
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Architectural considerations for rate-flexible trellis processing blocks

Kamuf, Matthias; Öwall, Viktor; Anderson, John B

Published in:
2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications

DOI:
10.1109/PIMRC.2005.1651606

2005

Link to publication

Citation for published version (APA):
Kamuf, M., Öwall, V., & Anderson, J. B. (2005). Architectural considerations for rate-flexible trellis processing
blocks. In 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications (pp.
1076-1080). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/PIMRC.2005.1651606

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/PIMRC.2005.1651606
https://portal.research.lu.se/en/publications/8af81527-6f6f-4355-82a4-f342bb924933
https://doi.org/10.1109/PIMRC.2005.1651606


Architectural Considerations for
Rate-flexible Trellis Processing Blocks
Matthias Kamuf and Viktor Öwall

Department of Electroscience
Lund University

SE-221 00 Lund, Sweden
Email: {mkf, vikt}@es.lth.se

John B. Anderson
Department of Information Technology

Lund University
SE-221 00 Lund, Sweden
Email: anderson@it.lth.se

Abstract— A flexible channel decoding platform should be able
to operate in varying communication scenarios, and different
code rates have to be supported. Therefore, we present a frame-
work that allows efficient processing of rate-flexible trellises. Us-
ing a fundamental computational unit for trellis-based decoding,
formal principles are obtained to emulate more complex trellises.
In a design example, such a computational block supports
both rate 1/c convolutional codes and set partition codes with
subset selectors of rate 2/3. Synthesis results show the hardware
requirements for two different architectural approaches.

I. INTRODUCTION

With growing application diversity in mobile communica-
tions, flexible processing hardware has become crucial. For
example, a flexible channel decoding platform should be able
to handle at least two decoding modes, one when a high error-
correcting capability is required at low Eb/N0 and another
one supporting high data throughput if there are good channel
conditions. Furthermore, both modes should be utilizing the
same computational kernel to minimize hardware overhead
compared to two single processing blocks.

The Viterbi algorithm (VA) is used, among others, to
recover encoded information corrupted during transmission
over a noisy channel. Its processing complexity increases
both with the number of trellis states N and the number of
branches connecting these states in one stage. The heart of
this algorithm is the add-compare-select (ACS) operation that
successively discards suboptimal branches from a code trellis.

Flexible Viterbi decoding processors were studied and pre-
sented, for example, in [1] and [2]; however, they were
intended solely for use with rate 1/c binary convolutional
codes, c an integer. These codes are used in a scenario,
where the available Eb/N0 is limited due to disadvantageous
channel conditions. The corresponding trellis diagram can be
decomposed into a radix-2 (R2) butterfly state interconnect
structure depicted in Fig. 1(a). To reduce bandwidth expansion,
higher rate codes up to rate 1 are obtained by puncturing the
basic 1/c code, which preserves the R2 structure of the trellis.

With the introduction of Wireless Personal Area Networks
(WPANs) [3], trellis-coded modulation (TCM) has regained
attraction as a means of transmitting information at high data
rates. This scheme is most efficient for higher (quadrature)
constellations beyond QPSK, which carry more than two

2n

k + 1k

2n + 1

n

n + N/2

(a)

4n

4n + 1

4n + 2

4n + 3 n + 3N/4

n + N/2

n + N/4

n

k k + 1

(b)

Fig. 1. A radix-2 butterfly (a) and a radix-4 butterfly (b) with state labels
for encoders in controller form. N is the number of states in the trellis and
n ∈ [0, N/2b − 1] in the respective cases, b = 1, 2.

information symbols per channel use, thus enabling high data
throughput. It makes extensive use of subset selectors that are
based on systematic rate b/(b + 1) convolutional codes [4].
To date, the most practical codes for TCM used together with
a 2-dimensional modulation scheme appear for b = 2. The
trellis now consists of radix-4 (R4) butterflies, see Fig. 1(b).
That is, there are 2b = 4 branches leaving and entering
each state. Puncturing, however, is not applicable here if code
performance is to be fully maintained. This degradation stems
from altering the minimum inter-subset distance. Thus, R4
butterflies have to be processed in the decoding steps.

