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ABSTRACT
Response time is a measure of quality of service in com-
puter systems. Estimation techniques, suitable for support
systems for mobile phone systems, are explored. These sys-
tems are complex queueing systems with large databases.
The traffic generated by users and system administrators
changes rapidly, some loads can be measured other cannot.
Attempts to capture all details give models that are not suit-
able for on-line control. Estimators based on continuous flow
models with event based measurements are designed using
extended Kalman filtering. The estimators are compared
with simple-data based estimators.
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1. INTRODUCTION
Resource management of computer systems, which has gained
increased attention during recent years, was explored al-
ready in the late 60’s [3, 7]. It is an essential mechanism to
handle load disturbances such as traffic surges and changes
in user behavior. Poorly managed resources can severely
degrade the performance of a system with potentially large
economical consequences.

This paper is motivated by mobile service activation sys-
tems, i.e., the systems which the network operators utilize
for all processing regarding new subscribers and services in
the network. Each new subscriber or service requires pro-
cessing and data storage in several network nodes. The sys-
tems are in general multi-tier systems, implemented as dis-
tributed server clusters, where web and application servers
process the incoming requests and database servers are used
for data storage. The resource management of these sys-

tems, based of measurements and feedback of the actual
utilization, is crucial for optimization of operation costs and
the guarantee of service level agreements during load surges,
for example during market campaigns or various events.

Any server system with software that processes requests can
basically be modeled as a network of queues which store re-
quests in waiting of service in the processors. Therefore,
queuing models can be used to describe the dynamic be-
havior of server systems [4, 9, 19, 21]. Further, tools from
control theory has emerged for both analysis and design of
control of these systems [13].

Previous work on resource management for server systems
has mainly been focused on the web and application servers.
Large software systems have high energy consumption, and
therefore, dynamic resource optimization of these systems
may considerably lower the operating costs for the network
operators [2, 6, 15, 10]. These types of servers has mainly
CPU-intensive workload, which can rather easily be modeled
as single server queuing systems [4].

Resource management solutions for server systems are usu-
ally based on dynamic control schemes, which monitor the
systems, and provide actions when needed. Several types
of resource management mechanisms have been proposed
and evaluated. In larger server systems, load balancing is
performed to distribute resources uniformly over computers,
CPUs, memory, etc. to avoid that some units are overloaded
while others are idle [11, 8]. During overload periods, when
more resources are requested than are available, admission
control mechanisms reduce the amount of work by blocking
some of the requests [5, 18, 16]. Prediction based control
have been shown to improve the performance compared to
control systems only including feedback [14, 17, 12].

2. MOBILE SERVICE SUPPORT SYSTEM
A Mobile Service Support system (MSS) handles the setup
of new subscribers and services into a mobile network (illus-
tration in Figure 1). It presents to the operator and its busi-
ness support systems a unified middleware where complex
functions, such as setting up a new subscriber or modifying
services for an existing subscriber, can be easily invoked.

One request to the MSA from an upstream system normally
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Figure 1: Schematic diagram of a support system
for mobile service providers.

results in a number of requests downstream out on the mo-
bile network to several different network elements (NEs).
A network element is usually a database storing subscriber
and service data, for example, the Home Location Regis-
ter (HLR). A user id which needs to be fetched from one
database needs to be supplied in a query to another database
to get the system consistent.

In parallel to the changes and setups that the MSA performs,
the network is also used by the end users. Services being set
up by the MSA are queried by base stations and other sys-
tems requiring that information. In respect to the MSA, this
traffic can be considered as an unknown background traffic,
in contrast to the known traffic flowing through the MSA.
These two loads may interfere with each other, creating a
race for resources and may put a too high load on an NE.

One NE that becomes overloaded and unresponsive may re-
sult in the entire transaction requiring rollback to avoid in-
consistencies in the network. Such a rollback may require
manual work which is of course costly for the operator. To
protect against such situations, traffic monitoring and con-
trol is crucial.

3. MODELING
The system in Figure 1 is complicated with many different
queues, caches and databases. Attempting to capture all
details give models that are too complex for on-line control.
Therefore we will develop simpler models that capture the
gross input-output behavior. The models will be evaluated
based on the quality of the estimates of the response times.

The input-output behavior of the system can be captured by
the response times for each individual request. Since such
a model is by nature event based we will make a further
simplification by attempting to capture the gross behavior
by a continuous flow model. We will recover the event-based
behavior in the design of the estimators.

