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Sammanfattning på svenska

Det finns många kemikalier i vår miljö där vissa har visat sig göra hanliga fiskar 
honliga, äggskalen tunnare hos fåglar och som kan göra honliga snäckor hanliga, 
och det verkar ju inte vara en bra framtid för dessa djur. Sådana kemikalier går under 
benämningen endokrina störare, eftersom de stör naturliga biologiska processer som 
är viktiga för djurs utveckling av organ, homeostas, beteenden vid fortplantning och 
fertilitet. Kemikalierna kan komma ifrån industrier, besprutning av odlingsmarker 
eller från avloppsreningsverk där en del hamnar i vattendragen och blir tillgängliga 
för de djur som lever eller som hämtar sin föda där. Listan över dessa kemikalier 
är lång men några exempel är polyklorerade bifenyler (PCB) som har använts som 
brandskyddsmedel i transformatorer, tributyltenn (TBT) som finns i båtbottenfärg, 
ftalater som används som mjukgörare i plastprodukter, bisfenol A (BPA) som 
används som hårdgörare i plastprodukter samt 17α-ethinylestradiol (EE2) som är 
den aktiva substansen i p-piller.

Dessa kemikalier kan störa biologiska processer eftersom de liknar djurens 
kroppsegna kemiska signalsubstanser, t.ex. hormoner hos ryggradsdjur eller 
neuropeptider hos ryggradslösa djur. Det råder nog inga tvivel om att dessa 
kemikalier inte är hälsosamma för djur, eller för människan, och projekt har 
mynnat ut i utvärderingar från t.ex. världshälsoorganisationen (WHO, World Health 
Organisation) om hur man skall bemöta dessa problem. Detta kan göras genom 
en bättre förståelse hur dessa ämnen påverkar miljön, metoder för att övervaka, 
mäta och utvärdera effekterna samt identifiera nya kemikalier som kan störa det 
endokrina systemet.

EE2, ett syntetiskt östrogen och den aktiva substansen i p-piller, har visat sig 
främst påverka ryggradsdjur, t.ex. fiskar och groddjur. Detta beror på att dessa djur 
ur ett evolutionärt perspektiv inte skiljer sig så mycket från oss och har liknande 
kroppsegna signalsubstanser och receptorer för dessa ämnen. Den forskning 
som har bedrivits har visat att EE2 påverkar fiskars könsutveckling, fertilitet 
och parningsbeteenden på ett sätt som kan vara negativt för hela populationer av 
fisk. Forskningen har även visat att blötdjur, musslor och snäckor, påverkas av 
EE2 men graden av påverkan och hur de påverkas är artberoende. Vad som gör 
snäckor känsliga är dock inte helt klarlagt men det finns indikationer på att de har 
kroppsegna substanser som liknar de som ryggradsdjuren har, även om de inte är 
närbesläktade med dem. Andra ryggradslösa djur som insekter och kräftdjur är dock 
inte känsliga för EE2 i de koncentrationer som finns i våra vattendrag. Att säga att 
ett djur inte påverkas av EE2 kan dock vara fel, det beror mer på mängden av EE2 
som djuret exponeras för (Allt är ett gift, och ingenting är utan giftighet. Enbart 
dosen bestämmer att något inte är ett gift. Paracelsus 1493-1541) samt vad man 
mäter hos ett djur, på molekylär-, organ-, individ, eller populationsnivå.



13

Aquatuc organisms on the pill

12

I min forskning har jag försökt att besvara frågor om hur EE2 påverkar 
populationstillväxten hos snäckor, hur EE2 påverkar fiskars beteenden då de söker 
föda, om EE2 kan påverka djur som inte är känsliga för EE2 genom indirekta 
effekter (trofiska kaskader) samt hur fiskars fysiologiska hälsa påverkas. Jag har 
även studerat om snäckors EE2 exponeringshistoria kan göra dem mer eller mindre 
toleranta för andra kemikalier samt om EE2 kan ha en påverkan på fysiologiska 
processer hos kräftdjur som kan påverka deras utveckling, programmerad celldöd, 
avgiftning och nervsignalering.

De resultat som jag har fått genom min forskning visar på att olika arter av 
snäckor kan ha olika tillväxt då de är exponerade för EE2, men effekterna var inte 
förmodligen inte stora nog att påverka populationstillväxten. Vad som skiljer de två 
arterna av snäckor är att en art är hermafrodit (tvåkönad) och en är separatkönad art. 
Om skillnaderna i deras tillväxt beror på att de har olika fortplantningsstrategier är 
dock inte klarlagt, men det visar på att närbesläktade arter kan reagera olika. 