Summarizing these considerations, a flexible channel decod-
ing architecture has to be tailored to efficiently process both
R2 and R4 butterflies, while limiting overhead in both area
and power consumption.

We propose to map higher-radix butterflies onto a basic
R2 butterfly and process them in a time-multiplexed manner,
where hardware is reused at the cost of throughput. As an
example, we consider the best 8-state rate 1/c convolutional
codes and the specific TCM code proposed in [3]. It will
be shown that only slight modifications are needed to extend
the basic R2 architecture. Finally, it should be remarked that
almost all practical trellis codes, whether TCM or not, are
based on either R2 or R4 butterflies, so the principles that we
present cover these codes as well.

In Section II and III, we provide the theoretical basis for
rate-flexible processing and the resulting building blocks are



Γ(S, k + 1)

BM
unit unit

Trellis SP
unit

Candidate

De-

mapper

Γ(S′, k)

”uncoded bits”

Channel
symbols

sequence
Decoded

Fig. 2. Block structure of a Viterbi decoder. Additional parts needed for
decoding of TCM codes are dashed.

described in Section IV. Two approaches are considered here,
an R2-based architecture in Section IV-A and an R4-based one
in Section IV-B. The synthesized decoding blocks are then
evaluated in the area-time domain in Section V.

II. VA IN A NUTSHELL

For the scope of this paper, we briefly revisit the basic
building blocks used in the VA. A more thorough, hardware-
oriented description is found in [5]. As shown in Fig. 2, there
are three main processing blocks in a Viterbi decoder. The
branch metric (BM) unit provides measures of likelihood for
the transitions in a trellis. These measures are consumed by the
trellis unit, where ACS operations on the state metrics Γ(S′, k)
from instant k form a new set of state metrics Γ(S, k + 1) at
instant k + 1. Here, S′ denotes the set of states in a trellis
and S is a permutation of S′ according to the given state
interconnection.

The decisions from the trellis unit are collected in the
survivor path (SP) unit to reconstruct the information bits that
caused the transitions in the survivor path. Additionally, in
case of TCM, candidate “uncoded bits” have to be stored that
together with the reconstructed information bits form the final
decoded sequence.

III. MULTI-RADIX PROCESSING

We now turn to the issue of rate-flexibility in the trellis
unit and derive a framework for emulating R4 butterflies by
means of R2 butterflies. For illustration we take the example
of a rate 1/c convolutional code combined with a TCM code
which subset selector is of rate 2/3.

A. Considered trellises

The base architecture for the flexible trellis block is an
R2 architecture for an 8-state rate 1/c convolutional code,
that is, the trellis consists of butterflies with state transitions
according to Fig. 1(a). Rate 1/2 codes are often used in today’s
communication systems since these rates are a good compro-
mise between coding gain and bandwidth efficiency. Also, they
usually serve as mother code for high-rate punctured codes.

For the TCM code, we consider signal constellations and
subset partitioning as proposed in [3]. There are 8 signal
subsets, that is, 8 different branch metrics are to be distributed
to the trellis unit that for this 8-state code consists of two R4
butterflies. Half of the branch metrics are applied to the first
R4 butterfly and the other half to the second one.

0 0

λ3

λ2

1

2

3

1

2

3

k k + 1

λ1

CS

λ3

λ2

B01

k�

ACS

B32

λ0

λ1

λ0

(a)

λ1

λ0

0

1

2

3

0

1

2

3

k k + 1

CS
λ2

λ3

B10

B23

k�

ACS

(b)

Fig. 3. A decomposed radix-4 butterfly and the two partial computations
leading to the updated metrics for states 0 and 3 in (a) and 1 and 2 in (b).
As an example, the necessary operations to update state metric 0 are drawn
bold in (a).