A simple flow model of a queue is given by [1]

dx

dt
= λ− µmaxf(x) (1)

where λ is the arrival rate, µmax is the service rate and f a
monotone function with the range [0, 1], [1]. The response
time is

T = t0(1 + x) = t0
(
1 + f−(ρ)

)
, (2)

where t0 = µmax
−1 is the average time to serve one customer

when the queue is empty and ρ is the normalized service rate
or the utility ρ = λ/µmax. For the simple M/M/1 queue we
have f = x/(x+ 1) [20].

If the function f in (1) is monotone the general behavior is
that the response time increases with increasing arrival rate.
The response time goes to infinity as λ approaches µmax if
the function f has the range [0, 1]. Since the parameter
µmax is uncertain it may be desirable to have models where
response rates increase significantly but that they do not go
to infinity for finite λ, which can be accomplished by other
choices of the function f .

When (1) is used to model an NE in Figure 1 the variable x
accounts for the aggregated effect of the storage. Therefore
x and T should be interpreted as apparent queue length and
response time, they represent the aggregated behavior of
many different queues in the real system. It is not possible to
measure the apparent queue length directly but the response
time can be measured. Requests that enter in a known way
can also be used as an inputs.

Linearizing the model around the equilibrium xe gives a first
order system with the time constant

τ =
1

µmaxf ′(xe)
≥ 1

µmax
. (3)

The inequality follows from f being monotone and f(0) = 1.
Notice that the time constant increases significantly with
increasing queue length.

4. ESTIMATION
Different ways to estimate the response time from available
measurements will now be discussed. There are significant
variations in the arrival rate. The response time increases
dramatically when the admission rate approaches the ca-
pacity of the system. The queue length x in the model (1)
cannot be measured directly because it represents an ag-
gregate effect of many queues as discussed in Section 3. It
follows from (2) that a measurement of the response time T
directly gives the queue length.

4.1 Exponential Smoothing
A simple way to estimate both response time and arrival
rate is to use a moving average estimate. Since this estima-
tor does not require a mathematical model it is used as a
reference case. The estimator is given by

x̂+ = x̂+ k(xm − x̂) (4)

where xm is the measured quantity, x̂, and x̂+ is the esti-
mates before and after an event, and k is the filter gain. The
filter can be used to estimate both response time and arrival



rate. The filter coefficient can be chosen to minimize some
measure of the error. The filter has the advantage that it
does not require any model.

4.2 Kalman Filtering - Known Arrival Rate
In this case it is assumed that the arrival rate is measured
and that the arrival time of each request and the time it takes
to serve it are measured. There are significant variations in
the response time. For a Poisson process the mean value and
the variance are the same. A smoothed estimate is required
to obtain information that is useful for control.

If the arrival rate λ is known, the apparent queue length
can be predicted by the model (1) when there are no events.
Hence

dx̂

dt
= λ− µmaxf(x̂) + k (T − t0(1 + x̂)) , T̂ = t0(1 + x̂),

(5)
where the initial condition is taken as the estimate obtained
at the most recent event. When an event occurs the estimate
is updated as

x̂+ = x̂+ k(T − T̂ ) (6)

where T is the measured response time, x̂ and x̂+ are esti-
mates before and after an event, and k is a filter gain. The
filter gain k can be computed if the statistics of x̂ and T
are known. Since it is unrealistic to assume that this infor-
mation is available we will instead determine the filter gain
from simulation and experiments.

4.3 Kalman Filtering - Unknown Arrival Rate
It is not always the case that all traffic can be controlled, so
here we investigate if both arrival rate λ and queue length x
can be estimated from measurements of response time. For
simplicity we will assume that the arrival rate is constant
but unknown or a random walk. Both assumptions lead
to the same filter. Linearization of (1) and (2) around the
equilibrium xe, λe gives a dynamical system with

A =

[
−µmaxf ′(xe) 1

0 0

]
, C =

[
t0 0

]
. (7)

Estimation is possible because the system is observable. If
the measurements were continuous the extended Kalman fil-
ter is

dx̂

dt
= λ̂− µmaxf(x̂) + k1 (T − t0(1 + x̂))

dλ̂

dt
= k2 (T − t0(1 + x̂)) .

When the measurements are event-based the model (1) is
used to update the estimate when there are no events. The
estimates are given by

dx̂

dt
= λ̂− µmaxf(x̂),

dλ̂

dt
= 0, (8)

where the initial conditions are the estimates x = x̂+ and
λ = λ̂+ obtained after a request has been serviced.

When a measurement of response time T is available the
estimates are updated by

x̂+ = x̂+ k1(T − T̂ )

λ̂+ = λ̂+ k2(T − T̂ )
(9)

where T̂ = t0(1 + x̂) from the time at which the request
entered the system.