Jag observerade också att fiskars beteende då de söker föda kan påverkas negativt 
vilket försämrar deras födointag och tillväxt. Detta kan förmodligen bero på att 
fiskarna var exponerade för EE2 under tidig utveckling och då finns det en risk för 
att utvecklingen av organ kan påverkas negativt. Fiskar som är fullt utvecklade och 
är vuxna visade inget förändrat födointag, även om deras tillväxt var sämre, levern 
blev större hos både hanar och honor, samt gonaderna blev mindre hos hanliga 
fiskar. Ökningen av storleken på deras lever beror förmodligen på att även hanliga 
fiskar började producera vitellogenin, som är ett ägguleprotein. Förminskningen av 
gonaderna hos hanar kan påverka deras förmåga att fortplanta sig genom eftersom 
mindre mängd spermier kan leda till minskad fertilitet. Orsaken till deras lägre 
tillväxt kan vara en kombination av att energi har gått till avgiftningsprocesser och 
till en ökad produktion av ägguleprotein samt att EE2 kan förändra aktiviteten hos 
tillväxtshormoner. Att de hade sämre tillväxt kan vara alarmerande då det är viktigt 
för fiskar att lagra energi inför tider med mindre födotillgång samt att tiden till 
reproduktion kan förlängas.

Då vi exponerade två olika populationer av snäckor för EE2, där en population 
hade varit exponerat för EE2 tidigare i sitt liv och den andra hade inte varit exponerat, 
såg vi att snäckorna som hade varit exponerade för EE2 tidigare hade en högre 
tillväxtshastighet. Vi kan däremot inte med säkerhet härleda den snabbare tillväxten 
till EE2 exponeringen eftersom populationerna växt upp under olika betingelser 
även i andra avseenden än EE2 exponering. Förutom detta så såg jag att snäckorna 
växte sämre om de var utsatta för både EE2 och kadmium. Vi såg även att EE2 kan 
påverka avgiftningsmekanismerna, programmerad celldöd och nervsignalering hos 
kräftdjur och detta kan leda till förändrad populations dynamik genom att de inte 
kan bryta ner gifter sig samt att utvecklingen till vuxna individer fördröjs.

Även om effekterna av EE2 på de organismer, populationer och samhällen som 
jag har studerat inte verkar vara stora så kan det på lång sikt förändra hur samhällena 
ser ut i de vattendrag som är påverkade av endokrina störare.

First of all, studies on the effects of 
endocrine disrupting compounds 
(EDCs) is not a new subject and “Our 
stolen future” which is a part of the 
title from a book written by Colborn 
et al. (1997) summed up many years 
of collective knowledge about the 
effects EDCs had on the health of the 
environment and the inhabitants living 
there, including us, Homo sapiens 
(Toppari et al. 1996). The consequences 
of EDC exposure have been studied in 
different compartments of the biosphere, 
in different groups of animals and both 
in males and females. Eggshell thinning 
in birds (Elliott et al. 1996), abnormal 
gonads in alligators (Guillette et al. 
1994), feminization of male fish (Harries 
et al. 1997) and masculinization of 
female mollusks (Oehlmann et al. 1996) 
linked to polychlorinated biphenyl 
(PCB), dichlorodiphenyltrichloroethane 
(DDT), 17α-ethinylestradiol (EE2) and 
tributyltin (TBT) respectively, are just a 
few, but classical examples illustrating 
the negative consequences such 
compounds may have on organisms.

What might be a common aspect 
linking these examples is that these 
animals live in, or consume food 
that live in the aquatic sphere. Water 
surrounds the organism living there 
and is also a media for transport of all 
sorts of chemicals, via rain, drainage 
and sewage, to streams, rivers, lakes 
and finally the ocean. This can make life 
difficult for many of the inhabitants in 
the aquatic sphere and there is seldom 
a way for the organisms to escape this, 

they just have to try to adapt, evolve and 
continue to live there. 

Secondly, what are EDCs ? In a 
report from WHO/IPCS (2002) they 
define them as:

•	 “An endocrine disruptor is an 
exogenous substance or mixture that 
alters function(s) of the endocrine 
system and consequently causes 
adverse health effects in an intact 
organism, or its progeny, or (sub)
populations.”

•	 “A potential endocrine disruptor is 
an exogenous substance or mixture 
that possesses properties that might 
be expected to lead to endocrine 
disruption in an intact organism, or 
its progeny, or (sub)populations.”

There are a few compounds of 
mainly anthropogenic origin (Colborn 
et al. 1993; Sumpter 2005) that fits 
to that definition as they have similar 
properties to endogenous hormones or 
neuropeptides and thereby may interact 
with endogenous receptors (Tsai and 
Omalley 1994; Lafont and Mathieu 
2007) and disturb the endocrine system 
if taken up by an organism. There are 
also natural compounds, estradiol and 
phytoestrogens, which are excreted 
or released from animals and plants, 
respectively, that may have similar 
effects (Kurzer and Xu 1997; Kolodziej 
et al. 2004).

Depending on their properties, 
EDCs are may be divided into 
androgenic, anti-androgenic, estrogenic 

Introduction
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Figure 1. The main character of the story, 17α-ethinylestradiol (EE2) on the right side, mimicking its 
natural counterpart, 17β-estradiol (E2).