A TCM encoder is usually realized in observer form since
this maintains the constraint length of the underlying code if
b > 1. However, unlike a controller form realization, which
increases the encoder state space from N to N2b−1

, the state
transitions now depend on the coding polynomial. That is, the
feedback network has to be flexible if one wants to process
both R2- and R4-based codes on a single R2 architecture. This
can be done by introducing additional routing resources that
modify the permutation in R4 mode to feed back the state
metrics in correct order. In this design example, though, the
state transitions of the TCM encoder allow the reuse of the
trellis feedback connections of the binary 1/c code, that is,
the permutation transforming S′ into S is the same in both R2
and R4 mode.

B. Processing framework

In the following, we consider an R4 butterfly which utilizes
a set of branch metrics λi for i = 0 . . . 3. As to Fig. 1, there
are N/2b butterflies in a trellis, and thus, for N = 4 and b = 2,
there is only one R4 butterfly. Since n ∈ [0, N/2b − 1], that
is, n = 0 in this case, its state labels become 0, . . . , 3 as in
Fig. 3.

To update one state in an R4 butterfly, one can carry out
all six possible partial comparisons in parallel [6]. Four such
operations are needed to calculate a complete R4 butterfly
as in Fig. 1(b). However, this is not efficient when it comes
to hardware reusability in a rate-flexible system due to the
arithmetic overhead introduced by such 4-way ACS units.



Instead, we present a way of processing an R4 butterfly given
an architecture in which state metrics are updated by means
of R2 butterfly units.

Generally, a 4-way ACS can be carried out in two successive
steps: first evaluating and discarding a pair of cumulative
metrics (ACS), then in the second step, discarding one of
the surviving metrics, which corresponds to a compare-select
(CS) operation. This procedure is visualized by decomposing
the R4 butterfly from Fig. 1(b) into two stages as in Fig. 3.
Furthermore, a single R4 stage is split into two R2 butterflies
to achieve the cumulation of the state metrics with all four
branch metrics, resulting in the structures shown in Fig. 3(a)
and (b). Here, the branch metrics are assigned according to
the considered TCM subset selector.

To capture these processing steps formally we need the
following definition. The state connectivity of an R2 butterfly
is defined in Fig. 1(a). Assume that the two states at time k
are named u′ and v′ with state metrics Γ(u′, k) and Γ(v′, k),
respectively. The two ACS operations leading to two updated
state metrics for states u and v at stage k + 1 are expressed
as butterfly operation Bu′v′ . Without loss of generality, the λi

are distributed as in

Bu′v′ =
(

Γ(u, k + 1)
Γ(v, k + 1)

)
=




min
(

Γ(u′, k) + λ0

Γ(v′, k) + λ1

)

min
(

Γ(v′, k) + λ2

Γ(u′, k) + λ3

)

 . (1)

It is seen from Fig. 3 that there are four such R2 butterflies
between k and k�, so four operations as in (1) are needed,
given that this butterfly operation applies to an update at stage
k� instead of k + 1 in this case. For example, B01 is shown
in Fig. 3(a), that is, u′ = 0 and v′ = 1.

Processing the R4 butterfly based on (1) preserves the
compatibility with the base R2 architecture. The scheme for
obtaining all partial survivors is then expressed as

B′ =
(
B01 B10

)
, (2)

where the columns determine the instance of an iteration. So
far we have only computed half of the partial survivors needed;
to complete the R4 butterfly another unit has to carry out

B′′ =
(
B23 B32

)
. (3)

The operations in (2) and (3) guarantee that all state metrics
at stage k are added to all branch metrics, that is, 16 partial
sums are reduced to 8 partial survivors at intermediate stage k�

by means of CS operations. The final surviving state metrics
at stage k + 1 are obtained by CS operations on the hitherto
surviving metric pairs. Note that the partial survivors are not
altered and therefore the final state metrics are not changed
compared to a straightforward implementation.

IV. ARCHITECTURAL ISSUES

The model used in this study is a trellis unit that updates
N states by means of N/4 processing elements (PEs), each
consuming and producing 4 state metrics. A PE is configured
with butterfly units (BF) of different radices as in Fig. 4.

BF2

BF2

(a)

O I

OI

BF2/4

BF2/4

B′

B′′

(b)

4-ACS

4-ACS

4-ACS

4-ACS

BF4

(c)

Fig. 4. Butterfly units that are instantiated inside a processing element. A
setup as in (a) supports only R2 processing, setups (b) and (c) are rate-flexible.