4.4 Kalman Filtering - Two Arrival Streams
A characteristic feature of the system in Figure 1 is that
there are two different input streams to the network ele-
ments. The stream coming from the service provider side
is known but the traffic generated by the users enters the
system in many different ways and cannot be measured. To
capture this situation we will assume that there are two
input streams. One stream is measured and the other is un-
known, manifested only through variations in response time.
The corresponding flow model is

dx

dt
= λc + λu − µmaxf(x)

T̂ = t0(1 + x),

(10)

where λc is a controllable/known arrival rate and and λu is
an uncontrollable/unknown arrival rate. Assuming that λu
is a constant it follows that both x and λu are observable
from measurements of T and λc. The event-based extended
Kalman filter is obtained as a simple extension of the filter
in Section 4.3.

5. SIMULATION
5.1 Introduction
To test the the estimators we will apply them to a known
situation with an M/M/1 queue where many quantities can
be evaluated analytically.

The simulated queue server system is a one-server, infinite
queue system with exponentially distributed process times
with mean µmax

−1. Jobs arrive at the queue, are finished
in FIFO order and are acknowledged upon completion. The
jobs were generated as a Poisson processes, with exponen-
tially distributed inter-arrival times.

The arrival rate for the controllable stream coming from the
service provider side in Figure 1, ratec(t), is a combination
of a constant and a sine function variation. The arrival rate
for the uncontrollable stream coming from the user side,
rateu(t) was set as constant.

ratec(t) = Cc + a sin(kt)
rateu(t) = Cu

(11)

The parameters were chosen so that the system can handle
the workload over long time but with periodic overloads,
hence

µmax − a < Cc + Cu < µmax.

The numerical values used in the simulations are

µmax = 100, Cc = 42.5, Cu = 42.5, a = 20.
(12)

The same realizations were used in all simulations. For ex-
periments with only one fully controllable stream, requests
from both streams were directed to the controllable side.

The differential equations describing the behavior of the es-
timates between events were approximated using first order
forward Euler discretization.
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Figure 2: Estimation of response time by exponen-
tial smoothing.
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Figure 3: Error of the estimates in Figure 2. The
mean square error is σ = 0.018. Notice the time
variability of the error.

5.2 Exponential Smoothing
A simple way to estimate both response time and arrival
rate is to use a moving average estimate. Since this esti-
mator does not require a mathematical model it is used as
a reference case. The estimator is given by (4). At the
departure of a job the estimated queue length is updated as

x̂+ = x̂+ k1

(
T
t0
− T̂

t0

)
(13)

where T is the measured response time of the request and
T̂ is the response time estimation from when the request
arrived at the system.

The choice of filter gain is a compromise, large values give
a fast response with large fluctuations, small values give
smoother estimates with slower response. After some ex-
perimentation the gain was chosen as k = 0.03, which cor-
responds to a time constant of about 30 events. Figure 2
shows that the simple exponential smoothing estimator gives
reasonable results. It gives an efficient smoothing when the
response times are small. There is however a lag in the re-
sponse when the response times are changing significantly
for example around times 424 and 427. The arrival rate
is around 100 and the time delay is approximately 0.3 s,
which matches the time constant of the estimator. The
magnitude of the estimation error is very different at dif-
ferent periods the mean square error is σ = 8.4 · 10−4 in the
interval 415 < t < 420 and σ = 1.5 · 10−2 in the interval
425 < t < 430. The mean square error for the entire 600
second experiment is σ = 1.8 ·10−2. The different behaviors
for different queue lengths indicate that it may be useful to
schedule the estimator gains.
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Figure 4: Estimates with known arrival rate. Ar-
rival rates are smoothed and the response time is
estimated using an event-based Kalman filter.
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Figure 5: Error of the estimates in Figure 4. The
mean square error is σ = 0.0069. Notice the time
variability of the error.

5.3 Known Arrival Rate
Since all traffic passes through the filter, exponential smooth-
ing can be used to estimate the mean inter-arrival time which
is the inverse of the arrival rate. This rate is used with the
flow model (1) to estimate the response time using an ex-
tended Kalman filter. The estimates used on arrival are

î+ = î+ k3(ha − î)
λ̂+ = (̂i+)−1

x̂+ = x̂+ ha
(
λ̂+ − µf(x̂)

) (14)

where î is the estimate of the mean inter-arrival time, λ̂ is the
estimate of the arrival rate, x̂ is the estimate of the effective
queue length, and ha is the time from the last arrival.