Origin Compound Potency
Natural 17α-estradiol (17α) 1*10-3 - 1,1*10-1 

Estrone (E1) 5.6*10-2 - 8*101

Estriol (E3) 3.7*10-2

Synthetic 17α-ethinylestradiol (EE2) 8*10-1 – 3,3*101

Nonylphenols 1.0*10-9 - 3.6*10-3

Bisphenol A (BPA) 7.8*10-6 - 1.0*10-3

Phthalates 1.1*10-5 - 3.2*10-8

Table 1. Estrogenic potency for some natural and synthetic estrogenic EDCs 
relative to the natural estrogen 17β-estradiol (E2) (Vajda et al. 2008; Metcalfe et al. 
2001; Murk et al. 2002; Korner et al. 1998; Korner et al. 2001)

and anti-estrogenic. In for example 
vertebrates, androgens and estrogens 
regulate the development of male and 
female characteristics, respectively, by 
binding to receptors. If the animal is 
exposed to an EDC, anti-androgenic 
or anti-estrogenic compound block 
the receptors and thereby inhibit a 
process while androgenic or estrogenic 
compounds bind to the receptor and 
induce a process, that the endogenous 
hormone normally would regulate 
(Sumpter 2005).

There are also EDCs that do not act 
upon the receptors but may interfere 
with the endocrine system by other 
means, e.g. tributyltin (TBT) used in 
antifouling paints for boats that interfere 
with the transformation of testosterone to 
estrogen (Sumpter 2005). Other sources 
for EDCs can be phthalates (Staples 
et al. 1997) used in plastic products to 
make them more flexible and bisphenol 
A (BPA) (Staples et al. 1998) also used 
in plastic products but to make them 
more rigid.

In my research I have studied the 
effects of 17α-ethinylestradiol (EE2) 
(Figure 1), the active compound in 
contraceptive pills and in hormone 
replacement therapies and a potent 
estrogenic EDC (Thorpe et al. 2003) 
(Table 1), on different organizational 

levels of the aquatic community. When 
EE2 is used the main part is metabolized 
in the body of the user, but a fraction is 
excreted in original form with the urine. 
This means that the majority of EE2 is 
distributed from urban areas through 
sewage treatment plants where it is partly 
degraded (Ternes et al. 1999; Desbrow 
et al. 1998) and distributed onward to 
streams, rivers, lakes (Belfroid et al. 
1999) and in some cases, the ocean 
(Pojana et al. 2007; Beck et al. 2005).

So, after almost 20 years after the 
publication of “Our stolen future” plus 
approximately 17200 more scientific 
articles about the subject of EDCs 
and their effects, have the problems 
threatening our future disappeared? 

No, I do not think so; I just think 
that we can add new compounds to the 
already long list of compounds that 
possess properties that may disturb the 
endocrine system and the science will 
continue and try to unravel the possible 
problems they might cause. However, 
we can reduce the spread of EDCs, and 
other chemicals, to our surface waters 
by enhancing the biological breakdown 
in sewage treatment plants, inform to the 
public about how to discharge unused 
chemicals in a proper way, and use other 
chemicals that may be less damaging to 
the environment.

Furthermore, EE2 or other 
estrogenic EDCs can only induce 
effects if the individual, either by food, 
through epidermis or gills, takes up 
the compound. The compound must 
also be transported through tissues and 
either attach at a receptor on the cell 
wall or within the cell nucleus (Figure 
2). The following response may be at 
molecular level, for example interfering 
with apoptosis, neurotransmission and 
detoxifying processes in copepods 
(Paper VI), liver and gonad size in 
fish (Paper III and IV), enhanced 
or inhibited somatic growth in snails 
(Paper I) inhibited somatic growth in 
fish (Paper II, III and IV), inhibited or 
non affected foraging behavior in fish 
(Paper II and III), population size and 
structure in zooplankton (Paper II, IV 
and VI) and size and composition of the 
community or ecosystem (Paper II and 
IV).
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Figure 2. Simplified pathway (arrows pointing inwards) of endocrine disrupting compounds (EDCs) 
from emissions to surface waters, uptake in individuals, transport through tissues and binding to 
receptors on cell wall or inside nucleus. The following response (arrows pointing outwards) may be 
activation or deactivation of enzymes and/or proteins, cell generation or degeneration, size and/or 
functions of tissues or organs, changes in the individuals behavior or fertility, size and demography 
of populations and structure of the community, all depending on the how strong the effect was on the 
previous organizational level.

The aquatic community is composed of 
species that can be placed in different 
functional groups in the food web where 
they directly interact with the each other 
via predation, competition or mutualism 
that alter the behavior, or even the life 
status, for the individuals involved, as 
well as indirectly affect other species 
not directly involved. These direct 
and indirect interactions, as well as 
the species interaction with the abiotic 
environment, are the structuring forces 
that determine the size of populations 
and the species diversity in aquatic 
communities (Wootton 1994).

The abiotic environment can also 
come in the shape of anthropogenic 
stressors, such as chemical polluters, and 
the interaction between the species and 
the chemical polluter may be as strong 
as the biotic interactions and community 
ecology and animal behavior can be 
efficient tools to study and predict 
the effects anthropogenic chemicals 
may have in aquatic communities 
(Clotfelter et al. 2004; Rohr et al. 2006; 
Clements and Rohr 2009). For example, 
insecticides and herbicides designed 
to reduce the abundance of the target 
species have been shown to restructure 
aquatic communities by having both 
direct lethal and indirect non-lethal 
effects (Fleeger et al. 2003) as well as 
alter the behavior of the inhabitants 
(Steinberg et al. 1995; Saglio and 
Trijasse 1998).