Either two BF2, two rate-flexible BF2/4 units, or one BF4
unit are employed. Note that the BF4-based architecture can
also be configured for rate-flexible processing, whereas a BF2-
based design is solely intended for R2 processing and is not
discussed further. For a description of these approaches, see
[5] and [6].

A. R2-based approach

In the rate-flexible architecture using BF2/4, all partial
survivors are calculated during two cycles, and in the third
cycle the final update takes place. Two adjacent butterflies
are interconnected to exchange the partial survivors according
to the desired ordering of state metrics. As an example, the
operations to update state metric 0 are drawn bold in Fig. 3(a).
The partial survivors needed for the final CS are created in B′

at instance 0 and in B′′ at instance 1. Since they reside in
different butterfly units, they have to be brought together by
means of I/O channels as indicated in Fig. 4(b). The partial
survivors have to be stored temporarily and routed for the
final CS according to the required ordering of the updated
state metrics.

1) Butterfly unit BF2/4: Fig. 5(a) shows the rate-flexible
butterfly unit BF2/4. Its arithmetic components, that is, the
adders and the CS units, are identical to the ones in a BF2
unit, whereas its critical path is slightly larger due to the
multiplexers. To cope with a decomposed R4 butterfly, routing
resources (shaded in gray) are provided to distribute the partial
survivors as dictated by the branch metric distribution and
the state transitions. The input multiplexers shuffle the two
input state metrics to guarantee their cumulation with all four
branch metrics. The multiplexers in front of the CS units select
whether the partial survivors at stage k� are to be captured into
the routing unit PERM, or the final comparison at stage k + 1
is to be performed. When carrying out (2) or (3), PERM is fed
during two cycles and in the third and final cycle the partial
survivors are compared. Here, the signals I and O provide
the connections to the adjacent butterfly unit to carry out the
comparison with the desired pairs of partial survivors. For
example, O0 is connected to I0 in the adjacent butterfly. The
global registers for the surviving state metrics Γ(S, k + 1) in
R4 mode are only latched every third cycle. The CS operations
between (k, k�) and (k�, k + 1) in Fig. 3 are executed in the
same CS unit, thus saving hardware. Overall, this unit adds



sel mtr

Γ(u′, k)

Γ(v′, k)

CS

a
b
c
d

λ1

λ0

sel mtr
P

E
R

M

λ2

CS

sel cs

sel cs

λ3

0
1

Γ(v, k + 1)

Γ(u, k + 1)

0
1O

I

(a)

gclk0 gclk1

a

b

d

c

(b)

Fig. 5. The flexible butterfly unit BF2/4 in (a). Two such units are needed
for an R4 butterfly to be updated in three clock cycles. The shaded blocks
are the overhead compared to a BF2 unit. In (b) the routing block PERM is
shown. Connections apply for the design example.

four multiplexers and four registers ontop of a BF2 unit, while
there is no arithmetic overhead.

2) Routing block PERM: The block needed for permutating
the partial sums is depicted in Fig. 5(b). It consists of two
tapped delay lines. The registers are only clocked when their
input data are valid. Since their data are only read when valid,
that is, every third clock cycle, they are implemented without
reset.

In this design example, PERM carries out the same per-
mutation in both butterflies, that is, the partial survivors in
the top rail, a and b, are devoted to the same butterfly unit,
whereas the bottom rail survivors, c and d, are routed to the
adjacent butterfly unit, see Fig. 4(b). Given (2) and (3), this
setup arranges the state metrics in an increasing sequence from
0 to 3, and the design fits seamlessly into the base architecture,
that is, the feedback network in Fig. 2 is reused as is.

However, the required order of state metrics can vary for
different trellises, depending on the encoder. One can extend
this reasoning and notice that the butterflies Bu′v′ in (2) and
(3) can be calculated in any order and the partial survivors
needed for the updates are shuffled accordingly. Nevertheless,
PERM is highly flexible by providing 4! = 24 possible
permutations to handle these cases. With this approach it is
possible to cover a wide range of encoders. If the decoder
implementation is to realize different encoders with different
routing requirements, PERM has to be programmable.

