ALBEGA: A Decay Spectroscopy Setup for Chemically Separated Samples

Published in:
GSI Report

DOI:
10.15120/GR-2015-1-MU-NUSTAR-SHE-C-06

2015

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
There are many on-going programmes dedicated to elucidate the nuclear structure of SuperHeavy Elements (SHE atomic number $Z \geq 104$) based on different methods [1]. The SHE are accessed in heavy-ion induced fusion-evaporation reactions, with the nuclear spectroscopy experiments typically performed at in-flight recoil separators.

An alternative approach exploits a chemical isolation system either directly or after separator [2], this was adopted in different experiments [3-5]. A significant improvement of the background conditions was observed applying this method.

A next generation setup for measurements of ALphA-Beta-Gamma decays (ALBEGA) after chemical isolation was recently built. ALBEGA is dedicated to simultaneously measuring of α, β, γ, \ln and X-rays. All directions of detector dead layer and gas, thus undergoing energy loss to a different degree, before entering the active detector area. Accordingly, α peaks show characteristic low-energy-tailing, e.g. the 140Ce(58Ti, 6-7n) reaction energy spectrum (b). The measured energies corresponding to the two particles α_1 and α_2 are indicated, they have the same initial energy but different path. The distribution pattern observed in the experiment (c) is due to the Hg retention on the inner channel Au coating, and the maximum is observed on the segments at the channel entrance.

The setup was first tested and calibrated with α particles and γ rays produced by decay chains of 218Rn emanated from an 227Ac source. Then the 140Ce(58Ti, 6-7n) reaction was used to produce 184,185Hg, which was preseparated in TASCA [3] and then transported to ALBEGA with rapidly flowing of Ar gas. The energy spectrum and the distribution pattern measured are shown in Fig. 2.

α-det

Figure 2: The α particles are emitted isotropically at various angles in the narrow channel (a). Depending on their incident angle, they pass through different effective thicknesses of detector dead layer and gas, thus undergoing energy loss to a different degree, before entering the active detector area. Accordingly, α peaks show characteristic low-energy-tailing, e.g. the 140Ce(58Ti, 6-7n) reaction energy spectrum (b). The measured energies corresponding to the two particles α_1 and α_2 are indicated, they have the same initial energy but different path. The distribution pattern observed in the experiment (c) is due to the Hg retention on the inner channel Au coating, and the maximum is observed on the segments at the channel entrance.

The setup was first tested and calibrated with α particles and γ rays produced by decay chains of 218Rn emanated from an 227Ac source. Then the 140Ce(58Ti, 6-7n) reaction was used to produce 184,185Hg, which was preseparated in TASCA [3] and then transported to ALBEGA with rapidly flowing of Ar gas. The energy spectrum and the distribution pattern measured are shown in Fig. 2.

References