The results from several studies 
show that the most sensitive species 
to estrogenic EDCs belong to the 

vertebrate group (Caldwell et al. 2008; 
Segner et al. 2013) and this is not 
unlikely as EE2 is designed to mimic 
estradiol (E2) and modulate biological 
processes in humans. This can be related 
to the difference in how growth, sex 
differentiation, behavior, immune system 
and reproduction are controlled, either 
by in vertebrates or by neuropeptides 
in invertebrates (Köhler et al. 2007; 
Lafont and Mathieu 2007; Lagadic et al. 
2007; Eick and Thornton 2011; Ahmed 
2000; Pankhurst et al. 1999). It could 
be possible to divide aquatic species in 
two groups, with vertebrates on one side 
and invertebrates and plants on the other 
side, but this division should come with 
caution as there are receptors that have 
been conserved through evolution and 
can be found in both invertebrates and 
vertebrates (Gunnarsson et al. 2008).

With the difference in sensitivity 
to EE2 between fish and the majority 
of the other inhabitants in the aquatic 
community it is not unlikely that the 
negative effects on population size (Kidd 
et al. 2007) and sensory-motor systems 
(Nelson et al. 2008) in fish are indirectly 
affecting less sensitive prey species by 
reducing the predation pressure on them. 

Up to the date when I started my 
PhD-student time there have been 
many studies performed on the effects 
of EE2, or other estrogenic EDCs, on 
different groups of species, for example, 
biotransformation and bioconcentration 
of EDCs in algae (Lai et al. 2002), 
crustaceans reproduction and mortality 
(Jukosky et al. 2008), larval molting 

The aquatic community
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in insects (Watts et al. 2003) and fish 
physiology and reproductive behavior 
(Bjerselius et al. 2001). However, only a 
few studies have been performed on the 
effects on non-reproductive behaviors 
and higher organizational levels, for 
example fish anti predator behavior 
(Bell 2004), fish populations (Kidd et al. 
2007) and plankton communities (Hense 
et al. 2004).

Therefore, the aim of this thesis was 
to investigate the effect EE2 may have 
on aspects of an organisms biology not 
necessarily connected to reproduction 
and the consequences on organizational 
level above the individual organisms, 
such as population growth rates and 
communities.

In paper II my colleagues and me 
exposed a pelagic community consisting 
of phytoplankton and zooplankton 
populations and later on roach larvae, 
mimicking hatching of planktivorous 
fish in temperate lakes, to EE2 at the 
nominal concentration of 50 ng/l. In 
this paper we used the approach of 
community ecology by viewing EE2 as 
an active predator (Rohr et al. 2006) that 
may inhibit fish forging performance and 
indirectly affect species less sensitive to 
EE2. We showed that the effect of EE2 on 
the plankton community was low before 
adding the roach larvae. This result is 
in concert with several other studies 
showing that both phytoplankton and 
zooplankton do not seem to be sensitive 
to EE2 or other estrogenic EDCs.

However, there was a higher biomass 
of copepod nauplii stages in the control 
treatment suggesting more resources for 
the copepods in the control treatment or 
that reproduction was inhibited in the 
EE2 treatment. Effects of estrogenic 
EDCs on development or reproduction 
in copepods have previously only been 
seen at concentrations of 20 µg/L for 
both BPA and β-estradiol (Andersen 
et al. 1999) and 50 µg/L for EE2 
(Andersen et al. 2001) and other have 
shown that only small (Jukosky et al. 
2008) or absent effects (Breitholtz and 
Bengtsson 2001) even at concentrations 
of, or higher than, 50 µg/L for EE2 and 
100 µ/L for BPA. Effects of EE2, or 

other estrogenic EDCs, on possible food 
items for zooplankton, such as algae, 
have been shown on the energy flow and 
growth, but the concentrations of the 
EDCs (4-octylphenol, 4-nonylphenol, 
β-estradiol, bisphenol A (BPA) and 
EE2) where an effect was observed was 
at 200 µg/L for nonylphenol or higher 
for the other estrogenic EDCs (Perron 
and Juneau 2011; Liu et al. 2010). 
Algae can also promote biodegradation 
and biotransformation of EDCs (Liu 
et al. 2010; Della Greca et al. 2008) as 
well as bio-accumulate them (Lai et al. 
2002; Correa-Reyes et al. 2007) with the 
possibility that they may be a source of 
EDCs to higher trophic levels (Cailleaud 
et al. 2011; Correa-Reyes et al. 2007). 
However, we did not determine the 
nauplii to specie and we could not say if 
their parents where grazers, predators or 
omnivors and therefore, the implications 
of our results with respect to nauplii 
remain inconclusive.