CS

CS

Γ(u′, k)
Γ(v′, k)

Γ(w′, k)
Γ(x′, k)

gclk

fr
om

/to
gl

ob
al

re
gi

st
er

λ1
λ3

λ2

λ0

clk

r2/r4

sel cs

Fig. 6. A flexible 4-way ACS unit for use in BF4 of Fig. 4(c). Four such
units are needed for an R4 butterfly to be updated in two clock cycles. The
shaded blocks are the overhead compared to a 2-way ACS unit.

It was already mentioned that the permutation transforming
S′ into S is the same for both codes considered. This is
not generally true, and additional routing is necessary if the
required permutation cannot be obtained by programming the
PERM units. On a global level, metrics have to be exchanged
between PEs. Essentially, this is done by inserting multiplexers
to either choose the R2 or R4 state connections. Depending
on the application this can be fixed or programmable.

B. R4-based approach

We compare the presented flexible R2-based approach to
an R4 architecture based on BF4 units that utilize four 4-way
ACS units as in Fig. 4(c). To account for the intended use in
a rate-flexible system, similar control mechanisms have to be
provided as in the R2-based approach. Hence, a straightfor-
ward two-level-CS implementation is considered. Depending
on the desired throughput, a butterfly can be updated in one or
two clock cycles, which gives the well-known area–throughput
trade-off. Here, we employ a two-cycle update since this
maintains the critical path of the R2-based approach and one
CS unit can be reused.

Fig. 6 shows the flexible 4-way ACS unit. In R4 mode,
the two partial survivors are captured in the first cycle. The
global state metric register in the upper path now carries a
temporary survivor at time k�. In the second cycle, these
survivors are compared to yield the final state metric at k +1.
In R2 mode, only the upper ACS path is utilized and to
be equally power-efficient, one needs to prevent switching
activity in the lower ACS path. This is done by guarding the
inputs of the adders with AND-gates, which is illustrated by
the gray shading. The static signal r2/r4, which determines
the processing mode, controls whether the addition block is
enabled or not. Compared to a conventional 2-way ACS unit,
two adders, a CS unit, a register, and a multiplexer are counted
as overhead.

Table I shows the necessary hardware to update an R4
butterfly for the two approaches. The R4-based approach lags
in terms of arithmetic overhead, that is, adders and CS units.
Routing and storing resources, though, dominate in the R2-
based approach. The arithmetic overhead weighs more in this
case, considering that a CS unit consists of an adder and a
multiplexer. Thus, the number of equivalent multiplexers is 16
in both cases, and the number of adders increases to 12 and



TABLE I

NECESSARY HARDWARE TO UPDATE AN R4 BUTTERFLY FOR THE TWO

APPROACHES. NUMBER OF MULTIPLEXERS IS EXPRESSED AS NUMBER OF

EQUIVALENT 2:1 MULTIPLEXERS. NOTE THAT A CS UNIT CONSISTS OF AN

ADDER AND A MULTIPLEXER.

R2-based R4-based

Adder 8 16

Multiplexer 12 8

CS 4 8

Register 8 4

24, respectively. Based on these premises, the two approaches
are expected to have comparable area requirements.

V. EVALUATION OF SYNTHESIZED DECODING BLOCKS

To test the actual hardware implementations, we used a
design kit from Faraday for the UMC 0.13µm CMOS process.
All evaluations apply to synthesized cell area, where different
throughput requirements are put as design constraints. A
modulo normalization technique [7] is used for controlled state
metric overflow and we assume 8 bits as wordlength for the
state metrics.

Fig. 7 shows the required cell area for synthesized compu-
tational blocks that can process both R2 and R4 butterflies.
Here, tk→k+1 stands for processing time for a trellis stage
from k to k+1. The values are compensated since the BF2/4-
based architecture takes 3 cycles for an R4 update, whereas
the BF4-based one only needs 2 cycles. For an R2 update,
both architectures need one clock cycle.