On departure the queue length is updated as

x̂+ = x̂+ k1

(
T
t0
− T̂

t0

)
(15)

Figure 4 shows the arrival rate and the response time and
their estimate. The error of the response time estimate is
shown in Figure 5. A comparison with Figure 2 shows that
a significant improvement is obtained at the times when
the response times changes rapidly. Compare the behaviors
around times 424 and 427. The improvement is particularly
important to avoid overload during rapid increases in traf-
fic. The magnitude of the estimation error is different at
different periods the mean square error is σ = 6.3 · 10−4

in the interval 415 < t < 420 and σ = 4.5 · 10−3 in the
interval 425 < t < 430. The total mean square error is
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Figure 6: Exponential smoothing response times
with estimate, arrival rate has no estimate.
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Figure 7: Exponential smoothing prediction error.

σ = 6.9 · 10−3 which is significantly smaller that the er-
ror obtained by the simple exponential smoothing estimate
which had σ = 1.8 · 10−2.

5.4 Two Arrival Streams
In this experiment we separate the two streams of traffic to
simulate the two sides of the NEs in Figure 1. One stream
passes the observer and one stream enters the shared re-
source in the background, only showing itself as an added
load on the system.

Running this scenario with the simple exponential smooth-
ing estimator presented in section 5.2 results in the response
times and estimations shown in Figure 6. The estimation er-
ror is shown in Figure 7. Since the filter gets only half the
amount of measurements, this situation is not identical to
Figure 2. Here the mean square error is σ = 8.6 · 10−4 for
the period 415 < t < 420 and σ = 1.1 · 10−2 for the pe-
riod 425 < t < 430. The mean square error for the entire
experiment is σ = 9.9 · 10−3.

k1 k2 k3

250 110 0.031

Table 1: Parameters used in this experiment

To try the Kalman filter we use the parameters shown in ta-
ble 1. The observer follows the inter-arrival times of the con-
trollable traffic using the exponential smoothing described
in Section 5.3 and equation (14). The controllable arrival
rate is then

λ̂+
c = î−1. (16)

On every departure we get a response time measurement
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Figure 8: Kalman filter response times with esti-
mate, arrival rate with estimate.
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Figure 9: Kalman filter prediction error.

and update the estimation of the queue length and uncon-
trollable arrival rate as

x̂+ = x̂+ hd
(
λ̂c + λ̂u − µf(x̂) + k1(T − T̂ )

)
λ̂+
u = λ̂u + hdk2(T − T̂ )

(17)

where hd is the time since the last departure. Figure 8 shows
the response times and the arrival rate, both real values
and estimates. The estimate error is shown in Figure 9.
Once again we can see how the Kalman filter manages to
follow the real system during the quick rises in response
time around time 424 and 427. Here the mean square error is
σ = 7.4·10−4 for the period 415 < t < 420 and σ = 1.1·10−2

for the period 425 < t < 430. The mean square error for the
entire experiment is σ = 1.9 · 10−2.

6. FUNDAMENTAL LIMITATIONS
It is useful to know the factors that fundamentally limits how
accurate the response time can be estimated. Since response
times are stochastic, our best guess is the expected value. If
there are n jobs in the system, our best guess will be that
the next job will take t0 · (1 + n), where t0 = E [X] , X ∼
Exp(µmax). However, it will actually take

∑n+1
i=1 Xi, Xi ∼

Exp(µmax) which is a stochastic variable. Since the sum of
several exponentially distributed variables follows the Erlang
distribution the expected value of the error as a function of
queue length will be

Eerr(n) = E [|E [Y ]− Y |]

where Y ∼ Erlang(n + 1, µmax) and n is the number of
requests already in the system. This gives us the following
calculations for the minimal error:

Eerr(n) =
µmax

n+1

n!

∫ ∞
0

∣∣∣∣n+ 1

µmax
− x
∣∣∣∣xne−µmaxxdx =
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Figure 10: Minimal prediction error for a M/M/1
queue system with µmax = 100.

=
2(n+ 1)n+1

n!µmaxen+1
.

The smallest value is obtained for n = 0.

Figure 10 shows the minimal prediction error as a function
of queue length with µmax = 100.

7. SUMMARY
Feedback control is essential for resource management in
computer systems. We have investigated several ways of es-
timating response time which is a key measure of service
quality. Simple estimators that do not require models as
well as more sophisticated model based schemes have been
investigated. The model-based estimators use flow models
of the queuing systems and provide event-based estimates
using extended Kalman filtering. The estimators have been
tested by simulation for scenarios for resource management
for mobile telephone operators. The simple model-free esti-
mators give reasonable estimates but the estimates are de-
layed when the the queue length increases due to system
overload. The delay can be reduced by using model-based
estimators both in the case of a measured incoming traffic
and when the incoming traffic is a mix of known and un-
known background traffic.
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