After releasing roach larvae to the 
mesocosm, the effects of EE2 were 
stronger than the period before. We 
showed that the biomass of copepods was 
higher and that the biomass of the roach 
was lower in the EE2 treatment. EE2 and 
other estrogenic EDCs have been shown 
to affect growth in fish, for example 
fathead minnow (Pimephales promelas) 
and zebra fish (Danio rerio) (Pawlowski 
et al. 2004; Van den Belt et al. 2002) and 
growth can even be regarded as sensitive 

The effects of EE2 on different 
organizational levels, past and 

present studies
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as reproductive end-points (Segner et al. 
2013). EE2 can affect growth in fish by 
either modulating the activity of growth 
hormones shown in tilapia (Oreochromis 
niloticus) (Shved et al. 2008), increase 
the activity of detoxification (glutathione 
S-transferase (GST)) shown in Atlantic 
salmon (Salmo salar) (Greco et al. 
2007) or increase the production of 
vitellogenin (vtg, a egg yolk precursor 
protein) shown in EE2 exposed Chinese 
rare minnow (Gobiocypris rarus) (Zha 
et al. 2008) where the two last processes 
likely to use energy that cannot be used 
for maintenance or growth.

That fish is sensitive to EE2 or other 
estrogenic EDCs have been shown 
in observations from surface waters 
receiving water from sewage treatment 
plants (STPs). Intersex (feminized testis) 
have been observed in gudgeon (Gobio 
gobio) (van Aerle et al. 2001) and in 
roach (Jobling et al. 1998), and increased 
vtg production  have been found male 
rainbow trout (Oncorhynchus mykiss) 
(Harries et al. 1997; Harries et al. 1996). 
Experimental studies have found similar 
results with common carp (Cyprinus 
carpio) (Gimeno et al. 1998) and 
roach(Lange et al. 2008). Hence, the 
effects of EE2 are strongest at the top 
of the food web and seem to diminish 
further down. 

This suggests that our observed 
effect on roach weight was a directly 
consequence of EE2 exposure and that 
the zooplankton biomass was indirectly 
affected. In order to investigate why the 
biomass of copepods was higher and 
roach biomass was lower we exposed 
roach, from eggs to 84 days post hatch, 
to 50 ng/L EE2 in a second experiment. 
At day 84 we tested if the foraging 

performance was inhibited in the EE2 
exposed roach by measuring the amount 
of Daphnis magna that was consumed. 
Here we observed that the EE2-exposed 
roach consumed approximately 20 
percent of the D. magna provided 
while the unexposed roach consumed 
approximately 80 percent, i.e. EE2 had 
a dramatic effect on foraging success. 
This reduction in foraging performance 
may explain the higher biomass of 
zooplankton and lower biomass of 
roach in the EE2 treatment of mesocosm 
experiment. 

Estradiol, and other hormones, is 
involved in several processes in fish, e.g. 
reproductive behaviors (Pankhurst et al. 
1999), therefore are there several studies 
showing that male behavior is modulated 
by EE2. Inhibition in aggressiveness 
towards competing males (Bell 2001) 
and a change in social hierarchies among 
males (Colman et al. 2009) are just a 
few examples showing that EE2 have 
effects on such behaviors. The roach 
used in the foraging experiment were 
juveniles and therefore their behaviors 
were not connected to reproduction (see 
box 1 regarding the effects of estrogenic 
EDCs on fish reproductive behavior and 
fertility).

Hence, the change in foraging 
performance suggests that EE2 may 
affect the sensory-motor system and thus 
affecting the locomotor activity making 
fish less active (Nelson et al. 2008). EE2 
have been found to affect locomotor 
activity in fish exposed from an early 
life stage, e.g. pipefish (Syngnathus 
abaster) migration from bottom to 
surface (Sarria et al. 2011a), swimming 
burst (Sarria et al. 2011b) and swimming 
activity (Reyhanian et al. 2011) in zebra 

fish (Danio rerio). Organizational 
deformities such as abnormal 
development of the vertebrate column 
have been shown in mummichogs 
(Fundulus heteroclitus) exposed to 
17β-estradiol (E2) (Urushitani et al. 
2002) and in fathead minnow exposed 
to EE2 (Pimephales promelas) (Warner 
and Jenkins 2007), and this may also 
affect their locomotor activity.

In paper II we exposed roach 
to EE2, from fertilized egg to their 
juvenile stage and found that their 
foraging performance was inhibited 
but we could not assess where in the 
foraging cycle EE2 may affect fish and 
if EE2 would have the same affect the 
foraging performance in adult fish and 
this initiated both paper III and IV. 
Therefore, in Paper III, I exposed adult 
crucian carps (Carassius carassius), 
a cyprinid just as roach, to 0, 1, 10 or 
100 ng/L EE2 for 21 days and thereafter 

quantified different activities during 
foraging such as swimming speed, 
distance swum and capture success 
when foraging on Gammarus pulex, as 
well as the physiological health such as 
length, weight, condition factor and size 
of liver and gonads. In paper IV I also 
exposed adult crucian carps (Carassius 
carassius) but to 0, 10 or 100 ng/L EE2 
for 56 days and here I used a mesocosm 
experiment, with a prey community 
(zooplankton and macroinvertebrates) 
and algae community (perihyton 
and phytoplankton), with the same 
community ecology approach as paper 
II. In paper IV I also quantified length, 
weight, condition factor, size of liver 
and gonads in the crucian carps as well 
as the biomass of the prey community 
and algae community (chl-α).