It is seen that the BF2/4-based architecture becomes some-
what larger than the BF4-based approach as the requirement
on tk→k+1 in R4 mode becomes tighter, that is, less than
5ns. However, the provided throughput at this stage is beyond
the speed requirement of considered applications, for example,
high data-rate WPANs. In the figure, this means that the actual
design space to be considered extends to the far right. Here,
the BF2/4-based architecture is more suitable due to the lower
area requirement of about 19% (2516µm2) as indicated by
the arrow. Furthermore, this approach already provides routing
resources (PERM) to support a wider range of codes, that is,
the four state metrics belonging to an R4 butterfly can be
shuffled by PERM in any order to maintain compatibility to the
feedback connections of the basic R2 architecture. Considering
R2 processing only, the BF2/4 architecture is better suited
even down to a tk→k+1 of about 1.5ns.

Furthermore, both designs need a controller that provides
control signals for multiplexers and gated clocks. One can
state that the one for the BF2/4-based architecture is about
three times larger than the one needed when using BF4 units.
This is mostly due to the more advanced clock gating in
the former design. However, since a controller is instantiated
only once, this gives a negligible contribution to the overall
area, especially if the state space grows larger. In this design
example, the controllers are always smaller than 3% of the
total design size.

0 2 4 6 8 10
1

1.2

1.4

1.6

1.8

2
x 10

4

tk→k+1 (ns)

C
el

l
ar

ea
(µ

m
2

)

BF2/4, R4 mode

BF4, R4 mode

BF2/4, R2 mode

BF4, R2 mode

R4 mode

R2 mode

25
16

µ
m

2

Fig. 7. Cell area versus time for a decoding stage in R2 or R4 mode for
architectures based on different radices.

VI. CONCLUSIONS

We presented a framework for processing trellises that are
based on butterflies of different radices. In case of a flexible
channel decoding platform, both R2 and R4 butterflies have to
be taken into account. It is shown how R2 blocks can be reused
to compute R4 butterflies. This turns out to be advantageous in
terms of area requirements compared to an architecture based
on R4 blocks. Up to a critical time for a decoding step in
R4 mode of around 5ns, the R2-based approach consumes
less area. Additionally, it inherently provides higher flexibility,
which has not yet been accounted for in the competing
architecture. This makes the rate-flexible architecture based
on BF2/4 more suitable for the implementation of a flexible
decoding platform.

ACKNOWLEDGMENTS

This project is supported by the Swedish Socware program,
the EU Pacwoman project, and the Competence Center for
Circuit Design at Lund University.

REFERENCES

[1] D. E. Hocevar and A. Gatherer, “Achieving flexibility in a Viterbi decoder
DSP coprocessor,” in Proc. IEEE Vehicular Technology Conference (VTC-
Fall), vol. 5, Boston, MA, Sept. 2000, pp. 2257–2264.

[2] J. R. Cavallaro and M. Vaya, “Viturbo: A reconfigurable architecture for
Viterbi and turbo decoding,” in Proc. IEEE International Conference on
Acoustic, Speech, and Signal Processing (ICASSP), vol. 2, Hong Kong,
China, Apr. 2003, pp. 497–500.

[3] Wireless Medium Access Control (MAC) and Physical Layer (PHY)
Specifications for High Rate Wireless Personal Area Networks (WPANs),
IEEE Std. 802.15.3, 2003.

[4] J. B. Anderson and A. Svensson, Coded Modulation Systems. New York,
NY: Kluwer, 2003.

[5] H. Dawid, O. Joeressen, and H. Meyr, “Viterbi decoder: High perfor-
mance algorithms and architectures,” in Digital Signal Processing for
Multimedia Systems, ser. Signal Processing Series. Marcel Dekker, Inc.,
Feb. 1999, ch. 17.

[6] P. J. Black and T. H. Meng, “A 140 Mb/s, 32-state, radix-4 Viterbi
decoder,” IEEE Journal of Solid-State Circuits, vol. 27, no. 12, pp. 1877–
1885, Dec. 1992.

[7] A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,”
IEEE Transactions on Communications, vol. 37, no. 11, pp. 1220–1222,
Nov. 1989.


