table 9.

If we generate data according to (20)-(22), it is evident that data is generated according
to the null hypothesis, i.e. under the hypothesis that all series are stationary. Hence, if we
can investigate the size properties of the two tests when errors are both serially and cross-
sectionally correlated. If we calculate the LM statistic of Hadri (2000) and the CSCLM
statistic of Section 3.2 and see how many times the null is (incorrectly) rejected, we get a
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Table 9: Cross-sectional correlation of the disturbances.
Sample: 1950-2000

Canada France UK Italy Japan
Canada 1.00 0.30 -0.04 0.08 -0.03
France 0.30 1.00 0.63 0.79 0.68

UK -0.04 0.63 1.00 0.54 0.37
Italy 0.08 0.79 0.54 1.00 0.73
Japan -0.03 0.68 0.37 0.73 1.00

Sample: 1970-2000
Canada France UK Italy Japan

Canada 1.00 0.29 -0.18 0.13 -0.13
France 0.29 1.00 0.56 0.79 0.58

UK -0.18 0.56 1.00 0.34 0.50
Italy 0.13 0.79 0.34 1.00 0.68
Japan -0.13 0.58 0.50 0.68 1.00

picture of the size properties of the tests. The size properties at the 5% level is presented
in Table 10.

Table 10: Size of the stationarity tests

T=31 T=51
LM 0.969 0.251
CSCLM 0.034 0.041

As seen in Table 10, the LM test of Hadri (2000) is severely oversized. The CSCLM
test on the other hand has rather good size properties. In Figure 2, we plot the kernel
distributions of the 50,000 test statistics calculated when investigating size properties of
the two tests. We clearly see distributions of the LM test, presented in the top panels
of Figure 2, are heavily distorted as a consequence of the cross-sectional correlation. The
tests are heavily biased towards rejecting the null hypothesis although the null is true. The
distributions of the CSCLM test, as depicted in the lower panels of Figure 2, are rather
close to the normal distributions that apply under the null hypothesis. The discrepancies
observed for the CSCLM test is due to the relative magnitude T/N . As the limit argument
of the CSCLM test applies when T is much larger than N , the distribution of the CSCLM
test will become increasingly larger as T increases.

The main message from Table 10 and Figure 2 is that it is important to account for
cross-sectional correlation when testing for stationarity in panel data.

5 Conclusions

In this paper we study the effects of cross-sectional correlation on a previously suggested
panel stationarity test. We find that the test has a serious size distortion when disturbances
are correlated across cross sections. We propose a new test, the CSCLM test, that is
robust against cross-sectional correlation. When studying the size properties of the so
called CSCLM test, we find that the size distortions that occur when applying the LM test
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Figure 2: Kernel densities for different time series dimensions.
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are wiped out. The results also indicates that the CSCLM test works well in small samples
and when disturbances are both cross-sectionally and serially correlated. By applying the
two stationarity tests to investigate deterministic output convergence, we illustrate how
conclusions regarding economic hypothesis can be adversely affected by failure to account
for cross-sectional correlation.
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