In the crucian carp foraging 
experiment I did not observe any effects 
of EE2 on any of the quantified foraging 

Box 1. The effects of EE2 or other estrogenic EDCs on reproductive behavior 
and fertility in fish.

Fertility and reproductive behavior in female fish is under control of 
17β-estradiol (E2) (Pankhurst et al. 1999) and these activities may be triggered 
by the environment such as the temperature (Goulet 1995). As EE2 mimics 
E2 there are several studies showing that especially male fish, in several 
species, are sensitive to EE2. For example, EE2 have shown to reduce their 
aggressiveness toward competing males (Saaristo et al. 2010b), to inhibit 
their parental care (Saaristo et al. 2010a) as wells as change reproductive 
hierarchies and sexual selection (Coe et al. 2008) and these are just a few 
studies exemplifying these effects. Reduction in fertility has also been seen 
in males where EE2 caused by non-functional testes (Nash et al. 2004) or 
reduction in number of sperms (Kristensen et al. 2005) but also development 
in eggs have been shown to be inhibited (Kime and Nash 1999). No wonder 
that EE2 exposed fish populations may be driven to extinction (Kidd et al. 
2007).
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activities and the difference in effects on 
foraging performance compared to the 
EE2 exposed roach in paper II may be 
related to organizational effects in the 
developing roach as we explained earlier. 
The EE2 exposed adult crucian carps are 
not likely to exhibit any organizational 
deformities but activational changes 
may occur, such as the size and functions 
of liver or gonads, and an increase in 
liver size was seen in both male and 
female crucian carps and the reduction 
in gonads was seen in the males, both in 
the foraging and mesocom experiment.

Other studies have also observed 
effects of EE2 or other estrogenic EDCs 
on the size of liver, for both males and 
females, in three-spined sticklebacks 
(Gasterosteus aculeatus) (Andersson et 
al. 2007) and rare minnows (Gobiocypris 
rarus) (Zha et al. 2007). Effects of EE2 
have also been observed in gonads where 
the effect where more sever in males 
than females as seen in fathead minnows 
(Pimephales promelas) (Pawlowski et al. 
2004). The increase of liver size is likely 
due to an increased vtg production as 
this synthesized in the liver (Andersson 
et al. 2007) and the decrease in gonad 
size in the males was probably due 
to degeneration of germ cells (Miles-
Richardson et al. 1999). Studies have 
also shown that fish exposed to EE2 have 
reduced glycogen storage (Olivereau 
and Olivereau 1979; Ekman et al. 2008) 
and a reduction in energy storage may 
have implications during seasons where 
food may be scarce. 

I also showed that EE2 affected 
crucian carp weight and condition 
factor in the foraging experiment and 
weight, length and condition factor 
the mesocosm experiment, i.e. largely 

similar results as for the EE2 exposed 
roach in paper II. However, the effects 
were more sever in the crucian carps 
in the mesocosm experiment as length 
was also affected. This is not unlikely 
as the EE2 exposure period was 56 day 
compared to 21 days in the foraging 
experiment. Also, the condition factor 
was reduced in the highest treatment 
(100 ng/L EE2) in both of the crucian 
carp experiments, suggesting a large 
effect induce by EE2.

The inhibited growth in the EE2 
exposed roach in paper II was explained 
by either an inhibition of foraging 
performance, modulation of growth 
hormones or processes that requires 
energy, such as increased vitellogenin 
production and detoxification. There 
were however no significant effects 
on the foraging activity in the EE2 
exposed adult crucian carps, and only 
weak effects on the prey community. 
Therefore, it is not likely that reduced 
food intake caused the reduced growth 
in the crucian carps. I observed during 
the exposure period before the foraging 
activity trials that more food uneaten in 
the highest treatment of 100 ng/L EE2 
compared to the other three treatments 
and also a weak, but not significant, 
trend that the foraging success was 
lowered by EE2 exposure.

The sensitivity to EE2 or other 
estrogenic EDCs varies in prey 
community (Asellus aquaticus, 
Gammarus pulex, Radix balthica, 
Bithyina tentaculata and zooplankton) 
for the crucian carps in the mesocoms 
experiment. Amphipods, such as 
Gammarus pulex have been found to 
respond to EE2 and Watts et al.(2002) 
showed that population size was larger 

in treatments of 1 µ/L and higher and 
also that there were more females in 
these treatments, similar results shown 
by Vandenbergh et al. (2003). To my 
knowledge here are no studies performed 
on the effects of EE2 or other estrogenic 
EDCs on Asellus aquatics and they used 
as indicator species in polluted waters 
(Whitehurst 1991) but their land living 
relative, Porcellio scaber, have been 
shown have reduced reproductive output 
(Lemos et al. 2010). 

However, gastropods have been 
found sensitive to EE2 and other 
estrogenic EDCs and studies have shown 
increased reproduction in Potamopyrgus 
antipodarum exposed to EE2 or BPA at 
concentrations of 25 ng/L and 5 µg/L, 
respectively, and that somatic growth 
can either be enhanced for R. balthica or 
inhibited for B. tentaculata at 5 ng/L EE2 
(Paper I). Even if the gastropods used in 
the crucian carp mesocoms experiment 
are sensitive to EE2 there is nothing that 
suggest that EE2 may have increased the 
reproduction and thereby enhanced the 
growth of the crucian carps (Paper 1).

Gastropods have been proposed 
as model organisms in studies of EDC 
effects (Matthiessen 2008) and there are 
a few studies done showing that they 
are sensitive to EE2 or other estrogenic 
EDCs. In paper I my colleagues and 
me exposed two different snail species 
to EE2, from 0.5 ng/l up to 50 000 ng/l, 
in a concentration-response experiment, 
covering levels of EE2 that can be 
found in surface waters up. The species 
were Radix balthica, a hermaphrodite, 
and Bithynia tentaculata, a species 
with separate sexes. Hence, the two 
species have very different reproductive 
strategies. In this paper we quantified 

different life history traits (mortality, 
somatic growth, time to reproduction, 
size at reproduction, amount of eggs 
and hatching success) and calculated 
their population growth rate. There 
were no effects of EE2 on any of the 
variables used for population growth 
rate and therefore no effect was seen on 
population growth rate but there was an 
effect on somatic growth rate, enhanced 
for R. balthica and inhibited for B. 
tentaculata.

If the difference in somatic 
growth rate is related to their different 
reproductive strategies is however 
not known. Mollusks have been quite 
extensively used because they may 
respond to low concentrations of EE2 or 
other estrogenic EDCs but the response 
may depend on the life-history stage, 
species or exposure concentration 
(Jobling et al. 2003; Benstead et al. 
2011; Andrew et al. 2010). Androgen-
estrogen metabolizing enzymes 
(CYP450 arotmases) and genes coding 
for estrogen receptors orthologs have 
been shown in mollusks (Koehler et al. 
2007; Wootton et al. 1995; Hultin et al.) 
but the role of these estrogen receptors 
and if EE2 have any endocrinological 
role is however unknown (Scott 2013).

Furthermore, there are not only 
estrogenic EDCs in the aquatic 
environment; there are many other 
anthropogenic chemicals with different 
mode of action. Factors such as exposure 
history can also make organisms more 
or less sensitive to a chemical which 
may come with a cost (Wilson 1988), 
and  also affect how an organisms may 
respond to a novel stressor (Clements 
and Rohr 2009). Mollusks, with their 
sedentary life style, global distribution 
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and sensitivity to EE2 can make them 
good contenders to study the effects how 
pollution history may alter the effects of 
novel chemicals. In paper I we showed 
that somatic growth rate was enhanced 
in R. balthica when exposed to EE2 but 
this does not seem to come with a cost 
later in life as there were no negative 
effects on the reproductive output.

In paper V, my colleagues and me 
exposed two different populations of 
R. balthica to EE2 and cadmium, two 
chemicals with different mode of action. 
One population was born and reared in 
an EE2 environment (second generation 
from paper I) and one population came 
from non-EE2 exposed population in 
a pond. In this paper we used somatic 
growth to evaluate the effect of EE2 
exposure history and the effect of a 
novel stressor, cadmium. As we used two 
different populations with different life 
history, except previous EE2 exposure, 
we analyzed growth rate as percent and 
relative growth.

In one experiment we exposed the 
pond population to cadmium (0, 50 and 
200 µ/L) and we did not observer any 
effect on the somatic growth rate and this 
insensitivity may be related to that they 
have metallothioneins to bind to metals 
and detoxify them (Amiard et al. 2006). 
In a second experiment we exposed both 
populations to 50 ng/L EE2 without or 
with cadmium (0, 50 and 200 µ/L) and 
here we showed that the EE2 population 
had a higher growth rate (percent) 
compared to the pond population but 
there was no difference in relative 
growth rate. This may suggest that the 
EE2 population may be less sensitive to 
EE2 but we cannot disregard the different 
life histories. Both populations were 

however sensitive to the simultaneous 
exposure of cadmium and EE2 and this 
suggest that cadmium induces a larger 
burden and this in not unlikely as they 
have different mode of action. It is not 
clearly known how EE2 acts in mollusks 
(Ketata et al. 2008) but cadmium is metal 
that may induce oxidative stress (Stohs 
and Bagchi 1995) and detoxification 
processes are also likely to be different, 
metallothioneins for detoxification and 
execrating of metals (Amiard et al. 
2006) and EE2 may be metabolized by 
GST (Baturo and Lagadic 1996).

The activity of GST have been 
found to be decreased in EE2 exposed 
copepods (Paper VI) that can lower 
the protection against other chemicals, 
including metals (Lee et al. 2007). There 
were no effect of cadmium on the pond 
population in the first experiment and 
this may suggest the inhibited growth 
in both populations was induced by 
the simultaneous exposure of EE2 and 
cadmium. There are studies showing 
that invertebrates can be tolerant to 
metals and pesticides such as gastropods 
(Lefcort et al. 2004), earthworms 
Dendrobaena octaedra (Rozen 2006) 
and insects (Raymond et al. 2001). 
There are however few studies showing 
if organism can become more tolerant 
to EE2, or other estrogenic EDCs, but 
killifish (Fundulus heteroclites) have 
been observed to be more tolerant to 
E2 after living for generations in waters 
polluted with polychlorinated biphenyls 
(PCBs (Greytak et al. 2010).

Earlier in paper II and IV we used 
zooplankton, including copepods, as 
prey for both roach and cucian carps. 
In paper VI my collegues and me 
exposed copepod populations to 0, 10, 

100 and 1000 ng/L EE2 and quantified 
physiological effects that may affect 
the locomotor activity, development 
and the ability to metabolize xenobiotic 
chemicals. We showed that EE2 
decreased the activity Glutathione 
S-transferase (GST) (detoxification) 
and Caspase-3 (CASP-3) (apoptosis), 
for both calanoida and cyclopoida 
copepods, which can make them more 
susceptible to novel chemical stressors 
(Lee et al. 2007) and delay molting 
during their nauplii and copepodite 
stages and also the metamorphosis from 
nauplii to copepodites (Andersen et al. 
2001). Furthermore, we also showed 
that the activity of acetylcholinesterase 
(AChE) (neurotransmission) decreased 
for cyclopoids but not for calanoids and 
that EE2 affected the ratio between adult 
calanoids and copepodites. However, 
total abundance, both adults and 
copepodites, was not affected.

In the roach mesocosm experiment 
(Paper II) where we exposed juvenile 
roach and a plankton community to EE2, 
we observed that the nauplii biomass was 
higher in the control treatment before we 
added the roach, but we could not come 
up with any reasonable explanation 
to this. It is not unlikely the decreased 
activity of CASP-3 may have delayed 
the development from copepodits to 
adults and thereby delaying time to 
reproduction. I therefore analyzed ratio 
between copepodites and adults, for both 
cyclopoids and calanoids, in the roach 
mesocosm experiment but there were 
no effect of EE2, before or after adding 
the larval roach (Figure 3). However, the 
copepodite to adult ratio for cyclopoids 
was higher than for calanoids after that 
that the roach was added.

In paper II we explained the 
increase in copepod biomass by their 
anti-predator behavior, compared to 
the more listless cladocera, but the 
effects of EE2 seen in the activity of 
AChE suggest that cyclopoids may be 
more vulnerable to predation compared 
to calanoids. However, we could not 
determine if cyclopoids were more 
vulnerable, as the pattern of abundance 
or biomass was similar to those of 
calanoids. The physiological end-
points here, GST and CASP-3, were 
affected already at 10 ng/L EE2 and 
that is effects at lower concentrations 
than many other studies (Andersen et al. 
2001; Jukosky et al. 2008; Hutchinson 
et al. 1999) even though copepods lack 
orthologue receptors of EE2 (Breitholtz 
and Bengtsson 2001) and this warrants 
more research.
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Figure 3. Ratio betwwen copepodites and adults 
for calanoida (O) and cyclopoida (X) copepods in 
control and EE2 treatments before and after roach 
was added to the experimental arenas (Paper II).
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Is there anything more to do in the 
research around EE2, or other EDCs, 
and the eventual consequences for the 
inhabitants of the aquatic sphere? This 
could have been asked in the beginning 
of my PhD-student days and Sumpter 
and Jobling (2013) wrote “Do we need 
to know more” implying that the most 
important question regarding the effects 
of synthetic estrogens are addressed 
and answered and that research should 
be directed elsewhere. This paper was 
published at the end of my PhD-student 
days and I must say that I do agree with 
them, at least to some extent. When 
looking at the results in the papers that 
me and my colleagues have produced, 
the effects of EE2 on the different 
organizational levels does not seem 
to be strong, at least in the light of the 
amount of EE2 found in surface waters.

However, there are indications 
that more sever the effects on the 
physiological health are observed 
with longer EE2 exposure, at least for 
species sensitive to EE2 and maybe 
other estrogenic EDCs. When taken all 
results together, our and others studies, 
effects such as reduced physiological 
health, infertility, inhibited foraging 
performance, inhibited reproductive 
behavior in fish and the low, or no, 
effects of EE2 on the majority many 
other inhabitants in the aquatic 
community there seems to be winners 
(invertebrates) and losers (vertebrates) 
with possible changes in community 
structures and ecosystem functions that 
warrant attention.

With this in mind, we actually know 
very little about the effects that EE2 or 
other estrogenic EDCs may have in the 
natural aquatic communities, probably 
because the isolated effects they may 
have are difficult to observe in the natural 
environment as they are vast in both 
space and time (Kohler and Triebskorn 
2013), so there is much more to do as we 
only have scratched the (water)surface 
of these communities. There are also 
other aspects that are not much studied 
together with the effects of EE2 or 
other estrogenic EDCs such as chemical 
mixtures, organisms exposure history, 
the added stress from biotic interactions 
and other non-chemical abiotic stressors 
as well as and the effects during the 
ontogeny, and not only in fish.

Conclusion
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